

Unstructured Data:
advantages of going without schema

Unstructured Data:
advantages of going without schema

L)

I name I director .
director

()

Unstructured Data:
advantages of going without schema

(o)

director

(- wa)

I name I director

Matrix Lana Wachowski

Unstructured Data:
advantages of going without schema

o) o)

director director

I name I director

Matrix Lana Wachowski
Matrix Lilly Wachowski ()
Matrix

Unstructured Data:
advantages of going without schema

(David Benioff) (D.B. Weiss)

director\ /director

(Episode 8)

Unstructured Data:
advantages of going without schema

Da id Ben off DB Wess
di ect\ /ecto
Episode 8

/art of

Season 8

Unstructured Data:
advantages of going without schema

DaV|d Benloff D B. Weiss)

director director

Episode 8

/ art_of
part_of Season 8
(Game of Thrones

Unstructured Data:
advantages of going without schema

DaV|d Benloff D B. Weiss)

I name I director director director

?

Episode 8

/ art_of
part_of Season 8
(Game of Thrones

Unstructured Data:
advantages of going without schema

“name”: “Crazy, Stupid Love”
“director: “Glenn Ficarra”

Unstructured Data:
advantages of going without schema

{
“name”; “Crazy, Stupid Love”
“director: “Glenn Ficarra”

}

{

“name”; “Matrix”
“director”; [*Lana W.”, “Lilly W.”]

As databases grow,
we need a way to understand what they have
and how to query them

As databases grow,
we need a way to understand what they have
and how to query them

As databases grow,
we need a way to understand what they have
and how to query them

III ‘I IH Wikidata Query Service £ Examples O Help ~ £ More tools ~

Q

S0, it appears we do need schemas
- for JSON data
- for graphs
- even for tabular or text data!

This talk:

SHACL (Shapes Constraint Language)
ShEXx (Shape Expressions)

JSON Schema

Schemas for graphs and other forms of semi-structured data

Why these” Why now?

SHACL: W3C recommendation (Mid 2017)
ShEx Group still working (last update 4'2019)
JSON Schema: Working Group in IETF

Also working group for schemas in property graphs

Millennium Institute
. Foundational
. il Research on Data

Schemas for graphs and other forms of semi-structured data

Juan L. Reutter
PUC Chile

Felipe Pezoa, Domagoj Vrgo€, Martin Ugarte, Fernando Suarez, Pierre Boubhris,
Ognjen Savkovic, Julien Corman, Fernando Florenzano, lovka Boneva, Stawek Staworko

RDF Graphs

(Glenn Ficarra)

director

starring Ryan Gosling)

(Crazy, Stupid Love

(Footloose

starring

Kevin Bacon

Lori Singer)

spouse _
PG(yra Sedgwmk)

\——/

starring

In this talk: Set V of nodes
Edges over V x V, labelled with a string

JSON

{
“name”: “Crazy, Stupid Love”
“director: “Glenn Ficarra”

1,

{

“name”: “Matrix”
“director”: [Lana W., Lilly W.]

Data is always about resources,
and linking resources with other resources.

Schema imposes conditions on some of them.

Shape-based Schemas - general form

Ltype L const

language to express shapes language to express constraints

Shape-based Schemas - general form

Ltype L const

language to express shapes language to express constraints

T(X) Answers of this query must be of a shape

QD (X) Nodes of the shape must satisfy this query

Shape-based Schemas - general form

Ltype L const

language to express shapes language to express constraints

T(X) Answers of this query must be of a shape

QD (X) Nodes of the shape must satisfy this query

T(x) = @(x)

JSON SChema { “name”: “Aconcagua’”,

“elevation”: 6960,

“country”: “Argentina”,

“first ascender”: ({
“name”: “Matthias”,
“surname”: “Zurbriggen”

"type": "object",

"properties": |{
"name": {"type": "string"},
"elevation": {"type": "integer"},
"country": {"type": "string"},
"first_ascender": |{

JSON Schema

£type root shape must conform root JSON Schema

*CCOHS’I There must be a name (string),
there must be a country (string),...

