
Outline

• Navigation and Patterns
!

• Rule-based languages
!
!
• Moving to RDF

•
!

• Rule-based languages
!
!
•

Outline

Datalog
!
!
Containment of Queries
!
!
Regular Queries

In the lasts years we have seen renewed efforts
to find expressive graph languages

that are algebraically closed

The majority are based on Datalog

Datalog for graphs

5(]�,]�) � 3�([�, \�), . . . ,3Q([Q, \Q)

A (binary) Datalog program is a set of rules

Datalog for graphs

5(]�,]�) � 3�([�, \�), . . . ,3Q([Q, \Q)

A (binary) Datalog program is a set of rules

]�,]� � {[�, \�, . . . , [Q, \Q}

3�, . . . ,3Q

5

are either graph labels or predicates

is a predicate

Datalog for graphs

5(]�,]�) � 3�([�, \�), . . . ,3Q([Q, \Q)

A (binary) Datalog program is a set of rules

]�,]� � {[�, \�, . . . , [Q, \Q}

3�, . . . ,3Q

5

are either graph labels or predicates

is a predicate Datalog programs
use their own, new

predicates

Datalog for graphs

5(]�,]�) � 3�([�, \�), . . . ,3Q([Q, \Q)

A (binary) Datalog program is a set of rules

]�,]� � {[�, \�, . . . , [Q, \Q}

3�, . . . ,3Q

5

are either graph labels or predicates

is a predicate

(in general Datalog predicates can have any arity)

Datalog programs
use their own, new

predicates

Datalog: example

Find nodes connected by a sequence of knows edges or
helps edges

(knows | helps)+

Datalog: example

Find nodes connected by a sequence of knows edges or
helps edges

(knows | helps)+

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)
5([, \) � 5([,]),5(], \)

$QV�[�\� � 5([, \)

Datalog: example

Find nodes connected by a sequence of knows edges or
helps edges

(knows | helps)+

We use a special predicate Ans to collect answers
(in this case pairs of nodes)

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)
5([, \) � 5([,]),5(], \)

$QV�[�\� � 5([, \)

Datalog: example

Find nodes connected by a sequence of knows edges or
helps edges

(knows | helps)+

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)
5([, \) � 5([,]),5(], \)

$QV�[�\� � 5([, \)

To evaluate over a graph:
 apply all rules until we reach a fixed point.

Datalog: example

Find nodes connected by a sequence of knows edges or
helps edges

(knows | helps)+

To evaluate over a graph:
 apply all rules until we reach a fixed point.

The evaluation is everything in Ans.

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)
5([, \) � 5([,]),5(], \)

$QV�[�\� � 5([, \)

a n1

knows

helps

Say u is a friend of v if
u knows v and u helps v

Find all nodes connected
by a chain of friends

b

helps

knows

nkn1

knows

helps

Datalog: example

a n1

knows

helps

Say u is a friend of v if
u knows v and u helps v

Find all nodes connected
by a chain of friends

b

helps

knows

nkn1

knows

helps

Datalog: example

)ULHQG([, \) � NQRZV([, \), KHOSV([, \)
)ULHQG([, \) �)ULHQG([,]),)ULHQG(], \)

$QV�[�\� �)ULHQG([, \)

Say u is a friend of v if
u knows v and u helps v

Datalog: example

)ULHQG([, \) � NQRZV([, \), KHOSV([, \)
)ULHQG([, \) �)ULHQG([,]),)ULHQG(], \)

$QV�[�\� �)ULHQG([, \)

Find all nodes connected
by a chain of friends

Datalog: example

)ULHQG([, \) � NQRZV([, \), KHOSV([, \)
)ULHQG([, \) �)ULHQG([,]),)ULHQG(], \)

$QV�[�\� �)ULHQG([, \)

Datalog: example

)ULHQG([, \) � NQRZV([, \), KHOSV([, \)
)ULHQG([, \) �)ULHQG([,]),)ULHQG(], \)

$QV�[�\� �)ULHQG([, \)

Kleene star!
a n1

knows

helps

()+

Find all nodes connected
by a chain of friends

Expressive power

Datalog can express any navigational pattern (and much more)
!

