
We have the right notion of schema

believes that

for

semi-structured data

foaf:name

Juan L Reutter

works in
Catholic U. of Chile

works in
Hipster cafes

IMFDworks in

•Schema

•Schema

“the home where the data lives in”

Semistructured data

•As databases grow,
•we need a way to understand what they have
•and how to query them

• (as a bonus, we can use this
• to optimise queries)

Schema in semistructured data
!
 Information about:
!
 what is in the data
 how to query it
 systems can use it

This talk => Shape-based schemas

Shape-based Schemas - general form

LFRQVWLW\SH

language to express shapes language to express constraints

Shape-based Schemas - general form

LFRQVWLW\SH

7([)

ĳ([)

language to express shapes language to express constraints

Answers of this query must be of a shape

Nodes of the shape must satisfy this query

Shape-based Schemas - general form

LFRQVWLW\SH

7([)

ĳ([)

language to express shapes language to express constraints

Answers of this query must be of a shape

Nodes of the shape must satisfy this query

7([) � ĳ([)

JSON Schema {!
 “name”: “Aconcagua”, !
 “elevation”: 6960, !
 “country”: “Argentina”, !
 “first_ascender”: {!
 “name”: “Matthias”, !
 “surname”: “Zurbriggen”!
 }!
}

JSON Schema

LW\SH root shape must conform root JSON Schema

LFRQVW There must be a name (string),
 there must be a country (string),…

If there is a first ascender, then

JSON Schema {!
 “name”: “Aconcagua”, !
 “elevation”: 6960, !
 “country”: “Argentina”, !
 “first_ascender”: {!
 “name”: “Matthias”, !
 “surname”: “Zurbriggen”!
 }!
}

JSON Schema {!
 “name”: “Aconcagua”, !
 “elevation”: 6960, !
 “country”: “Argentina”, !
 “first_ascender”: {!
 “name”: “Matthias”, !
 “surname”: “Zurbriggen”!
 }!
}

“definitions”: {!
 “person”: {!
! “type”: “object”, !
! “properties”: {!
! ! “name”: {“type”: “string”},!
! ! “surname”: {“type”: “string”}!
 ! ! }!
! }!
}

“$ref”: “#/definitions/person”

JSON Schema

LW\SH root shape must conform root JSON Schema

LFRQVW There must be a name (string),
 there must be a country (string),…

If there is a first ascender, then it satisfies shape person

Real JSON schemas use a lot of shapes

Shape-based Schemas - general form
LFRQVWLW\SH

language to express shapes language to express constraints

Answers of this query must be of shape S

Nodes of shape S must satisfy this query.
 Query can use shape names!

S Set of shapes (person, address, mountain, etc…)

76([)

ĳ6([)

SHACL
:personShape!
! a sh:NodeShape ;!
! sh:property [!
! sh:path :spouse ;!
! sh:node :personShape!
!] .

:movieShape!
! a sh:NodeShape ;!
! sh:targetClass :movie ;!
! sh:property [!
! ! sh:path :starring ;!
! ! sh:node :personShape!
!] ;!
! sh:property [!
! ! sh:path :director ;!
! ! sh:minCount 1 ;!
! ! sh:node :personShape!
!] ;

SHACL
:personShape!
! a sh:NodeShape ;!
! sh:property [!
! sh:path :spouse ;!
! sh:node :personShape!
!] .

:movieShape!
! a sh:NodeShape ;!
! sh:targetClass :movie ;!
! sh:property [!
! ! sh:path :starring ;!
! ! sh:node :personShape!
!] ;!
! sh:property [!
! ! sh:path :director ;!
! ! sh:minCount 1 ;!
! ! sh:node :personShape!
!] ;

All nodes of type :movie must conform to :movieShape

 Kevin Bacon

 Footloose

Crazy, Stupid Love

Ryan Goslingstarring

starring

starring

 Glenn Ficarra

director

Lori Singer

starring

Kyra Sedgwick
spouse

movie

rdf:type

movie

rdf:type

 Kevin Bacon

 Footloose

Crazy, Stupid Love

Ryan Goslingstarring

starring

starring

 Glenn Ficarra

director

Lori Singer

starring

Kyra Sedgwick
spouse

movie

rdf:type

movie

rdf:type

these nodes must conform to :movieShape

SHACL
:personShape!
! a sh:NodeShape ;!
! sh:property [!
! sh:path :spouse ;!
! sh:node :personShape!
!] .

