

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

Linked Data

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

Linked Data

Linked Data

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

dbr:Footloose
dbr:Footloose
dbr:Footloose

dbp:starring
dbp:starring
dbo:director

dbr:Kevin_Bacon
dbr:Lori_Singer
dbr:Herbert_Ross

Linked Data

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

dbr:Footloose
dbr:Footloose
dbr:Footloose

dbp:starring
dbp:starring
dbo:director

dbr:Kevin_Bacon
dbr:Lori_Singer
dbr:Herbert_Ross

dbr:Lori_Singer
dbr:Footloose
dbr:Lori_Singer

dbp:name
dbp:starring
dbp:occupation

Lori Singer (en)
dbr:Lori_Singer
Actress, cellist (en)

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

dbr:Footloose
dbr:Footloose
dbr:Footloose

dbp:starring
dbp:starring
dbo:director

dbr:Kevin_Bacon
dbr:Lori_Singer
dbr:Herbert_Ros

dbr:Lori_Singer
dbr:Footloose
dbr:Lori_Singer

dbp:name
dbp:starring
dbp:occupation

Lori Singer (en)
dbr:Lori_Singer
Actress, cellist (en)

Query

Linked Data + endpoints

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

dbr:Footloose
dbr:Footloose
dbr:Footloose

dbp:starring
dbp:starring
dbo:director

dbr:Kevin_Bacon
dbr:Lori_Singer
dbr:Herbert_Ros

dbr:Lori_Singer
dbr:Footloose
dbr:Lori_Singer

dbp:name
dbp:starring
dbp:occupation

Lori Singer (en)
dbr:Lori_Singer
Actress, cellist (en)

Linked Data + endpoints

endpoints
Query

The Dream: !
Query the web as if it was a database

(still far from it)

Why work on this?
The dream is too difficult to realise

Realising the dream?

What they say:

It will remain impossible if we don’t work on it!
This is what we are supposed to do!
Pick challenging problems and make them reality

What they don’t say:

Realising the dream?

•This talk: we focus on the challenge

Understand how to query distributed,
ungoverned data

PUC Chile

Juan L. Reutter

The Fascinating World of !
Querying Linked Data

The Fascinating World of !
Querying Linked Data

This talk:
3 specific problems (of course there are much more)
!
- Identify the correct semantics for queries over Linked Data
- How to compute queries over Linked Data
- Make the SERVICE operator work on Endpoints

Outline

• What does it mean to query the web (semantics)
!

• How to actually do it (algorithms)
!
!
• SERVICE on Endpoints

Outline

• What does it mean to query the web (semantics)
!

•
!
!
•

Basics
!
!
Querying as an approximation

!
Other possible semantics

RDF dereference

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

dbr:Footloose
dbr:Footloose
dbr:Footloose

dbp:starring
dbp:starring
dbo:director

dbr:Kevin_Bacon
dbr:Lori_Singer
dbr:Herbert_Ross

dbr:Lori_Singer
dbr:Footloose
dbr:Lori_Singer

dbp:name
dbp:starring
dbp:occupation

Lori Singer (en)
dbr:Lori_Singer
Actress, cellist (en)

Each IRI produces a (possibly empty) RDF graph

DGRP : I � �(T �I�T)

Web of Linked Data

Each IRI produces a (possibly empty) RDF graph

dereference
function

set of all
IRIs

RDF graph
(set of triples)

DGRP : I � �(T �I�T)

Web of Linked Data

Each IRI produces a (possibly empty) RDF graph

DGRP : I � �(T �I�T)

Web of Linked Data

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

dbr:Footloose
dbr:Footloose
dbr:Footloose

dbp:starring
dbp:starring
dbo:director

dbr:Kevin_Bacon
dbr:Lori_Singer
dbr:Herbert_Ross

DGRP(GEU�)RRWORRVH)

Graph of Linked Data

Each IRI produces a (possibly empty) RDF graph

Graph of Linked Data: Union of all these RDF graphs
!

(just one huge graph - everything that is out there)

DGRP : I � �(T �I�T)

Querying the Web of Linked Data

Database Perspective:
Query the entire graph of Linked Data:
!
 �

,�I

DGRP(,)

Querying the Web of Linked Data

Database Perspective:
Query the entire graph of Linked Data:
!
 the union of all RDF graphs found via dereferencing
 everything that’s out there

 several domains, huge amount of triples

Querying the Web of Linked Data

Database Perspective:
Query the entire graph of Linked Data:
!
 the union of all RDF graphs found via dereferencing
 everything that’s out there

 several domains, huge amount of triples

How are we even supposed to do this?

