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Abstract We consider data exchange for XML documents:

given source and target schemas, a mapping between them,

and a document conforming to the source schema, construct

a target document and answer target queries in a way that is

consistent with the source information. The problem has pri-

marily been studied in the relational context, in which data-

exchange systems have also been built.

Since many XML documents are stored in relations, it is

natural to consider using a relational system for XML data

exchange. However, there is a complexity mismatch between

query answering in relational and in XML data exchange.

This indicates that to make the use of relational systems pos-

sible, restrictions have to be imposed on XML schemas and

mappings, as well as on XML shredding schemes.

We isolate a set of five requirements that must be ful-

filled in order to have a faithful representation of the XML

data-exchange problem by a relational translation. We then

demonstrate that these requirements naturally suggest thein-

lining technique for data-exchange tasks. Our key contribu-

tion is to provide shredding algorithms for schemas, docu-

ments, mappings and queries, and demonstrate that they en-

able us to correctly perform XML data-exchange tasks using

a relational system.

Keywords data exchange, XML, XML shredding, inlining

1 Introductioin

In the problem of data exchange, given an instance of a source

schema and a schema mapping, which is a specification of
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the relationship between the source and the target, the ob-

jective is to find an instance of a target schema. The tar-

get instance should correctly represent information from the

source instance under the constraints imposed by the target

schema, and should allow one to evaluate queries on the tar-

get instance in a way that is semantically consistent with the

source data. The problem has received much attention in the

past few years, with several surveys already available [1–3].

The general setting of data exchange is shown in Fig. 1.

We have fixed source and target schemas, an instanceS of

the source schema, and a mappingM that specifies the rela-

tionship between the source and the target schemas. The goal

is to construct an instanceT of the target schema, based on

the source and on the mapping, and to answer queries against

the target data in a way consistent with the source data.

The mappings rarely specify the target instance com-

pletely. That is, for each sourceS and mappingM, there

could be multiple target instancesT1,T2, . . . that satisfy the

conditions of the mapping. Such instances are calledsolu-

tions. The notion of query answering has to account for their

non-uniqueness. Typically, one tries to computecertain an-

swersCERTAINM(Q,S), i.e., answers independent of a par-

ticular solution chosen. IfQ produces relations, these are

usually defined as
⋂

i Q(Ti). Certain answers must be pro-

duced by evaluating some query – not necessarilyQ but per-

haps itsrewriting Qrewr over a particular solutionT , so that

Qrewr(T ) = CERTAINM(Q,S).

Thus, the key tasks in data exchange are: (a) choosing a

particular solutionT among{T1,T2, . . .} to materialize, and

(b) finding a way of producing query answers over that solu-

tion by running a rewritten queryQrewr over it. Usually one

builds a so-calleduniversalsolution [3,4]; these solutions be-

have particularly nicely with respect to query answering.
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queryQ

source S target T
mappingM

Fig. 1 The general setting of data exchange

These basics of data exchange are independent of a partic-

ular model of data. Most research on data exchange, however,

has occurred in the relational context [1,3–5] or slight exten-

sions [6,7]. The first paper that attempted to extend relational

results to the XML context was [8], and a few followups have

since appeared [9, 10]. They all concentrate on the algorith-

mic aspects of query answering and constructing solutions,

with the main goal of isolating tractable cases. The problem

these papers do not address ishow can XML data exchange

be implemented?

Previous work on algorithms for XML data exchange has

tacitly assumed that one uses a native XML DBMS such

as [11]. However, this is not the only (and perhaps not even

the most common) route: XML documents are often stored in

relational DBMSs. Note that it is natural and in many cases

desirable to be able to use the established relational technol-

ogy to solve the considerably more recent and not as well un-

derstood XML data-exchange task. In fact, many ETL prod-

ucts claim that they handle XML data simply by producing

relational translations (known asshredding[12]). This leads

to a two-step approach:

• first shred XML data into relations;

• then apply a relational data-exchange engine (and pub-

lish the result back as an XML document).

The approach seems very natural, but the key question is

whether it will work correctly. That is, are we guaranteed

to have the same result as we would have gotten had we im-

plemented a native XML data-exchange system? We answer

this question in this paper.

To state more precisely the main question addressed in this

paper, assume that we have a translationσ(·) that can be ap-

plied to (a) XML schemas, (b) XML documents, (c) XML

schema mappings, and (d) XML queries. We show the con-

cept ofcorrectnessof such a translation in Fig. 2.

That is, suppose we start with an XML documentS and

an XML schema mappingM. In a native system, we would

materialize some solutionT over which we could answer

queriesQ.

But now we want a relational system to do the job. So

we shredS into σ(S) and then apply toσ(S) the translation

XML : source S
mappingM

- target T
query Q

- answer

Relations : σ(S)

shred

?
σ(M)

- σ(T )

shred

?
σ(Q)

- answer

shred

?

Fig. 2 Correctness of the translationσ(·)

of the mappingσ(M) to get a solution – which itself is a

shredding of an XML solution – so that the answer toQ could

be reconstructed from the result of the queryσ(Q) over that

relational solution.

The idea seems simple and natural on the surface, but starts

looking challenging once we look deeper into it. Before even

attempting to show that the relational translation faithfully

represents the XML data-exchange problem, we need to ad-

dress the following.

Complexity mismatch. Without restrictions, therecannot be

a faithful representationof XML data exchange by a

relational system. Indeed, it is well known that posi-

tive relational-algebra queries can be efficiently evalu-

ated in relational data exchange, assuming the query is

fixed [1, 3, 4]. At the same time, finding query answers

even for simple XML analogs of conjunctive queries

can be coNP-hard [8]. So any claim that a relational

data-exchange system correctly performs XML data ex-

change for arbitrary documents and queries is bound to

be wrong. We thus need to identify the cases that can be

handled by a relational system.

Which shredding scheme to use?There are several, which

can roughly be divided into two groups: those that

do not take the schema information into account (e.g.,

the edge representation [13], interval codings [14], and

other numbering schemes [15]), and those that are based

on schemas for XML, such as variants of the inlining

technique [12,16]. Since in data-exchange scenarios we

start with two schemas, it seems more appropriate to ap-

ply schema-based techniques.

Target constraints. In relational data exchange, constraints

in target schemas are required to satisfy certain acyclic-

ity conditions; without them, the chase procedure that

constructs a target instance does not terminate [1, 3, 4].

Constraints imposed by general XML schema specifica-

tions need not in general be even definable in relational

calculus, let alone be acyclic [17]. We thus need to find

a shredding technique that enables us to encode target
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schemas by means of constraints that guarantee chase

termination.

As for the complexity issue, the work on the theory of

XML data exchange has identified a class of mappings for

which efficient query answering is possible [8–10]. The

schemas (say, DTDs), have rules of the formdb → book∗,

book→ author∗ sub ject(we shall give a formal definition

later), and the mappings transform patterns satisfied over the

source into patterns satisfied over targets. Observe that these

mappings (just as nested-relational tgds [18, 19]) are strictly

more expressive than relational tgds; see the Related-Work

section for a discussion.

This restriction suggests a relational representation to use.

Going with the edge representation [13] is problematic: First,

each edge in an XML pattern used in a mapping will result in

a join in the relational translation, making it inefficient.Sec-

ond, enforcing even a simple schema structure under that rep-

resentation takes us out of the class of target constraints that

relational data-exchange systems can handle. Verifiably cor-

rect translations based on numerical encodings [14, 15] will

necessarily involve numerical and/or ordering constraints in

relational translations of mappings, and this is somethingthat

relational data exchange cannot handle at the moment [1, 3],

beyond simple ordering constraints [20].

One translation scheme however that fits in well with the

restrictions identified in [8–10] is theinlining scheme. It

works very well for DTDs of the “right” shape, and its output

schemas involve only acyclic constraints, which is perfectfor

data-exchange scenarios.

Desiderata for the translation. We now formulate some ba-

sic requirements for the translationσ, in order to be able to

achieve our goals described in the diagram above.1) We need

the following:

Requirement 1: translation of schemas A translation

σ(D) that, when applied to a DTD of a special form,

produces a relational schema that has only acyclic con-

straints, which can be used in a relational data-exchange

setting.

Requirement 2: translation of documents A translation

σD(·) for a DTD D that, when applied to documentT

conforming toD, produces relational databaseσD(T)

of schemaσ(D).

Requirement 3: translation of queries For a DTD D, a

translationσD(Q) of (analogs of) conjunctive queries so

thatσD(Q)
(

σD(T)
)

= Q(T) (that is, the result ofQ(T)

can be computed by relational translations).

1) In the next sections we formalize each desideratum.

Requirement 4: translation of mappings For a mapping

M between a source DTDDs and a target DTDDt,

its translationσ(M) is a mapping betweenσ(Ds) and

σ(Dt) that preserves universal solutions. That is:

(a) EachσDt -translation of a universal solution forT un-

derM is a universal solution forσDs(T) underσ(M);

and
(b) Each universal solution forσDs(T) underσ(M) con-

tains2) a σDt -translation of a universal solution ofT

underM.

Requirement 5: query answering For (analogs of) con-

junctive queries over trees, computing the answer toQ

underM over a source treeT is the same as computing a

σ(M)-solution ofσ(T), followed by evaluation ofσ(Q)

over that solution, as is normally done in a relational

data-exchange system.

Satisfaction of these five requirements would guarantee

that we have acorrectrelational translation of an XML data-

exchange problem, which would guarantee correct evaluation

of queries. The relational approach to XML data exchange,

which we propose in this paper, satisfies all the five require-

ments.

For the choice of the query language, one has to be careful

since the definition of certain answers depends on the out-

put of the queries. We consider two classes of conjunctive

queries over trees. The first is tree patterns that output tu-

ples of attribute values. These are the queries most com-

monly considered in XML data exchange [8–10], because

for them we can define certain answers as the usual inter-

sectionCERTAINM(Q,S) =
⋂

i Q(Ti). The second is a sim-

ple XML-to-XML query language, in which queries output

trees. It is essentially the positive fragment of FLWR ex-

pressions of XQuery [21]. For outputs which are XML trees,

the intersection operator is no longer meaningful for defining

certain answers. Instead, we use recent results of [22] that

show how to define and compute certain answers for XML-

to-XML queries.

Contributions. We provide a relational approach to solve

two of the most important problems of XML data-exchange

settings: materializing solutions and answering queries.Our

specific contributions are as follows. First, we introduce an

architecture for XML data exchange using relational vehicles,

with a focus on correct evaluation of (analogs of) conjunctive

queries on XML data. Second, we identify a class of XML

schema mappings and a shredding mechanism that allows us

2) We cannot require the equivalence, as relational solutionsare open to
adding new tuples and thus cannot always be translations of trees; we shall
discuss this later.
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to overcome the complexity mismatch. Third, we provide

algorithms for relational translation of schemas, XML docu-

ments, schema mappings, and queries in our proposed archi-

tecture. Finally, we prove the correctness of the translations:

namely, we show that they satisfy the above five require-

ments, and thus enable us to use relational data-exchange sys-

tems for XML data-exchange tasks. Since the computational

complexity of our proposed algorithms is quite low, and their

correctness has been established, we believe this paper makes

a case for using the relational technology for provably correct

XML data exchange.

