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In the lasts years we have seen renewed efforts  
to find expressive graph languages 

that are algebraically closed

The majority are based on Datalog



Datalog for graphs

5(]�, ]�) � 3�([�, \�), . . . ,3Q([Q, \Q)

A (binary) Datalog program is a set of rules



Datalog for graphs

5(]�, ]�) � 3�([�, \�), . . . ,3Q([Q, \Q)

A (binary) Datalog program is a set of rules

]�, ]� � {[�, \�, . . . , [Q, \Q}

3�, . . . ,3Q

5

are either graph labels or predicates

is a predicate



Datalog for graphs

5(]�, ]�) � 3�([�, \�), . . . ,3Q([Q, \Q)

A (binary) Datalog program is a set of rules

]�, ]� � {[�, \�, . . . , [Q, \Q}

3�, . . . ,3Q

5

are either graph labels or predicates

is a predicate Datalog programs  
use their own, new  

predicates



Datalog for graphs

5(]�, ]�) � 3�([�, \�), . . . ,3Q([Q, \Q)

A (binary) Datalog program is a set of rules

]�, ]� � {[�, \�, . . . , [Q, \Q}

3�, . . . ,3Q

5

are either graph labels or predicates

is a predicate

(in general Datalog predicates can have any arity)

Datalog programs  
use their own, new  

predicates
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Datalog: example

Find nodes connected by a sequence of knows edges or  
helps edges

(knows | helps)+

To evaluate over a graph:  
    apply all rules until we reach a fixed point. 
  
The evaluation is everything in Ans.

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)
5([, \) � 5([, ]),5(], \)

$QV�[�\� � 5([, \)
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Datalog: example

)ULHQG([, \) � NQRZV([, \), KHOSV([, \)
)ULHQG([, \) � )ULHQG([, ]),)ULHQG(], \)

$QV�[�\� � )ULHQG([, \)

Kleene star!
a n1

knows

helps

(                  )+

Find all nodes connected  
by a chain of friends
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Datalog can express any navigational pattern (and much more) 
!

The problem is that Datalog is too expressive! 
Many problems associated to Datalog are hard
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Evaluation

Does a pair (a,b) belong to Ans,  
when computed over a graph G?

)ULHQG([, \) � NQRZV([, \), KHOSV([, \)
)ULHQG([, \) � )ULHQG([, ]),)ULHQG(], \)

$QV�[�\� � )ULHQG([, \)

EXPTIME-complete in general 
PTIME-complete if the program is fixed 

Other database problems are harder for datalog programs 
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Containment

IROORZ([, \) � NQRZV([, \)
IROORZ([, \) � SRSXODU(\), IROORZ([, ])

IROORZ([, \) � NQRZV([, \)
IROORZ([, \) � SRSXODU(\), NQRZV([, ])

is contained in 

Examples

A query Q is contained in a query Q’ if  
!
                       , for every graph database G4(*) � 4�(*)
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- query optimisation

- query answering using views or access patterns

- data integration, ontology-based query answering

Containment problem is the theoretical backbone  
of many other data-related tasks
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Input: Q, Q’ 
Question: Is Q contained in Q’?

PSPACE-hard for RPQs 
in PSPACE for 2RPQs and NPQs  

Containment is:   [Calvanese, De Giacomo, Lenzerini, Vardi 00’; R. 13]
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Complexity of Containment: Primitives

Containment is:   [Calvanese, De Giacomo, Lenzerini, Vardi 00;  
       Barceló, Pérez, R. 13]

EXPSPACE-complete for navigational patterns 

Input: Q, Q’ 
Question: Is Q contained in Q’?
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Complexity of Containment: Primitives

Containment is:   [Chandra, Merlin 77; Shmueli 87]

NP-complete for CQs 
Undecidable for general Datalog programs 
!

Input: Q, Q’ 
Question: Is Q contained in Q’?

(Undecidable for Relational Algebra expressions,  
        but Datalog has no negation!)



Complexity of Containment: Primitives

Containment is:   [Chaudhuri, Vardi 92]  
!
2EXPSPACE-complete for a Datalog program  
       in a non-recursive Datalog program

Input: Q, Q’ 
Question: Is Q contained in Q’?



