FrontComputSci.
DOI

RESEARCH ARTICLE

Tractable XML data exchangeviarelations

Rada CHIRKOVAL, Leonid LIBKIN?, Juan L. REUTTER?(>X)

1 Department of Computer Science, North Carolina State étsity, North Carolina, US
2 School of Informatics, University of Edinburgh, Edinbhr¢/K

(© Higher Education Press and Springer-Verlag Berlin Heielgjt2012

Abstract We consider data exchange for XML documentsthe relationship between the source and the target, the ob-
given source and target schemas, a mapping between thé@gtive is to find an instance of a target schema. The tar-
and a document conforming to the source schema, constrgét instance should correctly represent information frben t
a target document and answer target queries in a way thasigurce instance under the constraints imposed by the target
consistent with the source information. The problem has prschema, and should allow one to evaluate queries on the tar-
marily been studied in the relational context, in which dataget instance in a way that is semantically consistent wigh th
exchange systems have also been built. source data. The problem has received much attention in the
Since many XML documents are stored in relations, it ipast few years, with several surveys already available][1-3
natural to consider using a relational system for XML data The general setting of data exchange is shown in Fig. 1.
exchange. However, there is a complexity mismatch betwe&ye have fixed source and target schemas, an instarafe
query answering in relational and in XML data exchangethe source schema, and a mappivigthat specifies the rela-
This indicates that to make the use of relational systems pa#nship between the source and the target schemas. The goal
sible, restrictions have to be imposed on XML schemas arisl to construct an instancg of the target schema, based on
mappings, as well as on XML shredding schemes. the source and on the mapping, and to answer queries against
We isolate a set of five requirements that must be futhe target data in a way consistent with the source data.
filled in order to have a faithful representation of the XML The mappings rarely specify the target instance com-
data-exchange problem by a relational translation. We thejletely. That is, for each sourcg and mappingM, there
demonstrate that these requirements naturally suggest-thecould be multiple target instanc@s, 7>, ... that satisfy the
lining technique for data-exchange tasks. Our key contribionditions of the mapping. Such instances are cateld-
tion is to provide shredding algorithms for schemas, docyions The notion of query answering has to account for their
ments, mappings and queries, and demonstrate that they 8Bn-uniqueness. Typically, one tries to compeeetain an-
able us to correctly perform XML data-exchange tasks usingyerscerTainy(Q, S), i.e., answers independent of a par-
arelational system. ticular solution chosen. IR produces relations, these are
Keywords data exchange, XML, XML shredding, inlining usually defined a§); Q(7;). Certain answers must be pro-
duced by evaluating some query — not necess&ribut per-
haps itsrewriting Q.ewr OVer a particular solutiofi”, so that
1 Introductioin Qrew(7") = CERTAINM(Q, S)-

_ _ Thus, the key tasks in data exchange are: (a) choosing a
Inthe problem of data exchange, given an instance of a SOUrSErticular solutiory™ among(7+, 72, .. .} to materialize, and

schema and a schema mapping, which is a specification @) finding a way of producing query answers over that solu-

tion by running a rewritten quer@e.r over it. Usually one
builds a so-calledniversalsolution [3,4]; these solutions be-
E-mail: juan.reutter@ed.ac.uk have particularly nicely with respect to query answering.

Received January 17, 2012; accepted February 02, 2012

Rada Chirkova: Tractable XML Data Exchange via Relations

- mapping M -
sowees | ———
D D

Fig. 1 The general setting of data exchange

mapping M query @
R EE—

query @ XML : source S target 7 answer

shred shred shred

o(M)

Relations : o(S) o(T) (Q) answer

These basics of data exchange are independent of a partic- Fig. 2 Correctness of the translatior()

ular model of data. Most research on data exchange, however,

has occurred in the relational context [1, 3-5] or sligheext of the mappingr(M) to get a solution — which itself is a
sions [6,7]. The first paper that attempted to extend refatio shredding of an XML solution — so that the answe@toould
results to the XML context was [8], and a few followups havébe reconstructed from the result of the queiyQ) over that
since appeared [9, 10]. They all concentrate on the algorithelational solution.

mic aspects of query answering and constructing solutions, The idea seems simple and natural on the surface, but starts
with the main goal of isolating tractable cases. The problefaoking challenging once we look deeper into it. Before even
these papers do not addressi@v can XML data exchange attempting to show that the relational translation faillyfu

be implemented! represents the XML data-exchange problem, we need to ad-
Previous work on algorithms for XML data exchange hagress the following.

tacitly assumed that one uses a native XML DBMS such

as [11]. However, this is not the only (and perhaps not everf-omplexity mismatchwithout restrictions, thereannot be

the most common) route: XML documents are often stored in @ faithful representatiorof XML data exchange by a
relational DBMSs. Note that it is natural and in many cases relational system. Indeed, it is well known that posi-
desirable to be able to use the established relational obchn tive relational-algebra queries can be efficiently evalu-
ogy to solve the considerably more recent and not as well un- ated in relational data exchange, assuming the query is
derstood XML data-exchange task. In fact, many ETL prod- fixed [1,3,4]. At the same time, finding query answers
ucts claim that they handle XML data simply by producing ~ €ven for simple XML analogs of conjunctive queries

relational translations (known atredding12]). This leads can be coNP-hard [8]. So any claim that a relational
to a two-step approach: data-exchange system correctly performs XML data ex-

change for arbitrary documents and queries is bound to
be wrong. We thus need to identify the cases that can be
handled by a relational system.
Which shredding scheme to us@here are several, which
The approach seems very natural, but the key question is can roughly be divided into two groups: those that
whether it will work correctly That is, are we guaranteed do not take the schema information into account (e.g.,
to have the same result as we would have gotten had we im- the edge representation [13], interval codings [14], and
plemented a native XML data-exchange system? We answer other numbering schemes [15]), and those that are based
this question in this paper. on schemas for XML, such as variants of the inlining
To state more precisely the main question addressed in this technique [12,16]. Since in data-exchange scenarios we
paper, assume that we have a translati¢y that can be ap- start with two schemas, it seems more appropriate to ap-
plied to (a) XML schemas, (b) XML documents, (c) XML ply schema-based techniques.
schema mappings, and (d) XML queries. We show the conTarget constraintsIn relational data exchange, constraints
cept ofcorrectnes®f such a translation in Fig. 2. in target schemas are required to satisfy certain acyclic-

e first shred XML data into relations;
e then apply a relational data-exchange engine (and pub-
lish the result back as an XML document).

That is, suppose we start with an XML documéhand
an XML schema mappingA. In a native system, we would
materialize some solutiofir over which we could answer

queriesQ.

But now we want a relational system to do the job. So

we shredS into o(S) and then apply tor(S) the translation

ity conditions; without them, the chase procedure that
constructs a target instance does not terminate [1, 3, 4].
Constraints imposed by general XML schema specifica-
tions need not in general be even definable in relational
calculus, let alone be acyclic [17]. We thus need to find
a shredding technique that enables us to encode target

Front. Comput. Sci.

schemas by means of constraints that guarantee chddajuirement 4: translation of mappings For a mapping

termination. M between a source DTIDg and a target DTDDy,

its translationo-(M) is a mapping betweenr(Ds) and
o(Dy) that preserves universal solutions. That is:

(a) Eachop,-translation of a universal solution fdar un-
der M is a universal solution farp (T) undero-(M);
and

(b) Each universal solution farp (T) undera(M) con-
tain® a op,-translation of a universal solution df

As for the complexity issue, the work on the theory of
XML data exchange has identified a class of mappings for
which efficient query answering is possible [8-10]. The
schemas (say, DTDs), have rules of the faltm— book,
book — author® sub ject(we shall give a formal definition
later), and the mappings transform patterns satisfied beer t
source into patterns satisfied over targets. Observe thseth

underM.

mappings (just as nested-relational tgds [18, 19]) arethtri . .
ppings .) gas [D Bt Iﬁ(equwement 5: query answering For (analogs of) con-
more expressive than relational tgds; see the Related-Work ™) . .
junctive queries over trees, computing the answepto

section for a discussion. ' i
underM over a source tre€ is the same as computing a

This restriction suggests a relational representatiors¢o u . .
. . 99 . . P . o (M)-solution ofo(T), followed by evaluation of(Q)
Going with the edge representation [13] is problematicsti-ir) . . ;
over that solution, as is normally done in a relational

each edge in an XML pattern used in a mapping will result in

L . . L data-exchange system.
a join in the relational translation, making it inefficie®ec-
ond, enforcing even a simple schema structure under that rep Satisfaction of these five requirements would guarantee
resentation takes us out of the class of target constrdiats tthat we have @orrectrelational translation of an XML data-
relational data-exchange systems can handle. Verifiaty c&*change problem, which would guarantee correct evaluatio
rect translations based on numerical encodings [14, 15] wif queries. The relational approach to XML data exchange,
necessarily involve numerical and/or ordering constsaint Which we propose in this paper, satisfies all the five require-
relational translations of mappings, and this is sometttiagg MenNts.
relational data exchange cannot handle at the moment [1, 3], For the choice of the query language, one has to be careful
beyond simple ordering constraints [20]. since the definition of certain answers depends on the out-

One translation scheme however that fits in well with th@ut of the queries. We consider two classes of conjunctive
restrictions identified in [8-10] is thilining scheme. It gueries over trees. The first is tree patterns that output tu-
works very well for DTDs of the “right” shape, and its outputp|e$ of attribute values. These are the queries most com-

schemas involve only acyclic constraints, which is perfiect monly considered in XML data exchange [8-10], because
data-exchange scenarios. for them we can define certain answers as the usual inter-
sectionCERTAINA(Q, S) = N Q(77). The second is a sim-
ple XML-to-XML query language, in which queries output
trees It is essentially the positive fragment of FLWR ex-
pressions of XQuery [21]. For outputs which are XML trees,
Requirement 1: translation of schemas A translation the mltersectlon operator is no longer meaningful for dagni

) . certain answers. Instead, we use recent results of [22] that

o (D) that, when applied to a DTD of a special form, , i
show how to define and compute certain answers for XML-

produces a relational schema that has only acyclic con-

straints, which can be used in a relational data—exchanéoe'XML quenes.

setting. Contributions. We provide a relational approach to solve

Requirement 2: trandation of documents A translation WO of the most important problems of XML data-exchange
op(-) for a DTD D that, when applied to documeft settings: materializing solutions and answering que@as.
conforming toD, produces relational database(T) specific contributions are as follows. First, we introdune a
of schemar(D). architecture for XML data exchange using relational vedscl

Requirement 3: translation of queries For a DTD D, a with a focus on correct evaluation of (analogs of) conjurecti
translationop (Q) of (analogs of) conjunctive queries sodueries on XML data. Second, we identify a class of XML
thatop(Q)(op(T)) = Q(T) (that is, the result o)(T) schema mappings and a shredding mechanism that allows us

can be computed by relational translations).

Desideratafor thetrandation. We now formulate some ba-
sic requirements for the translation in order to be able to
achieve our goals described in the diagram aldoWée need
the following:

2) We cannot require the equivalence, as relational soluéwaspen to
adding new tuples and thus cannot always be translationees;twe shall

1 In the next sections we formalize each desideratum. discuss this later

Rada Chirkova: Tractable XML Data Exchange via Relations

to overcome the complexity mismatch. Third, we providgrovides translations of schemas and documents, and shows
algorithms for relational translation of schemas, XML docuthat they fulfill our Requirements 1 and 2. Section 4 states th
ments, schema mappings, and queries in our proposed arahain concepts of relational and XML data exchange. Section
tecture. Finally, we prove the correctness of the trarmsiati 5 provides translations of mappings and queries, and shows
namely, we show that they satisfy the above five requirdhat our Requirements 3, 4, and 5 are fulfilled. Section 6
ments, and thus enable us to use relational data-exchasge studies queries that output XML trees.

tems for XML data-exchange tasks. Since the computational This article is an extended version of [28]. It contains a re-
complexity of our proposed algorithms is quite low, anditheivised version of all the algorithms for translation, andtlad
correctness has been established, we believe this papesmairoofs of the results presented in [28]. It also contains eemo

a case for using the relational technology for provablyectir detailed formal analysis of the correctness of the algorith
XML data exchange.