Expressive power

Datalog can express any navigational pattern (and much more)
!

The problem is that Datalog is too expressive!
Many problems associated to Datalog are hard

Evaluation

Does a pair (a,b) belong to Ans,
when computed over a graph G?

)ULHQG([, \) � NQRZV([, \), KHOSV([, \)
)ULHQG([, \) �)ULHQG([,]),)ULHQG(], \)

$QV�[�\� �)ULHQG([, \)

Evaluation

Does a pair (a,b) belong to Ans,
when computed over a graph G?

)ULHQG([, \) � NQRZV([, \), KHOSV([, \)
)ULHQG([, \) �)ULHQG([,]),)ULHQG(], \)

$QV�[�\� �)ULHQG([, \)

EXPTIME-complete in general
PTIME-complete if the program is fixed

Evaluation

Does a pair (a,b) belong to Ans,
when computed over a graph G?

)ULHQG([, \) � NQRZV([, \), KHOSV([, \)
)ULHQG([, \) �)ULHQG([,]),)ULHQG(], \)

$QV�[�\� �)ULHQG([, \)

EXPTIME-complete in general
PTIME-complete if the program is fixed

Other database problems are harder for datalog programs

•
!

• Rule-based languages
!
!
•

Outline

Datalog
!
!
Containment of Queries
!
!
Regular Queries

Containment

A query Q is contained in a query Q’ if
!
 , for every graph database G4(*) � 4�(*)

Containment

 is contained in (DD)+ D+

Examples

A query Q is contained in a query Q’ if
!
 , for every graph database G4(*) � 4�(*)

Containment

4([) = �\
�
D+([, \) � D�(\, [)

�

is contained in 4�([) = �\
�
D+([, \)

�

 is contained in (DD)+ D+

Examples

A query Q is contained in a query Q’ if
!
 , for every graph database G4(*) � 4�(*)

Containment

IROORZ([, \) � NQRZV([, \)
IROORZ([, \) � SRSXODU(\), IROORZ([,])

IROORZ([, \) � NQRZV([, \)
IROORZ([, \) � SRSXODU(\), NQRZV([,])

is contained in

Examples

A query Q is contained in a query Q’ if
!
 , for every graph database G4(*) � 4�(*)

Containment problem is the theoretical backbone
of many other data-related tasks

Containment problem is the theoretical backbone
of many other data-related tasks

Containment problem is the theoretical backbone
of many other data-related tasks

- query optimisation

Containment problem is the theoretical backbone
of many other data-related tasks

- query optimisation

- query answering using views or access patterns

Containment problem is the theoretical backbone
of many other data-related tasks

- query optimisation

- query answering using views or access patterns

- data integration, ontology-based query answering

Containment problem is the theoretical backbone
of many other data-related tasks

Complexity of Containment: Primitives

Input: Q, Q’
Question: Is Q contained in Q’?

PSPACE-hard for RPQs
in PSPACE for 2RPQs and NPQs

Containment is: [Calvanese, De Giacomo, Lenzerini, Vardi 00’; R. 13]

Complexity of Containment: Primitives

Input: Q, Q’
Question: Is Q contained in Q’?

PSPACE-complete for path queries

Containment is: [Calvanese, De Giacomo, Lenzerini, Vardi 00’; R. 13]

Complexity of Containment: Primitives

Containment is: [Calvanese, De Giacomo, Lenzerini, Vardi 00;
 Barceló, Pérez, R. 13]

EXPSPACE-hard for CRPQs
in EXPSPACE for C2RPQs and CNPQs

Input: Q, Q’
Question: Is Q contained in Q’?