Querying the Web of Linked Data
(the only realistic approach)

Linked Data Perspective:

Querying the Web of Linked Data
(the only realistic approach)

Linked Data Perspective:
Start with a bunch of IRIs or triples
!
 crawl more data at the same time we query
 ideally, don’t crawl everything, only what we need

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

dbr:Footloose
dbr:Footloose
dbr:Footloose
…

dbp:starring
dbp:starring
dbo:director
…

dbr:Kevin_Bacon
dbr:Lori_Singer
dbr:Herbert_Ross
…

Example: querying for co-actors of Kevin Bacon (dbpedia)

DGRP(GEU�)RRWORRVH)

{?mov dbp:starring dbr:Kevin_Bacon } .
{?mov dbp:starring ?act }

?mov ?act

dbr:Footloose dbr:Lori_Singer

dbr:Footloose dbr:Kevin_Bacon

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

dbr:Crazy,_Stupid_Love
dbr:Crazy,_Stupid_Love
dbr:Crazy,_Stupid_Love
…

dbp:starring
dbp:starring
dbo:director
…

dbr:Kevin_Bacon
dbr:Ryan_Gosling
dbr:Julianne_Moore
…

Example: querying for co-actors of Kevin Bacon (dbpedia)

DGRP(GEU�&UD]\�B6WXSLGB/RYH)

{?mov dbp:starring dbr:Kevin_Bacon } .
{?mov dbp:starring ?act }

dbr:Crazy,_Stupid_Love dbr:Ryan_Goslin

dbr:Crazy,_Stupid_Love dbr:Julianne_Moore

?mov ?act

dbr:Footloose dbr:Lori_Singer

dbr:Footloose dbr:Kevin_Bacon

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

Example: querying for co-actors of Kevin Bacon (dbpedia)

DGRP(GEU�+ROORZB0DQ)

…
…
…

{?mov dbp:starring dbr:Kevin_Bacon } .
{?mov dbp:starring ?act }

dbr:Crazy,_Stupid_Love dbr:Ryan_Goslin

dbr:Crazy,_Stupid_Love dbr:Julianne_Moore

?mov ?act

dbr:Footloose dbr:Lori_Singer

dbr:Footloose dbr:Kevin_Bacon

…
…
…

Key Issue:
!

Need to understand this crawling.

How to do it

What to expect form it

How to work with it

Outline

• What does it mean to query the web (semantics)
!

•
!
!
•

Basics
!
!
Querying as an approximation

!
Other possible semantics

Querying linked data as an approximation

Previous work generally understands
crawling as a way of getting partial answers

answers while
crawling the web

answers if we could
download the entire web�

Works very well for monotone queries

4A query is monotone if
!
 whenever the graph is a subset of the graph * *�

Monotone Queries

4(*) � 4(*�)

4A query is monotone if
!
 whenever the graph is a subset of the graph * *�

Monotone Queries

4(*) � 4(*�)

evaluation of query over graph 4 *

4A query is monotone if
!
 whenever the graph is a subset of the graph * *�

Monotone Queries

4(*) � 4(*�)

evaluation of query over graph 4 *

If we put more triples in the graph,
the answer is either the same, or bigger

answers while
crawling the web

answers if we could
download the entire web�

Works very well for monotone queries:

answers while
crawling the web

answers if we could
download the entire web�

Works very well for monotone queries:

if is a monotone query,
then any crawling strategy can be seen as an approximation

4

answers while
crawling the web

answers if we could
download the entire web�

Works very well for monotone queries:

if is a monotone query,
then any crawling strategy can be seen as an approximation

4

As we crawl we increase the size of the graph,
so we may find more answers.
!
Eventually we’ll download the entire web,
delivering all answers.

