(We have the right notion of schema)

believes that

for

A4

(semi-structured data)

Catholic U. of Chile

foaf:name

works in

v

Juan L Reutter

\ works in [IMED
f

works in
Hipster cafes

Schema

Schema

“the home where the data lives Iin”

T Totes v Domtomes v T commmemcustomartoms T) comtementemopraghics v

: - T Ottty N1 1) | Cummmen i) VAR ACT) T Cummmers VAR W) Pemm——— L
Ofacee) ' < Lot 0 WaMUHAN S | VoW SRR & i D VARUSAR 10 < Cudomer (. MEQOM 12X 1
—_— : © epherestl INT(R3) NI NN)
H Ot tASE J Contmr e VARCTAR)

o PR o o ’ Ot ¥
| Pemptnett) W8 1) | Cnpeniase CATT =0 | Oy VAR AB(IT) | Sugpletn NI}
L. WARCTAR 2 » et BN 51 Raggam WWRCIAR £1) _ Comaan e VLI
i ONCD 7 ot CRUMA(IAS) Pt VAR ¥ Prdati0 NI(21) P ————
T VAR AR YY) ; A VAR VAT J Conemtry WNICI WSOV J Badawme WART) AT J ComeneTre VRO
" — = O VAR Prame VABSARCN)) St 2T 1) A VARCYAR £

S B (WE Sy WO Fan VRO J Loyt N L) G| G RCHNS)
PP RS ——— —) o St e VARV AROT) g 2 S SRS
e 1 | mrcvun| | (l— .~ o
O Gty VAR 15) ' > Sty VRO 15) Suphn S USRS SUUNTD Gty VROV
B AT : s 1 B T 1) be JAnetnedee SN INTI) | B VAR AR

) - - P v UL 10, 4)) M darond DAL (£) R
B e T r— j——
et VARTY WM) [—— Canemre OO0 R PEAD) ‘;* \——
STSPR——— U ey WA)

B *

:-m ¥ Syt NVIL)

i ORSEE cormcwom

| BhewnSaen VASCTRCTE) imm N s Jmm

*) TarvioryComvpon VARCINAR)
L @ Moot INTLL) * Megnaursion WMASLHARCO) Pl LM LW

Semistructured data

by .
b
.
3
L} -
.
-
s
.
.
b
N &
.

As databases grow,
we need a way to understand what they have
and how to query them

Baacs
ALCNS aNg users

Gt o mamrt ——

e et e -~
e me 0w aen

PO T T e
- .-

e e —

Tweets

Dvect Nossages
Mecia

Trends

Geo

=)

Meries

Pubicher tooks
Twitter for Websites
Laos

Devalooer Wtates
APl reforence indax

Follow, search, and get users

e ——

- —— e

T T -

O o —

e - ——

T Ty ——— ——

O bevsrma ey A s v a e

. bt e T e e A e
R A reewror .

P) B

R . O b gt

GET friendships/lookup

Pt e et B iy & B e b 4 o T o n =y ot > Vo -

Resource URL

Resource Information

- T som

B 20

e o nr o
e
e i T e L Rl S
-
- A ———— T T - — b]
ananean

—t —
L
s e et .

Mo T T e
- .-
e e —

Openit

Concu.mNcl . e . .

‘ KNOWLEDGE

GRAPH
DBpedia
PROSPERA

YAGO & e

(o) 2] Knonledge Vault

Follow, search, and get users

e ——

- —— e

R Y ey

W e) ——

T - - -

T b e TH s —

R BT s vy bo—

. bt e Y e e Ayt ot
R] B]

P e] B okt

A, R

GET friendships/lookup

It o B iy o b B s w— 0 O ——— - p— -

wece URL

wce Information

‘::) Freebase Cyc CeoMarves ™ ___

womor 20

o nr

i T e L
-

A ———— T N - l— 4 - ——

pla Rasponse

Openit

M wikicata Query Service e Exampes @ ol

1 (xnput a SPARQL query or choose a query example)

& 5 Freebase

-
Beacs
ACCUNS and users
Camcte o somrt moy
- — e o~
. e ————

P W
- -

Tweets
Direct Nossages

Mecia
Trends
Geo

Cyc
V-

£ More tools ~

Follow, search, and get users

[r—
I Y S,

AT v = BT v

A hcevw PP —

L eresies - -

R T e ——
e e R e]
e bt e ey -

W eoraeTe Weam oy A% rercrorTe

PR e i o] A Tearor e

Y bt ve .