:movieShape!
! a sh:NodeShape ;!
! sh:targetClass :movie ;!
! sh:property [!
! ! sh:path :starring ;!
! ! sh:node :personShape!
!] ;!
! sh:property [!
! ! sh:path :director ;!
! ! sh:minCount 1 ;!
! ! sh:node :personShape!
!] ;

Neighbours of nodes assigned :movieShape,
connected by :starring,
must satisfy :personShape

 Kevin Bacon

 Footloose

Crazy, Stupid Love

Ryan Goslingstarring

starring

starring

 Glenn Ficarra

director

Lori Singer

starring

Kyra Sedgwick
spouse

movie

rdf:type

movie

rdf:type

these nodes must conform to :personShape

SHACL
:personShape!
! a sh:NodeShape ;!
! sh:property [!
! sh:path :spouse ;!
! sh:node :personShape!
!] .

:movieShape!
! a sh:NodeShape ;!
! sh:targetClass :movie ;!
! sh:property [!
! ! sh:path :starring ;!
! ! sh:node :personShape!
!] ;!
! sh:property [!
! ! sh:path :director ;!
! ! sh:minCount 1 ;!
! ! sh:node :personShape!
!] ;

Neighbours of nodes assigned :movieShape,
connected by :director,
must satisfy :personShape,
we need at least 1

 Kevin Bacon

 Footloose

Crazy, Stupid Love

Ryan Goslingstarring

starring

starring

 Glenn Ficarra

director

Lori Singer

starring

Kyra Sedgwick
spouse

movie

rdf:type

movie

rdf:type

this node must conform to :personShape

violation: every movie needs at least one director

SHACL
:personShape!
! a sh:NodeShape ;!
! sh:property [!
! sh:path :spouse ;!
! sh:node :personShape!
!] .

:movieShape!
! a sh:NodeShape ;!
! sh:targetClass :movie ;!
! sh:property [!
! ! sh:path :starring ;!
! ! sh:node :personShape!
!] ;!
! sh:property [!
! ! sh:path :director ;!
! ! sh:minCount 1 ;!
! ! sh:node :personShape!
!] ;

Neighbours of nodes assigned :personShape,
connected by :spouse,
must satisfy :personShape

 Kevin Bacon

 Footloose

Crazy, Stupid Love

Ryan Goslingstarring

starring

starring

 Glenn Ficarra

director

Lori Singer

starring

Kyra Sedgwick
spouse

movie

rdf:type

movie

rdf:type

these nodes must conform to :personShape

Shape-based Schemas - general form
LFRQVWLW\SH

language to express shapes language to express constraints

Answers of this query must be of shape S

Nodes of shape S must satisfy this query.
 Query can use shape names!

S Set of shapes (person, address, mountain, etc…)

76([)

ĳ6([)

•What have we done

Helping with specification
Semantics (specs never provide this)
Validation
Learning

JSON Schema
SHACL (Shapes Constraint Language)
!

!

Remark: semantics

Remark: semantics
!

!
 Kevin Bacon Kyra Sedgwick

spouse

spouse

:personShape!
! a sh:NodeShape ;!
! sh:property [!
! sh:path :spouse ;!
! sh:node :personShape!
!] .

“Spouses of persons are persons”

Remark: semantics
!

!
 Kevin Bacon Kyra Sedgwick

spouse

spouse

“Spouses of persons are persons”

SAT semantics:
!
graph satisfy schema if
there is an assignment of shapes
that satisfy the constraints

Remark: semantics

 Kevin Bacon Kyra Sedgwick

spouse

spouse

“Spouses of persons are persons”

Stable Model Semantics:
!
graph satisfy schema if
there is an assignment of shapes
that satisfy the constraints
and where each assignment is justified

“My neighbours are not blue”

“I have a blue neighbour”

Remark: semantics
Guess a good assignment?

“My neighbours are not blue”

“I have a blue neighbour”

Remark: semantics
Guess a good assignment?

“My neighbours are not blue”

“I have a blue neighbour”

Remark: semantics
Guess a good assignment?

“My neighbours are not blue”

“I have a blue neighbour”

Remark: semantics
Guess a (partial) good assignment

•Where should we go from here?

•Where should we go from here?

everyone wants schemas
difficult to write
!
need to learn all these schemas

•Where should we go from here?

Querying!
!
Use the schema to speed things up