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

dbr:Footloose
dbr:Footloose
dbr:Footloose
…

dbp:starring
dbp:starring
dbo:director
…

dbr:Kevin_Bacon
dbr:Lori_Singer
dbr:Herbert_Ross
…

Example: querying for co-actors of Kevin Bacon (dbpedia)

DGRP(GEU�)RRWORRVH)

{?mov dbp:starring dbr:Kevin_Bacon } .
{?mov dbp:starring ?act }

?mov ?act

dbr:Footloose dbr:Lori_Singer

dbr:Footloose dbr:Kevin_Bacon

subset of all answers

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon
dbr:Footloose
dbr:Footloose
dbr:Footloose

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName
dbp:starring
dbp:starring
dbo:director

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)
dbr:Kevin_Bacon
dbr:Lori_Singer
dbr:Herbert_Ross

dbr:Crazy,_Stupid_Love
dbr:Crazy,_Stupid_Love
dbr:Crazy,_Stupid_Love

dbp:starring
dbp:starring
dbo:director

dbr:Kevin_Bacon
dbr:Ryan_Gosling
dbr:Julianne_Moore

Example: querying for co-actors of Kevin Bacon (dbpedia)

{?mov dbp:starring dbr:Kevin_Bacon } .
{?mov dbp:starring ?act }

dbr:Crazy,_Stupid_Love dbr:Ryan_Goslin

dbr:Crazy,_Stupid_Love dbr:Julianne_Moore

?mov ?act

dbr:Footloose dbr:Lori_Singer

dbr:Footloose dbr:Kevin_Bacon

more data,
more answers

answers while
crawling the web

answers if we could
download the entire web�

However, this approach has its drawbacks

- when queries are not monotone
!
- when queries do not return mappings

Drawback: non monotone queries

{?mov dbp:starring dbr:Kevin_Bacon } . { ?mov dbp:starring ?act } .

OPTIONAL {?act rdf:label ?name . FILTER (?name != “Lori Singer”) }

Drawback: non monotone queries

dbr:Kevin_Bacon
dbr:Footloose
dbr:Crazy,_Stupid_Love
dbr:Hollow_Man
dbr:Kevin_Bacon

owl:sameAs
dbp:starring
dbp:starring
dbp:starring
dbo:birthName

ykr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
dbr:Kevin_Bacon
Kevin Norwood Bacon (en)

dbr:Footloose
dbr:Footloose
dbr:Footloose
…

dbp:starring
dbp:starring
dbo:director
…

dbr:Kevin_Bacon
dbr:Lori_Singer
dbr:Herbert_Ross
…

once we discover

adom(
dbr:Lori_Singer)

we’ll need to
delete this answer

?mov ?act ?name

dbr:Footloose dbr:Lori_Singer

dbr:Footloose dbr:Kevin_Bacon

{?mov dbp:starring dbr:Kevin_Bacon } . { ?mov dbp:starring ?act } .
OPTIONAL {?act rdf:label ?name . FILTER (?name != “Lori Singer”) }

Drawback: non monotone queries
{?mov dbp:starring dbr:Kevin_Bacon } . { ?mov dbp:starring ?act } .
OPTIONAL {?act rdf:label ?name . FILTER (?name != “Lori Singer”) }

we cannot guarantee that the partial answers
are answers over the entire web

answers while
crawling the web

answers if we could
download the entire web�

some answers here may not be answers here

Drawback: queries returning values

dbc:Prefectures_of_Japan
dbr:Hyōgo_Prefecture
dbr:Osaka_Prefecture
dbr:Tokyo_Metropolis

rdfs:label
dct:subject
dct:subject
dct:subject

Prefectures of Japan
dbc:Prefectures_of_Japan
dbc:Prefectures_of_Japan
dbc:Prefectures_of_Japan

SELECT MAX(?pop) WHERE
{?dis dct:subject dbc:Prefectures_of_Japan} . {?dis dbo:populationTotal ?pop }