Related works. In recent years, significant effort has been .]
L ¢ Preliminaries

devoted to developing high-performance XML database sy§-
tems, and to building tools for data exchange. One major dI;L\;eIationaI schemas and congtraints, A relational schema
rection of the XML effort is the “relational approach,” wiic . . - .

) or justschemais a finite setR = {Ry,..., Ry} of relation
uses relational DBMSs to store and query XML data. Docé bol iblv Wi . . . i

. . . symbols, possibly with a set of integrity constraindg|gen

uments could be translated into relational tuples usirteeit

. dencie}¥. Constraints used most often in data exchange are
a “DTD-aware” translation [16, 23] or a “schemaless” trans- : . .
_ . ! equality- and tuple-generating dependencies [1, 3, 4]fdyut
lation. The latter translations include the edge [13] ared th Lo ' . .
our purposes it will suffice to consider oritgysandforeign

node [14] representations of the data. Indexes could be prkeéyS If Ris a relation over attributedl, and X is a set of

built on the data to improve performance in relational QUErY ibutes. theiX is a key ofRif no two tuples ofR coincide
processing, see, e.g., [14,15]. Constraints arising itrémes- on X-attributes (that is, for all tuples, t, € Rwith t; # t

lation are sometimes dealt with explicitly [24, 25]. See][26We haver(ty) # mx(t2)). If Ry andR, are relations over sets

for a_ survey of the relational approach to answering XIv”‘of attributesU; andU,, respectively, then an inclusion con-
queries.

_ ~straintRy[X] € Ry[Y], whereX ¢ U; andY < U, are of the
The work on data exchange has concentrated primarily Qi o cardinality, holds wher(Ry) < 7v(Ry). We further
relations, see [1, 3] for surveys and [19, 27] for system des'ay that a foreign key on the attributesRi[X] Sk Ro[Y]

scriptions. Mappings for the XML data-exchange probleny,4s if the inclusion constrai;[X] < R,[Y] holds, andY
were studied in [8, 9]; it was noticed there that the comple>g—s a key ofRy.

ity of many tasks in XML data exchange is higher than for \yi each set of keys and foreign keys, we associate a
their relational analogs, which suggests that restristionst graph in which we put an edge between attributeand B

be imposed for a relational implementation. The problem qf qare is a constrainRi[X] Crx Ro[Y] with A € X and
exchanging XML data was also studied in [18, 19], whichy v | this graph is acyclic, we say that the set of con-

give translations of documents and of DTDs into nesteds,yintg isacyclic. A schema is acyclic if its constraints are
relational schemas, and then show how to perform XMIacycIic. In data exchange, one often uses a more technieal no
data exchange under this translation. Most RDBMSS, oWy, of yeak acyclicity: it includes some cyclic schemas for
ever, do not provide support for nested-relational schemagyich the chase procedure still terminates. For us, however

and, thus, specific machinery has to be developed in ordgfe simple concept of acyclicity will suffice, as our transla
to implement this translation under a strictly relationat-s tions of schemas only produce acyclic constraints.

ting. Moreover, XML mappings considered in this PAPEL ML documents and DTDs. Assume that we have the fol-
are strictly more expre;swe than nested-relat|oqal wp! lowing disjoint countably infinite set€El of element names,
and every nested-relational data-exchange setting cafr be it of attribute names, ang tr of possible values of string-

ficiently transformed into an equivalent XML data-exchange . . .
i y q_ i gvalued attributes. All attribute names start with the symmbo
setting. Thus, the results of this paper may aid towards tr@

development of a relational implementation for both XML

, An XML treeis a finite rooted directed trek = (N, G),
and nested-relational data exchange.

whereN is the set of nodes ar@is the set of edges, together
Outline. Key definitions are given in Section 2. Section 3with

Front. Comput. Sci.

5
1:r
2: book 3: book
‘Algorithm Design’ ‘Algebra’ r — book*
/ \\ / \ book — author™ subject
. . 6: subiect . g subiet author — name aff
4: author 5: author scusjec 7: author Ms:tile Ap (book — Qtitle
/ \ / \ / \ Ap(subject) = Qsub
9: name 10: aff 11: name 12: aff 13: name 14: aff Ap(name) = Qnam
Kleinberg CU Tardos cu Hungerford SLU Ap(aff) = Qaff
(@) TreeT () DTD D
Fig.3 The XML treeT conforms toD
1. alabeling functiom : N — El; graph (DAG) but a tree. (One can always unfold a DAG into
2. attribute-value assignments, which are partial fumstio a tree by tagging occurrences of element types with the types
p@a . N — Strfor each @ € Att; and of their predecessors.)

3. an ordering on the children of every node.)
Example 1: Figure 3(a) shows an example of an XML tree.

In the Figure, the node identifiers precede the correspgndin
labels of each node ifi; we omit the attribute names and only

show the attribute values of each node. In addition, Fig) 3(b
shows an example of a nested-relational DTD. Moreover, it

A DTD D overEl with a distinguished symbal (for the
root) and a set of attributestt consists of a mappingp from
El to regular expressions ovéil — {r}, usually written as
production¥ — eif Pp(¢) = e, and a mappind\, from El
to 2" that assigns a (possibly empty) set of attributes to eadh €2y t0 see that the tréeof Fig. 3(a) conforms t®. o
element type. For notational convenience, we always assume
that attributes come in some order, just like in the relation

case: attributes in tuples come in some order, so we can write]
R(ay,...,an). Likewise, we shall describe ahlabeled tree 3 Translations of schemas and documents

node withn attributes ag(ay, . . ., an).

A treeT conforms to a DTDD (written asT [D) if its
root is labeled, the set of attributes for a node labeleds
Ap(¢), and the labels of the children of such a node, read fro
left to right, form a string in the language B (¢).

We now review theinlining technique [16], provide a pre-
cise definition of the translation, and show that it satisfies
Requirements 1 and2. The main idea of inlining is that sep-
Trate relations are created for the root and for each element
type that appears under a star, and other element types are
A class of DTDs. In this paper we consider a restriction oninlined in the relations corresponding to their “nearegtrap
DTDs callednested-relational DTDE3, 29], a class of DTDs priate ancestor”. Each relation for an element type has an ID
that naturally represent nested relational schemas suitle as attribute that is a key, as well as (for non-root) a “parebit-I
ones used by the Clio data-exchange system [27]. The reasttribute that is a foreign key pointing to the “nearest appr
for using them is that outside of this class, it is very easpriate ancestor” of that element in the document. All the at-
to construct instances of XML data-exchange problems thatbutes of a given element type in the DTD become attributes
will exhibit coNP-hardness of answering conjunctive geeri in the relation corresponding to that element type when auch
(which are known to be tractable in practically all insta;mcerelation exists, or otherwise become attributes in thetioela
of relational data exchange), see [8]. for the “nearest appropriate ancestor” of the given element
A DTD D is non-recursivef the graphG(D) defined as type.
{(¢,¢) | ¢ is mentioned inP(¢)} is acyclic. A non-recursive We begin with a formal definition of theearest appropri-
DTD D is nested-relationaif all rules of D are of the form ate ancestofor the element types usedh Given a nested-
| - {o...Im where all thd;'s are distinct, and eadhis one relational DTDD = (Pp, Ap,), we “mark” in G(D) each
of I andl”. From now on, unless otherwise noted, all DTDslement type that occurs under a staP In addition, we
are assumed to be nested-relational. We also assume, withmark the root element type iG(D). Then, for a given ele-
loss of generality, that the gra@{D) is not a directed acyclic ment type¢, we define thenearest appropriate ancestaf

Rada Chirkova: Tractable XML Data Exchange via Relations

¢, denoted byu(¢), as the closest marked element typén The proof then follows from the fact th&{(D) is acyclic, and
the path from the root element toin the graphG(D). The thusthe labels dD cannot form a cycle of nearest appropriate
inlining schema generation is formally captured by means @ncestorso

the procedureNL SCHEMA in Algorithm 1.
Shredding of XML documents. We now move to the

Algorithm 1 INLSCHEMA(D) shredding procedure. Given the inlininglSCHEMA(D)
Input : A nested relational DTID. = (Sp, Ap) of aDTDD, and an XML tre€l conforming toD,
Output: A relational schem&p and a set of integrity con- e yse the algorithmLDoc to shred Tinto an instance of
straintsip the relational schem& that satisfies the constraints A .
SetSp =0 andAp =0
Let us first explain this translation by means of an example.

for each marked element typeof D:
add toSp a reIat'LI(()jnRg, with attributes:
t

Example 3: Recall treeT from Fig. 3(a) and DTDD from

Ap(£) Fig. 3(b). Table 1 shows relatiom,oox and Rayihor in the
attr(Re) = {idye) 1if £ #r. shredding ofT. O

idy | u(¢’) =¢, ¢ isnot marked,

Ap (&) | u(€’) = ¢, £ is not marked. To present the algorithm, we define thearest appropri-

o ate ancestop(n) of a noden of an XML documentT that
endtor . : i conforms to a DTDD, as follows. Mark each node of T
for each relation R in Sp: .)

add toAp the constraint stating thid, is key of R, and, such thati(n) is starred inD, as well as the root of . Then

if £ # r, the foreign key u(n) is the closest marked nodte that belongs to the path
from the root ton. In the Algorithm 2, and for the remainder
of the paper, we denote b, the relational element repre-
senting the noda of a treeT .

Re[id.] Srx Rulid,]-

endfor
add toAp the dependency (stating the uniqueness of the roadlgorithm 2 INLDOC(T, D)
Input : A nested relational DTID and an XML tre€T that
YWZR(X,Y) AR (X,2) —» x=X. conforms toD.
Output: A relational instance of the schema
INLSCHEMA(D).

return (Sp, Ap)

for each marked node n of T:

Example 2: Consider again DTID in Fig. 3(b). The rela- Let £ be the label oh; Add to the relatiorR, of I a tuple
tional schemaNLScHEMA(D) is as follows: thig';contams elements

RooobookI D, @i tle, rl D, subl D, @ub) 'i(:j@a() : ?5 i ; o(0)

Rauthor(@ut hl D, bookl D, nanel D, af | D, @am @f f)) A where the

== " - . idp | u(n’) = n,n’ is not marked.
Keys are underlined; we also have the following foreign paa(n) | u(n) = n, @a e Ap(A()) and
a - 1

keys: RpoodrID) Crk R/(rID) and Raythor(bookID) Crk i is not marked
Roook(bookID).

identifiers and attributes values for each of the elements

The following shows that ouRequirement 1 is satisfied. idy, id,(n) andpga(n’) coincide with the position of the
attributes forid iy, id,) andAp(A(n')) of R.
Proposition 1. For every nested relational DTD D, the out- endfor

put ofINLSCHEMA(D) is an acyclic relational schema. return |

Proof. LetD be a DTD over a set of element typek Notice The following proposition shows that oRequirement 2
that all the foreign key constraints created with the proced s satisfied.

INLSCHEMA(D) are of the formR,[id c idyo], .
(B) dliduo] Srx Ruoliduol Proposition 2. Let D be a DTD, and T an XML tree such that

for some marked labél € El; that is, each relatioR, ref- - D. ThenINLDOGT.D) i inst th h
. . niNL is an instan m
erences the relatioR,, that corresponds to theearest ap- = © (T, D) s an instance of the schema
computed byNL SCHEMA(D).

propriate ancestoof ¢. Thus, the graph associated with the
constraints of NL SCHEMA(D) only contains edges from the Proof. LetD andT as stated in the Proposition, ar&h(Ap)
attributeid,) of relationR, to attributeid,) relationR,y. be the output ofNiLSCHEMA(D). That INLDOC(T, D) satis-

Front. Comput. Sci.