Related works. In recent years, significant effort has been

devoted to developing high-performance XML database sys-

tems, and to building tools for data exchange. One major di-

rection of the XML effort is the “relational approach,” which

uses relational DBMSs to store and query XML data. Doc-

uments could be translated into relational tuples using either

a “DTD-aware” translation [16, 23] or a “schemaless” trans-

lation. The latter translations include the edge [13] and the

node [14] representations of the data. Indexes could be pre-

built on the data to improve performance in relational query

processing, see, e.g., [14,15]. Constraints arising in thetrans-

lation are sometimes dealt with explicitly [24, 25]. See [26]

for a survey of the relational approach to answering XML

queries.

The work on data exchange has concentrated primarily on

relations, see [1, 3] for surveys and [19, 27] for system de-

scriptions. Mappings for the XML data-exchange problem

were studied in [8, 9]; it was noticed there that the complex-

ity of many tasks in XML data exchange is higher than for

their relational analogs, which suggests that restrictions must

be imposed for a relational implementation. The problem of

exchanging XML data was also studied in [18, 19], which

give translations of documents and of DTDs into nested-

relational schemas, and then show how to perform XML

data exchange under this translation. Most RDBMSs, how-

ever, do not provide support for nested-relational schemas,

and, thus, specific machinery has to be developed in order

to implement this translation under a strictly relational set-

ting. Moreover, XML mappings considered in this paper

are strictly more expressive than nested-relational mappings,

and every nested-relational data-exchange setting can be ef-

ficiently transformed into an equivalent XML data-exchange

setting. Thus, the results of this paper may aid towards the

development of a relational implementation for both XML

and nested-relational data exchange.

Outline. Key definitions are given in Section 2. Section 3

provides translations of schemas and documents, and shows

that they fulfill our Requirements 1 and 2. Section 4 states the

main concepts of relational and XML data exchange. Section

5 provides translations of mappings and queries, and shows

that our Requirements 3, 4, and 5 are fulfilled. Section 6

studies queries that output XML trees.

This article is an extended version of [28]. It contains a re-

vised version of all the algorithms for translation, and allthe

proofs of the results presented in [28]. It also contains a more

detailed formal analysis of the correctness of the algorithms.

2 Preliminaries

Relational schemas and constraints. A relational schema,

or just schema, is a finite setR = {R1, . . . ,Rk} of relation

symbols, possibly with a set of integrity constraints (depen-

dencies). Constraints used most often in data exchange are

equality- and tuple-generating dependencies [1, 3, 4], butfor

our purposes it will suffice to consider onlykeysandforeign

keys. If R is a relation over attributesU, andX is a set of

attributes, thenX is a key ofR if no two tuples ofR coincide

on X-attributes (that is, for all tuplest1, t2 ∈ R with t1 , t2
we haveπX(t1) , πX(t2)). If R1 andR2 are relations over sets

of attributesU1 andU2, respectively, then an inclusion con-

straintR1[X] ⊆ R2[Y], whereX ⊆ U1 andY ⊆ U2 are of the

same cardinality, holds whenπX(R1) ⊆ πY(R2). We further

say that a foreign key on the attributes ofR1[X] ⊆FK R2[Y]

holds if the inclusion constraintR1[X] ⊆ R2[Y] holds, andY

is a key ofR2.

With each set of keys and foreign keys, we associate a

graph in which we put an edge between attributesA and B

if there is a constraintR1[X] ⊆FK R2[Y] with A ∈ X and

B ∈ Y. If this graph is acyclic, we say that the set of con-

straints isacyclic. A schema is acyclic if its constraints are

acyclic. In data exchange, one often uses a more technical no-

tion of weak acyclicity: it includes some cyclic schemas for

which the chase procedure still terminates. For us, however,

the simple concept of acyclicity will suffice, as our transla-

tions of schemas only produce acyclic constraints.

XML documents and DTDs. Assume that we have the fol-

lowing disjoint countably infinite sets:El of element names,

Att of attribute names, andS tr of possible values of string-

valued attributes. All attribute names start with the symbol

@.

An XML tree is a finite rooted directed treeT = (N,G),

whereN is the set of nodes andG is the set of edges, together

with
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1: r

2: book
‘Algorithm Design’

4: author

9: name
Kleinberg

10: aff
CU

5: author

11: name
Tardos

12: aff
CU

6: subject
CS

3: book
‘Algebra’

7: author

13: name
Hungerford

14: aff
SLU

8: subject
Math

(a) TreeT

r → book∗

book → author∗ subject
author → name aff
AD(book) = @title
AD(subject) = @sub
AD(name) = @nam
AD(aff ) = @aff

(b) DTD D

Fig. 3 The XML treeT conforms toD

1. a labeling functionλ : N→ El;

2. attribute-value assignments, which are partial functions

ρ@a : N → S tr for each @a ∈ Att; and

3. an ordering on the children of every node.

A DTD D overEl with a distinguished symbolr (for the

root) and a set of attributesAtt consists of a mappingPD from

El to regular expressions overEl − {r}, usually written as

productionsℓ → e if PD(ℓ) = e, and a mappingAD from El

to 2Att that assigns a (possibly empty) set of attributes to each

element type. For notational convenience, we always assume

that attributes come in some order, just like in the relational

case: attributes in tuples come in some order, so we can write

R(a1, . . . , an). Likewise, we shall describe anℓ labeled tree

node withn attributes asℓ(a1, . . . , an).

A tree T conforms to a DTDD (written asT |= D) if its

root is labeledr, the set of attributes for a node labeledℓ is

AD(ℓ), and the labels of the children of such a node, read from

left to right, form a string in the language ofPD(ℓ).

A class of DTDs. In this paper we consider a restriction on

DTDs callednested-relational DTDs[8,29], a class of DTDs

that naturally represent nested relational schemas such asthe

ones used by the Clio data-exchange system [27]. The reason

for using them is that outside of this class, it is very easy

to construct instances of XML data-exchange problems that

will exhibit coNP-hardness of answering conjunctive queries

(which are known to be tractable in practically all instances

of relational data exchange), see [8].

A DTD D is non-recursiveif the graphG(D) defined as

{(ℓ, ℓ′) | ℓ′ is mentioned inP(ℓ)} is acyclic. A non-recursive

DTD D is nested-relationalif all rules of D are of the form

l → l̃0 . . . l̃m where all thel i ’s are distinct, and each̃l i is one

of l i andl∗i . From now on, unless otherwise noted, all DTDs

are assumed to be nested-relational. We also assume, without

loss of generality, that the graphG(D) is not a directed acyclic

graph (DAG) but a tree. (One can always unfold a DAG into

a tree by tagging occurrences of element types with the types

of their predecessors.)

Example 1: Figure 3(a) shows an example of an XML tree.

In the Figure, the node identifiers precede the corresponding

labels of each node inT; we omit the attribute names and only

show the attribute values of each node. In addition, Fig. 3(b)

shows an example of a nested-relational DTD. Moreover, it

is easy to see that the treeT of Fig. 3(a) conforms toD. �

3 Translations of schemas and documents

We now review theinlining technique [16], provide a pre-

cise definition of the translation, and show that it satisfiesour

Requirements 1 and2. The main idea of inlining is that sep-

arate relations are created for the root and for each element

type that appears under a star, and other element types are

inlined in the relations corresponding to their “nearest appro-

priate ancestor”. Each relation for an element type has an ID

attribute that is a key, as well as (for non-root) a “parent-ID”

attribute that is a foreign key pointing to the “nearest appro-

priate ancestor” of that element in the document. All the at-

tributes of a given element type in the DTD become attributes

in the relation corresponding to that element type when sucha

relation exists, or otherwise become attributes in the relation

for the “nearest appropriate ancestor” of the given element

type.

We begin with a formal definition of thenearest appropri-

ate ancestorfor the element types used inD. Given a nested-

relational DTDD = (PD,AD, r), we “mark” in G(D) each

element type that occurs under a star inPD. In addition, we

mark the root element type inG(D). Then, for a given ele-

ment typeℓ, we define thenearest appropriate ancestorof
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ℓ, denoted byµ(ℓ), as the closest marked element typeℓ′ in

the path from the root element toℓ in the graphG(D). The

inlining schema generation is formally captured by means of

the procedure INLSCHEMA in Algorithm 1.

Algorithm 1 INLSCHEMA(D)
Input : A nested relational DTDD.
Output: A relational schemaSD and a set of integrity con-

straints∆D

SetSD = ∅ and∆D = ∅

for each marked element typeℓ of D:
add toSD a relationRℓ, with attributes:

attr(Rℓ) =







































idℓ
AD(ℓ)
idµ(ℓ) | if ℓ , r.
idℓ′ | µ(ℓ′) = ℓ, ℓ′ is not marked,
AD(ℓ′) | µ(ℓ′) = ℓ, ℓ′ is not marked.

endfor
for each relation Rℓ in SD:

add to∆D the constraint stating thatidℓ is key ofRℓ and,
if ℓ , r, the foreign key

Rℓ[idµ(ℓ)] ⊆FK Rµ(ℓ)[idµ(ℓ)].

endfor
add to∆D the dependency (stating the uniqueness of the root)

∀ȳ∀z̄Rr (x, ȳ) ∧ Rr (x′, z̄)→ x = x′.

return (SD,∆D)

Example 2: Consider again DTDD in Fig. 3(b). The rela-

tional schema INLSCHEMA(D) is as follows:
Rr(rID)
Rbook(bookID,@title,rID,subID,@sub)
Rauthor(authID,bookID,nameID,afID,@nam,@aff)
Keys are underlined; we also have the following foreign

keys: Rbook(rID) ⊆FK Rr (rID) and Rauthor(bookID) ⊆FK

Rbook(bookID). �

The following shows that ourRequirement 1 is satisfied.

Proposition 1. For every nested relational DTD D, the out-

put of INLSCHEMA(D) is an acyclic relational schema.

Proof. Let D be a DTD over a set of element typesEl. Notice

that all the foreign key constraints created with the procedure

INLSCHEMA(D) are of the formRℓ[idµ(ℓ)] ⊆FK Rµ(ℓ)[idµ(ℓ)],

for some marked labelℓ ∈ El; that is, each relationRℓ ref-

erences the relationRµ(ℓ) that corresponds to thenearest ap-

propriate ancestorof ℓ. Thus, the graph associated with the

constraints of INLSCHEMA(D) only contains edges from the

attributeidµ(ℓ) of relationRℓ to attributeidµ(ℓ) relationRµ(ℓ).

The proof then follows from the fact thatG(D) is acyclic, and

thus the labels ofD cannot form a cycle of nearest appropriate

ancestors.�

Shredding of XML documents. We now move to the

shredding procedure. Given the inlining INLSCHEMA(D)

= (SD,∆D) of a DTDD, and an XML treeT conforming toD,

we use the algorithm INLDOC to shred Tinto an instance of

the relational schemaSD that satisfies the constraints in∆D.

Let us first explain this translation by means of an example.

Example 3: Recall treeT from Fig. 3(a) and DTDD from

Fig. 3(b). Table 1 shows relationsRbook andRauthor in the

shredding ofT. �

To present the algorithm, we define thenearest appropri-

ate ancestorµ(n) of a noden of an XML documentT that

conforms to a DTDD, as follows. Mark each noden of T

such thatλ(n) is starred inD, as well as the root ofT. Then

µ(n) is the closest marked noden′ that belongs to the path

from the root ton. In the Algorithm 2, and for the remainder

of the paper, we denote byidn the relational element repre-

senting the noden of a treeT.