Drawback: queries returning values
SELECT MAX(?pop) WHERE
{?dis dct:subject dbc:Prefectures_of_Japan} . {?dis dbo:populationTotal ?pop }

dbc:Prefectures_of_Japan
dbr:Hyōgo_Prefecture
dbr:Osaka_Prefecture
dbr:Tokyo_Metropolis

rdfs:label
dct:subject
dct:subject
dct:subject

Prefectures of Japan
dbc:Prefectures_of_Japan
dbc:Prefectures_of_Japan
dbc:Prefectures_of_Japan

dbr:Hyōgo_Prefecture
dbr:Hyōgo_Prefecture

dbo:capital
dbo:populationTotal

dbr:Kobe
5582978

Answer: 5.582.978

Drawback: queries returning values
SELECT MAX(?pop) WHERE
{?dis dct:subject dbc:Prefectures_of_Japan} . {?dis dbo:populationTotal ?pop }

dbc:Prefectures_of_Japan
dbr:Hyōgo_Prefecture
dbr:Osaka_Prefecture
dbr:Tokyo_Metropolis

rdfs:label
dct:subject
dct:subject
dct:subject

Prefectures of Japan
dbc:Prefectures_of_Japan
dbc:Prefectures_of_Japan
dbc:Prefectures_of_Japan

dbr:Hyōgo_Prefecture
dbr:Hyōgo_Prefecture

dbo:capital
dbo:populationTotal

dbr:Kobe
5582978

Answer: 5.582.978
Was wrong!
New answer: 8.864.228

dbr:Osaka_Prefecture
dbr:Osaka_Prefecture

dbo:capital
dbo:populationTotal

dbr:Osaka
8864228

Drawback: queries returning values
SELECT MAX(?pop) WHERE
{?dis dct:subject dbc:Prefectures_of_Japan} . {?dis dbo:populationTotal ?pop }

dbc:Prefectures_of_Japan
dbr:Hyōgo_Prefecture
dbr:Osaka_Prefecture
dbr:Tokyo_Metropolis

rdfs:label
dct:subject
dct:subject
dct:subject

Prefectures of Japan
dbc:Prefectures_of_Japan
dbc:Prefectures_of_Japan
dbc:Prefectures_of_Japan

dbr:Hyōgo_Prefecture
dbr:Hyōgo_Prefecture

dbo:capital
dbo:populationTotal

dbr:Kobe
5582978

Answer: 8.864.228
Is it correct?

dbr:Osaka_Prefecture
dbr:Osaka_Prefecture

dbo:capital
dbo:populationTotal

dbr:Osaka
8864228

dbr:Tokyo_Metropolis owl:sameAs wikidata:Tokyo Metropolis

Drawback: queries returning values

Cannot guarantee answer is correct until crawl has finished.

But how do we know it has finished?

answers while
crawling the web

answers if we could
download the entire web�

this is a number may be different to the correct one

SELECT MAX(?pop) WHERE
{?dis dct:subject dbc:Prefectures_of_Japan} . {?dis dbo:populationTotal ?pop }

Outline

• What does it mean to query the web (semantics)
!

•
!
!
•

Basics
!
!
Querying as an approximation

!
Other possible semantics

Key Issue:
!

Understand the behaviour of web queries

What information could we get from the web,
if we knew exactly what we were doing?

First attempt: all-powerful crawler

Imagine an almighty user, knows the entire Web of Linked Data

On a given query and a given starting IRI,
the user knows exactly what to dereference to
eventually answer this query

Theorem
!
Any algorithm that can simulate an all-powerful crawler
must sometimes download the entire Web of Linked Data

Basically:
!
The only way in which we can simulate an all-powerful crawler
is to download the entire Web of Linked Data

Theorem
!
Any algorithm that can simulate an all-powerful crawler
must sometimes download the entire Web of Linked Data

First attempt: all-powerful crawler

ex:a
ex:a
ex:a

ex:p1
ex:p1
ex:p1

ex:b
ex:c
ex:d

ex:b ex:p2 ex:answer1

ex:c ex:p2 ex:answer2

ex:d ex:other ex:e

SELECT ?ans
WHERE {ex:a ex:p1 ?y } . { ?y ex:p2 ?ans }

?ans

ex:answer1

ex:answer2

All-powerful crawler (Intuition)

ex:a
ex:a
ex:a

ex:p1
ex:p1
ex:p1

ex:b
ex:c
ex:d

ex:b ex:p2 ex:answer1

ex:c ex:p2 ex:answer2

ex:d ex:other ex:e

SELECT ?ans
WHERE {ex:a ex:p1 ?y } . { ?y ex:p2 ?ans }

?ans

ex:answer1

ex:answer2

No reason to
dereference this IRI

!