Tablel Shredding ofT into INLSCHEMA(D))]
(a) RelationRyeekin INLDOC(T, D)

bookl D @itle riD subl D @ub
id2 " Al gorithm Design’ idy ids CS
ids " Al gebr a’ id1 idg Mat h

(b) RelationR,ythor in INLDOC(T, D)

aut hl D bookl D nanel D afI D @am @af
ids id> idg id1g " Kl ei nberg’ CU
ids ido id1q idqo " Tar dos’ CcuU
id7 ids3 idi3 id14 " Hunger f ord’ SLU

fies the key constraints ofp is trivial, since the identifier An instance7” of T (which may contain both constants
of each node inT is unique. The same applies for the de-and nulls) is called aolutionfor an instanceS of S under
pendency stating the uniqueness of the root; sificeon- M, or an M-solution if every st-tgd (1) from¥ is satisfied
forms to D, the root of T (and only the root) must be la- by (S,7") (that s, for each tupla such thatp(a) is true inS,
belledr. Moreover, for each foreign key in of the form thereis a tuplé_)such thaty(a, b_) is true in7").The set of all
Re[id,] S Ruplid,g], notice that, since5(D) is a tree, M-solutions forS is denoted by 8L (S) (or SoL(S) if M
for each¢ € El — {r}, there is exactly one elemefit such is understood).

that ¢ = u(¢). SinceT conforms toD, every ¢-labelled
node inT must be a descendant of &nlabelled node. This
guarantees that the interpretation of relati(hsand R, in
INLDOC(T, D) satisfy the constrairi[id,)] € Ryg[idu@];
each tuple in the interpretation Bf over INLDOC(T, D) cor-
responds to a nodein T that must be a descendant of &n
labelled nodeY in T, and thus there must be a tuple in th
interpretation oRR, identified with the elemernit,,. O

Certain answers and canonical universal solution. The
main difficulty in answering a quer against the target
schema is that there could be many possible solutions for a
given source. Thus, for query answering in data exchange
one normally uses the notion of certain answers, that is, an-
swers that do not depend on a particular solution. Formally,
efor a sourceS and a mapping\, we defineCERTAIN 4((Q, S)
as({Q(7T") | 7 € SOLm(S)}.

Building all solutions is impractical (or even impossihle)

_ so it is important to find a particular solutioty € SOL(S),
4 Relational and XML data exchange and a rewritingQiewr Of Q, so thatCERTAING(Q,S) =

We now quickly review the basics of relational data ex—Qre"Vr(To)'
Universal solutionsvere identified in [4] as the preferred

change and introduce XML schema mappings that guarantee
tractable query answering. solutions in data exchange. (We provide a precise defini-

tion later in this section.) Over them, every positive query
can be answered, with a particularly simple rewriting: af-

)]) ter Q is evaluated on a universal solutiofy, tuples con-
schema with a set of constraimts, andX is a set ofsource- . . .
taining null values are discarded. Even among universal

-tar ndenci ify how th r nd th . .
to-target dependenciahat specify how the source and t esolutlons there are ones that are most commonly material-

target are related. Most commonly these are given as source- | . .
i ; ized in data-exchange systems, such ascmnical solu-
to-target tuple generating dependencies (st-tgds):

tion CANSOL 4((S), computed by applying the chase pro-
) cedure with constraint¥ and Ar to the source instance

S. If all the constraints iMAr are acyclic (in fact, even a
wherep andy are conjunctions of relational atoms ov&r weaker notion suffices), such a chase terminates and com-
andT, respectively. putes QN SOL ,((S) in polynomial time [4].

Relational data exchange. A schema mapping is a triple
(S, T, %), whereS is a source schemd@, = (T, At) is a target

e(X) — Jzy (X, 2),

In data-exchange literature, one normally considers in- Note that ouRequirement 4 relates universal solutions in
stances with two types of values: constants and nulls. Imelational and XML data exchange. In particular, we do not
stancesS of the source schem@ consist only of constant insist on working with the canonical solutions; others,rsuc
values, and nulls are used to populate targetinstancelsen as the core [5] or the algorithmic constructions of [30], can
some values are unknown. be used as well.

Rada Chirkova: Tractable XML Data Exchange via Relations

Towards XML schema mappings. patterns. To define descendant navigation, wild cards for labels, and sibling o
XML schema mappings, we need the notions of schemaer. However, [8-10] showed that with these features added,
and source-to-target dependencies. The notion of schemajigery answering in data exchange becomes intractable even
well understood in the XML context. Our dependencies, a®r very simple queries. In fact, the restrictions we usetin o

in [8-10], will be based otree patternsPatterns are defined definition were identified in [8] as essential for tractalili
inductively as follows: of query answering. Note that the same restriction was im-
y posed on queries when transforming XML data into nested-
relational schemas [18, 19].

e ((X) is a pattern, wheré is a label, andis a (possibl
empty) tuple of variables (listing attributes of a node);
e {(X)[r1,...,m] is a pattern, wherery, ..., n are pat- XML schema mappings. As our descriptions of XML
terns, and’ andx are as above. schemas we shall use DTDs. Indeed, for complex schemas,
guery answering in data exchange is known to be intractable
We writerr(x) to indicate thakis the tuple of all the variables [8], and DTDs will suffice to capture all the known tractable
used in a pattern. cases. Source-to-target constraints will be given viaepadgt
The semantics is defined with respect to a node of a tree Formally, an XML schema mappings a triple M =
and to a valuation of all the variables of a pattern as atibu(Dg, Dt, X), whereDs is the source (nested relational) DTD,
values. Formally, T,v) n(a) means that is satisfied in Dy is the target (nested relational) DTD, ani a set ofXML

nodev whenxis interpreted aa. It is defined as follows: source-to-target dependenci@, or XML stds, of form
e (T,v) E ¢(a) if vis labeleds and its tuple of attributes is 2(X) = 7(X2D))
a; el 9
o (T,V) E (@[m(@), ..., (@) if wherer andn’ are tree patterns compatible with; andDr,
1. (T,V) E ¢@) and respectively.
2. there exist childrem, ..., v of v (not necessarily As in the relational case, target trees may contain nulls to
distinct) so thatT, vi) E 7i(a) for everyi < k. account for values not specified by mappings. Given a tree

T that conforms tdDs, a treeT’ (over constants and nulls)
is an M-solution forT if T’ conforms toD+, and the pair
(T, T’) satisfies all the dependencies of the form (2) frbm
Example 4: Consider treel from Fig. 3(a), and the tree The latter means that for every tuglef attribute values from
patternz(x,y) = r[bookx)[authofnam&y)]]], which finds T, if T satisfiest(a), then there exists a_tupteof attribute
books together with the names of their authors. Then it ig eagalues fromT’ such thafT’ satisfiest’(a, b). The set of all
to see thall k= #(’ Al gorithm Design’, Tardos). Infact, AM-solutions forT is denoted by 8L w(T).

evaluation ofr(x, y) overT returns the tuples @l gorit hm
Desi gn’ , Tardos), (" Al gorit hm Desi gn', Kl ei nber g),
and (Al gebra’ , Hunger f or d). m]

We write T E #(a) if (T,r) E =(a), that is, the pattern is
witnessed at the root.

Example 6: Consider the data-exchange scenario

(D, D1, M) given by the DTDsD and Dt of Fig. 3(b)

and 4(b), respectively, and wherel is specified by the
Given a DTDD and a tree pattern, we say thatr iscom- dependency

patible with D if there exists a tred that conforms toD

and a tuple of attribute valuessuch thafl E #(a). In gen-

eral, checking compatibility of patterns with DTDs is NP- r{writer[namey), work(x)]],

complete [3_11’ but for the I_:)TDS we consider here it can bﬁ1at restructures book-author pairs as writer-work. It ban
easily done in polynomial time. shown that the XML tred” in Fig. 4(a) is anM-solution for
Example 5: [Example 4 continued] The pattert(x,y) is T- o
compatible with the DTID of Fig. 3(b). On the other hand,
the patterm’(x) = r[author(x)] is not, because no tree con-
sistent withD can have a child of labeled asuthor, or an
authorlabeled node with an attribute. m]

r[bookx)[authofnamé&y)]]] —

We now formally define universal solutions. While build-
ing up auxiliary definitions that are needed to define the term
we also introduce some technical notions that will be used
through the remainder of the paper.

RemarkMore general patterns have been considered idomomorphisms and tree homomorphisms. Let K; and
the literature [9, 10, 31-33]; in particular, they may in®l K, be instances of the same scheRa A homomorphism

Front. Comput. Sci.

T

writer writer writer r — writer*
m/ writer — name work*
nanie work narfie work nanfe work Ap(name) = Q@nam
Tardos ’'Algorithm Design’ Hungerford ’‘Algebra’ Kleinberg ’‘Algorithm Design’ Ap(work) = Qtitle

(a) Target Treel”

(b) Target DTDD+y

Fig.4 TreeT’ is anM-solution forT

h from K; to K5 is a functionh defined from the domain of
Ki to the domain ofK, such that: (1)h(c) = c for every
constant element in Ky, and (2) for everyR € R and ev-
ery tuplea = (ay,...,a) in the relationR in Ky, it holds
thath(a) = (h(a1), ..., h(ax)) belongs to the relatioR in Ks.
Notice that this definition of homomorphism slightly differ
from the usual one, as the additional constraint that hom
morphisms are the identity on the constants is imposed.

Given a conjunctive quer)(X) over a schem®&, we de-
note bylqw the instance oR constructed as follows: for
every relational symbdR € R and relational atonR(b_) oc-
curring in Q(x), we include tupldgin the relationR of | gx.
We define all variables i to be constant elements ig),
whereas every existentially quantified variable(is a null
element.

It is now straightforward to prove the following lemma:

Lemma 1. Let | be an instance of schenig and Q a con-

junctive query.Then, a tuple of constant elements belongs

to the evaluation of Q over | if and only if there is a homo
morphism from ¢ to I.

We also need to introduce the equivalent definition of ho

momorphisms for XML trees, dree homomorphisiii8]. Let
T =(N,G)andT’ = (N’,G’) be XML trees, len, andn; be
the roots ofT andT’, respectively, and I8 tr(T) = {s€ Str|
there existn € N and @a € Att such thatoga(n) = S},
Str(T’) defined correspondingly. Theh,: N U St(T) —
N’ U Str(T’) is a homomorphism fror to T7, if:

e foreveryne N, h(n) e N’;

for every constant elemente Str(T), h(s) = s, and for
every nulls e Str(T), h(s) € Str(T’);

h(ny) = n;

for everyng, ny € N, if G(ng, ny), thenG’(h(ny), h(ny));
for everyn e N, At(n) = A1 (h(n)); and

for everyn € N and @a € Att such thajpga(n) is de-

fined,h(p@a(n)) = p@a(h(n)).

Given a tree pattern(x), we construct the tre@,x in-
ductively: if 7(X) = £(X)[71(X1), ..., m(X)], then the root of

Tz is a node labelled, with attributesx, andk children cor-
responding tal.,(x), - - -» Tr(z)- As for the relational case, it
is easy to prove the following lemma:

Lemma?2. Let T be an XML treez(X) a tree pattern, and s
a tuple of values in Str. Thes,e #(T) if and only if there is
a homomorphism from,fg to T.

O_

Universal solutions. By means of homomorphisms, we give
a precise definition of universal solutions in relational or
XML data exchange settings. Formally, 16t T, M) be a re-
lational data exchange setting. Then, given an insthiotg,

we say that arM-solutionJd for | is an M-universal solution

for | if for every otherM-solutionJ’ for |, there exists an ho-
momorphism fromJ to J’ [4]. The definition for the case of
XML data exchange setting is analogously formulated using
the notion of tree homomorphism [8].