Algorithm 2 INLDOC(T,D)
Input : A nested relational DTDD and an XML treeT that

conforms toD.
Output: A relational instance of the schema

INLSCHEMA(D).

for each marked node n of T:
Let ℓ be the label ofn; Add to the relationRℓ of I a tuple
that contains elements


















































idn

ρ@a(n) |@a ∈ AD(ℓ)
idµ(n) | if ℓ , r
idn′ | µ(n′) = n, n′ is not marked.
ρ@a(n′) | µ(n′) = n , @a ∈ AD(λ(n′)) and

n′ is not marked

where the

identifiers and attributes values for each of the elements
idn′ , idµ(n) andρ@a(n′) coincide with the position of the
attributes foridλ(n′), idµ(ℓ) andAD(λ(n′)) of Rℓ.

endfor
return I

The following proposition shows that ourRequirement 2
is satisfied.

Proposition 2. Let D be a DTD, and T an XML tree such that

T |= D. ThenINLDOC(T,D) is an instance of the schema

computed byINLSCHEMA(D).

Proof. Let D andT as stated in the Proposition, and (SD,∆D)

be the output of INLSCHEMA(D). That INLDOC(T,D) satis-
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Table 1 Shredding ofT into INLSCHEMA(D)
(a) RelationRbook in INLDOC(T,D)

bookID @title rID subID @sub

id2 ’Algorithm Design’ id1 id6 CS
id3 ’Algebra’ id1 id8 Math

(b) RelationRauthor in INLDOC(T,D)

authID bookID nameID afID @nam @af

id4 id2 id9 id10 ’Kleinberg’ CU
id5 id2 id11 id12 ’Tardos’ CU
id7 id3 id13 id14 ’Hungerford’ SLU

fies the key constraints of∆D is trivial, since the identifier

of each node inT is unique. The same applies for the de-

pendency stating the uniqueness of the root; sinceT con-

forms to D, the root ofT (and only the root) must be la-

belled r. Moreover, for each foreign key in∆ of the form

Rℓ[idµ(ℓ)] ⊆ Rµ(ℓ)[idµ(ℓ)], notice that, sinceG(D) is a tree,

for eachℓ ∈ El − {r}, there is exactly one elementℓ′ such

that ℓ′ = µ(ℓ). SinceT conforms toD, every ℓ-labelled

node inT must be a descendant of anℓ′-labelled node. This

guarantees that the interpretation of relationsRℓ andRℓ′ in

INLDOC(T,D) satisfy the constraintRℓ[idµ(ℓ)] ⊆ Rµ(ℓ)[idµ(ℓ)];

each tuple in the interpretation ofRℓ over INLDOC(T,D) cor-

responds to a noden in T that must be a descendant of anℓ′

labelled noden′ in T, and thus there must be a tuple in the

interpretation ofRℓ′ identified with the elementidn′ . �

4 Relational and XML data exchange

We now quickly review the basics of relational data ex-

change and introduce XML schema mappings that guarantee

tractable query answering.

Relational data exchange. A schema mappingM is a triple

(S,T,Σ), whereS is a source schema,T = (T,∆T) is a target

schema with a set of constraints∆T , andΣ is a set ofsource-

to-target dependenciesthat specify how the source and the

target are related. Most commonly these are given as source-

to-target tuple generating dependencies (st-tgds):

ϕ(x̄)→ ∃z̄ψ(x̄, z̄), (1)

whereϕ andψ are conjunctions of relational atoms overS

andT, respectively.

In data-exchange literature, one normally considers in-

stances with two types of values: constants and nulls. In-

stancesS of the source schemaS consist only of constant

values, and nulls are used to populate target instancesT when

some values are unknown.

An instanceT of T (which may contain both constants

and nulls) is called asolution for an instanceS of S under

M, or anM-solution, if every st-tgd (1) fromΣ is satisfied

by (S,T ) (that is, for each tuple ¯a such thatϕ(ā) is true inS,

there is a tuplēb such thatψ(ā, b̄) is true inT ).The set of all

M-solutions forS is denoted by SOLM(S) (or SOL(S) if M

is understood).

Certain answers and canonical universal solution. The

main difficulty in answering a queryQ against the target

schema is that there could be many possible solutions for a

given source. Thus, for query answering in data exchange

one normally uses the notion of certain answers, that is, an-

swers that do not depend on a particular solution. Formally,

for a sourceS and a mappingM, we defineCERTAINM(Q,S)

as
⋂

{Q(T ) | T ∈ SOLM(S)}.

Building all solutions is impractical (or even impossible),

so it is important to find a particular solutionT0 ∈ SOLM(S),

and a rewritingQrewr of Q, so that CERTAINM(Q,S) =

Qrewr(T0).

Universal solutionswere identified in [4] as the preferred

solutions in data exchange. (We provide a precise defini-

tion later in this section.) Over them, every positive query

can be answered, with a particularly simple rewriting: af-

ter Q is evaluated on a universal solutionT0, tuples con-

taining null values are discarded. Even among universal

solutions there are ones that are most commonly material-

ized in data-exchange systems, such as thecanonical solu-

tion CANSOLM(S), computed by applying the chase pro-

cedure with constraintsΣ and ∆T to the source instance

S. If all the constraints in∆T are acyclic (in fact, even a

weaker notion suffices), such a chase terminates and com-

putes CANSOLM(S) in polynomial time [4].

Note that ourRequirement 4 relates universal solutions in

relational and XML data exchange. In particular, we do not

insist on working with the canonical solutions; others, such

as the core [5] or the algorithmic constructions of [30], can

be used as well.
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Towards XML schema mappings: patterns. To define

XML schema mappings, we need the notions of schemas

and source-to-target dependencies. The notion of schema is

well understood in the XML context. Our dependencies, as

in [8–10], will be based ontree patterns. Patterns are defined

inductively as follows:

• ℓ(x̄) is a pattern, whereℓ is a label, and ¯x is a (possibly

empty) tuple of variables (listing attributes of a node);

• ℓ(x̄)[π1, . . . , πk] is a pattern, whereπ1, . . . , πk are pat-

terns, andℓ andx̄ are as above.

We writeπ(x̄) to indicate that ¯x is the tuple of all the variables

used in a pattern.

The semantics is defined with respect to a node of a tree

and to a valuation of all the variables of a pattern as attribute

values. Formally, (T, v) |= π(ā) means thatπ is satisfied in

nodev whenx̄ is interpreted as ¯a. It is defined as follows:

• (T, v) |= ℓ(ā) if v is labeledℓ and its tuple of attributes is

ā;

• (T, v) |= ℓ(ā)[π1(ā1), . . . , πk(āk)] if

1. (T, v) |= ℓ(ā) and
2. there exist childrenv1, . . . , vk of v (not necessarily

distinct) so that (T, vi) |= πi(āi) for everyi ≤ k.

We write T |= π(ā) if (T, r) |= π(ā), that is, the pattern is

witnessed at the root.

Example 4: Consider treeT from Fig. 3(a), and the tree

patternπ(x, y) = r[book(x)[author[name(y)]]], which finds

books together with the names of their authors. Then it is easy

to see thatT |= π(’Algorithm Design’, Tardos). In fact,

evaluation ofπ(x, y) overT returns the tuples (’Algorithm

Design’, Tardos), (’Algorithm Design’, Kleinberg),

and (’Algebra’, Hungerford). �

Given a DTDD and a tree patternπ, we say thatπ is com-

patible with D if there exists a treeT that conforms toD

and a tuple of attribute values ¯a such thatT |= π(ā). In gen-

eral, checking compatibility of patterns with DTDs is NP-

complete [31], but for the DTDs we consider here it can be

easily done in polynomial time.

Example 5: [Example 4 continued] The patternπ(x, y) is

compatible with the DTDD of Fig. 3(b). On the other hand,

the patternπ′(x) = r[author(x)] is not, because no tree con-

sistent withD can have a child ofr labeled asauthor, or an

author-labeled node with an attribute. �

RemarkMore general patterns have been considered in

the literature [9, 10, 31–33]; in particular, they may involve

descendant navigation, wild cards for labels, and sibling or-

der. However, [8–10] showed that with these features added,

query answering in data exchange becomes intractable even

for very simple queries. In fact, the restrictions we use in our

definition were identified in [8] as essential for tractability

of query answering. Note that the same restriction was im-

posed on queries when transforming XML data into nested-

relational schemas [18,19].

XML schema mappings. As our descriptions of XML

schemas we shall use DTDs. Indeed, for complex schemas,

query answering in data exchange is known to be intractable

[8], and DTDs will suffice to capture all the known tractable

cases. Source-to-target constraints will be given via patterns.

Formally, an XML schema mappingis a tripleM =

(DS,DT ,Σ), whereDS is the source (nested relational) DTD,

DT is the target (nested relational) DTD, andΣ is a set ofXML

source-to-target dependencies[8], or XML stds, of form

π(x̄)→ π′(x̄, z̄), (2)

whereπ andπ′ are tree patterns compatible withDS andDT ,

respectively.

As in the relational case, target trees may contain nulls to

account for values not specified by mappings. Given a tree

T that conforms toDS, a treeT′ (over constants and nulls)

is anM-solution forT if T′ conforms toDT , and the pair

(T,T′) satisfies all the dependencies of the form (2) fromΣ.

The latter means that for every tuple ¯a of attribute values from

T, if T satisfiesπ(ā), then there exists a tuplēb of attribute

values fromT′ such thatT′ satisfiesπ′(ā, b̄). The set of all

M-solutions forT is denoted by SOLM(T).

Example 6: Consider the data-exchange scenario

(D,DT ,M) given by the DTDsD and DT of Fig. 3(b)

and 4(b), respectively, and whereM is specified by the

dependency

r[book(x)[author[name(y)]]] →

r[writer[name(y),work(x)]] ,

that restructures book-author pairs as writer-work. It canbe

shown that the XML treeT′ in Fig. 4(a) is anM-solution for

T. �

We now formally define universal solutions. While build-

ing up auxiliary definitions that are needed to define the term,

we also introduce some technical notions that will be used

through the remainder of the paper.

Homomorphisms and tree homomorphisms. Let K1 and

K2 be instances of the same schemaR. A homomorphism
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r

writer

name
Tardos

work
’Algorithm Design’

writer

name
Hungerford

work
’Algebra’

writer

name
Kleinberg

work
’Algorithm Design’

(a) Target TreeT′

r → writer∗

writer → name work∗

AD(name) = @nam

AD(work) = @title

(b) Target DTDDT

Fig. 4 TreeT′ is anM-solution forT

h from K1 to K2 is a functionh defined from the domain of

K1 to the domain ofK2 such that: (1)h(c) = c for every

constant elementc in K1, and (2) for everyR ∈ R and ev-

ery tuple ā = (a1, . . . , ak) in the relationR in K1, it holds

thath(ā) = (h(a1), . . . , h(ak)) belongs to the relationR in K2.

Notice that this definition of homomorphism slightly differs

from the usual one, as the additional constraint that homo-

morphisms are the identity on the constants is imposed.

Given a conjunctive queryQ(x̄) over a schemaR, we de-

note by IQ(x̄) the instance ofR constructed as follows: for

every relational symbolR ∈ R and relational atomR(b̄) oc-

curring inQ(x̄), we include tuplēb in the relationR of IQ(x̄).