GET friendships/lookup

wece URL
wce Information
CooMarres ™ —
XA English

Q

Schema in semistructured data
Information about:
what Is In the data

how to query it
systems can use it

This talk => Shape-based schemas

Shape-based Schemas - general form

Ltype L const

language to express shapes language to express constraints

Shape-based Schemas - general form

Ltype L const

language to express shapes language to express constraints

T(X) Answers of this query must be of a shape

QD (X) Nodes of the shape must satisfy this query

Shape-based Schemas - general form

Ltype L const

language to express shapes language to express constraints

T(X) Answers of this query must be of a shape

QD (X) Nodes of the shape must satisfy this query

T(x) = @(x)

JSON SChema { “name”: “Aconcagua’”,

“elevation”: 6960,

“country”: “Argentina”,

“first ascender”: ({
“name”: “Matthias”,
“surname”: “Zurbriggen”

"type": "object",

"properties": |{
"name": {"type": "string"},
"elevation": {"type": "integer"},
"country": {"type": "string"},
"first_ascender": |{

JSON Schema

£type root shape must conform root JSON Schema

*CCOHS’I There must be a name (string),
there must be a country (string),...

If there is a first ascender, then

JSON SChema { “name”: “Aconcagua”,

“elevation”: 6960,

“country”: “Argentina”,

“first ascender”: ({
“name”: “Matthias”,
“surname”: *“Zurbriggen”

"first_ascender": {

}

JSON SChema { “name”: “Aconcagua”,

“elevation”: 6960,

“country”: “Argentina”,

“first ascender”: ({
“name”: “Matthias”,

“definitions”: ({ “surname”: “Zurbriggen”
“person”: { }
“type”: *“object”, }

“properties”: {
“name”: {“type”: “string”},
“surname”: {“type”: “string”}

}

\first_ascender": {
“$ref”: “4#/definitions/person”

JSON Schema

£type root shape must conform root JSON Schema

*CCOHS’I There must be a name (string),
there must be a country (string),...

If there is a first ascender, then it satisfies shape person

Real JSON schemas use a lot of shapes

“diffinitions™: {
“schemaArray"“: {
“type": “array”,
“minitems™: 1,
“items™: { “$ref”: “2")
)l
“nonNegativelnteger”: {
“type": “integer®,
“sinisum*: @
),
“nonNegativelntegerDefaultd”: {
“allof*: |
{ “$ref": "#/definitions/nhnNegativelnteger"” },
{ “default™: @)
]
)l
“simpleTypes": {
“enum": [
“array",
“boolean”,
"integer"™,
“null™,
“number”,
“object™,
“string"
]
)'
“stringArray“: {
“type": “array”,
“items™: { “type": “string" }
“unigqueltems”: true,
“default“: [)
}
}l
“type": ["object™, “boolean*],
“oroperties*: {
“$ig": {
“type": “string“,
“format": "“uri-referenfe”
)l
t$schema”: {
“type": “string"
format": “uris

Shape-based Schemas - general form

£type L const

language to express shapes language to express constraints

S Set of shapes (person, address, mountain, etc...)

TS (X) Answers of this query must be of shape S

QDS (X) Nodes of shape S must satisfy this query.
Query can use shape names!

SHACL

:movieShape :personShape
a sh:NodeShape ; a sh:NodeShape ;
sh:targetClass :movie ; sh:property [
sh:property | sh:path :spouse ;
sh:path :starring ; sh:node :personShape

sh:node :personShape]
1 7
sh:property |

sh:path :director ;

sh:minCount 1 ;

sh:node :personShape

SHACL

:movieShape :personShape
a sh:NodeShape ; a sh:NodeShape ;
sh:targetClass :movie ; sh:property [
sh:property | sh:path :spouse ;
sh:path :starring ; sh:node :personShape

sh:node :personShape]
1 7
sh:property [

sh:path :director ;

sh:minCount 1 ;

sh:node :personShape

All nodes of type :movie must conform to :movieShape

(Glenn Ficarra)
movie)

director
starring Ryan Gosling)
rdf:type
Crazy, Stupid Love starring
Kevin Bacon
rdf:type Footloose

spouse _
PG(yra Sedgwmk)

\——/

starring

Lori Singer)
movie)