5 XML data exchange using relations

We now provide algorithms for implementing XML data ex-
hange via relational translations. Since we have already
shown how to translate DTDs and documents, we need to
present translations of stds of mappings and queries. Both o
them are based on translating patterns into relationalic@nj

tive queries. We first concentrate on that translation. Then
we show how to extend it easily to mappings and queries,
and prove the correctness of the translations. This will-com
plete our program of using a relational system for XML data
exchange in a semantically correct way.

Inlining tree patterns. The key ingredient in our algorithms

is a translation of patterns compatible with a DTDD into

a conjunctive quenyNLPATTERN(r, D) over the relational
schema NLSCHEMA(D). Very roughly, it can be viewed as
this:

1. View a patterm(X) as a tre€l; in which some attribute
values could be variables;

2. Compute the relational database Doc(T,, D) (which
may have variables as attribute values);

Rada Chirkova: Tractable XML Data Exchange via Relations

10

3. View INLDOC(T,,D) as a tableau of a conjunctive Algorithm 3 INLPATTERN(r, D)

query; the resulting query isNL PATTERN(r, D).

Input : ADTD D, atree patterm(X) compatible withD.
Output: Conjunctive query ovemLSCHEMA(D).

The algorithm is actually more complicated becausgyr each node v of T of forme(x;):
INLDOC cannot be used in Step 2; we shall explain shortly Construct a quer@,(x,) as follows:

why.
Towards defining MLPATTERN, observe that each tree
patternz(X) can be viewed as an XML documefi), in

which both values and variables can be used as attribute val-

ues. It is defined inductively as followsE, is a single-
node tree labeled, with x as attribute values, and if is
{(X)[71(X), . . ., m(X)], then the root ofT, is labeled/ and
hasx as attribute values. It also haghildren, with the sub-
trees rooted at them beig,). . - ., Trx)-

However, even for a patterr(x) compatible with a DTD

D, we may not be able to define its inlining as the inlining

of T, becausd ;i need not conform t®. For example,
if a DTD has a rule — aband we have a pattemnfia], it is
compatible withD, but T,y does not conform t®, as it is
missing ab-node. Hence, the procedunmelDoc cannot be
used ‘as-is’ in our algorithm.

Nevertheless, we can still mark the nodesTgfy with

if vis markedthen o
Qu(xv) := Re(idy, Xy, |dp(v), 2),

wherezis a tuple of fresh variables, and the positions
of variablesidy, X, andid,, are consistent with the
attributedd,, Ap(¢) andid,(, respectively irattr(R).
If € =r, thenQ, does not usé,).

else (vis not marked):
setv:=u(v), ¢:=A(V), and letQ,(X,) be

Rf/(idv’, idﬂ(v’), idV’)?V’ 2)’

wherezis a tuple of fresh variables, and the positions
of the variablesd,, id,), idy andx, are consistent
with the attributesd,, id,(, id, and Ap(¢) respec-
tively in attr(Ry). If ¢/ = r, thenQ, does not use
idy(v)-

endfor

return 3(Aver,

Qu(%,)), where all variables are existen-

tially quantified except for those i

respect taD and define the nearest appropriate ancestor ex-

actly as it has been done previously. Intuitively, the pthoe
INLPATTERN in Algorithm 3 shreds each node ©f into a
different predicate, and then joins these predicates ubkiag
nearest appropriate ancestor.

Part (1): To prove that
7(T) € INLPATTERN(m, D)(INLDOC(T, D)),

let 7(x), D andT be as defined, so that conforms toD.

Note that the compatibility ofr with D ensures that Assume now thatis a tuple of attribute values such that

INLPATTERN is well defined. That is, (1) every attribute
formula of the form¢(X) only mentions attributes iy (¢),
and (2) for all nodes, V' € Ty, if V' is a child ofv, then
A(V') € Pp(A(v)).

Correctness. Given a pattermr(X), the evaluation ofr on a
treeT is#(T) = {a| T E =n(a)}. The following proposition
shows the correctness afill PATTERN.

Proposition 3. Given a nested relational DTD D, a pattetn

a € n(T), and leth be the homomorphism from, to T.
(By Lemma 2 his guaranteed to exist.)

In order to show that a belongs to
INLPATTERN(m, D)(INLDOC(T, D)), we show how to
construct a homomorphisng from |y parrernzD)@ 1O
INLDOC(T, D) (this, by Lemma 1, suffices for the proof).
Recall that the elements Ofiy parrern(rD)@ COrrespond
precisely to the variables oL PATTERN(r, D)(a). Defineg
as follows:

compatible with D, and a tree T that conforms to D, we have

7(T) = INLPATTERN(7, D)(INLDOC(T, D)).

That is, the inlining ofr, applied to the inlining off, re-
turnsa(T).

Proof. The proof has two parts: First, we show (1) that
7(T) € INLPATTERN(r, D)(INLDOC(T, D))
holds, and then complete the proof by showing (2)

INLPATTERN(r, D)(INLDOC(T, D)) C =(T).

e For each variable of the formid, in
INLPATTERN(7, D)(a), wherev is a node ofT,g),
defineg(idv) = idh(v),

for eacha € a, letg(a) = h(a), and

for each other existentially quantified variabtein
INLPATTERN(r, D)(a) not of formid,, assume thatbe-
longs to a predicatB,(2) in INLPATTERN(r, D)(a). Let
idy be the variable in predicate, (2 that corresponds
to the position of the attributed, of relationR,, and
assume thah(v) = n, for some noden € T. Then,
as defined in the previous iterg(id,) = id,. From

Front. Comput. Sci.
P 11

the definition of the inlining procedure, we know that Further, we now have that the homomorphismaps the
INLDOC(T, D) contains a fact (and only one, since thenodev of T, to some nodé(v) in T. Thus, from the prop-
attibuteid, is a key for the relatiorR;) of the form erties of tree homomorphisms, we also know ti(g} has the
Rg(idn,B), forsometuplegofelements. Defingso that element typef, and that for evernya € a, and @ € Att,
it maps the variable to the element in the position of if pga(v) = a, thenpga(h(v)) = a. Moreover, since ho-
(idp, 5) that corresponds to the position tlrabccupies momorphisms must preserve the child relation, it is easy to
in the predicaté/(Z) in INLPATTERN(z, D)(a). see that the nearest appropriate ancesta(\Wfin T must be
h(u(v)). Then, it is clear thatNLDoOC(T, D) must contain a
tuple of the formRy(idnw), av, idnv) 5) for some tuplet?of
elements, and where the positionsagicorrespond to the at-
tributes inAp (¢) of attr(R,) wherep(v) is defined. From the
gefinition of g, it is clear thatg(idy, ay, id,), 2) is the tuple
(idn)s idn(v) 8 9(2)). The proof then follows sincg(2) is
defined to beb.

Second, assume thatis not marked, and that(v) = ¢,
u(v) in T, is the node/, andA(v') = ¢’. Then, as defined,
the queryQ,(a,) is of form:

We first show thag is well defined. First, it is easy to see
thatg is defined for every element dfy,parrern(zD)@- We
now prove that there is no elementlin,parrern(z,D)@ that is
mapped byg to two different values inNLDoc(T, D). To
see this, assume for the sake of contradiction that them is
elementx in |y parrern(r,0)@ SUch thag is defined to mapx
to two elements ofNLDOC(T). Then, there are three facts to
consider:

e X cannot be a variable inNL PATTERN(r, D)(a) of the
formidy for some node of T, since we have defined
x to be mapped tayy) only; Qu(ay) = Re(idy, id,w), idy, &y, 2),
e x cannot belong t@, since we have defined evesye a
to be mapped only th(a);
e then, x is an existentially quantified variable in "~ _’)) oo i
INLPATTERN(r, D)(@ that is not of formid, (that !d\,, idy (v anda.V is consistent with the attributed,, id,,
is, it is a fresh variable generated by the procedur'g"“') andAp(¢) in attr(Ry).)
INLPATTERN). But notice then thak belongs to only Further, we know that the homomorphﬂmmaps the
one predicate of NLPATTERN(r, D)(a). Moreover, as nodesv andv’ of T _to some nodes(v) and_h(v') n-T.]
. . - . Then, from the properties of tree homomorphisms, we obtain
explained in the definition o, there is only one tuple)
in INLDOC(T, D) to whichx is being mapped. thatﬂ assigns the typeé and ¢’ to h(v) and h(v’), respec-
tively, and that for every € a, and @a € Att, if pga(V) = &,

We now prove thag is indeed a valid homomorphism. then pga(h(v) = a. Moreover, since homomorphisms pre-
First, it is easy to see that for eveaye a, g(@) = a. This serve the child relation, it is easy to see th@t) must be the
follows from two facts: (i) we have defineg(a) ash(a), and nearest appropriate ancestorhg¥) in T, and that the near-
(i) by construction ofT,@), everya € ais a constant, and est appropriate ancestor o) must beh(u(v’)). Then, it is
thush(a) = a. clear that the inlining off must contain a tuple of the form

Consider now a fact of the forf (W) in lincparrern D)@ Rer(idiw), idhguvry)s i0hgy)» & b) for some tupleb of elements,
We need to show thaR(g(w)) belongs to NLDOC(T, D). where the positions @, correspond to the attributes Ay (£)

We will assume for the sake of readability tat: r. The such thajp(v) is defined. Again, the proof follows since we
proof can be easily adapted for the case whear. From have defined)(2) ash.

the inlining procedure for queries, there must be a nodé
Tx@ such that NLPATTERN adds to NLPATTERN(r, D)(a)

wherezis a tuple of fresh variables not used elsewhere in
INLPATTERN(r, D)(a), and the position of the variablég,

Part (2): For the proof that

some existential quantification of the predic&éw) in the INLPATTERN(7, D)(INLDOC(T, D)) C n(T),

step that correspondstdthat is,R,(W) is part ofQ(a,)). We

have two cases. Assume first thds marked. Then, assume that for a tuple of constants there is a homomor-

phismh from Iy parrern(r,Dy@ t0 INLDOC(T, D). We con-

Qu(a) = Re(idy, av, idy), 2, struct a homomorphismfrom T, to T. By Lemma 2, this

whereZis a tuple of fresh variables not used elsewhere iguffices for the proof.