If there is a first ascender, then

JSON SChema { “name”: “Aconcagua”,

“elevation”: 6960,

“country”: “Argentina”,

“first ascender”: ({
“name”: “Matthias”,
“surname”: *“Zurbriggen”

"first_ascender": {

}

JSON SChema { “name”: “Aconcagua”,

“elevation”: 6960,

“country”: “Argentina”,

“first ascender”: ({
“name”: “Matthias”,

“definitions”: ({ “surname”: “Zurbriggen”
“person”: { }
“type”: *“object”, }

“properties”: {
“name”: {“type”: “string”},
“surname”: {“type”: “string”}

}

\first_ascender": {
“$ref”: “4#/definitions/person”

JSON Schema

£type root shape must conform root JSON Schema

*CCOHS’I There must be a name (string),
there must be a country (string),...

If there is a first ascender, then it satisfies shape person

Real JSON schemas use a lot of shapes

“diffinitions™: {
“schemaArray"“: {
“type": “array”,
“minitems™: 1,
“items™: { “$ref”: “2")
)l
“nonNegativelnteger”: {
“type": “integer®,
“sinisum*: @
),
“nonNegativelntegerDefaultd”: {
“allof*: |
{ “$ref": "#/definitions/nhnNegativelnteger"” },
{ “default™: @)
]
)l
“simpleTypes": {
“enum": [
“array",
“boolean”,
"integer"™,
“null™,
“number”,
“object™,
“string"
]
)'
“stringArray“: {
“type": “array”,
“items™: { “type": “string" }
“unigqueltems”: true,
“default“: [)
}
}l
“type": ["object™, “boolean*],
“oroperties*: {
“$ig": {
“type": “string“,
“format": "“uri-referenfe”
)l
t$schema”: {
“type": “string"
format": “uris

Shape-based Schemas - general form

£type L const

language to express shapes language to express constraints

S Set of shapes (person, address, mountain, etc...)

TS (X) Answers of this query must be of shape S

QDS (X) Nodes of shape S must satisfy this query.
Query can use shape names!

SHACL

:movieShape :personShape
a sh:NodeShape ; a sh:NodeShape ;
sh:targetClass :movie ; sh:property [
sh:property | sh:path :spouse ;
sh:path :starring ; sh:node :personShape

sh:node :personShape]
1 7
sh:property |

sh:path :director ;

sh:minCount 1 ;

sh:node :personShape

SHACL

:movieShape :personShape
a sh:NodeShape ; a sh:NodeShape ;
sh:targetClass :movie ; sh:property [
sh:property | sh:path :spouse ;
sh:path :starring ; sh:node :personShape

sh:node :personShape]
1 7
sh:property [

sh:path :director ;

sh:minCount 1 ;

sh:node :personShape

All nodes of type :movie must conform to :movieShape

(Glenn Ficarra)
movie)

director
starring Ryan Gosling)
rdf:type
Crazy, Stupid Love starring
Kevin Bacon
rdf:type Footloose

spouse _
PG(yra Sedgwmk)

\——/

starring

Lori Singer)
movie)

(Glenn Ficarra)

movie)

director

starring Ryan Gosling)

rdf:type

Crazy, Stupid Love

rdf:type Footloose

starring

Kevin Bacon

spouse _
PG(yra Sedgwmk)

\——/

starring

Lori Singer)

movie)

these nodes must conform to :movieShape

SHACL

:movieShape :personShape
a sh:NodeShape ; a sh:NodeShape ;
sh:targetClass :movie ; sh:property |
sh:property | sh:path :spouse ;
sh:path :starring ; sh:node :personShape

sh:node :personShape]
1 7
sh:property [

sh:path :director ;

sh:minCount 1 ;

sh:node :personShape

Neighbours of nodes assigned :movieShape,
connected by :starring,
must satisfy :personShape

(Glenn Ficarra)

movie)

director

starring Ryan Gosling)

rdf:type

Crazy, Stupid Love

rdf:type Footloose

starring

_) spouse _
Kevin Bacon J Kyra Sedgwick

starring

Lori Singer)

movie)

these nodes must conform to :personShape

SHACL

:movieShape :personShape
a sh:NodeShape ; a sh:NodeShape ;
sh:targetClass :movie ; sh:property |
sh:property | sh:path :spouse ;
sh:path :starring ; sh:node :personShape

sh:node :personShape]
1 7
sh:property |

sh:path :director ;

sh:minCount 1 ;

sh:node :personShape

Neighbours of nodes assigned :movieShape,
connected by :director,

must satisfy :personShape,

we need at least 1

this node must conform to :personShape

(Glenn Ficarra)

movie)

director

Ryan Gosling)

starring
rdf:type
Crazy, Stupid Love starring
_) spouse _
Kevin Bacon J Kyra Sedgwick
rdf:type starring