All-powerful crawler (Intuition)

ex:a
ex:a
ex:a

ex:p1
ex:p1
ex:p1

ex:b
ex:c
ex:d

ex:b ex:p2 ex:answer1

ex:c ex:p2 ex:answer2

SELECT ?ans
WHERE {ex:a ex:p1 ?y } . { ?y ex:p2 ?ans }

ex:a
ex:e

ex:p1
ex:p2

ex:e
ex:answer3

?ans

ex:answer1

ex:answer2

ex:answer3
No reason to

dereference this IRI
!

Crawler guess:
expand for more solutions

All-powerful crawler (Intuition)

ex:d ex:other ex:e

ex:a
ex:a
ex:a

ex:p1
ex:p1
ex:p1

ex:b
ex:c
ex:d

ex:e ex:other ex:e2

ex:e2 ex:other ex:3

ex:n-1 ex:other ex:n

ex:a
ex:n

ex:p1
ex:p2

ex:n
ex:answer3

can make this
as big as needed

SELECT ?ans
WHERE {ex:a ex:p1 ?y } . { ?y ex:p2 ?ans }

ex:d ex:other ex:e

Second attempt: All-powerful crawler,
 but must justify her moves

However, in order to dereference a new document,
the crawler must guarantee that this document may lead to answers

Same almighty user, knows the entire Web of Linked Data

(also known as a reachability criterion [Hartig 12])

ex:a
ex:a
ex:a

ex:p1
ex:p1
ex:p1

ex:b
ex:c
ex:d

ex:b ex:p2 ex:answer1

ex:c ex:p2 ex:answer2

SELECT ?ans
WHERE {ex:a ex:p1 ?y } . { ?y ex:p2 ?ans }

?ans

ex:answer1

ex:answer2Can’t dereference ex:e,
there is no justification

Justifications when dereferencing (Intuition)

ex:d ex:other ex:e

ex:a
ex:a
ex:a

ex:p1
ex:p1
ex:p1

ex:b
ex:c
ex:d

ex:b ex:p2 ex:answer1

ex:c ex:p2 ex:answer2

SELECT ?ans
WHERE {ex:a ex:p1 ?y } . { ?y ex:p2 ?ans }

?ans

ex:answer1

ex:answer2

This is what the crawler can do.
This is the final answer

Justifications when dereferencing (Intuition)

ex:d ex:other ex:e

Second attempt: All-powerful crawler,
 but must justify her moves

Important:

The answers produced may be incomplete or even wrong!

A query language L is complete for justified crawling

But there was probably no realistic way of getting the correct answers

if there is an algorithm that, for each query Q in L,

retrieves the same answers for Q
as an all-powerful crawler that needs to justify her moves

Second attempt: All-powerful crawler,
 but must justify her moves

Is this the correct approach? are there other approaches?

Need more research!

A query language L is complete for justified crawling
if there is an algorithm that, for each query Q in L,

retrieves the same answers for Q
as an all-powerful crawler that needs to justify her moves

Second attempt: All-powerful crawler,
 but must justify her moves

Is this the correct approach? are there other approaches?

Need more research!Two examples:
 - BGPs
 - Property Paths

A query language L is complete for justified crawling
if there is an algorithm that, for each query Q in L,

retrieves the same answers for Q
as an all-powerful crawler that needs to justify her moves

Given an IRI and a BGP ,
!
 is justified (in our local temporal graph)
if there is a partial match for using a triple with

Theorem: [Hartig, Bizer, Freytag 09]
!
BGPs are complete for justified crawling

All-powerful crawler with justification,
Basic Graph Patterns

4 ,

, 4

,

Theorem: [Hartig, Pirrò 15]
!
PPs are complete for justified crawling

All-powerful crawler with justification,
Property Paths (intuition)

Can extend this to Property Paths.
!
An IRI is now justified if it participates in the
partial evaluation of a property path

All-powerful crawler with justification,
Property Paths (intuition)

Can extend this to Property Paths.
!
An IRI is now justified if it participates in the
partial evaluation of a property path

Can we extend this further?
does it make sense?

Theorem: [Hartig, Pirrò 15]
!
PPs are complete for justified crawling

Main Takeaway: we have no idea what to do

- Query answers as approximation:
 good for monotone queries,
 does not generalise to full SPARQL
!

- Another option:
retrieve the same as an all-powerful crawler with justification

 Is this intuitive?
 Need a formal definition for full SPARQL.
!

- Other options? what to expect from non-monotone queries?
!
- What about SPARQL Entailment Regimes?