INLPATTERN(7, D)(a) and the position of the variabled,, Defineg as follows:

ay andid,, coincide with the attributessl,, Ap(¢) andid,(e For every nodev of Tyg, consider the variabléd,

in attr(Ry). defined in the procedureNLDoc, and assume that

12 Rada Chirkova: Tractable XML Data Exchange via Relations

h(idy) = idn, for some elemenid, of INLDOC(T,D). child of vy in T,@), then it must be that; € Pp(¢1), and that
Defineg(v) = n. Notice that this is well defined: from ¢; does not appear in the production of any other labébin
the definition of NLDoc, and the properties of homo- Then, sincelt(n;) = 2 andAt(n1) = ¢1 andT conforms to
morphisms, we know that must be a node of. (Both D, it must be thah; is a child ofn;.
idy andid, occur in a position of the predicates that cor- Next, it is easy to see that for evesye Str(Tg), 9(s) €
responds to the identifiers of the nodes in the scheng&tr(T). Moreover, since we have defing(s) = h(s), we also
INLSCHEMA(D).) have that thagy(s) = sfor every constans.
e For everys € Str(T,), letv be the node ofr ;3 such Finally, we prove that for every nodeof T,z and @a
thats = pga(v). Then, notice that from the definition Att such thajpga(v) is defined,g(p@a(V)) = p@a(9(V)). As-
of the translation of patternss must be a free vari- sume that for a node of T,z and for an attribute @ €
able of the queryQ, in INLPATTERN(r, D), and thus Att, it is the case thapga(V)) = s. We must prove that
lineatTern(r,D) CONtains the variable. Defineg(s) = 9(s) = p@a(9(v)). But we have defineg(s) = h(s), and
h(s). thus, we need to prove th&fs) = p@a0d(v). Assume first
that v is marked. Then, notice that is the variable in
We now prove thag is a valid homomorphism frofifi, the position corresponding to &in attr(Ry,) in the predi-
to T. First, as mentioned in the definition gfit is clear that ¢ate of NLPATTERN(r, D) added in the step corresponding
g(v) € N, for everyv € Ty to Q,. Thus, from the properties of relational homomor-
Second, we prove that, ¥fis the root ofT,), theng(v) = phisms,s must belong to the tuple iRy, in INLDOC(T, D)
n., wheren; is the root ofT. This follows from the fact that, that containgh(id,) in its first position. Sincey mapsv to
sincer is fully specified,r must be of fornr(a)[z’]. Then, the node inT identified byh(id,), it must be the case that
the variableid, must be mentioned in a predicate Rf of p5,(g(v)) = h(s). For the case wheneis not marked, con-
INLPATTERN(r, D). Sincehis a homomorphisnhy(id,) must sider the nearest appropriate ancestow @ T, and let
belong to a tuple irR. It follows from the construction of v be such node. Notice that singeoreserves the child re-
INLSCHEMA(D) and from Proposition 2 that it must be thejation, g(v’) is the nearest appropriate ancestogef). The
(unique) identifier ofR;, and thus the identifier of the root proof then follows by considering the attribute corresgogd
node ofT. to @a in Ap(¢) in the relationR,, where?” = A(v') and then
Next, we prove that for every nodeof T,@a), A7,3(v) = using the same argument as in the previous aase.
Ar(g(v)). Assume that for a nodein Ty itis t.he case that By combining this result with Lemmas 1 and 2, it is not
At,@(v) = €. There are two cases. The claim for the Casgifficult {0 obtain the following corollary:
whenv is marked follows from the fact that there must be a '
tuple in the interpretation of the relatié in INLDoc(T,D) Corollary4. LetDbeaDTD, T an XML document that con-
that contains(id,) in its id,-attribute. Then, sincg mapsv ~ forms to D, andr a pattern compatible with D. In addition,
to the node ifT that corresponds ta(idy) in INLDOC(T, D), let a be a tuple of elements and variables. Then, there ex-
it must be the case that (g(v)) = ¢. If vis not marked, let ists @ homomorphism from; to T if and only if there is a
¢ be the nearest appropriate ancestof,adnd consider the homomorphism fromyparrern (b)) t0 INLDOC(T, D).
tuple in the interpretation of relatioR, in INLDOC(T, D) Moreover, it is not difficult to adapt this proof to show the
that contains the elemeitt, in the position that corresponds following:
to the attributed,. The proof follows easily using the same

argument as for the other case. form to D. There is a tree homomorphism fromand T, if

Assum.e now that tWwo nodeg, v, of Txg are suc.:r-1 that ang only if there is a homomorphism frdmLDoc(T,, D) to
v is a child ofvy in T,g. For the sake of readability, we INLDOC(T», D)

shall write A instead oflr,,, since it will always be clear
from the context. Let thed; = A(v1) andé, = A(v»), and
assume thdt(idy,) = idn, andh(idy,) = idy,, for some nodes
ng, n; of T. Thus,g(vi) = ng, andg(vz) = na. The proof
thatg(v,) is a child ofg(v,) follows easily from the fact thag
preserves the labelling of the nodes, the gr@gph) is a tree,

m is compatible withD and andT conforms toD: If v, is a Q =nlQAQ|AXQ,

Lemma 3. Let D be a DTD, and T, T, two trees that con-

Conjunctive queries over trees. We use the language that
is essentially conjunctive queries over trees [8, 31, 34hwi
navigation along the child axis.

The languag€7 Q is obtained by closing patterns under
conjunction and existential quantification:

Front. Comput. Sci.
P 13

wherer is a fully specified tree-pattern formula. The semanrespectively. We obtain thata{) and @) belong to
tics is straightforward, given the semantics of patterrimdd the evaluation of NL QUERY(Qq, D) and INLQUERY(Q>, D)
above:Q(3) A Q'(b) is true iff bothQ(a) andQ'(b) are true, over INLDOC(T, D), and thus, sinceNLQUERY(Q,D) =
andix Q(a, x) is true iff Q(a, c) is true for some value. The INLQUERY(Q1, D) A INLQUERY(Q2, D), a belongs to the
output ofQ on a treeT is denoted byQ(T). evaluation of NLQUERY(Q, D) overT. The other direction
We say that a quer® is compatible with the DTID if is also analogous
every pattern used in it is compatible with
The inlining of queriexQ compatible withD is given by |nlining XML schema mappings. We use our transforma-
the recursive algorithnNL QUERY in Algorithm 4. tion of tree patterns to define the procedure MApin Al-
gorithm 5, that, given source and target DTDg and Dr,
transforms an XML mapping\ into a relational mapping
INLMAP(M,Ds,Dr) specified with a set of source-to-target

Algorithm 4 INLQUERY(Q, D)
Input : ADTD D, a queryQ compatible withD.
Output: A conjunctive query overNL SCHEMA(D).

if Q = xthen tuple generating dependencies.
return INLPATTERN(x, D)

edseif Q = Q; A Q2 then Algorithm 5 INLMAP(M, Ds, D)
return INLQUERY(Q1, D) A INLQUERY(Q2, D)

_ Input : An XML mapping M from a source DTDs to a
elseif Q = IxQ then target DTDDr.

return 3x INLQUERY(Qu, D) Output: A relational mapping from NLSCHEMA(Ds) to
. INLSCHEMA(Dr).
Now W.e show that ever.y 999@ Ir? CTQ can be c.om— Set INLMAP(M,Ds,Dt):=0 for dependencyr(X) —
puted by its inlining on the inlining of its input (assumirgg, Az (X 2) in M do
course, compatibility with a DTD). In other word3equire- INLMAP(M, Ds, D) := INLMAP(M, Ds, D7) U
ment 3 is satisfied. {INLQUERY(mr, Ds)(X) — JAZ INLQUERY(x’, D1)(X, 2)}

end
Theorem 5. Given a DTD D, a tree T that conforms to it, return INLMAP(M, Ds, D7)

and a compatible query Q, we have

Q(T) = INLQUERY(Q, D)(INLDOC(T, D)). Correctness. While one could be tempted to ask for a trans-
lation that preserves all solutions, such a result needaidt h
Proof. Fix a DTD D and a treeT. The proof is done by The relational mappingNLMAP uses null values to repre-
induction. We have already proved the base case with th@nt the shredded nodes of XML trees, and thus we should

proof of Proposition 3. only consider solutions whose null values have not been re-
For the induction step, assume first thahamed. However, relational solutions are open to renaming
Q is of form 3FzQ(x2, and that Qi(T) = of nulls. This intuition can be formalized by means of the

INLQUERY(Qq, D)(INLDOC(T,D)). It is now easy to ynijversal solutions, which are the most general among all so
see thaQ)(T) = INLQUERY(Q, D)(INLDOC(T, D)): Assume |utions, and thus do not permit null renaming. Furthermore,
first that a tuplea belongs toQ(T). Then, there must be one typically materializes a universal solution, as these s
a tuple z of variables such thata(z) belongs t0Qi(T). |utions contain all the information needed to compute éerta
Thus, from the inductive hypothesis, we obtain thatZ) answers of conjunctive queries. This motivates the reric
belong to the evaluation ofNLQUERY(Qi, D)(a,2) over of our Requirement 4 to universal solutions.
INLDOC(T, D). It follows that @, 2) belong to the evaluation The theorem below shows that parts (a) and (bRef
of INLQUERY(Q. D)(a.2) over INLDOC(T, D), since the al- quirement 4 hold. Note that in part (b), relational universal
gorithms definesNLQUERY(Q, D) = 3ZINLQUERY(Q1, D). solutions are only required to contain a shredding of an XML
The other direction is analogous. universal solution. This is because relational solutiores a
Next, assume thaQ = Qui(x)) A Qx(X2), and that 450 open to adding arbitrary tuples, which need not reflect a

Qu(T) = INLQUERY(Qq, D)(INLDOC(T,D)) and Q2(T) = tree structure of an XML document.
INLQUERY(Q2, D)(INLDOC(T, D)). The argument is sim-

ilar to the previous case: assume first that a tuplee- Theorem 6. a) Let M = (Ds, D,X) be an XML schema
longs to Q(T). Then, there must be subtuples, a, mapping and T an XML document that conforms tg. D
of a such that ;) and @;) belong toQ:(T) and Qx(T), If T’ is an M-universal solution for T, then its inlining

14 Rada Chirkova: Tractable XML Data Exchange via Relations

INLDOC(T’, D) is anINLMAP(M, Ds, Dt)-universal solu- the dependencies idp. We now show that the pair
tion for INLDOC(T, Ds). (INLDOC(Ds, T), INLDOC(Dy, T’)) satisfies all the depen-
b) Let M = (Ds,Dr,X) be an XML schema mapping, dencies of NLMAP(M, Ds, Dt). Assume that for a depen-
and T an XML document that conforms tos.D Then dency of the form

for every INLMAP(M, Ds, Dt)-universal solution R for
INLDOC(T, Dg) there exists arM-universal solution Tsuch
thatINLDOC(T’, Dt) is contained in R. there is a tuplety such that NLDoc(Ds,T)

To prove Theorem 6, we first provide a key Iemma.INLPATTERN(n(tX)’ D). From Proposition 3, it must be

Let M = (Ds,Dr.X) be an XML schema mapping, the case thal E n(‘%). Thus, sincel’ is a solution forT,

T be an XML tree that conforms tds, and J an there must b_ez_atupl@gf constant and((?r null element_s such
INLMAP(M, Ds, Dt)-solution for INLDOC(T, D). For a re- thatT” = 7'(t, EZ)' Again, from Prolpgsﬁlon 3 we Ot_)tf_im that
lation R, of INLSCHEMA(D7), we denote all the positions INLDOC(Dr, T) = INLPATTERN(x'(t, &), D). This finishes

L . . h f that NLDOC(T’, D7) i INLMAP Ds, D7)-
that correspond to an attribuit or id,(of R, as theiden- the proof that NLDOC(T", Dr) is an (M. Ds, Dr)

o lution for NLDOC(T, Dg).

tifier positionsof R,. Moreover, an elemeratin a tuplet in 30\7\;0 ° OtCh(t’m S[))oc T D) is indeed uni |
. Nnow prov: L ! is in niversal.

the interpretation oR; in J is anidentifier elemenif it oc- € how prove tha (T".Dr) is eed universa

. . o L . . Assume for the sake of contradiction that it is not an univer-
cupies an identifier position in We also define thattribute

o . o sal solution, that is, there exists a solutidsuch that there
positions of a relatiofR, as the positions that correspond to

attributes of¢ or of ¢’ | u(¢’) = ¢ in D, and define the no- does not exist a homom_orphsm fromuBoc(T”, Br) _to J i
. . Construct fromJ a solutionJ’ as follows: For each identi-
tion of anattribute elemenas expected. We now present the . _ _
lemma: fier position of every relatioR, in INLSCHEMA(D+), and
for each tuple in the interpretation &, replace each iden-
Lemma 4. Let M = (Ds, Dr,X) be an XML schema map- tifier elementa of t with a fresh null element,. In addi-
ping, and T be an XML tree that conforms tg.DMoreover, tion, replace each occurrence @fin the positionid, of
let J be anlNLMAP(M, Ds, Dr)-solution forINLDOC(T, D) tuples in the interpretation of relatios that reference?,
such that (1) every identifier element in J does not appear in a constraint in NL SCHEMA(D+) for z,, and replace each
two identifier positions in two (not necessarily differetat) other occurrence o& with a different, fresh null element.
ples, and (2) no identifier elementis also an attribute el@me It is easy to see that’ is an INLMAP(M, Ds, D1)-solution
Then, there exists a tree’ Buch thatiNLDoc(T’, D) € J, for INLDOC(T, Ds) as well. In fact, since we have replaced
and such that Tis an M-solution for T. each of those elemeraswith nulls in a "cascade" fashiod;
clearly satisfies all dependencies MLISCHEMA(Dy). The