Complexity of Containment: Primitives

Containment is:   [Calvanese, De Giacomo, Vardi 05]  
!
2EXPSPACE-complete for a Datalog program  
       in a C2RPQ (or even unions of…)

Input: Q, Q’ 
Question: Is Q contained in Q’?
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New goal

- can express navigational patterns (C2RPQs, CNPQs)
- evaluation is “easy” (NP combined, NLogSpace data)
- containment is “easy” (decidable in an elemental class)

Algebraically closed graph query language such that: 
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Idea

Datalog can express very intricate recursive queries

5([, ]) � 3([, \),4(\, ])
3([, ]) � 4([, \),5(\, ])
4([, ]) � 5([, \),3(\, ])

We don’t need this.  
!
We just need a way of applying kleene star to patterns
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To evaluate: same as datalog,  
     the + operator is transitive closure

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)

$QV([, \) � 5+([, \)

5+([, \) � 5([, \)
5+([, ]) � 5+([, \),5+(\, ])

5+ = 5 �
5 � 5 �
5 � 5 � 5 �
���

5 � 5(        is the composition  
of binary relation    )5
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Regular Queries

Extended datalog rules are of the form

6(]�, ]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

are either graph labels,  
                 predicates, or  
                   expressions       (for predicate or label    ) 

]�, ]� � {[�, \�, . . . , [Q, \Q}

is a fresh predicate

5� . . . ,5Q

6

33+



Regular Queries

Extended datalog rules are of the form

6(]�, ]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

A Regular Query is a set of  
extended datalog rules that is non-recursive
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Extended datalog rules are of the form

6(]�, ]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

A regular query is a set of extended datalog rules  
  that is non-recursive

Basically, the only recursion we allow is the + 
(can be simulated using recursive datalog):

5+([, \) � 5([, \)
5+([, ]) � 5+([, \),5+(\, ])
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Regular Queries        Datalog�

But, regular queries can express all navigational patterns

(knows | helps)+

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)

$QV([, \) � 5+([, \)

Path queries:

(knows knows [helps])+

5([, \) � NQRZV([, X), NQRZV(X, \), KHOSV(\, ])
$QV([, \) � 5+([, \)
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Regular Queries        Datalog�

But, regular queries can express all navigational patterns

    x y

knows+

helps+
4([, \) = ([, KHOSV+, \) � ([, NQRZV+, \)

+(X, Y) � KHOSV(X, Y)
.(X, Y) � NQRZV(X, Y)

$QV([, \) � ++([, \),.+([, \)
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u is an acquaintance of v if  
- v knows u 
- v and u have an indirect common friend
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F+ F+

Find nodes connected by a  
chain of acquaintances:

Regular queries can express much more!



u is an acquaintance of v if  
- v knows u 
- v and u have an indirect common friend

(                  )+v u

knows

z

F+ F+

Find nodes connected by a  
chain of acquaintances:

)(X, Y) � KHOSV(X, Y), NQRZV(X, Y)
$(X, Y) � NQRZV(Y, X),)+(Y, ]),)+(X, ])

$QV([, \) � $+([, \)

Regular queries can express much more!



Evaluation problem (Regular Queries):

Given graph G, nodes u,v from G, RQ Q.   
Is (u,v) in the evaluation of Q over G?

Evaluation of Regular Queries is NP-complete 
                     
(already NP-hard because of CQs)
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Evaluation in NP (Regular Queries):

1.- Maximum number of tuples in a predicate  
           is polynomial, in  
        (just binary predicates) 

2(*�)

2.- Do this for every predicate 2(*� · |4|)

3.- Guess a polynomial witness for every tuple  
   in every predicate that needs to be computed



Evaluation problem (Regular Queries):

Evaluation of Regular queries is  
!
NLogSpace-complete   (data complexity)                  
already NLogSpace-hard because of RPQs

Proof by merging   
- CQ evaluation in NLogSpace 
- Evaluating transitive closures is in NLogSpace

Given graph G, nodes u,v from G, RQ Q.   
Is (u,v) in the evaluation of Q over G?
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Containment problem (Regular Queries):

Given RQs Q and Q’.   
Is Q’ contained in Q?