Lori Singer)

movie)

violation: every movie needs at least one director

SHACL

:movieShape :personShape
a sh:NodeShape ; a sh:NodeShape ;
sh:targetClass :movie ; sh:property |
sh:property | sh:path :spouse ;
sh:path :starring ; sh:node :personShape

sh:node :personShape]
1 7
sh:property [

sh:path :director ;

sh:minCount 1 ;

sh:node :personShape

Neighbours of nodes assigned :personShape,
connected by :spouse,
must satisfy :personShape

(Glenn Ficarra)

movie)

director

starring Ryan Gosling)

rdf:type

Crazy, Stupid Love

rdf:type Footloose

starring

spouse
Kevin Bacon) 0 PG(yra Sedgwick)

starring

Lori Singer)

movie)

these nodes must conform to :personShape

Shape-based Schemas - general form

£type L const

language to express shapes language to express constraints

S Set of shapes (person, address, mountain, etc...)

TS (X) Answers of this query must be of shape S

QDS (X) Nodes of shape S must satisfy this query.
Query can use shape names!

SHACL

£ Individual nodes
type Answers of query {?x rdfitype U}

L - Is a string, is a number, ...
const - # of neighbours connected by a path

- what my neighbours satisfy (these can be other shapes)

SHACL

£ Individual nodes
type Answers of query {?x rdfitype U}

L - Is a string, is a number, ...
const - # of neighbours connected by a path

- what my neighbours satisfy (these can be other shapes)

~ FO with 2 variables + counting + paths
(modal logic with counting)

SHACL

L Individual nodes
type Answers of query {?x rdfitype U}

L - Is a string, is a number, ...
const - # of neighbours connected by a path

- what my neighbours satisfy (these can be other shapes)

~ FO with 2 variables + counting + paths
(modal logic with counting)

semantics is not trivial!
Ts(x)

ShEXx

£type allows any pattern of the form {?x p U} or{U p 7?x}

LCOHS’[very similar to SHACL (will return to this this)

Why do we study Shape-based Schemas?

All these languages are specifications or established drafts

Need for formal specification.
Understand best way of defining things

How to solve tasks: validation, satisfiability, ...

Need for formal specification?

Need for formal specification?

JSON Schema was quite messy when we started (2015)

V1| V2 | V3| V4 | V5
T1: | N Y Y N Y Y wvalid
T2: | Y N Y N Y N invalid
T3: | N Y N N N — unsupported
T4: | — — N — —

Each test T1-T4: validating a document against a schema
V1-V5: first 5 validators in google search
(circa 10/2015)

Need for formal specification?

SHACL official W3C recommendation

The validation with recursive shapes is not defined in SHACL and is left to SHACL processor implementations.
For example, SHACL processors may support recursion scenarios or produce a failure when they detect
recursion.

Need for formal specification?

SHACL official W3C recommendation

The validation with recursive shapes is not defined in SHACL and is left to SHACL processor implementations.

For example, SHACL processors may support recursion scenarios or produce a failure when they detect
recursion.

ShEx report late 2018

This is an editor's draft of the Shape Expressions specification. ShEx 2.x differs significantly from the W3C
ShEx Submission. The July 2017 publication included a definition of validation which implied infinite recursion.
This version explicitly includes recursion checks. No tests changed as a result of this and no implementations or
applications are known to have been affected.

Why do we study Shape-based Schemas?

All these languages are specifications or established drafts

Need for formal specification.
Understand best way of defining things

How to solve tasks: validation, satisfiability, ...

Why do we study Shape-based Schemas?

All these languages are specifications or established drafts

Need for formal specification.

Understand best way of defining things

Graphs

How to solve tasks: validation, satisfiability, ...

SHACL/ShEX

Best way of defining things

- syntax
- semantics

Tasks: validation, satisfiability, ...