Main Takeaway: we have no idea what to do

Outline

• What does it mean to query the web (semantics)
!

• How to actually do it (algorithms)
!
!
• SERVICE on Endpoints

Outline

•
!

• How to actually do it (algorithms)
!
!
•

Example:
Property Paths
!
!
Comparing Algorithms

Even if we know what to do,
 there is the issue of how to do it

Some amount of work done for BGPs already
(go to Thursday’s afternoon Search(II) session)

We’ll see some work in progress for Property Paths
(here, even if we have an algorithm, it may not terminate)

• Computing the answers of property paths: example

{Bacon ^starring/starring/name ?x }

 Kevin Bacon

starring Footloose

Crazy, Stupid Love

starring

Lori Singer

Herbert Ross

starring

director

Ryan Gosling

Julianne Moore

starring

starring

adom(Kevin Bacon)

adom(Footloose)

adom(Crazy, Stupid Love)

name
“Lori Singer”

name “Ryan
Gosling”

name “Julianne
Moore”

adom(Lori Singer)

adom(Ryan G.)

adom(J. M.)

• Computing the answers of property paths: example

{Bacon ^starring/starring/name ?x }

 Kevin Bacon

starring Footloose

Crazy, Stupid Love

starring

Lori Singer

Herbert Ross

starring

director

Ryan Gosling

Julianne Moore

starring

starring

name
“Lori Singer”

name “Ryan
Gosling”

name “Julianne
Moore”

• Justification: can dereference
• as long as IRI appears in path

• Answers to this query are paths
• ^ starring / starring / name

• How do we discover this graph?

{Bacon ^starring/starring/name ?x }

 Kevin Bacon

starring Footloose

Crazy, Stupid Love

starring

Lori Singer

Herbert Ross

starring

director

Ryan Gosling

Julianne Moore

starring

starring

name
“Lori Singer”

name “Ryan
Gosling”

name “Julianne
Moore”

BFS crawling for

?x

Lori Singer

Ryan Gosling

Julianne Moore

 Kevin Bacon

starring Footloose

Crazy, Stupid Love

starring

Lori Singer

Herbert Ross

starring

director

Ryan Gosling

Julianne Moore

starring

starring

adom(Kevin Bacon)

adom(Footloose)

adom(Crazy, Stupid Love)

name
“Lori Singer”

name “Ryan
Gosling”

name “Julianne
Moore”

adom(Lori Singer)

adom(Ryan G.)

adom(J. M.)

{Bacon ^starring/starring/name ?x }

DFS crawling for

• Give first answers
• in shorter time!
Better option, even better if we just want K answers

{Bacon ^starring/starring/name ?x }

 Kevin Bacon

starring Footloose

Crazy, Stupid Love

starring

Lori Singer

Herbert Ross

starring

director

Ryan Gosling

Julianne Moore

starring

starring

adom(Kevin Bacon)

adom(Footloose)

adom(Crazy, Stupid Love)

name
“Lori Singer”

name “Ryan
Gosling”

name “Julianne
Moore”

adom(Lori Singer)

adom(Ryan G.)

adom(J. M.)

?x

Lori Singer

Ryan Gosling

Julianne Moore

DFS crawling for {Bacon (^starring/starring)* ?x }

 Kevin Bacon

^starring

 Footloose

Lori Singer

starring

?x

Lori Singer

Julianne Moore

…

Each new answer requires 2 new requests.
Not optimal

Short Cuts
starring^starring

Julianne Moore

IDS crawling for
 Kevin Bacon

^starring

 Footloose

?x

Lori Singer

Dianne Wiest

John LithgowExhaust all actors from a movie,
then move to the next one,
repeat

Lori Singer

starring

Dianne Wiest

John Lithgow
starring

starring

Crazy, Stupid Love
^starring

Ryan Gosling

starring Steve Carell

Julianne Moorestarring

Ryan Gosling

Steve Carell

Julianne Moore

Best option, minimal amount of time to give answers

{Bacon (^starring/starring)* ?x }

Generalising IDS for arbitrary property paths

1: Transform Property Path into an automata
2: Assign a state of the automata to each IRI we retrieve
3: Fetch the IRI that would take us closer to a final state

This approach can be formalised as an A* search,
over the graph of linked data.
!
Work in progress!