Lemma 4 formalizes the intuition that this class of "well ¢ b dto show that T Do),]

. . me argumen n W !
behaved" NLMAP(M, Ds, Dt)-solutions contains the cor- sa_ e.a gumentcan be use OS_O) Boc(T. Ds). J)
satisfies as well the dependencies . MAP(M, Ds, Dr).

rect representation of a shredded tree. The proof of this .)
. . Finally, there is a homomorphism frodi to J: map eaclz,
Lemma constructs frond a correct tree representation, in

which each identifier element i represents a node of the ?hnd eiach erSh r:jull replacw;gati exp:alnedtatbq\t/e :z;ac_llfhto
tree T’ such that NLDoc(T’,Dt) € J. We leave out the € elemeng, and map each ofher element 1o 1tsefl. us,

details, since the proof is lengthy and straightforward. by compo§|t|on of homomorphisms, there ca_nnot ems_t a ho-
momorphism fromkLDoc(T’, Dt) to J’, as this would im-
We now prove Theorem 6.

ply the existence of a homomorphism fromLIDoc(T’, Dt)
Proof. Part a: Let M = (Ds, Dr,%) be an XML schema to J. However, note that solutiod’ satisfies the property
mapping, andl an XML document that conforms tBs. of Lemma 4, since all identifying elements not satisfying it
Consider an arbitranp-universal solutiom’ for T. We need have been replaced by fresh new null elements. Let Then
to show that NLDoOC(T’, Dt) is an NLMAP(M, Ds, Dt)- be theM-solution forT such that NLDoc(Ty,Dt) € J .
universal solution fofT. The proof is split into two parts, (Lemma 4 proves the existence ©f.) Notice that, since
proving first that NLDOC(T’, Dy) is a solution, and then that INLDOC(Ty, Dt) € J, there also exists a homomorphism
it is universal. from INLDOC(Ty, D7) to J’. Yet again, by composition of

As stated, we first prove thatnLDoc(T’,Dt) is an homomorphisms, we conclude that there cannot exist a ho-

INLMAP(M, Ds, Dt)-solution for INLDOC(T, Ds). From momorphism fromikLDoc(T’, Dt) to INLDOC(Ty, D).
Proposition 2, it is clear thatNLDoc(T’, D) satisfies On the other hand, the XML treE is an M-universal so-

INLPATTERN(7(X), Ds) — AZINLPATTERN(7'(X, 2), Dt)

Front. Comput. Sci.
P 15

lution, and thus there is an homomorphisms frofito Ty. for INLDOC(T, Ds) overINLMAP(M, Ds, Dt) coincide:
But then, by Lemma 3, there exists a homomorphism fro”bERTAmM(Q T =

INLDOC(T”, Dr) to INLDOC(Ty, Dr). This is a contradic- cERTAIN|y mapvy (INLQUERY(Q, D1), INLDOC(T, Ds)).

tion. ' — .
Proof. Assume first that a tuplebelongs to the certain an-

Part b: Assume thatR is an INLMAP(M, Ds,Dt)- swers of a queryQ over a treeT under a mappingU =
universal solution for NLDOC(T, Ds). By inspecting the (Ds, Dt,X). Then, clearlyt belongs to the evaluation @
form of the dependencies afiLMAP(M, Ds, Dt), one notes over the canonical solution A& SoL(T) for T (which, in this
that R needs to satisfy the conditions of Lemma 4, that is;ase, is guaranteed to exists [8]) unddr Then, by Proposi-
every identifier element iR does not appear in two tuplestion 5,t belongs to the evaluation oL QUERY(Q, D) over
in two different identifier positions; this can be easilyngi INLDOC(CANSOL(T),Dt). Moreover, from Proposition
simple tools from relational data exchange (see [4]). The®, INLDOC(CANSOL(T),Dy) is an INLMAP(M, Ds, Dr)-
from Lemma 4, letT’ be an M-solution for T such that universal solution for NLDOC(T, Ds). From results in
INLDOC(T’,Dt) € R [4], we obtain thatt belongs to the certain answers of

To prove thafl’ is an M-universal solution foil, let T INLQUERY(Q, Dt) over INLDoC(T, Ds) under M. The
be anM-solution forT; we need to prove that there is a ho-other direction is symmetric
momorphism fronil’ to T”. From the part a) of this Theo-
rem, INLDOC(T”, Dt) is an INLMAP(M, Ds, Dt)-solution
for INLDOC(T, Ds), and, sinceR is universal, there is a
homomorphismh from R to INLDOC(T”, D). Moreover,
since NLDOC(T’, Dt) € R, his also a homomorphism from
INLDOC(T’, D7) to INLDOC(T’, Dt). Thus, from Lemma 3, Corollary 8. Under the conditions of Theorem 7,
there is a homomorphism frofif to T”. This concludes the CERTAIN,(Q, T) can be obtained by the following pro-

The result of Theorem 7, combined with the standard pro-
cedure for evaluating conjunctive queries in relationahda
exchange, also gives us an algorithm for computing certain
answers.

proof. o cedure:
1. run INLQUERY(Q, D7) on an INLMAP(M, Ds, Dr)-
Answering XML queriesusing relational data exchange. universal solution fotNLDOC(T, Ds);

The semantics of query answering in data exchange, both re2. discard all tuples that contain null values.
lational and XML [1, 3,4,8,9], is defined by means of certain

answers. Thatis, given a schema mappWig (Ds, D7, %),
a treeT that conforms tds, and a conjunctive tree quey 6 XML-to-XML queries
that is compatible witlD+, thecertain answers of Q for T un-

der M, denoted byCERTAIN(Q, T), is the set of tuples that Upto r\ow, we have only c.:0n5|dc.ered queries that output tuples
of attribute values. In this section we shall focus on proper

belong to the evaluation @ over every possibl@1-solution] ;
for T, that is, {Q(T’) | T is an M-solution forT}. Note gmt-to-XML qguery languages, that is, on queries that output
trees.

that our queries return sets of tuples, so we can talk abeut t _) _)))
Some immediate questions arise when dealing with these

intersection operator.) _
It was shown in [8, 9] that, for conjunctive tree queries amfjormallsms in the data-exchange C_OnteXt' L&t =
mappings using nested-relational DTDs, computing certa{fPS’ _DT’Z) be an XML schema mapping, be a tr_ee con-
forming to Ds, andQ be an XML-to-XML query. Since the

answers for a given source tr&eis solvable in polynomial uat :
time. Thus, for the classes of mappings and queries we con-o u.atlon oRovert retu,rns ar:).(ML tr(Te,.wefcannot_de ne
sider, there is no complexity mismatch between relationdl a certain answers g8i{Q(T") | T" is a solution forT}, since

XML data exchange. The next theorem shows that our trangle meaning of the intersection operator for XML documents

lation is correct with respect to query answering, thatis, o is not clear.]
Requirement 5 is satisfied. To overcome this problem, we use recent results from [22],

which showed how to define certain answers for queries re-
Theorem 7. Let M = (Ds, D7, X) be an XML schema map- turning XML trees, and how to use them in the data-exchange
ping. Then, for every XML tree T that satisfies Bnd for context. The key idea of [22] is to use tree patterns to define
every conjunctive tree query Q, the certain answers of Q foanformation contained in documents, and to use them to rep-
T under M and the certain answers dNLQUERY(Q, Dt) resent compactly the certain knowledge from the collection

16 Rada Chirkova: Tractable XML Data Exchange via Relations

{Q(T")) | T” is a solution forT}. More precisely, ifiTis a set values. We use the notatidif@)[f] for a tree whose root is
of tree patterns which are matched by every {@&’), we labeledf and carries a tuple of attributas further, f is the
look for a small setly of patterns that is equivalentibas a forest of subtrees below the root.

description of certain answers. By equivalence we mean that
[elty = € (empty forest)

a tree matches every patternlinff it matches every pattern L6 S XN 10 = €@V T 1]
in I. If the setIly is finite, then its patterns can be put to- [, q"(X)] T:V = [Ty U] T’;/
gether to create a tree with nulls, which we then view as the

certain answer. [for =(a X y) return o (X V)] 7, =

We shall not need here additional details of the construc-
tion; instead, we shall use a result from [22] that tells us U {[q]+y |V extendss andT E #(a, v'(X). vV (V)
how certain answers can be computed for a specific XML-to- ,
XML query language. The language, which is called TQL (toFOr a tre(?T a”?' a quenQ = rld, the. evaluationQ(T) of
be defined shortly), is inspired by XQuery's FLWR (for-let-Q overT is defined as the tredf al], i.e., the forest fil
where-return) expressions, and is restricted to positee f under roor.
tures (i.e., no negation). The key result from [22] is the folExample 7: Recall the tree T from Fig. 3(a). The tr@é

lowing: from Fig. 4(a) can also be obtained as the transformation
Proposition 9 ([22]). Let M = (Ds,Dr,5) be an XML Q(T) resulting from the evaluation of a TQL que@overT,

schema mapping, Q a TQL query, and T a tree that corvhereQ =r[q], andqis defined as
forms to Bs. If T’ is an M-universal solution for T, then

CERTAINM(Q, T) = Q(T).

Given this result, we now do the following. We pro-
vide a formal definition of the TQL language of [22], which For the sake of readability, we use th®perator to denote
can express XML-to-XML analogs of relational conjunctivethe child axis in tree patterns. O
queries. We then show how to adapt the machinery that
we have previously developed for evaluating certain answer
over a universal solution. Note that for this new transtatm 6-2 Inlining TQL queries

TQL queryQ returning trees needs to be translated insef. If Qis a TQL query, then, to be able to define its inlining

of relational queries generating views that define the Shreﬂ’anslation, we need to specify a DTD for tre@€T). Note

ding of the tree(T). that TQL queries define the shape of their outputs, and at the
same time do not put restrictions on the number of appear-
ances of labels. Hence it is natural to define the DTD for out-
TQL queries [22] are inspired by the FLWR (for-let-where-puts ofQ as astarredDTD Dq, whose shape is determined
return) expressions of XQuery [21], but use only positiae fe by Q, and where each element type except the root occurs
tures. The key constructfer z(X) return g(x), wherer(x) is ~ under the Kleene star.

a pattern and(X) is a query that defines a “forest expression.” More precisely, for a forest expressigrwe define a forest
Formally, the syntax of forest expressions is Fq inductively as follows:F, is the empty forestfq; is
{[Fql; Fquy = Fq U Fg, andFior rreun ¢ = Fg. FoOr

for r /book x) /authornamdy) return
writer[naméy), work(x)] 3)

6.1 TQL queries

X) =€
q(9 | (@ [(X)] Q=r[glwe letTg = r[Fq].
| g (X),q"(X) Then Dg is a non-recursive DTD that has a rute —
| forz(a X y) return q'(X,y) c;---cy for each nodep in Tq with children labelled

Ci,...,Cn. As usual, we require thddg be acyclic and we

wheref ranges over node labekpver constant attribute val- . . .
9 0 assume without loss of generality ti&¢D) is a tree.

ues, and etc are tuples of variables.

A TQL queryQ is an expression of the formjq], where Example 8: (Example 7 continued) Recall quey = r[q].
g is a forest expression without variables. To define the sé&hen, Tq is the XML tree given byr[writer[nameworK],
mantics of this language, we first define inductively thesore and thusDqg contains productions — writer*, writer —
[a(¥]+.. for a valuationv of all variables inx as attribute nameéwork’, name— e andwork — e. m|

Front. Comput. Sci.