We define all variables in ¯x to be constant elements inIQ(x̄),

whereas every existentially quantified variable ofQ is a null

element.

It is now straightforward to prove the following lemma:

Lemma 1. Let I be an instance of schemaR, and Q a con-

junctive query.Then, a tuplēa of constant elements belongs

to the evaluation of Q over I if and only if there is a homo-

morphism from IQ(ā) to I.

We also need to introduce the equivalent definition of ho-

momorphisms for XML trees, ortree homomorphism[8]. Let

T = (N,G) andT′ = (N′,G′) be XML trees, letnr andn′r be

the roots ofT andT′, respectively, and letS tr(T) = {s ∈ S tr |

there existsn ∈ N and @a ∈ Att such thatρ@a(n) = s},

S tr(T′) defined correspondingly. Then,h : N ∪ S tr(T) →

N′ ∪ S tr(T′) is a homomorphism fromT to T′, if:

• for everyn ∈ N, h(n) ∈ N′;

• for every constant elements ∈ S tr(T), h(s) = s, and for

every nulls ∈ S tr(T), h(s) ∈ S tr(T′);

• h(nr) = n′r ;

• for everyn1, n2 ∈ N, if G(n1, n2), thenG′(h(n1), h(n2));

• for everyn ∈ N, λT(n) = λT′ (h(n)); and

• for everyn ∈ N and @a ∈ Att such thatρ@a(n) is de-

fined,h(ρ@a(n)) = ρ@a(h(n)).

Given a tree patternπ(x̄), we construct the treeTπ(x̄) in-

ductively: if π(x̄) = ℓ(x̄)[π1(x̄1), . . . , πk(x̄k)], then the root of

Tπ(x̄) is a node labelledℓ, with attributes ¯x, andk children cor-

responding toTπ1(x̄1), . . . ,Tπk(x̄k). As for the relational case, it

is easy to prove the following lemma:

Lemma 2. Let T be an XML tree,π(x̄) a tree pattern, and s

a tuple of values in S tr. Then,̄s ∈ π(T) if and only if there is

a homomorphism from Tπ(s̄) to T.

Universal solutions. By means of homomorphisms, we give

a precise definition of universal solutions in relational or

XML data exchange settings. Formally, let (S,T,M) be a re-

lational data exchange setting. Then, given an instanceI of S,

we say that anM-solutionJ for I is anM-universal solution

for I if for every otherM-solutionJ′ for I , there exists an ho-

momorphism fromJ to J′ [4]. The definition for the case of

XML data exchange setting is analogously formulated using

the notion of tree homomorphism [8].

5 XML data exchange using relations

We now provide algorithms for implementing XML data ex-

change via relational translations. Since we have already

shown how to translate DTDs and documents, we need to

present translations of stds of mappings and queries. Both of

them are based on translating patterns into relational conjunc-

tive queries. We first concentrate on that translation. Then

we show how to extend it easily to mappings and queries,

and prove the correctness of the translations. This will com-

plete our program of using a relational system for XML data

exchange in a semantically correct way.

Inlining tree patterns. The key ingredient in our algorithms

is a translation of patternsπ compatible with a DTDD into

a conjunctive queryINLPATTERN(π,D) over the relational

schema INLSCHEMA(D). Very roughly, it can be viewed as

this:

1. View a patternπ(x̄) as a treeTπ in which some attribute

values could be variables;

2. Compute the relational database INLDOC(Tπ,D) (which

may have variables as attribute values);
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3. View INLDOC(Tπ,D) as a tableau of a conjunctive

query; the resulting query is INLPATTERN(π,D).

The algorithm is actually more complicated because

INLDOC cannot be used in Step 2; we shall explain shortly

why.

Towards defining INLPATTERN, observe that each tree

patternπ(x̄) can be viewed as an XML documentTπ(x̄), in

which both values and variables can be used as attribute val-

ues. It is defined inductively as follows:Tℓ(x̄) is a single-

node tree labeledℓ, with x̄ as attribute values, and ifπ is

ℓ(x̄)[π1(x̄1), . . . , πk(x̄k)], then the root ofTπ is labeledℓ and

hasx̄ as attribute values. It also hask children, with the sub-

trees rooted at them beingTπ1(x̄1), . . . ,Tπk(x̄k).

However, even for a patternπ(x̄) compatible with a DTD

D, we may not be able to define its inlining as the inlining

of Tπ(x̄), becauseTπ(x̄) need not conform toD. For example,

if a DTD has a ruler → ab and we have a patternr[a], it is

compatible withD, but Tr[a] does not conform toD, as it is

missing ab-node. Hence, the procedure INLDOC cannot be

used ‘as-is’ in our algorithm.

Nevertheless, we can still mark the nodes ofTπ(x̄) with

respect toD and define the nearest appropriate ancestor ex-

actly as it has been done previously. Intuitively, the procedure

INLPATTERN in Algorithm 3 shreds each node ofTπ(x̄) into a

different predicate, and then joins these predicates usingthe

nearest appropriate ancestor.

Note that the compatibility ofπ with D ensures that

INLPATTERN is well defined. That is, (1) every attribute

formula of the formℓ(x̄) only mentions attributes inAD(ℓ),

and (2) for all nodesv, v′ ∈ Tπ(x̄), if v′ is a child ofv, then

λ(v′) ∈ PD(λ(v)).

Correctness. Given a patternπ(x̄), the evaluation ofπ on a

treeT is π(T) = {ā | T |= π(ā)}. The following proposition

shows the correctness of INLPATTERN.

Proposition 3. Given a nested relational DTD D, a patternπ

compatible with D, and a tree T that conforms to D, we have

π(T) = INLPATTERN(π,D)
(

INLDOC(T,D)
)

.

That is, the inlining ofπ, applied to the inlining ofT, re-

turnsπ(T).

Proof. The proof has two parts: First, we show (1) that

π(T) ⊆ INLPATTERN(π,D)
(

INLDOC(T,D)
)

holds, and then complete the proof by showing (2)

INLPATTERN(π,D)
(

INLDOC(T,D)
)

⊆ π(T).

Algorithm 3 INLPATTERN(π, D)
Input : A DTD D, a tree patternπ(x̄) compatible withD.
Output: Conjunctive query over INLSCHEMA(D).

for each node v of Tπ(x̄) of formℓ(x̄v):
Construct a queryQv(x̄v) as follows:

if v is markedthen
Qv(x̄v) := Rℓ(idv, x̄v, idµ(v), z̄),

wherez̄ is a tuple of fresh variables, and the positions
of variablesidv, x̄v and idµ(v) are consistent with the
attributesidℓ, AD(ℓ) andidµ(ℓ) respectively inattr(Rℓ).
If ℓ = r, thenQv does not useidµ(v).

else (v is not marked):
setv′:=µ(v), ℓ′:=λ(v′), and letQv(x̄v) be

Rℓ′(idv′ , idµ(v′), idv, x̄v, z̄),

wherez̄ is a tuple of fresh variables, and the positions
of the variablesidv′ , idµ(v′), idv and x̄v are consistent
with the attributesidℓ′ , idµ(ℓ′), idℓ andAD(ℓ) respec-
tively in attr(Rℓ′). If ℓ′ = r, then Qv does not use
idµ(v′).

endfor
return ∃

(∧

v∈Tπ(x̄)
Qv(x̄v)

)

, where all variables are existen-
tially quantified except for those in ¯x.

Part (1): To prove that

π(T) ⊆ INLPATTERN(π,D)
(

INLDOC(T,D)
)

,

let π(x̄), D and T be as defined, so thatT conforms toD.

Assume now that ¯a is a tuple of attribute values such that

ā ∈ π(T), and leth be the homomorphism fromTπ(ā) to T.

(By Lemma 2,h is guaranteed to exist.)

In order to show that ¯a belongs to

INLPATTERN(π,D)
(

INLDOC(T,D)
)

, we show how to

construct a homomorphismg from I INLPATTERN(π,D)(ā) to

INLDOC(T,D) (this, by Lemma 1, suffices for the proof).

Recall that the elements ofI INLPATTERN(π,D)(ā) correspond

precisely to the variables of INLPATTERN(π,D)(ā). Defineg

as follows:

• For each variable of the form idv in

INLPATTERN(π,D)(ā), where v is a node of Tπ(ā),

defineg(idv) = idh(v),

• for eacha ∈ ā, let g(a) = h(a), and

• for each other existentially quantified variablez in

INLPATTERN(π,D)(ā) not of formidv, assume thatzbe-

longs to a predicateRℓ(z̄) in INLPATTERN(π,D)(ā). Let

idv be the variable in predicateRℓ(z̄) that corresponds

to the position of the attributeidℓ of relation Rℓ, and

assume thath(v) = n, for some noden ∈ T. Then,

as defined in the previous item,g(idv) = idn. From
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the definition of the inlining procedure, we know that

INLDOC(T,D) contains a fact (and only one, since the

attibute idℓ is a key for the relationRℓ) of the form

Rℓ(idn, b̄), for some tuplēb of elements. Defineg so that

it maps the variablez to the element in the position of

(idn, b̄) that corresponds to the position thatz occupies

in the predicateRℓ(z̄) in INLPATTERN(π,D)(ā).

We first show thatg is well defined. First, it is easy to see

that g is defined for every element ofI INLPATTERN(π,D)(ā). We

now prove that there is no element inI INLPATTERN(π,D)(ā) that is

mapped byg to two different values in INLDOC(T,D). To

see this, assume for the sake of contradiction that there is an

elementx in I INLPATTERN(π,D)(ā) such thatg is defined to mapx

to two elements of INLDOC(T). Then, there are three facts to

consider:

• x cannot be a variable in INLPATTERN(π,D)(ā) of the

form idv for some nodev of Tπ(ā), since we have defined

x to be mapped toidh(v) only;

• x cannot belong to ¯a, since we have defined everya ∈ ā

to be mapped only toh(a);

• then, x is an existentially quantified variable in

INLPATTERN(π,D)(ā) that is not of form idv (that

is, it is a fresh variable generated by the procedure

INLPATTERN). But notice then thatx belongs to only

one predicate of INLPATTERN(π,D)(ā). Moreover, as

explained in the definition ofg, there is only one tuple

in INLDOC(T,D) to whichx is being mapped.

We now prove thatg is indeed a valid homomorphism.

First, it is easy to see that for everya ∈ ā, g(a) = a. This

follows from two facts: (i) we have definedg(a) ash(a), and

(ii) by construction ofTπ(ā), everya ∈ ā is a constant, and

thush(a) = a.

Consider now a fact of the formRℓ(w̄) in I INLPATTERN(π,D)(ā).

We need to show thatRℓ(g(w̄)) belongs to INLDOC(T,D).

We will assume for the sake of readability thatℓ , r. The

proof can be easily adapted for the case whenℓ = r. From

the inlining procedure for queries, there must be a nodev of

Tπ(ā) such that INLPATTERN adds to INLPATTERN(π,D)(ā)

some existential quantification of the predicateRℓ(w̄) in the

step that corresponds tov (that is,Rℓ(w̄) is part ofQ(āv)). We

have two cases. Assume first thatv is marked. Then,

Qv(āv) = Rℓ(idv, āv, idµ(v), z̄),

where z̄ is a tuple of fresh variables not used elsewhere in

INLPATTERN(π,D)(ā) and the position of the variablesidv,

āv andidµ(v) coincide with the attributesidℓ, AD(ℓ) andidµ(ℓ)

in attr(Rℓ).