Defining Shape-based Schemas

Liype + Lconst + Semantics

Defining Shape-based Schemas

Ltype Way of selecting nodes that must be of shape S

- must select particular node
- Specs use very simple queries {?x p U} or{U p 7x}

Defining Shape-based Schemas

Ltype Way of selecting nodes that must be of shape S

- must select particular node
- Specs use very simple queries {?x p U} or{U p 7x}

Any unary query would do

if ﬁtype C Leconst

then most likely this does not affect the expressive power

Defining Shape-based Schemas

L:COHS’[What nodes of shape S must satisfy

Defining Shape-based Schemas: SHACL

L:COHS’[What nodes of shape S must satisfy

- unary tests (is a string, is this node, etc)
- shape tests (node is assigned a shape)

Defining Shape-based Schemas: SHACL

L:COHS’[What nodes of shape S must satisfy

- unary tests (is a string, is this node, etc)
- shape tests (node is assigned a shape)
- counting neighbours:

>n P. @
<np. ¢

min/max # of p-neighbours satisfying @

Defining Shape-based Schemas: SHACL

L:COHS’[What nodes of shape S must satisfy

- unary tests (is a string, is this node, etc)
- shape tests (node is assigned a shape)
- counting neighbours:

>n P. @
<np. ¢

- comparing paths:

min/max # of p-neighbours satisfying @

EQ(p1 , p2) set of p1-neighbours = set of p2-neighbours

Paths are defined using RPQs/property paths

SHACL

:movieShape

sh:property |
sh:path :starring ;
sh:node :personShape

<y :starring.(—:personShape)

SHACL

:movieShape

sh:property [
sh:path :director ;
sh:minCount 1 ;
sh:node :personShape

>4 :director.(:personShape)

SHACL

:movieShape

sh:targetClass :movie ;

T movieshape = {?x rdf:type :movie}

SHACL

:movieShape
a sh:NodeShape ;
sh:targetClass :movie ;
sh:property [
sh:path :starring ;
sh:node :personShape
1 7
sh:property |
sh:path :director ;
sh:minCount 1 ;
sh:node :personShape

T:movieShape — {?X rdf:type :mOVie}

@-movieshape =<0 :starring.(—:personShape)A >4 :director.(:personShape)

Defining Shape-based Schemas: ShEx

L:COHS’[What nodes of shape S must satisfy

- unary tests (is a string, is this node, etc)
- shape tests (node is assigned a shape)

Defining Shape-based Schemas: ShEx

'CCOHS’(What nodes of shape S must satisfy

- unary tests (is a string, is this node, etc)
- shape tests (node is assigned a shape)

(} spouse .

spouse @:personShape ;
— partner Q:personShape

spouse ::
partner

(} partner

Defining Shape-based Schemas: ShEx

L:COHS’[What nodes of shape S must satisfy

- unary tests (is a string, is this node, etc)
- shape tests (node is assigned a shape)

starring
director @:personShape ;
(starring @:personShape) |0, *]

Defining Shape-based Schemas: ShEx

L:COHS’[What nodes of shape S must satisfy

- unary tests (is a string, is this node, etc)

- shape tests (node is assigned a shape)

- regular bag expressions over p @S
interpreted over bag of neighbours

exp =p Qs | €| explexp | exp;exp | exp/m, n|

So which one is better?

Word is still open for consideration.

Both formalisms are incomparable:

(@ @S;a @S)|0,]

So which one is better?

Word is still open for consideration.

Both formalisms are incomparable:

EQ(ab, ac)

So which one is better?

Word is still open for consideration.

Both formalisms are incomparable.

Complexity issues (data complexity):

- checking if a SHACL constraint holds in a node is tractable
- checking if a ShEx constraint holds is not

So which one is better?

Word is still open for consideration.

Both formalisms are incomparable

Complexity issues (data complexity):

- checking if a SHACL constraint holds in a node is tractable
- checking if a ShEx constraint holds is not

(usually one restricts to ShEx where the * is not nested)

So which one is better?

Word is still open for consideration.

Both formalisms are incomparable

Complexity issues.

Expressive power / ease to write

SHACL/ShEX

Best way of defining things

- syntax
- semantics

Tasks: validation, satisfiability, ...

Semantics

these nodes must conform to :personShape

(Glenn Ficarra)
movie)

director
starring Ryan Gosling)
rdf:type
Crazy, Stupid Love starring
_) spouse _
Kevin Bacon J Kyra Sedgwick
rdf:type Footloose

starring

Lori Singer)
movie)

these nodes must conform to :MovieShape

Semantics:
iteratively assign shapes when needed?