Complexity of Containment: Primitives

Containment is: [Calvanese, De Giacomo, Lenzerini, Vardi 00;
 Barceló, Pérez, R. 13]

EXPSPACE-complete for navigational patterns

Input: Q, Q’
Question: Is Q contained in Q’?

Complexity of Containment: Primitives

Containment is: [Chandra, Merlin 77; Shmueli 87]

NP-complete for CQs
Undecidable for general Datalog programs
!

Input: Q, Q’
Question: Is Q contained in Q’?

Complexity of Containment: Primitives

Containment is: [Chandra, Merlin 77; Shmueli 87]

NP-complete for CQs
Undecidable for general Datalog programs
!

Input: Q, Q’
Question: Is Q contained in Q’?

(Undecidable for Relational Algebra expressions,
 but Datalog has no negation!)

Complexity of Containment: Primitives

Containment is: [Chaudhuri, Vardi 92]
!
2EXPSPACE-complete for a Datalog program
 in a non-recursive Datalog program

Input: Q, Q’
Question: Is Q contained in Q’?

Complexity of Containment: Primitives

Containment is: [Calvanese, De Giacomo, Vardi 05]
!
2EXPSPACE-complete for a Datalog program
 in a C2RPQ (or even unions of…)

Input: Q, Q’
Question: Is Q contained in Q’?

New goal

Algebraically closed graph query language such that:

New goal

Algebraically closed graph query language such that:

New goal

- can express navigational patterns (C2RPQs, CNPQs)

Algebraically closed graph query language such that:

New goal

- can express navigational patterns (C2RPQs, CNPQs)
- evaluation is “easy” (NP combined, NLogSpace data)

Algebraically closed graph query language such that:

New goal

- can express navigational patterns (C2RPQs, CNPQs)
- evaluation is “easy” (NP combined, NLogSpace data)
- containment is “easy” (decidable in an elemental class)

Algebraically closed graph query language such that:

Idea

Datalog can express very intricate recursive queries

5([,]) � 3([, \),4(\,])
3([,]) � 4([, \),5(\,])
4([,]) � 5([, \),3(\,])

Idea

Datalog can express very intricate recursive queries

5([,]) � 3([, \),4(\,])
3([,]) � 4([, \),5(\,])
4([,]) � 5([, \),3(\,])

We don’t need this.
!
We just need a way of applying kleene star to patterns

•
!

• Rule-based languages
!
!
•

Outline

Datalog
!
!
Containment of Queries
!
!
Regular Queries

Regular Queries (by example)

Find nodes connected by a sequence of knows edges or
helps edges

(knows | helps)+

Regular Queries (by example)

Find nodes connected by a sequence of knows edges or
helps edges

(knows | helps)+

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)

$QV([, \) � 5+([, \)

Regular Queries (by example)

Find nodes connected by a sequence of knows edges or
helps edges

(knows | helps)+

To evaluate: same as datalog,
 the + operator is transitive closure

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)

$QV([, \) � 5+([, \)

Regular Queries (by example)

To evaluate: same as datalog,
 the + operator is transitive closure

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)

$QV([, \) � 5+([, \)

Regular Queries (by example)

To evaluate: same as datalog,
 the + operator is transitive closure

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)

$QV([, \) � 5+([, \)

5+ = 5 �
5 � 5 �
5 � 5 � 5 �
���

5 � 5(is the composition
of binary relation)5

Regular Queries (by example)

To evaluate: same as datalog,
 the + operator is transitive closure

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)

$QV([, \) � 5+([, \)

5+([, \) � 5([, \)
5+([,]) � 5+([, \),5+(\,])

5+ = 5 �
5 � 5 �
5 � 5 � 5 �
���

5 � 5(is the composition
of binary relation)5

Regular Queries

Extended datalog rules are of the form

6(]�,]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

Regular Queries

Extended datalog rules are of the form

6(]�,]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

are either graph labels,
 predicates, or
 expressions (for predicate or label)