Further, we now have that the homomorphismh maps the

nodev of Tπ(ā) to some nodeh(v) in T. Thus, from the prop-

erties of tree homomorphisms, we also know thath(v) has the

element typeℓ, and that for everya ∈ av and @a ∈ Att,

if ρ@a(v) = a, thenρ@a(h(v)) = a. Moreover, since ho-

momorphisms must preserve the child relation, it is easy to

see that the nearest appropriate ancestor ofh(v) in T must be

h(µ(v)). Then, it is clear that INLDOC(T,D) must contain a

tuple of the formRℓ(idh(v), āv, idh(µ(v)), b̄), for some tuplēb of

elements, and where the positions of ¯av correspond to the at-

tributes inAD(ℓ) of attr(Rℓ) whereρ(v) is defined. From the

definition of g, it is clear thatg(idv, āv, idµ(v), z̄) is the tuple

(idh(v), idh(µ(v)), āv, g(z̄)). The proof then follows sinceg(z̄) is

defined to bēb.

Second, assume thatv is not marked, and thatλ(v) = ℓ,

µ(v) in Tπ(ā) is the nodev′, andλ(v′) = ℓ′. Then, as defined,

the queryQv(āv) is of form:

Qv(āv) = Rℓ′(idv′ , idµ(v′), idv, āv, z̄),

where z̄ is a tuple of fresh variables not used elsewhere in

INLPATTERN(π,D)(ā), and the position of the variablesidv′

idv, idµ(v′) and āv is consistent with the attributesidℓ′ , idℓ,

idµ(ℓ′) andAD(ℓ) in attr(Rℓ′).

Further, we know that the homomorphismh maps the

nodesv and v′ of Tπ(x̄) to some nodesh(v) and h(v′) in T.

Then, from the properties of tree homomorphisms, we obtain

that λ assigns the typesℓ and ℓ′ to h(v) and h(v′), respec-

tively, and that for everya ∈ av and @a ∈ Att, if ρ@a(v) = a,

thenρ@a(h(v) = a. Moreover, since homomorphisms pre-

serve the child relation, it is easy to see thath(v′) must be the

nearest appropriate ancestor ofh(v) in T, and that the near-

est appropriate ancestor ofh(v′) must beh(µ(v′)). Then, it is

clear that the inlining ofT must contain a tuple of the form

Rℓ′ (idh(v′), idh(µ(v′)), idh(v), āv, b̄) for some tuplēb of elements,

where the positions of ¯av correspond to the attributes inAD(ℓ)

such thatρ(v) is defined. Again, the proof follows since we

have definedg(z̄) asb̄.

Part (2): For the proof that

INLPATTERN(π,D)
(

INLDOC(T,D)
)

⊆ π(T),

assume that for a tuple ¯a of constants there is a homomor-

phismh from I INLPATTERN(π,D)(ā) to INLDOC(T,D). We con-

struct a homomorphismg from Tπ(ā) to T. By Lemma 2, this

suffices for the proof.

Defineg as follows:

• For every nodev of Tπ(ā), consider the variableidv

defined in the procedure INLDOC, and assume that
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h(idv) = idn, for some elementidn of INLDOC(T,D).

Defineg(v) = n. Notice that this is well defined: from

the definition of INLDOC, and the properties of homo-

morphisms, we know thatn must be a node ofT. (Both

idv andidn occur in a position of the predicates that cor-

responds to the identifiers of the nodes in the schema

INLSCHEMA(D).)

• For everys ∈ S tr(Tπ(ā)), let v be the node ofTπ(ā) such

that s = ρ@a(v). Then, notice that from the definition

of the translation of patterns,s must be a free vari-

able of the queryQv in INLPATTERN(π,D), and thus

I INLPATTERN(π,D) contains the variables. Defineg(s) =

h(s).

We now prove thatg is a valid homomorphism fromTπ(ā)

to T. First, as mentioned in the definition ofg, it is clear that

g(v) ∈ N, for everyv ∈ Tπ(ā).

Second, we prove that, ifv is the root ofTπ(ā), theng(v) =

nr , wherenr is the root ofT. This follows from the fact that,

sinceπ is fully specified,π must be of formr(ā)[π′]. Then,

the variableidv must be mentioned in a predicate ofRr of

INLPATTERN(π,D). Sinceh is a homomorphism,h(idv) must

belong to a tuple inRr . It follows from the construction of

INLSCHEMA(D) and from Proposition 2 that it must be the

(unique) identifier ofRr , and thus the identifier of the root

node ofT.

Next, we prove that for every nodev of Tπ(ā), λTπ(ā)(v) =

λT (g(v)). Assume that for a nodev in Tπ(ā) it is the case that

λTπ(ā)(v) = ℓ. There are two cases. The claim for the case

whenv is marked follows from the fact that there must be a

tuple in the interpretation of the relationRℓ in INLDOC(T,D)

that containsh(idv) in its idℓ-attribute. Then, sinceg mapsv

to the node inT that corresponds toh(idv) in INLDOC(T,D),

it must be the case thatλT (g(v)) = ℓ. If v is not marked, let

ℓ′ be the nearest appropriate ancestor ofℓ, and consider the

tuple in the interpretation of relationRℓ′ in INLDOC(T,D)

that contains the elementidv in the position that corresponds

to the attributeidℓ. The proof follows easily using the same

argument as for the other case.

Assume now that two nodesv1, v2 of Tπ(ā) are such that

v2 is a child ofv1 in Tπ(ā). For the sake of readability, we

shall writeλ instead ofλTπ(ā) , since it will always be clear

from the context. Let thenℓ1 = λ(v1) andℓ2 = λ(v2), and

assume thath(idv1) = idn1 andh(idv2) = idn2, for some nodes

n1, n2 of T. Thus,g(v1) = n1, andg(v2) = n2. The proof

thatg(v2) is a child ofg(v1) follows easily from the fact thatg

preserves the labelling of the nodes, the graphG(D) is a tree,

π is compatible withD and andT conforms toD: If v2 is a

child of v1 in Tπ(ā), then it must be thatℓ1 ∈ PD(ℓ1), and that

ℓ1 does not appear in the production of any other label inD.

Then, sinceλT(n2) = ℓ2 andλT (n1) = ℓ1 andT conforms to

D, it must be thatn2 is a child ofn1.

Next, it is easy to see that for everys ∈ S tr(Tπ(ā)), g(s) ∈

S tr(T). Moreover, since we have definedg(s) = h(s), we also

have that thatg(s) = s for every constants.

Finally, we prove that for every nodev of Tπ(ā) and @a ∈

Att such thatρ@a(v) is defined,g(ρ@a(v)) = ρ@a(g(v)). As-

sume that for a nodev of Tπ(ā) and for an attribute @a ∈

Att, it is the case thatρ@a(v)) = s. We must prove that

g(s) = ρ@a(g(v)). But we have definedg(s) = h(s), and

thus, we need to prove thath(s) = ρ@ag(v). Assume first

that v is marked. Then, notice thats is the variable in

the position corresponding to @a in attr(Rλ(v)) in the predi-

cate of INLPATTERN(π,D) added in the step corresponding

to Qv. Thus, from the properties of relational homomor-

phisms,s must belong to the tuple inRλ(v) in INLDOC(T,D)

that containsh(idv) in its first position. Sinceg mapsv to

the node inT identified byh(idv), it must be the case that

ρ@a(g(v)) = h(s). For the case wherev is not marked, con-

sider the nearest appropriate ancestor ofv in Tπ(ā), and let

v′ be such node. Notice that sinceg preserves the child re-

lation, g(v′) is the nearest appropriate ancestor ofg(v). The

proof then follows by considering the attribute corresponding

to @a in AD(ℓ) in the relationRℓ′ , whereℓ′ = λ(v′) and then

using the same argument as in the previous case.�

By combining this result with Lemmas 1 and 2, it is not

difficult to obtain the following corollary:

Corollary 4. Let D be a DTD, T an XML document that con-

forms to D, andπ a pattern compatible with D. In addition,

let ā be a tuple of elements and variables. Then, there ex-

ists a homomorphism from Tπ(ā) to T if and only if there is a

homomorphism from IINLPATTERN(π,D)(ā) to INLDOC(T,D).

Moreover, it is not difficult to adapt this proof to show the

following:

Lemma 3. Let D be a DTD, and T1, T2 two trees that con-

form to D. There is a tree homomorphism from T1 and T2 if

and only if there is a homomorphism fromINLDOC(T1,D) to

INLDOC(T2,D)

Conjunctive queries over trees. We use the language that

is essentially conjunctive queries over trees [8, 31, 34] with

navigation along the child axis.

The languageCTQ is obtained by closing patterns under

conjunction and existential quantification:

Q := π | Q∧ Q | ∃x Q,
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whereπ is a fully specified tree-pattern formula. The seman-

tics is straightforward, given the semantics of patterns defined

above:Q(ā) ∧ Q′(b̄) is true iff bothQ(ā) andQ′(b̄) are true,

and∃x Q(ā, x) is true iff Q(ā, c) is true for some valuec. The

output ofQ on a treeT is denoted byQ(T).

We say that a queryQ is compatible with the DTDD if

every pattern used in it is compatible withD.

The inlining of queriesQ compatible withD is given by

the recursive algorithm INLQUERY in Algorithm 4.

Algorithm 4 INLQUERY(Q, D)
Input : A DTD D, a queryQ compatible withD.
Output: A conjunctive query over INLSCHEMA(D).
if Q = π then

return INLPATTERN(π,D)
else if Q = Q1 ∧ Q2 then

return INLQUERY(Q1,D) ∧ INLQUERY(Q2,D)
else if Q = ∃xQ1 then

return ∃x INLQUERY(Q1,D)

Now we show that every queryQ in CTQ can be com-

puted by its inlining on the inlining of its input (assuming,of

course, compatibility with a DTD). In other words,Require-
ment 3 is satisfied.

Theorem 5. Given a DTD D, a tree T that conforms to it,

and a compatible query Q, we have

Q(T) = INLQUERY(Q,D)
(

INLDOC(T,D)
)

.

Proof. Fix a DTD D and a treeT. The proof is done by

induction. We have already proved the base case with the

proof of Proposition 3.

For the induction step, assume first that

Q is of form ∃zQ1(x̄, z̄), and that Q1(T) =

INLQUERY(Q1,D)(INLDOC(T,D)). It is now easy to

see thatQ(T) = INLQUERY(Q,D)(INLDOC(T,D)): Assume

first that a tuple ¯a belongs toQ(T). Then, there must be

a tuple z̄ of variables such that (¯a, z̄) belongs toQ1(T).

Thus, from the inductive hypothesis, we obtain that (¯a, z̄)

belong to the evaluation of INLQUERY(Q1,D)(ā, z̄) over

INLDOC(T,D). It follows that (ā, z̄) belong to the evaluation

of INLQUERY(Q,D)(ā, z̄) over INLDOC(T,D), since the al-

gorithms defines INLQUERY(Q,D) = ∃z̄INLQUERY(Q1,D).

The other direction is analogous.