Semantics:
iteratively assign shapes when needed?

spouse

(Kevin Bacon Kyra Sedgwick)

spouse

“Spouses of persons are persons”

:personShape
a sh:NodeShape ;
sh:property |
sh:path :spouse ;
sh:node :personShape

] .

Semantics:
guess a good assignment?

Semantics:
guess a good assignment?

D—.—*EJ

. “I have a blue neighbour”
. “My neighbours are not blue”

Semantics:
guess a good assignment?

.*.-*@)

. “I have a blue neighbour”
. “My neighbours are not blue”

Semantics:
guess a good assignment?

.*.—*G)

. “I have a blue neighbour”
. “My neighbours are not blue”

Semantics:
guess a partial good assignment

Semantics:
guess a partial good assignment

.*.-*@)

. “I have a blue neighbour”
. “My neighbours are not blue”

Graph validating a schema T. T.
ey Ts,

some nodes are

assigned shapes
W S1,...,S5n
shapes

Ps,r-- -5 Ps,

nodes in a shape
must satisfy these

graph

Can | assign shapes and satisfy all constraints?

Graph validating a schema T. T.
ey Ts,

some nodes are

assigned shapes
W S1,...,8n
shapes

Ps,r-- -5 Ps,

nodes in a shape
must satisfy these

graph

Can | assign shapes and satisfy all constraints?
» Assignmentrespects T, ..., Tg
 Assignment agrees with @s,,---, Ps,

» Every node is assigned a shape, its negation, or nothing

Graph validating a schema

@—@—*@)

green

node 2 must be green
“My neighbours are not blue”

. “I have a blue neighbour”

Graph validating a schema

@—@~@)
blue
green

node 2 must be green
“My neighbours are not blue”

. “I have a blue neighbour”

Graph validating a schema

@—@~@)
blue
green

node 2 must be green
“My neighbours are not blue”

. “I have a blue neighbour”

Graph validating a schema

@—@~@)
blue
green

node 2 must be green
“My neighbours are not blue”

. “I have a blue neighbour”

Graph validating a schema

“I'm green or blue or red”

“My neighbours are not green”

all nodes must be black

“My neighbours are not blue”

“My neighbours are not red”

Deciding if a graph validates a schema is NP-complete

Graph validating a schema:
restrictions / aproximations

- Consider only complete assignments

@«—@—»@)
“l have a blue neighbour”

. “My neighbours are not blue”

node 2 must be green

Graph validating a schema:
restrictions / aproximations

- Consider only complete assignments

Does not validate
CO—(C)—

“l have a blue neighbour”

. “My neighbours are not blue”

node 2 must be green

Graph validating a schema:
restrictions / aproximations

- Consider only complete assignments

Does not validate
CO—(C)—

“l have a blue neighbour”

. “My neighbours are not blue”

node 2 must be green

complete assignment => partial assignment

Graph validating a schema:
restrictions / aproximations

- Consider only complete assignments

- Restrict schemas using stratified negation

Graph validating a schema:
restrictions / aproximations

- Consider only complete assignments

- Restrict schemas using stratified negation

. “I have a blue neighbour”

“My neighbours are not blue”

Graph validating a schema:
restrictions / aproximations

- Consider only complete assignments

- Restrict schemas using stratified negation

. “I have a blue neighbour” _
- still NP-hard

- only need complete assignments
“My neighbours are not blue”

Graph validating a schema:
restrictions / aproximations

- Consider only complete assignments

- Restrict schemas using stratified negation

+

- Only care about assignments that can be built iteratively

- easy to compute
- misses assignments: may not validate reasonable graphs

Graph validating a schema:
everything is pretty when non-recursive

- All notions of assignment are equivalent
- Problem in PTIME if checking constraints is in PTIME

- Can even be transformed into SPARQL queries

Graph validating a schema:
everything is pretty when non-recursive

- All notions of assignment are equivalent
- Problem in PTIME if checking constraints is in PTIME

- Can even be transformed into SPARQL queries

:personShape
a sh:NodeShape ;
sh:property |
sh:path :spouse ;
sh:node :personShape

]

SHACL/ShEX

Best way of defining things

Tasks: validation, satisfiability, ...