]�,]� � {[�, \�, . . . , [Q, \Q}

is a fresh predicate

5� . . . ,5Q

6

33+

Regular Queries

Extended datalog rules are of the form

6(]�,]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

A Regular Query is a set of
extended datalog rules that is non-recursive

Non recursive
Ordering on predicates,
left hand side predicate is greater than everything on the right

5([, \) � 3([, [),3([, \)
5([, \) � 4([, \),3(\, [)

3+([,]) � 5([,]),4(],])
5+([, \) � 3+([, X),5(X, Y),4(Y, \)

Non recursive
Ordering on predicates,
left hand side predicate is greater than everything on the right

5([, \) � 3([, [),3([, \)
5([, \) � 4([, \),3(\, [)

3+([,]) � 5([,]),4(],])
5+([, \) � 3+([, X),5(X, Y),4(Y, \)

4 � 3 � 5 � 3+ � 5+

non-recursive

Non recursive
Ordering on predicates,
left hand side predicate is greater than everything on the right

5([, \) � 3([, [),3([, \)
5([, \) � 4([, \),3(\, [)

3+([,]) � 5([,]),4(],])
5+([, \) � 3+([, X),5(X, Y),4(Y, \)

4 � 3 � 5 � 3+ � 5+

5([, \) � 3([, \),4([, \)
3([, \) � 5([, \),4(\, [)

non-recursive

recursive

Regular Queries (RQ)

Extended datalog rules are of the form

6(]�,]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

A regular query is a set of extended datalog rules
 that is non-recursive

Regular Queries (RQ)

Extended datalog rules are of the form

6(]�,]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

A regular query is a set of extended datalog rules
 that is non-recursive

Basically, the only recursion we allow is the +
(can be simulated using recursive datalog):

Regular Queries (RQ)

Extended datalog rules are of the form

6(]�,]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

A regular query is a set of extended datalog rules
 that is non-recursive

Basically, the only recursion we allow is the +
(can be simulated using recursive datalog):

5+([, \) � 5([, \)
5+([,]) � 5+([, \),5+(\,])

Regular Queries Datalog�

But, regular queries can express all navigational patterns

Regular Queries Datalog�

But, regular queries can express all navigational patterns

Path queries:

Regular Queries Datalog�

But, regular queries can express all navigational patterns

(knows | helps)+

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)

$QV([, \) � 5+([, \)

Path queries:

Regular Queries Datalog�

But, regular queries can express all navigational patterns

(knows | helps)+

5([, \) � NQRZV([, \)
5([, \) � KHOSV([, \)

$QV([, \) � 5+([, \)

Path queries:

(knows knows [helps])+

5([, \) � NQRZV([, X), NQRZV(X, \), KHOSV(\,])
$QV([, \) � 5+([, \)

Regular Queries Datalog�

But, regular queries can express all navigational patterns

 x y

knows+

helps+
4([, \) = ([, KHOSV+, \) � ([, NQRZV+, \)

Regular Queries Datalog�

But, regular queries can express all navigational patterns

 x y

knows+

helps+
4([, \) = ([, KHOSV+, \) � ([, NQRZV+, \)

+(X, Y) � KHOSV(X, Y)
.(X, Y) � NQRZV(X, Y)

$QV([, \) � ++([, \),.+([, \)

Regular queries can express much more!

Regular queries can express much more!

Say u is a friend of v if
u knows v and u helps v

Find all nodes connected
by a chain of friends

()+x y

knows

helps

Regular queries can express much more!