Next, assume thatQ = Q1(x̄1) ∧ Q2(x̄2), and that

Q1(T) = INLQUERY(Q1,D)(INLDOC(T,D)) and Q2(T) =

INLQUERY(Q2,D)(INLDOC(T,D)). The argument is sim-

ilar to the previous case: assume first that a tuple ¯a be-

longs to Q(T). Then, there must be subtuples ¯a1, ā2

of ā such that (¯a1) and (ā2) belong toQ1(T) and Q2(T),

respectively. We obtain that (¯a1) and (ā2) belong to

the evaluation of INLQUERY(Q1,D) and INLQUERY(Q2,D)

over INLDOC(T,D), and thus, since INLQUERY(Q,D) =

INLQUERY(Q1,D) ∧ INLQUERY(Q2,D), ā belongs to the

evaluation of INLQUERY(Q,D) overT. The other direction

is also analogous.�

Inlining XML schema mappings. We use our transforma-

tion of tree patterns to define the procedure INLMAPin Al-

gorithm 5, that, given source and target DTDsDS and DT ,

transforms an XML mappingM into a relational mapping

INLMAP(M,DS,DT) specified with a set of source-to-target

tuple generating dependencies.

Algorithm 5 INLMAP(M, DS, DT )
Input : An XML mappingM from a source DTDDS to a

target DTDDT .
Output: A relational mapping from INLSCHEMA(DS) to

INLSCHEMA(DT).

Set INLMAP(M,DS,DT) := ∅ for dependencyπ(x̄) →
∃z̄π′(x̄, z̄) inM do

INLMAP(M,DS,DT) := INLMAP(M,DS,DT)
⋃

{INLQUERY(π,DS)(x̄)→ ∃z̄ INLQUERY(π′,DT)(x̄, z̄)}
end
return INLMAP(M,DS,DT)

Correctness. While one could be tempted to ask for a trans-

lation that preserves all solutions, such a result need not hold.

The relational mapping INLMAP uses null values to repre-

sent the shredded nodes of XML trees, and thus we should

only consider solutions whose null values have not been re-

named. However, relational solutions are open to renaming

of nulls. This intuition can be formalized by means of the

universal solutions, which are the most general among all so-

lutions, and thus do not permit null renaming. Furthermore,

one typically materializes a universal solution, as these so-

lutions contain all the information needed to compute certain

answers of conjunctive queries. This motivates the restriction

of ourRequirement 4 to universal solutions.

The theorem below shows that parts (a) and (b) ofRe-
quirement 4 hold. Note that in part (b), relational universal

solutions are only required to contain a shredding of an XML

universal solution. This is because relational solutions are

also open to adding arbitrary tuples, which need not reflect a

tree structure of an XML document.

Theorem 6. a) LetM = (DS,DT ,Σ) be an XML schema

mapping and T an XML document that conforms to DS.

If T ′ is anM-universal solution for T , then its inlining



14
Rada Chirkova: Tractable XML Data Exchange via Relations

INLDOC(T′,DT) is an INLMAP(M,DS,DT)-universal solu-

tion for INLDOC(T,DS).

b) Let M = (DS,DT ,Σ) be an XML schema mapping,

and T an XML document that conforms to DS. Then

for every INLMAP(M,DS,DT)-universal solution R for

INLDOC(T,DS) there exists anM-universal solution T′ such

that INLDOC(T′,DT) is contained in R.

To prove Theorem 6, we first provide a key lemma.

Let M = (DS,DT ,Σ) be an XML schema mapping,

T be an XML tree that conforms toDS, and J an

INLMAP(M,DS,DT)-solution for INLDOC(T,D). For a re-

lation Rℓ of INLSCHEMA(DT), we denote all the positions

that correspond to an attributeidℓ or idµ(ℓ) of Rℓ as theiden-

tifier positionsof Rℓ. Moreover, an elementa in a tuplet in

the interpretation ofRℓ in J is an identifier elementif it oc-

cupies an identifier position int. We also define theattribute

positions of a relationRℓ as the positions that correspond to

attributes ofℓ or of ℓ′ | µ(ℓ′) = ℓ in D, and define the no-

tion of anattribute elementas expected. We now present the

lemma:

Lemma 4. LetM = (DS,DT ,Σ) be an XML schema map-

ping, and T be an XML tree that conforms to DS. Moreover,

let J be anINLMAP(M,DS,DT)-solution forINLDOC(T,D)

such that (1) every identifier element in J does not appear in

two identifier positions in two (not necessarily different)tu-

ples, and (2) no identifier element is also an attribute element.

Then, there exists a tree T′ such thatINLDOC(T′,DT) ⊆ J,

and such that T′ is anM-solution for T .

Lemma 4 formalizes the intuition that this class of "well

behaved" INLMAP(M,DS,DT)-solutions contains the cor-

rect representation of a shredded tree. The proof of this

Lemma constructs fromJ a correct tree representation, in

which each identifier element inJ represents a node of the

tree T′ such that INLDOC(T′,DT) ⊆ J. We leave out the

details, since the proof is lengthy and straightforward.

We now prove Theorem 6.

Proof. Part a: Let M = (DS,DT ,Σ) be an XML schema

mapping, andT an XML document that conforms toDS.

Consider an arbitraryM-universal solutionT′ for T. We need

to show that INLDOC(T′,DT) is an INLMAP(M,DS,DT)-

universal solution forT. The proof is split into two parts,

proving first that INLDOC(T′,DT) is a solution, and then that

it is universal.

As stated, we first prove that INLDOC(T′,DT) is an

INLMAP(M,DS,DT)-solution for INLDOC(T,DS). From

Proposition 2, it is clear that INLDOC(T′,DT) satisfies

the dependencies in∆D. We now show that the pair
(

INLDOC(DS,T), INLDOC(Dt,T′)
)

satisfies all the depen-

dencies of INLMAP(M,DS,DT). Assume that for a depen-

dency of the form

INLPATTERN(π(x̄),DS)→ ∃z̄INLPATTERN(π′(x̄, z̄),DT)

there is a tuple t̄x such that INLDOC(DS,T) |=

INLPATTERN(π(t̄x),D). From Proposition 3, it must be

the case thatT |= π(t̄x). Thus, sinceT′ is a solution forT,

there must be a tuplētz of constant and/or null elements such

thatT′ |= π′(t̄x, t̄z). Again, from Proposition 3, we obtain that

INLDOC(DT ,T′) |= INLPATTERN(π′(t̄x, t̄z),D). This finishes

the proof that INLDOC(T′,DT) is an INLMAP(M,DS,DT)-

solution for INLDOC(T,DS).

We now prove that INLDOC(T′,DT) is indeed universal.

Assume for the sake of contradiction that it is not an univer-

sal solution, that is, there exists a solutionJ such that there

does not exist a homomorphism from INLDOC(T′,DT) to J.

Construct fromJ a solutionJ′ as follows: For each identi-

fier position of every relationRℓ in INLSCHEMA(DT), and

for each tuple in the interpretation ofRℓ, replace each iden-

tifier elementa of t with a fresh null elementza. In addi-

tion, replace each occurrence ofa in the positionidµ(ℓ′) of

tuples in the interpretation of relationsRℓ′ that referenceRℓ

in a constraint in INLSCHEMA(DT) for za, and replace each

other occurrence ofa with a different, fresh null element.

It is easy to see thatJ′ is an INLMAP(M,DS,DT)-solution

for INLDOC(T,DS) as well. In fact, since we have replaced

each of those elementsa with nulls in a "cascade" fashion,J′

clearly satisfies all dependencies in INLSCHEMA(DT). The

same argument can be used to show that (INLDOC(T,DS), J′)

satisfies as well the dependencies in INLMAP(M,DS,DT).

Finally, there is a homomorphism fromJ′ to J: map eachza

and each fresh null replacinga as explained above back to

the elementa, and map each other element to itself. Thus,

by composition of homomorphisms, there cannot exist a ho-

momorphism from INLDOC(T′,DT) to J′, as this would im-

ply the existence of a homomorphism from INLDOC(T′,DT)

to J. However, note that solutionJ′ satisfies the property

of Lemma 4, since all identifying elements not satisfying it

have been replaced by fresh new null elements. Let thenTJ′

be theM-solution forT such that INLDOC(TJ′ ,DT) ⊆ J′ .

(Lemma 4 proves the existence ofTJ′ .) Notice that, since

INLDOC(TJ′ ,DT) ⊆ J′, there also exists a homomorphism

from INLDOC(TJ′ ,DT) to J′. Yet again, by composition of

homomorphisms, we conclude that there cannot exist a ho-

momorphism from INLDOC(T′,DT) to INLDOC(TJ′ ,DT).

On the other hand, the XML treeT′ is anM-universal so-
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lution, and thus there is an homomorphisms fromT′ to TJ′ .

But then, by Lemma 3, there exists a homomorphism from

INLDOC(T′,DT) to INLDOC(TJ′ ,DT). This is a contradic-

tion.

Part b: Assume thatR is an INLMAP(M,DS,DT)-

universal solution for INLDOC(T,DS). By inspecting the

form of the dependencies of INLMAP(M,DS,DT), one notes

that R needs to satisfy the conditions of Lemma 4, that is,

every identifier element inR does not appear in two tuples

in two different identifier positions; this can be easily using

simple tools from relational data exchange (see [4]). Then,

from Lemma 4, letT′ be anM-solution for T such that

INLDOC(T′,DT) ⊆ R.

To prove thatT′ is anM-universal solution forT, let T′′

be anM-solution forT; we need to prove that there is a ho-

momorphism fromT′ to T′′. From the part a) of this Theo-

rem, INLDOC(T′′,DT) is an INLMAP(M,DS,DT)-solution

for INLDOC(T,DS), and, sinceR is universal, there is a

homomorphismh from R to INLDOC(T′′,DT). Moreover,

since INLDOC(T′,DT) ⊆ R, h is also a homomorphism from

INLDOC(T′,DT) to INLDOC(T′,DT). Thus, from Lemma 3,

there is a homomorphism fromT′ to T′′. This concludes the

proof.�

Answering XML queries using relational data exchange.
The semantics of query answering in data exchange, both re-

lational and XML [1,3,4,8,9], is defined by means of certain

answers. That is, given a schema mappingM = (DS,DT ,Σ),

a treeT that conforms toDS, and a conjunctive tree queryQ

that is compatible withDT , thecertain answers of Q for T un-

derM, denoted byCERTAINM(Q,T), is the set of tuples that

belong to the evaluation ofQ over every possibleM-solution

for T, that is,
⋂

{Q(T′) | T′ is anM-solution forT}. Note

that our queries return sets of tuples, so we can talk about the

intersection operator.

It was shown in [8,9] that, for conjunctive tree queries and

mappings using nested-relational DTDs, computing certain

answers for a given source treeT is solvable in polynomial

time. Thus, for the classes of mappings and queries we con-

sider, there is no complexity mismatch between relational and

XML data exchange. The next theorem shows that our trans-

lation is correct with respect to query answering, that is, our

Requirement 5 is satisfied.

Theorem 7. LetM = (DS,DT ,Σ) be an XML schema map-

ping. Then, for every XML tree T that satisfies DS and for

every conjunctive tree query Q, the certain answers of Q for

T underM and the certain answers ofINLQUERY(Q,DT)

for INLDOC(T,DS) over INLMAP(M,DS,DT) coincide:

CERTAINM(Q,T) =
CERTAININLMAP(M)(INLQUERY(Q,DT), INLDOC(T,DS)).