A* search for crawling the web (example)
{Bacon (^starring/starring | sameAs)*/name ?x }

Query as NFA

qact

starring

qf

qmov

name

^starring

sameAs

A* search for crawling the web (example)

qact

starring

qf

qmov

name

^starring

sameAs

 Kevin Bacon

qact

A* search for crawling the web (example)

qact

starring

qf

qmov

name

^starring

sameAs

 Kevin Bacon

^starring

 Footloose

Crazy, Stupid Love
^starring

qmov

qmov

A* search for crawling the web (example)

qact

starring

qf

qmov

name

^starring

sameAs

 Kevin Bacon

^starring

 Footloose

Crazy, Stupid Love
^starring

qact

qmov

Lori Singer

starring

Dianne Wiest

John Lithgow
starring

starring

qact

qact

A* search for crawling the web (example)

qact

starring

qf

qmov

name

^starring

sameAs

 Kevin Bacon

^starring

 Footloose

Crazy, Stupid Love
^starring

qact

qmov

Lori Singer

starring

Dianne Wiest

John Lithgow
starring

starring

qact

qact

next fetch?
qact is closer to final state!

A* search for crawling the web (example)

qact

starring

qf

qmov

name

^starring

sameAs

 Kevin Bacon

^starring

 Footloose

Crazy, Stupid Love
^starring

qf

qmov

Lori Singer

starring

Dianne Wiest

John Lithgow
starring

starring

qact

qact

next fetch?
qact is closer to final state!

name

“Lori Singer”

A* search for crawling the web (example)

qact

starring

qf

qmov

name

^starring

sameAs

 Kevin Bacon

^starring

 Footloose

Crazy, Stupid Love
^starring

qf

qmov

Lori Singer

starring

Dianne Wiest

John Lithgow
starring

starring

qact

next fetch?
qact is closer to final state!

name

“Lori Singer”

name

“Dianne Wiest”
qf

A* search for crawling the web (example)

qact

starring

qf

qmov

name

^starring

sameAs

 Kevin Bacon

^starring

 Footloose

Crazy, Stupid Love
^starring

qf

qmov

Lori Singer

starring

Dianne Wiest

John Lithgow
starring

starring

qf

next fetch?
qact is closer to final state!

name

“Lori Singer”

name

“Dianne Wiest”

name

“John Lithgow”

qf

A* search for crawling the web (example)

qact

starring

qf

qmov

name

^starring

sameAs

 Kevin Bacon

^starring

 Footloose

Crazy, Stupid Love
^starring

qf

qmov

Lori Singer

starring

Dianne Wiest

John Lithgow
starring

starring

qf

now we fetch
other movies

name

“Lori Singer”

name

“Dianne Wiest”

name

“John Lithgow”

qf

A* search for crawling the web

- Complete for justified crawling
!
- Every new answer is the next shortest path
!
- Can be shown to beat BFS/DFS/IDS in practice

A* search for crawling the web

 how does one compare these algorithms?

- Complete for justified crawling
!
- Every new answer is the closer to our starting point
!
- Can be shown to beat BFS/DFS/IDS in practice

Outline

•
!

• How to actually do it (algorithms)
!
!
•

Example:
Property Paths
!
!
Comparing Algorithms

• Algorithm A and algorithm B.
• Which one is better?

Comparing algorithms

• Algorithm A and algorithm B.
• Which one is better?

Comparing algorithms

• Easy case: both algorithms terminate,
• (so both give the same answers)

• Algorithm A and algorithm B.
• Which one is better?

• Better algorithm:
!
Uses less resources to give the same # of answers

• Easy case: both algorithms terminate,
• (so both give the same answers)

• Algorithm A and algorithm B.
• Which one is better?

• Easy case: both algorithms terminate,
• (so both give the same answers)

• Better algorithm:
!
Uses less resources to give the same # of answers

time #of requestsdata transmitted

time

% of
answers

0

100

downloading
all data,
then querying

algorithm over
linked data

time

% of
answers

0

100

another algorithm
over linked data

algorithm over
linked data

requests

% of
answers

0

100

another algorithm
over linked data

algorithm over
linked data

data

% of
answers

0

100

another algorithm
over linked data

algorithm over
linked data

98So… coming back to
A* search for crawling the web

- Can be shown to beat BFS/DFS/IDS in practice

A*

BFS

answers

requests

coauthors
in DBLP over
linked data

• Algorithm A and algorithm B.
• Which one is better?