(Glenn Ficarra)

movie)

director

starring Ryan Gosling)

rdf:type

Crazy, Stupid Love

rdf:type Footloose

starring

Kevin Bacon

spouse _
PG(yra Sedgwmk)

\——/

starring

Lori Singer)

movie)

these nodes must conform to :movieShape

SHACL

:movieShape :personShape
a sh:NodeShape ; a sh:NodeShape ;
sh:targetClass :movie ; sh:property |
sh:property | sh:path :spouse ;
sh:path :starring ; sh:node :personShape

sh:node :personShape]
1 7
sh:property [

sh:path :director ;

sh:minCount 1 ;

sh:node :personShape

Neighbours of nodes assigned :movieShape,
connected by :starring,
must satisfy :personShape

(Glenn Ficarra)

movie)

director

starring Ryan Gosling)

rdf:type

Crazy, Stupid Love

rdf:type Footloose

starring

_) spouse _
Kevin Bacon J Kyra Sedgwick

starring

Lori Singer)

movie)

these nodes must conform to :personShape

SHACL

:movieShape :personShape
a sh:NodeShape ; a sh:NodeShape ;
sh:targetClass :movie ; sh:property |
sh:property | sh:path :spouse ;
sh:path :starring ; sh:node :personShape

sh:node :personShape]
1 7
sh:property |

sh:path :director ;

sh:minCount 1 ;

sh:node :personShape

Neighbours of nodes assigned :movieShape,
connected by :director,

must satisfy :personShape,

we need at least 1

this node must conform to :personShape

(Glenn Ficarra)

movie)

director

Ryan Gosling)

starring
rdf:type
Crazy, Stupid Love starring
_) spouse _
Kevin Bacon J Kyra Sedgwick
rdf:type starring

Lori Singer)

movie)

violation: every movie needs at least one director

SHACL

:movieShape :personShape
a sh:NodeShape ; a sh:NodeShape ;
sh:targetClass :movie ; sh:property |
sh:property | sh:path :spouse ;
sh:path :starring ; sh:node :personShape

sh:node :personShape]
1 7
sh:property [

sh:path :director ;

sh:minCount 1 ;

sh:node :personShape

Neighbours of nodes assigned :personShape,
connected by :spouse,
must satisfy :personShape

(Glenn Ficarra)

movie)

director

starring Ryan Gosling)

rdf:type

Crazy, Stupid Love

rdf:type Footloose

starring

spouse
Kevin Bacon) 0 PG(yra Sedgwick)

starring

Lori Singer)

movie)

these nodes must conform to :personShape

Shape-based Schemas - general form

£type L const

language to express shapes language to express constraints

S Set of shapes (person, address, mountain, etc...)

TS (X) Answers of this query must be of shape S

QDS (X) Nodes of shape S must satisfy this query.
Query can use shape names!

What have we done

JSON Schema
SHACL (Shapes Constraint Language)

Helping with specification

Semantics (specs never provide this)
Validation

Learning

Remark: semantics

Remark: semantics

spouse

(Kevin Bacon Kyra Sedgwick)

spouse

“Spouses of persons are persons”

:personShape
a sh:NodeShape ;
sh:property |
sh:path :spouse ;
sh:node :personShape

]

Remark: semantics

spouse

(Kevin Baco@yra Sediick)

spouse

“Spouses of persons are persons”

SAT semantics:

graph satisty schema if
there is an assignment of shapes
that satisfy the constraints

Remark: semantics

spouse

(Kevin Baco@yra SedQWick)

spouse

“Spouses of persons are persons”

Stable Model Semantics:

graph satisfy schema if

there is an assignment of shapes

that satisfy the constraints

and where each assignment is justified

Remark: semantics
Guess a good assignment?

(CO—@—

“I have a blue neighbour”

“My neighbours are not blue”

Remark: semantics
Guess a good assignment?

@ &

“I have a blue neighbour”

“My neighbours are not blue”

Remark: semantics
Guess a good assignment?

@ &

“I have a blue neighbour”

“My neighbours are not blue”

Remark: semantics
Guess a (partial) good assignment

.*.-*@)

. “I have a blue neighbour”
. “My neighbours are not blue”

Where should we go from here?

Where should we go from here?

474 OPEN AP

everyone wants schemas
T g difficult to write

GRAPH
DBpedia

. PROSPERA

v T need to learn all these schemas

Where should we go from here?

Querying!

Use the schema to speed things up