Proof. Assume first that a tuplēt belongs to the certain an-

swers of a queryQ over a treeT under a mappingM =

(DS,DT ,Σ). Then, clearly,̄t belongs to the evaluation ofQ

over the canonical solution CANSOL(T) for T (which, in this

case, is guaranteed to exists [8]) underM. Then, by Proposi-

tion 5, t̄ belongs to the evaluation of INLQUERY(Q,DT) over

INLDOC(CANSOL(T),DT). Moreover, from Proposition

6, INLDOC(CANSOL(T),DT) is an INLMAP(M,DS,DT)-

universal solution for INLDOC(T,DS). From results in

[4], we obtain that t̄ belongs to the certain answers of

INLQUERY(Q,DT) over INLDOC(T,DS) underM. The

other direction is symmetric.�

The result of Theorem 7, combined with the standard pro-

cedure for evaluating conjunctive queries in relational data

exchange, also gives us an algorithm for computing certain

answers.

Corollary 8. Under the conditions of Theorem 7,

CERTAINM(Q,T) can be obtained by the following pro-

cedure:

1. run INLQUERY(Q,DT) on an INLMAP(M,DS,DT)-

universal solution forINLDOC(T,DS);

2. discard all tuples that contain null values.

6 XML-to-XML queries

Up to now, we have only considered queries that output tuples

of attribute values. In this section we shall focus on proper

XML-to-XML query languages, that is, on queries that output

XML trees.

Some immediate questions arise when dealing with these

formalisms in the data-exchange context. LetM =

(DS,DT ,Σ) be an XML schema mapping,T be a tree con-

forming toDS, andQ be an XML-to-XML query. Since the

evaluation ofQ overT returns an XML tree, we cannot define

certain answers as
⋂

{Q(T′)) | T′ is a solution forT}, since

the meaning of the intersection operator for XML documents

is not clear.

To overcome this problem, we use recent results from [22],

which showed how to define certain answers for queries re-

turning XML trees, and how to use them in the data-exchange

context. The key idea of [22] is to use tree patterns to define

information contained in documents, and to use them to rep-

resent compactly the certain knowledge from the collection
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{Q(T′)) | T′ is a solution forT}. More precisely, ifΠ is a set

of tree patterns which are matched by every treeQ(T′), we

look for a small setΠ0 of patterns that is equivalent toΠ as a

description of certain answers. By equivalence we mean that

a tree matches every pattern inΠ iff it matches every pattern

in Π0. If the setΠ0 is finite, then its patterns can be put to-

gether to create a tree with nulls, which we then view as the

certain answer.

We shall not need here additional details of the construc-

tion; instead, we shall use a result from [22] that tells us

how certain answers can be computed for a specific XML-to-

XML query language. The language, which is called TQL (to

be defined shortly), is inspired by XQuery’s FLWR (for-let-

where-return) expressions, and is restricted to positive fea-

tures (i.e., no negation). The key result from [22] is the fol-

lowing:

Proposition 9 ( [22]). LetM = (DS,DT ,Σ) be an XML

schema mapping, Q a TQL query, and T a tree that con-

forms to DS. If T ′ is anM-universal solution for T , then

CERTAINM(Q,T) = Q(T′).

Given this result, we now do the following. We pro-

vide a formal definition of the TQL language of [22], which

can express XML-to-XML analogs of relational conjunctive

queries. We then show how to adapt the machinery that

we have previously developed for evaluating certain answers

over a universal solution. Note that for this new translation, a

TQL queryQ returning trees needs to be translated into aset

of relational queries generating views that define the shred-

ding of the treeQ(T).

6.1 TQL queries

TQL queries [22] are inspired by the FLWR (for-let-where-

return) expressions of XQuery [21], but use only positive fea-

tures. The key construct isfor π(x̄) return q(x̄), whereπ(x̄) is

a pattern andq(x̄) is a query that defines a “forest expression.”

Formally, the syntax of forest expressions is

q(x̄) ::= ǫ

| ℓ(ā, x̄′)[q′(x̄′′)]
| q′(x̄′), q′′(x̄′′)
| for π(ā, x̄, ȳ) return q′(x̄, ȳ)

whereℓ ranges over node labels, ¯a over constant attribute val-

ues, and ¯x etc are tuples of variables.

A TQL queryQ is an expression of the formr[q], where

q is a forest expression without variables. To define the se-

mantics of this language, we first define inductively the forest

[[q(x̄)]]T,v, for a valuationv of all variables in ¯x as attribute

values. We use the notationℓ(ā)[ f ] for a tree whose root is

labeledℓ and carries a tuple of attributes ¯a; further, f is the

forest of subtrees below the root.

[[ǫ]]T,v = ǫ (empty forest)
[[ℓ(ā, x̄′)[q′(x̄′′)]]] T,v = ℓ(ā, v(x̄′))

[

[[q′]]T,v
]

[[q′(x̄), q′′(x̄′′)]]T,v = [[q′]]T,v ∪ [[q′′]]T,v

[[ for π(ā, x̄, ȳ) return q′(x̄, ȳ)]]T,v =

⋃

{

[[q′]]T,v′ | v
′ extendsv andT |= π(ā, v′(x̄), v′(ȳ))

}

For a treeT and a queryQ = r[q], the evaluationQ(T) of

Q overT is defined as the treer[[[ q]]T ], i.e., the forest [[q]]T

under rootr.

Example 7: Recall the tree T from Fig. 3(a). The treeT′

from Fig. 4(a) can also be obtained as the transformation

Q(T) resulting from the evaluation of a TQL queryQ overT,

whereQ = r[q], andq is defined as

for r/book(x)/author/name(y) return

writer[name(y),work(x)] (3)

For the sake of readability, we use the/ operator to denote

the child axis in tree patterns. �

6.2 Inlining TQL queries

If Q is a TQL query, then, to be able to define its inlining

translation, we need to specify a DTD for treesQ(T). Note

that TQL queries define the shape of their outputs, and at the

same time do not put restrictions on the number of appear-

ances of labels. Hence it is natural to define the DTD for out-

puts ofQ as astarredDTD DQ, whose shape is determined

by Q, and where each element type except the root occurs

under the Kleene star.

More precisely, for a forest expressionq, we define a forest

Fq inductively as follows:Fε is the empty forest;Fℓ[q′] is

ℓ[Fq′ ]; Fq′∪q′′ = Fq′ ∪ Fq′′ , and Ffor π return q′ = Fq′ . For

Q = r[q] we letTQ = r[Fq].

Then DQ is a non-recursive DTD that has a rulep →

c∗1 · · · c
∗
n for each nodep in TQ with children labelled

c1, . . . , cn. As usual, we require thatDQ be acyclic and we

assume without loss of generality thatG(DQ) is a tree.

Example 8: (Example 7 continued) Recall queryQ = r[q].

Then,TQ is the XML tree given byr[writer[name,work]],

and thusDQ contains productionsr → writer∗, writer →

name∗work∗, name→ ǫ andwork→ ǫ. �
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Before showing the algorithm INLTQL, we need to intro-

duce some features that will be used in the algorithm. Con-

sider again query (3) and DTDDQ in Examples 7 and 8. For

each pair of attributes that satisfyr/book(x)/author/name(y),

the queryQ creates a subtreewriter[name(y),work(x)] in the

treeQ(T). Thus, the relational translation would need to cre-

ate one tuple in the relations corresponding towriter, name

andwork for each pair of attributesx, y that satisfy the rela-

tional translation of the patternr/book(x)/author/name(y) in

the instance INLDOC(T).

In the relational translation we need a way to associate

each particularwriter wih a particularnameandwork. One

possible way of doing this is by creating a (Skolem) function

f that associates with each pair (name,work) a unique iden-

tifier for the correspondingwriter. The function f must be

defined in such a way thatf (book, name) is different for each

different pair (name,work). We enforce this requirement by

letting each termf (ā) represent a distinct constantcf (ā).

We will define our translation algorithm inductively. The

key procedure TQLSTEP for the inductive step is described

below. Its inputs, in addition to a query and a DTD, include

a conjunctive query corresponding to the conjunction of pat-

terns in the query, and a function term corresponding to the

parent in the treeQ(T) (for example, when creating views for

relationRwork, we would input the identifierf (x, y) of the par-

ent node labelledwriter). This is illustrated by the example

below.

Example 9: (Example 8 continued) Assume that queryQ =

r[q] of Examples 7 and 8 is posed overT under schemaD.

The following views define the translation forQ:

Rr ( fr ) := true

Rwriter( fwriter(x, y), fr ) :=

INLQUERY(r/book(x)/author/name(y),D)

Rname( fname(x, y), fwriter(x, y), y) :=

INLQUERY(r/book(x)/author/name(y),D)

Rwork( fwork(x, y), fwriter(x, y), x) :=

INLQUERY(r/book(x)/author/name(y),D)

Notice how each tuple in relationsRnameandRwork is set to

reference the correct tuple in relationRwriter. �

To define the inlining translation INLTQLin Algorithm 7,

we simply need a Skolem term for the root of the tree, as the

basis for the inductive procedure TQLSTEPin Algorithm 6.

A TQL query Q is compatible with a DTDD if all the

patterns used inQ are compatible withD. The following

Algorithm 6 TQLSTEP(Q, D, ϕ, t)
Input : A forest expressionq(x̄), a DTD D, a conjunctive

queryϕ(x̄) and a Skolem termt.
Output: A set of views over INLSCHEMA(DQ).
if q(x̄) ::= ǫ then

return ∅
else if q(x̄) ::= q′(x̄′), q′′(x̄′′) then

return TQLSTEP(q′,D, ϕ, t) ∪ TQLSTEP(q′′,D, ϕ, t)
else if q(x̄) ::= ℓ(ā, x̄′)[q′(x̄′′)] then

Let f be a fresh Skolem function. Define viewV as
Rℓ( f (x̄), t, ā, x̄′) := INLQUERY(ϕ,D), or just
Rℓ( f (), t, ā) := true if ϕ = ∅.
return {V} ∪ TQLSTEP(q′,D, ϕ, f (x̄))

Algorithm 7 INLTQL(Q, D)
Input : A TQL queryQ = r[q] and a DTDD.
Output: A set of views over INLSCHEMA(DQ).

Create a 0-ary functionfr .
return TQLSTEP(Q,D, ∅, fr())

proposition shows that INLTQL satisfies an analog ofRe-
quirement 3 for queries that output trees.

Proposition 10. Given a DTD D, a TQL query Q compat-

ible with D, and a tree T that conforms to D, we have that

INLDOC(Q(T),DQ) = INLTQL(Q,D)(INLDOC(T)), up to

renaming of nulls.

That is, the set of views INLTQL(Q,D) applied to the in-

lining of T yields the same answer as the inlining ofQ(T).

Proof. We begin by proving that INLTQL(Q,D)

(INLDOC(T,D)) ⊆ INLDOC(Q(T),DQ). Let DQ be the

DTD corresponding toQ. Assume that there exists

a tuple t that is part of the evaluation of a viewV in

INLTQL(Q,D)(INLDOC(T,D)), with view V of form

Rℓ( f (x̄), g(x̄′′), ā, x̄′) := INLQUERY(ϕ(x̄),D) (we do not

prove the case whenℓ = r since it is very similar). Let

v be a homomorphism so thatv( f (x̄), g(x̄′′), ā, x̄′) = t.