• Not so easy case: algorithms do not terminate,
• (so they don’t give the same answers!)

time

of
answers

0

Is this one really better?

What if these answers
are more valuable?

How do I measure which answer is more important?
!
Leverage the use of ontologies? meta-information?

Outline

• What does it mean to query the web (semantics)
!

• How to actually do it (algorithms)
!
!
• SERVICE on Endpoints

Endpoints with different datasets:
the dream

endpoint

another
endpoint

Need to query these 3 endpoints.
!
SPARQL standard: use SERVICE operator!

another
endpoint

In practice, almost none (none?) endpoints
implement SERVICE operator

!
!
!
!

Why?
What have we done about it?

Endpoints with different datasets:
not so easy…

SELECT * FROM P1 SERVICE (b P2)

endpoint a

open connection

Endpoints with different datasets:
not so easy…

SELECT * FROM P1 SERVICE (b P2)

Evaluate P1 over endpoint a

Endpoints with different datasets:
not so easy…

request /
open connection

endpoint a

endpoint b

SELECT * FROM P1 SERVICE (b P2)

Evaluate P2 over endpoint b

Evaluate P1 over endpoint a

Endpoints with different datasets:
not so easy…

request /
open connection

endpoint a

endpoint b

SELECT * FROM P1 SERVICE (b P2)

Evaluate P2 over endpoint b

Evaluate P1 over endpoint a

��P1 P2compute

Endpoints with different datasets:
not so easy…

request /
open connection

more requests / connections

endpoint a

endpoint b

SELECT * FROM P1 SERVICE (b P2)

Evaluate P2 over endpoint b

Evaluate P1 over endpoint a

��P1 P2compute

Endpoints with different datasets:
not so easy…

request /
open connection

more requests / connections
1 request / connection per triple?

endpoint a

endpoint b

SELECT * FROM P1 SERVICE (b P2)

Evaluate P2 over endpoint b

Evaluate P1 over endpoint a

��P1 P2compute

Endpoints with different datasets:
not so easy…

request /
open connection

more requests / connections
1 request / connection per triple?

How do we implement this?
!
what happens if
- timeout?
- refuse?
- endpoint is down?
- query takes too long?

endpoint a

endpoint b

Typical solution:
central mediator

endpoint

mediator
endpoint

endpoint

Go to Querying/SPARQL(I)
Session in Thursday for a
good survey of the techniques

However…

How far are we from running SERVICE queries in endpoints?

Other possible solution:
Message passing

first
endpoint

second
endpoint

last
endpoint

answers

Problems:
- query planning
- query optimisation
- tolerance over failure
- any publicly available implementation?

Looking Forward

We should…

take risks,
stop worrying about the future of linked data

work on realising the dream

- Understand the fundamentals behind querying linked data

We should in particular

- Understand the fundamentals behind querying linked data
 even if there are not many datasets
 even if it is still difficult to write these queries
!

We should in particular

- Understand the fundamentals behind querying linked data

!

- Develop, implement and compare algorithms that can do this

We should in particular

- Understand the fundamentals behind querying linked data

!

- Develop, implement and compare algorithms that can do this
even if for now it is just a research exercise
won’t find out about users if there is nothing to show

!

We should in particular

- Understand the fundamentals behind querying linked data

!

- Develop, implement and compare algorithms that can do this

!
- Implement SERVICE in endpoints

We should in particular

- Understand the fundamentals behind querying linked data

!

- Develop, implement and compare algorithms that can do this

!
- Implement SERVICE in endpoints

even if it demands a lot of resources from providers
even if most endpoints are not stable

We should in particular

Some solutions may be even used in other areas!

case in point:
!
Our algorithm for computing property paths in linked data
can be used to compute path queries in graph databases
!
!

Some solutions may be even used in other areas!

case in point:
!
Our algorithm for computing property paths in linked data
can be used to compute path queries in graph databases
!
- we are currently working on a system that implements

“linked data crawling” on local databases
!
- when we just want a few answers, this approach beats

graph databases (Neo4j, SPARQL DBs, TitanDB…)
!

The Fascinating World of !
Querying Linked Data

Questions?