Say u is a friend of v if
u knows v and u helps v

Find all nodes connected
by a chain of friends

()+x y

knows

helps

)(X, Y) � KHOSV(X, Y), NQRZV(X, Y)
$QV([, \) �)+([, \)

Regular queries can express much more!

u is an acquaintance of v if
- v knows u
- v and u have an indirect common friend

()+v u

knows

z

F+ F+

Find nodes connected by a
chain of acquaintances:

Regular queries can express much more!

u is an acquaintance of v if
- v knows u
- v and u have an indirect common friend

()+v u

knows

z

F+ F+

Find nodes connected by a
chain of acquaintances:

)(X, Y) � KHOSV(X, Y), NQRZV(X, Y)
$(X, Y) � NQRZV(Y, X),)+(Y,]),)+(X,])

$QV([, \) � $+([, \)

Regular queries can express much more!

Evaluation problem (Regular Queries):

Given graph G, nodes u,v from G, RQ Q.
Is (u,v) in the evaluation of Q over G?

Evaluation of Regular Queries is NP-complete

(already NP-hard because of CQs)

Evaluation in NP (Regular Queries):

Evaluation in NP (Regular Queries):

1.- Maximum number of tuples in a predicate
 is polynomial, in
 (just binary predicates)

2(*�)

Evaluation in NP (Regular Queries):

1.- Maximum number of tuples in a predicate
 is polynomial, in
 (just binary predicates)

2(*�)

2.- Do this for every predicate 2(*� · |4|)

Evaluation in NP (Regular Queries):

1.- Maximum number of tuples in a predicate
 is polynomial, in
 (just binary predicates)

2(*�)

2.- Do this for every predicate 2(*� · |4|)

3.- Guess a polynomial witness for every tuple
 in every predicate that needs to be computed

Evaluation problem (Regular Queries):

Evaluation of Regular queries is
!
NLogSpace-complete (data complexity)
already NLogSpace-hard because of RPQs

Proof by merging
- CQ evaluation in NLogSpace
- Evaluating transitive closures is in NLogSpace

Given graph G, nodes u,v from G, RQ Q.
Is (u,v) in the evaluation of Q over G?

Containment problem (Regular Queries):

Given RQs Q and Q’.
Is Q’ contained in Q?

Containment problem (Regular Queries):

Given RQs Q and Q’.
Is Q’ contained in Q?

Containment is [R., Romero, Vardi 15]
!
2EXPSPACE-complete for Regular Queries

Containment problem (Regular Queries):

Given RQs Q and Q’.
Is Q’ contained in Q?

Can we find a language with the same
bounds as navigational queries?

Containment is [R., Romero, Vardi 15]
!
2EXPSPACE-complete for Regular Queries

Flat nested UC2RPQs

Collection of rules of the form

6(]�,]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

Flat nested UC2RPQs

Collection of rules of the form

6(]�,]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

3

]�,]� � {[�, \�, . . . , [Q, \Q}

are either 2RPQs (over labels and their inverses), or
!
 expressions (for predicate)

is a fresh predicate

5� . . . ,5Q

6

3+

Flat nested UC2RPQs

Collection of rules of the form

6(]�,]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

3

]�,]� � {[�, \�, . . . , [Q, \Q}

are either 2RPQs (over labels and their inverses), or
!
 expressions (for predicate)

is a fresh predicate

5� . . . ,5Q

6

3+

Each new predicate appears only once on the left hand side
 of any rule

3

Every time we define a new predicate we can use it only once,
only in the form of a transitive closure

Flat nested UC2RPQs

Collection of rules of the form

6(]�,]�) � 5�([�, \�), . . . ,5Q([Q, \Q)

]�,]� � {[�, \�, . . . , [Q, \Q}

are either 2RPQs (over labels and their inverses), or
!
 expressions (for predicate)

is a fresh predicate

5� . . . ,5Q

6

33+

3
3+

Containment (Flat nested UC2RPQs):

Some results: [R., Romero, Vardi 15]
!
Flat nested UC2RPQs are exponentially more succinct
than regular queries.
!
Containment of flat nested UC2RPQs is
EXPSPACE-complete
(hardness from navigational patterns).