Validation

S'], o o .,Sn
W Ts s, Ts, Is this valid?
(pS17° : °7(psn

graph

Validation ... as in ASP

817 B Sn nevaluateu

TS17"'7TSn ﬁ
Ps,y- -5 Ps,

- Compute SPARQL query

Validation ... as in ASP

S1;- -+, Sn “evaluate” W
TS1 ’ o o o 7 TSn ﬁ

§031 Yt gosn graph

- Compute SPARQL query
- Build rules from answers of this query

anbAhnec—dVe
anbrec—dVe
anbAhc—=dVe
anbAhnec—=dVe

set of instantiated rules

Validation ... as in ASP

S1;- -+, Sn “evaluate” ?{ K:g)
TS1 ’ o o o 7 TSn ﬁ

anbAhnec—dVe

anbAhec—dVe

anbAhc—=dVe

anbAhnec—=dVe Iogical
set of instantiated rules reasoner

YES/NO

Validation ... as in ASP

S17 c o0y Sn “evaluate” W
TS1 ’ o o o 7 TSn ﬁ
Psys -+ Ps, -

anbAhnec—dVe

anbrec—dVe

anbAhc—=dVe

anbAhnec—=dVe Iogical
set of instantiated rules reasoner

YES/NO

For classes of schemas

we know validation is in PTIME This runs in PTIME

Approach introduces design considerations

S15--+55n “evaluate”
TS1 g 0 o oy TSn ﬁ
Psys- - Ps, —
aNbAc—dVe
anbhnc—dVe
anbhnec—dVe
aNbAc—dVe Iogical
set of instantiated rules reasoner

YES/NO

Approach introduces design considerations
Ltype L const

language to express shapes language to express constraints

fast queries! fast queries!

Approach introduces design considerations

S1;- -+, Sn “evaluate”
TS1 ’ o o o 7 TSn ﬁ
Py P,

-

anbAhnec—dVe

anbrec—dVe

anbAhc—=dVe

anbAhnec—=dVe Iogical
set of instantiated rules reasoner

YES/NO

Approach introduces design considerations

Ltype L const
language to express shapes language to express constraints
fast queries! fast queries!

queries without many answers

Approach introduces design considerations

£type L const
language to express shapes language to express constraints
fast queries! fast queries!

queries without many answers

SHACL
ShEXx (no nesting of *)

true in

Further / Ongoing Work

Understand what is fast / what is not

Further / Ongoing Work

S1;- -+, Sn “evaluate” ?{ K:g)
TS1 ’ o o o 7 TSn ﬁ

anbAhnec—dVe

anbAhec—dVe

anbAhc—=dVe

anbAhnec—=dVe Iogical
set of instantiated rules reasoner

YES/NO

Further / Ongoing Work

Understand what is fast / what is not

Explanations

Further / Ongoing Work

S1;- -+, Sn “evaluate” éK K:g)
TS1 ’ o o o 7 TSn ﬁ

Ps,s- - Ps, —
anbhnc—dVe
anbAc—dVe
anbhrec—dVe
anbhrnc—dVe Iogical
set of instantiated rules *\soner
YES/NO

and fix it like this

Further / Ongoing Work

Understand what is fast / what is not

Explanations

Property Graphs? Text? CSV?

Further / Ongoing Work

Understand what is fast / what is not

More theory (satisfiability,
data exchange, ...)

Explanations

Property Graphs? Text? CSV?

Further / Ongoing Work

Understand what is fast / what is not

More theory (satisfiability,
data exchange, ...)
Explanations

Schema design

Property Graphs? Text? CSV?

Further / Ongoing Work

Understand what is fast / what is not

More theory (satisfiability,
data exchange, ...)

Explanations Query Optimisation

Schema design

Property Graphs? Text? CSV?

Learn schemas

Millennium Institute
. Foundational
. il Research on Data

Schemas for graphs and other forms of semi-structured data

Juan L. Reutter
PUC Chile

S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux, and
H. Solbrig. Complexity and Expressiveness of ShEx for RDF. In ICDT, 2015

I. Boneva, J. E. L. Gayo, and E. G. Prud’hommeaux. Semantics and Validation
of Shapes Schemas for RDF. In ISWC, 2017.

J. Corman, J. L. Reutter, and O. Savkovic. A tractable notion of stratification for
SHACL. In ISWC, 2018.

Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martin Ugarte, and Domagoj
Vrgo€. Foundations of JSON schema. In WWW, 2016.