Before showing the algorithmNLTQL, we need to intro-

17

Algorithm 6 TQLSTERQ, D, ¢, 1)

duce some features that will be used in the algorithm. Cohaput : A forest expressiom|(x), a DTD D, a conjunctive

sider again query (3) and DTDgq in Examples 7 and 8. For
each pair of attributes that satisfybook x)/author/namedy),
the queryQ creates a subtregriter[namey), work(x)] in the

gueryp(X) and a Skolem terrh
Output: A set of views over NLSCHEMA(Dg).
if g(X) ::= e then
return @

treeQ(T). Thus, the relational translation would need to creelse if q(x) ::= (X), g”(X") then

ate one tuple in the relations correspondingviiter, name
andwork for each pair of attributes, y that satisfy the rela-
tional translation of the pattembookx)/author/namgy) in
the instanceNLDoOC(T).

return TQLSTERQ', D, p,t) U TQLSTER(Q", D, ¢, 1)
elseif q(X) ::= €(a, X)[q'(X”)] then

Let f be a fresh Skolem function. Define viaas

R(f(X),t,a, X) INLQUERY(p, D), or

R(f(),t,a) := true if ¢ = 0.

just

In the relational translation we need a way to associate return{V}uU T TQLSTER(, D, ¢, f(X))

each particulawriter wih a particulamameandwork. One

possible way of doing this is by creating a (Skolem) functiostlgorithm 7 INLTQL(Q, D)

f that associates with each paiafmework) a unique iden-
tifier for the correspondingriter. The functionf must be
defined in such a way thd{book name is different for each

different pair hfamework). We enforce this requirement by

letting each ternf (a) represent a distinct constasyiz).

Input : ATQL queryQ = r[g] and a DTDD.
Output: A set of views over NL SCHEMA(Dg).

Create a 0-ary functioff.
return TQLSTERQ, D, 0, ()

We will define our translation algorithm inductively. The proposition shows thatNLTQL satisfies an analog ®Re-
key procedure TQETEPfor the inductive step is described quirement 3 for queries that output trees.
below. Its inputs, in addition to a query and a DTD, include

a conjunctive query corresponding to the conjunction of paf))
and a function term corresponding to tHBIe with D, and a tree T that conforms to D, we have that

terns in the query,

parentin the tre€(T) (for example, when creating views for

relationRyork, We would input the identifief (x, y) of the par-
ent node labelledvriter). This is illustrated by the example
below.

Example 9: (Example 8 continued) Assume that qué€ly=
r(q] of Examples 7 and 8 is posed ovErunder schem®.
The following views define the translation fQx.

R-(f;) :=true

Ruriter(furiter (X, ¥), fr) =
INLQUERY(r/booKx)/authornamgy), D)

Ruamd framd X, ¥), furiter(X, ¥), ¥) =
INLQUERY(r/booKx)/authornamgy), D)

Rwork(fwork(X, ¥), furiter(X, ¥), X) :=
INLQUERY(r/booKx)/author/namgy), D)

Notice how each tuple in relatio&ame and Ryork IS set to
reference the correct tuple in relatiBgyiter- O

To define the inlining translatiomLTQLin Algorithm 7,

roposition 10. Given a DTD D, a TQL query Q compat-

INLDOC(Q(T), Dg) = INLTQL(Q, D)(INLDOC(T)), up to
renaming of nulls.

That is, the set of viewsNLTQL(Q, D) applied to the in-
lining of T yields the same answer as the inliningfT).

Proof. We begin by proving that NLTQL(Q,D)
(INLDOC(T,D)) € INLDOC(Q(T),Dg). Let Do be the
DTD corresponding toQ. Assume that there exists
a tuplet that is part of the evaluation of a view in
INLTQL(Q, D)(INLDOC(T, D)), with view V of form
R(f(X),g(X"),a, X) INLQUERY(¢(X), D) (we do not
prove the case whefi = r since it is very similar). Let
v be a homomorphism so tha{f(x),g(x"),a, xX) = t.
For the sake of readability, we le{x) = b. Notice that,
from the definition of NLTQL, we have thab belongs to
INLQUERY(g, D)(INLDOC(T, D)). By Theorem 5p belongs
to ¢(T). Assume that the forest query that created viéw
in the inlining of Q is of the form#(a, X')[g'(X”)]. It can be
proved by induction that ()], must contain a node of
the form¢(a, v(X))[[9'(X")]+,]. Thus, the inlining ofQ(T)
must contain a tuple iR, of the form {dn, id,(n), & V(X)); the

we simply need a Skolem term for the root of the tree, as thgroof follows by renaming nullsd, andid,q into v(f(X))

basis for the inductive procedure TQLERN Algorithm 6.
A TQL query Q is compatible with a DTDD if all the
patterns used ifQ are compatible withD. The following

and v(g(x”)), respectively. We only need to show that no
null value has to be renamed as two different constants.
This follows since the attributeisl, and id,y correspond

18 Rada Chirkova: Tractable XML Data Exchange via Relations

respectively to a key and foreign key of relati®, and the step of NLTQL corresponding tg(x) must have received
the algorithm NLDoc chooses fresh null symbols for eachthe termg(Z) as input.
value in the position corresponding to the attribiate By following these remarks, one notices that procedure

Next, we show that NLDOc(Q(T),Dg) < INLTQL creates the following view for the step ofg(x):
INLTQL(Q, D)(INLDOC(T, D)), up to renaming of nulls. R(f(@,9(Z).d, X) := INLQUERY(p, D).

Since every element dDg is under a star, it is easy to All that remains to see is that, sinc&,{) £ ¢(2), it
see that relatio®; will contain only attributesd,, id,) and must be that NLDoOC(T,D) E INLQUERY(¢(V(2)), D).
Ap,(f). We first rename all elements that are in a positiofhis ensures the existence of a fact of the form
corresponding to attributed, as follows: Re(Crw@)» Cov@)) d, v(X)) = R(Ct(5)> Cyipy- @ N

Lett be a tuple of relatiomR; in INLDOC(Q(T), Dg), and INLTQL(Q, D)(INLDOC(T, D)). O
assume thaid, is the element that corresponds to attribute) i i
id, of Re. If £ = r, renamdd, by the O-ary tern, () used in Trans:IaFmg relations back mtg XML. TO. complete the
procedure NLTOL. For the case whefi# r, it is easy to see translation, we need an algorithm to publish back the rela-

from the definition of the procedureiL Doc thatQ(T) must tional data ?S an XML dlocumen.t. This is done by means
. of the algorithm PBREL in Algorithm 8. We say that an
contain ar/-labelled noden.

. . instancd of INLSCHEMA(D) D-represents treeT that con-
Thus, from the semantics of TQL queries, there must be (D) P

a sub-foresty of Q of the formq(X) = #(a, X)[q'(X’)] and a forms toD if | = INLDOC(T, D).

valuationv such than is the top node of forest[X] ;. Let Algorithm 8 PUBREL(D,)

f be the function created by procedure.TQL in the step |nput : ADTD D and an instanckthatD-represents some
corresponding ta. Finally, letri(z), ..., 7k(Z) be the se- tree.

quence of patterns presentfar-return constructs irQ from ~ Output: An XML tree T that isD-represented by.

the root untilg, and letzbe the union o, . .., z. Then, re- for each nodet of G(D), traversed as Depth-first-seardo
nameid, asci). Notice that this procedure is well defined, ~ for each tuple t of R in I with elements na and rf cor-
sincev must apply to each variable af ~ responding to attributes id Ao(¢) and i,y do

. . . for every non-starred node’ of G(D) such that
Let us denote by the instance resulting from renaming all u(f') = ¢, and elements’handb in t corresponding

elements of NLDoc(Q(T), Dg) accordingly. We show that to attributes ig and A>(¢’) do
J CINLTQL(Q, D)(INLDOC(T, D)), up to renaming of nulls Create a noda” in T labelled?’, with attributes
in attribute positions, that is, nulls in positioAs(¢) in tuples end?(;rin a parent-child scheme that resemi¢®).
onR. _ i . Add to T a noden labelled?, with attributesa, with
Lett be a tuple of relatiorR, in J, and assume that the N’ as ancestor, according to the parent-child sequence
elements int corresponding to attributed, id,,) andAp, (£) defined byG(D (no parent iff = r).
arec), Cy() & respectively. endfor

We need to show that such tuple is in fact inendfor
INLTQL(Q, D)(INLDOC(T, D)). Letn andn’ be the nodes '€urnT
in Q(T) such thatid, andidy were replaced by and
Cy@)» respectively,v and v’ the valuations witnessing the
membership oh andn’ in Q(T), as explained above; and .
q(x), g'(X) the forest queries that give rise to the creation Othows Its correctness.

f and respectivelg by procedure MNLTQL. Moreover, let proposition 11. Given a DTD D and a relational

¢(@ = m(z), ..., m(z) be the sequence of patterns presenhstance | of INLSCHEMA(D), it is the case that
in for-return constructs irQ from the root untilg, wherezis |y.Doc(PUBREL(D, 1)) = I.

the union ofz, ..., z. Then notice that valuatiomis such
that (T, V) E ¢(@. Proof. Let T be a tree such thanLDoc(T,D) = I. We

construct a mappinigbetweent and RUBREL(I) as follows:

This algorithm will only work for relational instances that
represent shredded documents. The following proposition

In the same fashion, we selec(Z) = 77, (Z)..... 7, (z)
andZ for forest queryy’. As a remark, since’ is the parent e Foreachnodaof T thatis marked, lef be its label, and
of n, observe that each patterficorresponds to a patten, idn be the identifier of = INLDOC(T, D) that belongs
for somej < k. Finally, it is easy to see that there is no other to the attributeid, of the tuplet created by procedure
query of the form¢Y(y, a)[q”(Y')] in betweeng andq’. Thus, INLDoc from noden. Then, definda so that it map#s to

Front. Comput. Sci.
P 19

the node of BBREL(I) created by proceduredBReL terms, and (by Theorem 6)NLDOC(T’,Dt) is an
from tuplet of R;. INLMAP(M, Ds, Dt)-universal solution for MLDoc, it

e For each noda that is not marked, let’ = u(n), andt can be proved thatNLTQL(Q, Dt)(INLDOC(T’,Dt)) =
the corresponding tuple inLDocC. Let¢ and¢’ be the CERTAINjymarv)(INLTQL(Q, D7), INLDOC(T, Ds)), using
labels ofn andr’, respectively, and assume that, idy standard tools from the data-exchange literature (seq)[3, 4
are the identifiers of in positionsid, andid, of tuple o
tin R,. Then, procedure BBREL will create fromt a
noden; labelled¢” and a nodey, labelled with¢, such
thatu(ny) = n{ in PUBREL(1). Defineh so that it map#
to n.

Theorem 12 and Proposition 11 give us a way
of computing CERTAINp(Q, T). First, compute
CERTAINin Map(M) (INLTQL(Q, Dt), INLDOC(T, Ds)) by
materializing views NLTQL(Q, Dt) over the canonical

It is clear that this mapping is one to one, since= solution for INLDOC(T, Ds), and then use the procedure
INLDOC(T, D). Furthermore, sinc&(D) is a tree, it is PUBREL to output it as the treeERTAINA(Q, T).
also clear that this mapping preserves the relagtiof near-
est appropriate ancestors, as the way in which procedure
PUBREL creates the parent-child relation of nodes is alway3 Concluding remarks
unique. Finally, from the definition of procedures BREL
and INLDoc it must be the case that for evenyin T la- M 0
belled ¢, the set{p@a(n) | @a € Ap(f)} is the same as T Tiniv
(p@a(h(M) | @a € Ap(0)} in PUBREL(]).