Recap

Recap

Recap

Datalog programs are good candidates for graph queries,
 but maybe more expressive than what is needed

Recap

Datalog programs are good candidates for graph queries,
 but maybe more expressive than what is needed

Regular Queries:
!
Non-recursive datalog + transitive closure of predicates

Recap

Datalog programs are good candidates for graph queries,
 but maybe more expressive than what is needed

Regular Queries:
!
Non-recursive datalog + transitive closure of predicates

- Expresses navigational graph patterns
- Algebraically closed
- Complexity of evaluation similar to patterns
- Complexity of containment elemental,
 same as containment of datalog in non-rec datalog

Say u is a friend of v if
u knows v and u helps v

Find all nodes connected
by a chain of friends

()+x y

knows

helps

)(X, Y) � KHOSV(X, Y), NQRZV(X, Y)
$QV([, \) �)+([, \)

Regular Queries (example)

Expressive power

Datalog

unions of navigational patterns

Regular Queries Flat nUC2RPQs

(binary) non recursive Datalog

adds path queries

adds transitive closure

adds recursive rules

Arbitrary Arity?

)(X, Y) � KHOSV(X, Y), NQRZV(X, Y)
$QV([, \) �)+([, \)

Arbitrary Arity?

Regular queries use only binary predicates.
Can we use predicates of greater arity?

)(X, Y) � KHOSV(X, Y), NQRZV(X, Y)
$QV([, \) �)+([, \)

Arbitrary Arity?

Regular queries use only binary predicates.
Can we use predicates of greater arity?

)(X, Y) � KHOSV(X, Y), NQRZV(X, Y)
$QV([, \) �)+([, \)

For the transitive closure predicates :
 Not easy (not even clear how to define it).

3+

Arbitrary Arity?

Regular queries use only binary predicates.
Can we use predicates of greater arity?

)(X, Y) � KHOSV(X, Y), NQRZV(X, Y)
$QV([, \) �)+([, \)

For other predicates: Yes! [R., Romero, Vardi 16]
!
!
- Evaluation becomes PSPACE-complete

 (same as non-recursive Datalog)
- Containment remains 2EXPSPACE-complete

Other approaches

Regular Queries restrict recursion to the operator.
But there are other alternatives!

3+

Lifting Monadic Datalog

Monadic Datalog: Only Unary predicates in left side of rules

Lifting Monadic Datalog

Monadic Datalog: Only Unary predicates in left side of rules

A pair is in the answer
if this program hits
when and

Monadically defined queries [Bourhis, Krötzsch, Rudolph]:
!
 Add two special constants Ȝ�, Ȝ�

8(\) � 3(Ȝ�, \)
8(]) � 3(\,]),8(\)

KLW � 8(Ȝ�)
D = Ȝ� E = Ȝ�

(D, E)

Lifting Monadic Datalog

Monadic Datalog: Only Unary predicates in left side of rules

A pair is in the answer
if this program hits
when and

Monadically defined queries [Bourhis, Krötzsch, Rudolph]:
!
 Add two special constants Ȝ�, Ȝ�

8(\) � 3(Ȝ�, \)
8(]) � 3(\,]),8(\)

KLW � 8(Ȝ�)
D = Ȝ� E = Ȝ�

(D, E)

Transitive closure of P!

Lifting Monadic Datalog

Monadic Datalog: Only Unary predicates in left side of rules

Monadically defined queries [Bourhis, Krötzsch, Rudolph]:
!

Can find algebraically closed fragment
 with good evaluation and containment bounds

More recursion but guarding programs

TriQL [Arenas, Gottlob, Pieris]:

Allow more recursion,
Constraint rules to have guards
(problematic variables in rules need to appear in certain ways)

More recursion but guarding programs

TriQL [Arenas, Gottlob, Pieris]:

Allow more recursion,
Constraint rules to have guards
(problematic variables in rules need to appear in certain ways)

Can generate much more expressive languages,
some of them algebraically closed