Can we find a language with the same  
bounds as navigational queries? 

Containment is [R., Romero, Vardi 15] 
!
2EXPSPACE-complete for Regular Queries         
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Flat nested UC2RPQs

Collection of rules of the form

6(]�, ]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

3

]�, ]� � {[�, \�, . . . , [Q, \Q}

are either 2RPQs (over labels and their inverses), or  
!
                   expressions       (for predicate   ) 

is a fresh predicate

5� . . . ,5Q

6

3+

Each new predicate    appears only once on the left hand side 
       of any rule

3



Every time we define a new predicate    we can use it only once,  
only in the form of a transitive closure 

Flat nested UC2RPQs

Collection of rules of the form

6(]�, ]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

]�, ]� � {[�, \�, . . . , [Q, \Q}

are either 2RPQs (over labels and their inverses), or  
!
                   expressions       (for predicate   ) 

is a fresh predicate

5� . . . ,5Q

6

33+

3
3+



Containment (Flat nested UC2RPQs):

Some results: [R., Romero, Vardi 15] 
!
Flat nested UC2RPQs are exponentially more succinct 
than regular queries.        
!
Containment of flat nested UC2RPQs  is  
EXPSPACE-complete  
(hardness from navigational patterns).     
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Recap

Datalog programs are good candidates for graph queries,  
    but maybe more expressive than what is needed

Regular Queries:  
!
Non-recursive datalog + transitive closure of predicates

- Expresses navigational graph patterns 
- Algebraically closed 
- Complexity of evaluation similar to patterns 
- Complexity of containment elemental,  
  same as containment of datalog in non-rec datalog



Say u is a friend of v if  
u knows v and u helps v

Find all nodes connected  
by a chain of friends

(                  )+x y

knows

helps

)(X, Y) � KHOSV(X, Y), NQRZV(X, Y)
$QV([, \) � )+([, \)

Regular Queries (example)



Expressive power

Datalog

unions of navigational patterns

Regular Queries Flat nUC2RPQs 

(binary) non recursive Datalog

adds path queries

adds transitive closure

adds recursive rules
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Arbitrary Arity?

Regular queries use only binary predicates.  
Can we use predicates of greater arity?  

)(X, Y) � KHOSV(X, Y), NQRZV(X, Y)
$QV([, \) � )+([, \)

For the transitive closure predicates      :  
       Not easy (not even clear how to define it).  
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Arbitrary Arity?

Regular queries use only binary predicates.  
Can we use predicates of greater arity?  

)(X, Y) � KHOSV(X, Y), NQRZV(X, Y)
$QV([, \) � )+([, \)

For other predicates: Yes!    [R., Romero, Vardi 16] 
!
!
- Evaluation becomes PSPACE-complete  

  (same as non-recursive Datalog) 
- Containment remains 2EXPSPACE-complete



Other approaches

Regular Queries restrict recursion to the      operator.  
But there are other alternatives! 

3+
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Monadic Datalog: Only Unary predicates in left side of rules

A pair          is in the answer  
if this program hits  
when            and   

Monadically defined queries [Bourhis, Krötzsch, Rudolph]:  
!
 Add two special constants Ȝ�, Ȝ�
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Monadic Datalog: Only Unary predicates in left side of rules

A pair          is in the answer  
if this program hits  
when            and   

Monadically defined queries [Bourhis, Krötzsch, Rudolph]:  
!
 Add two special constants Ȝ�, Ȝ�

8(\) � 3(Ȝ�, \)
8(]) � 3(\, ]),8(\)

KLW � 8(Ȝ�)
D = Ȝ� E = Ȝ�

(D, E)

Transitive closure of P!
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Monadic Datalog: Only Unary predicates in left side of rules

Monadically defined queries [Bourhis, Krötzsch, Rudolph]:  
!

Can find algebraically closed fragment  
   with good evaluation and containment bounds
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More recursion but guarding programs 

TriQL [Arenas, Gottlob, Pieris]:

Allow more recursion,  
Constraint rules to have guards  
(problematic variables in rules need to appear in certain ways) 

Can generate much more expressive languages,  
some of them algebraically closed