Itis now an easy exercise to prove that Doc creates the
same relations (up to renaming of nulls) fas#ReL(l) and R INLMAP(M)
(T), since for every marked nodheof T the procedure creates
exactly the same tuple as marked nb@® of PUBREL(]). O

certain answer

INLDoOC INLDOC

INLQUERY(Q) .
certain answer

R\’miv

Fig.5 The summary of the proposed technique

6.3 TQL queries in XML data exchange)])
Our technique provides a relational approach to solve two

Combining the previously mentioned result in [22] with theof the most important problems of XML data-exchange set-
correctness of the algorithms we presented we conclude thizigs: materializing solutions and answering queries. The
Requirements 1-5are satisfied for data exchange with XML- Fig. 5 summarizes this. In a pure XML setting, we can start
to-XML queries: with a documenT and use a mapping! to find a (universal)

Theorem 12. Let M = (Ds, Dy, %) be an XML schema map- solutionT/ ., gver which we can then answer a qu&yto
ping. Then, for every XML tree T that satisfies &nd for produ_ce certain anS\{vers.
every TOL query Q, the certain answers of Q for T under Using the translationNLDoc of documents, we generate

M coincide with the certain answers biLTQL(Q, Dr) for a relational instanc®, on which the translation of the map-
INLDOC(T, Ds) overINLMAP(M, Ds, Dr) : | ping INLMAP(M) generates a universal soluti®), . This

solution is a shredding, vialLDoc, of a universal XML so-
INLDOC(CERTAINA(Q. T), Do) = lution, and also conforms to the shredding of source DTD.
CERTAINInMap(M) (INLTQL(Q. Dr). INLDOC(T. Ds)). Finally, we apply the standard technique [4] for evaluating
Remark The notion of certain answers natura”yqueries in relational data exchange to the query translatio
(component-wise) extends to queries computing multiple reINLQUI_ERY(Q) or INLTQL.(Q) o proc?u_cg the c_orrect an-
lations. swers, in the latter case with the possibility of usinggREL
to publish back the results into XML.
Proof. Fix an M-universal solutiorm” for T. By Proposition Implementing our proposed algorithms for use in practi-
9, CERTAINAM(Q, T) = Q(T’), whereT’ is a universal solu- cal systems would be straightforward using the specifinatio
tion. Furthermore, by Proposition 10yUDoc(Q(T’), Dg) = given in this paper. A natural next step is to evaluate XML
INLTQL(Q, Dt)(INLDOC(T’, DT)). data-exchange systems using relational data storage and im
Finally, since the views created by the procedurplementations of our algorithms. We are currently working
INLTQL are essentially conjunctive queries using Skolenn this direction.

20

We finish with a remark about the possibility of allowing

operators ? ane in DTDs, as well as a choice operator for 11.

representing multiple choices. We say that a non-recursive
DTD D is anextended nested relationdTD if all rules of
D are of the forn¥ — &g...¢m, 01 — Lo + ... + {m, Where
all the&'s and?;’s are distinct, and eachis one oft;, 62, ¢
or £ (as usual{? stands fofle and(* for £7).

The procedure NLSCHEMA can be extended to these

DTDs. For each elemertthat is under the operator ?, the 13,

transformation creates a special relaticihat references the
relation of the nearest appropriate ancestdt &furthermore,
the transformation for a rule of the forfa — ¢; can be de-
fined by including a dependency that ensures that there is at
least one tuple in the relatidr,, for each tuple inR,,. Fi-
nally, for the choice operatdr— ¢ + ... + ¢y the transfor-
mation would create one relatidt for each possible choice
of ¢o,...,¢m. Then, itis possible to extend all the procedures
in a way that still satisfieRequirements 1-5 under extended
nested relational DTDs.

17.

References

1. Kolaitis P. Schema mappings, data exchange, and metadatage-
ment. In: Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART
symposium on principles of database systems. 2005, 61-75

18.

2. Bernstein P, Melnik S. Model management 2.0: manipuaticher
mappings. In: Proceedings of the 2007 ACM SIGMOD intermetlo
conference on management of data. 2007, 1-12

19.

3. Barcelé P. Logical foundations of relational data exggan ACM
SIGMOD Record, 2009, 38(1): 49-58
4. Fagin R, Kolaitis P, Miller R, Popa L. Data exchange: setmarand

20.

query answering. Theoretical Computer Science, 2005,133@&9—
124

5. Fagin R, Kolaitis P, Popa L. Data exchange: getting to tte.cACM
Transactions on Database Systems (TODS), 2005, 30(1)2104—

6. Yu C, Popa L. Constraint-based XML query rewriting foralatte-

In: Proceedings of the 2004 ACM SIGMOD internagibn
conference on management of data. 2004, 371-382

7. Hernandez M, Ho H, Popa L, Fukuda T, Fuxman A, Miller R, Rtipo
P. Creating nested mappings with clio. In: Proceedings BHR3rd

21.

22.

gration.

23.

international conference on data engineering, ICDE '00720487—
1488
8. Arenas M, Libkin L. XML data exchange: consistency andryw-
swering. Journal of the ACM, 2008, 55(2): 1-72
9. Amano S, Libkin L, Murlak F. XML schema mappings. In: Pro-
ceedings of the 28th ACM SIGMOD-SIGACT-SIGART symposium
on principles of database systems. 2009, 33-42
Amano S, David C, Libkin L, Murlak F. On the tradeoff beamemap-
ping and querying power in XML data exchange. In: Proceesliofg

24.

25.

10.

12.

14.

15.

16.

Rada Chirkova: Tractable XML Data Exchange via Relations

the 13th international conference on database theory., 2GB3-164
Jagadish H V, Al-Khalifa S, Chapman A, Lakshmanan L V &rhian
A, Paparizos S, Patel J M, Srivastava D, Wiwatwattana N, WG
Timber: A native XML database. The VLDB Journal, 2002, 11(4)
274-291

Krishnamurthy R, Kaushik R, Naughton J. XML-to-SQL Quérans-
lation Literature: The State of the Art and Open ProblemsBllah-
séne Z, Chaudhri A, Rahm E, Rys M, Unland R, eds. Database and
XML Technologies. Berlin: Springer, 2003, 1-18

Florescu D, Kossmann D. Storing and querying XML datagisin
RDMBS. |IEEE Data Engineering Bulletin, 1999, 22(3): 27-34
Zhang C, Naughton J, DeWitt D, Luo Q, Lohman G. On suppgrti
containment queries in relational database managemetensys In:
Proceedings of the 2001 ACM SIGMOD international confeeeon
management of data. 2001, 425-436

Tatarinov |, Viglas S, Beyer K, Shanmugasundaram J, ighék
Zhang C. Storing and querying ordered XML using a relational
database system. In: Proceedings of the 2002 ACM SIGMODnate
tional conference on management of data. 2002, 204-215
Shanmugasundaram J, Tufte K, Zhang C, He G, Dewitt D, haung
J. Relational databases for querying XML documents: litioites and
opportunities. In: Proceedings of 25th International @oefice on
Very Large Data Bases. 1999, 302-314

Klarlundi N, Schwentick T, Suciu D. XML: model, schemages,
logics, and queries. In: Chomicki J, Meyden R, Saake G, edsglics
for Emerging Applications of Databases. Berlin: Sprin@&04, 1-40
Fuxman A, Hernandez M, Ho H, Miller R, Papotti P, Popa Lstdd
mappings: schema mapping reloaded. In: Proceedings ofzhé 3
international conference on very large data bases. 200637

Popa L, Velegrakis Y, Hernandez M, Miller R, Fagin R. Hiating
web data. In: Proceedings of the 28th international confezen very
large data bases. 2002, 598-609

Afrati F, Li C, Pavlaki V. Data exchange in the presencarghmetic
comparisons. In: Proceedings of the 11th internationaference
on extending database technology: Advances in databaseolegy.
2008, 487-498

Boag S, Chamberlin D, Fernandez M, Florescu D, Robiendé&n J,
Stefanescu M. XQuery 1.0: An XML query language. W3C working
draft, 2003

David C, Libkin L, Murlak F. Certain answers for XML quesi In:
Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART sympo-
sium on principles of database systems of data. 2010, 121-20
Shanmugasundaram J, Shekita E, Kiernan J, KrishnaynBrtkiiglas

E, Naughton J, Tatarinov I. A general technique for queryiidL
documents using arelational database system. ACM SIGMQirde
2001, 30(3): 20-26

Balmin A, Papakonstantinou Y. Storing and querying XMitadusing
denormalized relational databases. The VLDB Journal, 2008L):
30-49

Krishnamurthy R, Kaushik R, Naughton J. XML views as gnity
constraints and their use in query translation. In: Procgsdof the
21st international conference on data engineering, ICCE '2005,

26.

27.

28.

29.

30.

31.

32.

33.

34.

Front. Comput. Sci.

693-704

Gou G, Chirkova R. Efficiently querying large XML data osfiories:
A survey. |IEEE Transactions on Knowledge and Data Engingeri
2007, 19(10): 1381-1403

Miller R, Hernandez M, Haas L, Yan L, Ho C, Fagin R, Popa bheT
Clio project: managing heterogeneity. SIGMOD Record, 230(1):
78-83

Chirkova R, Libkin L, Reutter J. Tractable XML data excba via
relations. In: Proceedings of the 20th ACM internationahfecence
on information and knowledge management. 2011, 1629-1638
Abiteboul S, Segoufin L, Vianu V. Representing and queyytML
with incomplete information. ACM Transactions on Datab&3es-
tems, 2006, 31(1): 208-254

Mecca G, Papotti P, Raunich S. Core schema mappings.rdoe&d-
ings of the 35th SIGMOD international conference on managerof
data. 2009, 655-668

Bjorklund H, Martens W, Schwentick T. Conjunctive quepntain-
ment over trees. In: Database programming languages. 86680
Amer-Yahia S, Cho S, Lakshmanan L V S, Srivastava D. Teteim
query minimization. The VLDB Journal, 2002, 11(4): 315-331
Lakshmanan L, Ramesh G, Wang H, Zhao Z. On testing shilsfia
ity of tree pattern queries. In: Proceedings of the 30thrivatgonal
conference on very large data bases. 2004, 120-131

Gottlob G, Koch C, Schulz K. Conjunctive queries oveesteJournal
of the ACM, 2006, 53(2): 238-272

21

Leonid Libkin is Professor of Foun-
dations of Data Management in the
School of Informatics at the University
of Edinburgh. He was previously a Pro-
fessor at the University of Toronto and
a member of research staff at Bell Lab-
oratories in Murray Hill. He received

Photo

his PhD from the University of Penn-
sylvania in 1994. His main research interests are in thesanéa
databases and applications of logic in computer science.hdse
written 4 books and over 130 technical papers. He was thpireci
ent a Marie Curie Chair Award from EU in 2006, a Premier's Re-
search Excellence Award in 2001, and won 3 best paper awdeds.
has chaired programme committees of major database conée
(ACM PODS, ICDT), and has been appointed conference chair of
the next Federated Logic Conference. He has given a dozagadnv
conference talks, has served on over 30 program commitadss
serving on several editorial boards.

Rada Chirkova is an associate profes-
sor at the Computer Science Depart-
ment at NC State University in Raleigh,

NC, USA. She received the B.Sc. and
M.Sc. degrees, both in applied mathe-
matics, from Moscow State University,

Russia, and the M.Sc. and Ph.D. (2002
degrees in computer science from Stan
ford University. Her research interests are in databaséls afocus

Juan Reultter received a Licenciate de-
gree in Engineering Sciences (2007)
and an M.Sc. degree in Computer
Science (2009) from P. Universidad
Caiélica de Chile. He is currently a

Ph.D. student at Edinburgh University
under the supervision of Prof. Leonid
Libkin. His research interest include

. . data exchange and integration, schema mapping manageiment
Science Foundation Career award. She has served on theprogr 9 g ' pping g '

committees of leading database conferences, including A0G+ complete |nformat|o,n and gr_aph databases. 'T'e receivecsiepb-
MOD. VLDB, ICDE, and PODS. per award at PODS’11 for his work on extensions of data exgdan

Photo

Photo

on efficient query processing. She is a recipient of the USoNal