For the sake of readability, we letv(x̄) = b̄. Notice that,

from the definition of INLTQL, we have that̄b belongs to

INLQUERY(ϕ,D)(INLDOC(T,D)). By Theorem 5,̄b belongs

to ϕ(T). Assume that the forest query that created viewV

in the inlining of Q is of the formℓ(ā, x̄′)[q′(x̄′′)]. It can be

proved by induction that [[q(x̄)]]T,v must contain a node of

the formℓ(ā, v(x̄′))[[[ q′(x̄′′)]]T,v]. Thus, the inlining ofQ(T)

must contain a tuple inRℓ of the form (idn, idµ(n), ā, v(x̄′)); the

proof follows by renaming nullsidn and idµ(n) into v( f (x̄))

and v(g(x̄′′)), respectively. We only need to show that no

null value has to be renamed as two different constants.

This follows since the attributesidℓ and idµ(ℓ) correspond
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respectively to a key and foreign key of relationRℓ, and

the algorithm INLDOC chooses fresh null symbols for each

value in the position corresponding to the attributeidℓ.

Next, we show that INLDOC(Q(T),DQ) ⊆

INLTQL(Q,D)(INLDOC(T,D)), up to renaming of nulls.

Since every element ofDQ is under a star, it is easy to

see that relationRℓ will contain only attributesidℓ, idµ(ℓ) and

ADQ(ℓ). We first rename all elements that are in a position

corresponding to attributesidℓ as follows:

Let t̄ be a tuple of relationRℓ in INLDOC(Q(T),DQ), and

assume thatidn is the element that corresponds to attribute

idℓ of Rℓ. If ℓ = r, renameidn by the 0-ary termfr () used in

procedure INLTQL. For the case whenℓ , r, it is easy to see

from the definition of the procedure INLDOC thatQ(T) must

contain anℓ-labelled noden.

Thus, from the semantics of TQL queries, there must be

a sub-forestq of Q of the formq(x̄) = ℓ(ā, x̄′)[q′(x̄′′)] and a

valuationv such thatn is the top node of forest [[q(x̄]]T,v. Let

f be the function created by procedure INLTQL in the step

corresponding toq. Finally, let π1(z̄1), . . . , πk(z̄k) be the se-

quence of patterns present infor-return constructs inQ from

the root untilq, and letz̄ be the union of ¯z1, . . . , z̄k. Then, re-

nameidn ascf (v(z̄)). Notice that this procedure is well defined,

sincev must apply to each variable of ¯z.

Let us denote byJ the instance resulting from renaming all

elements of INLDOC(Q(T),DQ) accordingly. We show that

J ⊆ INLTQL(Q,D)(INLDOC(T,D)), up to renaming of nulls

in attribute positions, that is, nulls in positionsAD(ℓ) in tuples

onRℓ.

Let t̄ be a tuple of relationRℓ in J, and assume that the

elements int corresponding to attributesidℓ, idµ(ℓ) andADQ(ℓ)

arecf (b̄), cg(b̄′), ā, respectively.

We need to show that such tuple is in fact in

INLTQL(Q,D)(INLDOC(T,D)). Let n andn′ be the nodes

in Q(T) such thatidn and idn′ were replaced bycf (b̄) and

cg(b̄′), respectively,v and v′ the valuations witnessing the

membership ofn and n′ in Q(T), as explained above; and

q(x̄), q′(x̄′) the forest queries that give rise to the creation of

f and respectivelyg by procedure INLTQL. Moreover, let

ϕ(z̄) = π1(z̄1), . . . , πk(z̄k) be the sequence of patterns present

in for-return constructs inQ from the root untilq, wherez̄ is

the union ofz̄1, . . . , z̄k. Then notice that valuationv is such

that (T, v) |= ϕ(z̄).

In the same fashion, we selectϕ′(z̄′) = π′1, (z̄
′
1), . . . , π

′
k′(z̄k′)

andz̄′ for forest queryq′. As a remark, sincen′ is the parent

of n, observe that each patternπ′i corresponds to a patternπ j,

for somej ≤ k. Finally, it is easy to see that there is no other

query of the formℓ(ȳ, ā)[q′′(ȳ′)] in betweenq andq′. Thus,

the step of INLTQL corresponding toq(x̄) must have received

the termg(z̄′) as input.

By following these remarks, one notices that procedure

INLTQL creates the following viewV for the step ofq(x̄):

Rℓ( f (z̄), g(z̄′), d̄, x̄) := INLQUERY(ϕ,D).

All that remains to see is that, since (T, v) |= ϕ(z̄), it

must be that INLDOC(T,D) |= INLQUERY(ϕ(v(z̄)),D).

This ensures the existence of a fact of the form

Rℓ(cf (v(z̄)), cg(v(z̄′)), d̄, v(x̄)) = Rℓ(cf (b̄), cg(b̄′), ā) in

INLTQL(Q,D)(INLDOC(T,D)). �

Translating relations back into XML. To complete the

translation, we need an algorithm to publish back the rela-

tional data as an XML document. This is done by means

of the algorithm PUBREL in Algorithm 8. We say that an

instanceI of INLSCHEMA(D) D-representsa treeT that con-

forms toD if I = INLDOC(T,D).

Algorithm 8 PUBREL(D,I )
Input : A DTD D and an instanceI thatD-represents some

tree.
Output: An XML tree T that isD-represented byI .

for each nodeℓ of G(D), traversed as Depth-first-searchdo
for each tuple t of Rℓ in I with elements n,̄a and n′ cor-
responding to attributes idn, AD(ℓ) and idµ(n) do

for every non-starred nodeℓ′ of G(D) such that
µ(ℓ′) = ℓ, and elements n′′ andb̄ in t corresponding
to attributes idℓ′ and AD(ℓ′) do

Create a noden′′ in T labelledℓ′, with attributes
b̄, in a parent-child scheme that resemblesG(D).

endfor
Add to T a noden labelledℓ, with attributes ¯a, with
n′ as ancestor, according to the parent-child sequence
defined byG(D (no parent ifℓ = r).

endfor
endfor
return T

This algorithm will only work for relational instances that

represent shredded documents. The following proposition

shows its correctness.

Proposition 11. Given a DTD D and a relational

instance I of INLSCHEMA(D), it is the case that

INLDOC(PUBREL(D, I )) = I.

Proof. Let T be a tree such that INLDOC(T,D) = I . We

construct a mappingh betweenT and PUBREL(I ) as follows:

• For each noden of T that is marked, letℓ be its label, and

idn be the identifier ofI = INLDOC(T,D) that belongs

to the attributeidℓ of the tuplet created by procedure

INLDOC from noden. Then, defineh so that it mapsn to
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the node of PUBREL(I ) created by procedure PUBREL

from tuplet of Rℓ.

• For each noden that is not marked, letn′ = µ(n), andt

the corresponding tuple in INLDOC. Let ℓ andℓ′ be the

labels ofn andn′, respectively, and assume thatidn, idn′

are the identifiers oft in positionsidℓ and idℓ′ of tuple

t in R′
ℓ
. Then, procedure PUBREL will create fromt a

noden′t labelledℓ′ and a nodent labelled withℓ, such

thatµ(nt) = n′t in PUBREL(I ). Defineh so that it mapsn

to nt.

It is clear that this mapping is one to one, sinceI =

INLDOC(T,D). Furthermore, sinceG(D) is a tree, it is

also clear that this mapping preserves the relationµ of near-

est appropriate ancestors, as the way in which procedure

PUBREL creates the parent-child relation of nodes is always

unique. Finally, from the definition of procedures PUBREL

and INLDOC it must be the case that for everyn in T la-

belled ℓ, the set{ρ@a(n) | @a ∈ AD(ℓ)} is the same as

{ρ@a(h(n)) |@a ∈ AD(ℓ)} in PUBREL(I ).

It is now an easy exercise to prove that INLDOCcreates the

same relations (up to renaming of nulls) for PUBREL(I ) and

(T), since for every marked noden of T the procedure creates

exactly the same tuple as marked nodeh(n) of PUBREL(I ). �

6.3 TQL queries in XML data exchange

Combining the previously mentioned result in [22] with the

correctness of the algorithms we presented we conclude that

Requirements 1-5 are satisfied for data exchange with XML-

to-XML queries:

Theorem 12. LetM = (DS,DT ,Σ) be an XML schema map-

ping. Then, for every XML tree T that satisfies DS and for

every TQL query Q, the certain answers of Q for T under

M coincide with the certain answers ofINLTQL(Q,DT) for

INLDOC(T,DS) over INLMAP(M,DS,DT) :

INLDOC(CERTAINM(Q,T),DQ) =
CERTAININLMAP(M)(INLTQL(Q,DT), INLDOC(T,DS)).

Remark: The notion of certain answers naturally

(component-wise) extends to queries computing multiple re-

lations.

Proof. Fix an M-universal solutionT′ for T. By Proposition

9, CERTAINM(Q,T) = Q(T′), whereT′ is a universal solu-

tion. Furthermore, by Proposition 10, INLDOC(Q(T′),DQ) =

INLTQL(Q,DT)(INLDOC(T′,DT)).

Finally, since the views created by the procedure

INLTQL are essentially conjunctive queries using Skolem

terms, and (by Theorem 6) INLDOC(T′,DT) is an

INLMAP(M,DS,DT)-universal solution for INLDOC, it

can be proved that INLTQL(Q,DT)(INLDOC(T′,DT)) =

CERTAININLMAP(M)(INLTQL(Q,DT), INLDOC(T,DS)), using

standard tools from the data-exchange literature (see [3, 4]).

�

Theorem 12 and Proposition 11 give us a way

of computing CERTAINM(Q,T). First, compute

CERTAININLMAP(M)(INLTQL(Q,DT), INLDOC(T,DS)) by

materializing views INLTQL(Q,DT) over the canonical

solution for INLDOC(T,DS), and then use the procedure

PUBREL to output it as the treeCERTAINM(Q,T).

7 Concluding remarks

T
M

- T ′

univ

Q
- certain answer

R

INLDOC

? INLMAP(M)
- R′

univ

INLDOC

?
INLQUERY(Q)

- certain answer

w

w

w

w

w

w

w

w

w

w

Fig. 5 The summary of the proposed technique

Our technique provides a relational approach to solve two

of the most important problems of XML data-exchange set-

tings: materializing solutions and answering queries. The

Fig. 5 summarizes this. In a pure XML setting, we can start

with a documentT and use a mappingM to find a (universal)

solutionT′univ, over which we can then answer a queryQ to

produce certain answers.

Using the translation INLDOC of documents, we generate

a relational instanceR, on which the translation of the map-

ping INLMAP(M) generates a universal solutionR′univ. This

solution is a shredding, via INLDOC, of a universal XML so-

lution, and also conforms to the shredding of source DTD.

Finally, we apply the standard technique [4] for evaluating

queries in relational data exchange to the query translation

INLQUERY(Q) or INLTQL(Q) to produce the correct an-

swers, in the latter case with the possibility of using PUBREL

to publish back the results into XML.

Implementing our proposed algorithms for use in practi-

cal systems would be straightforward using the specifications

given in this paper. A natural next step is to evaluate XML

data-exchange systems using relational data storage and im-

plementations of our algorithms. We are currently working

in this direction.
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We finish with a remark about the possibility of allowing

operators ? and+ in DTDs, as well as a choice operator for

representing multiple choices. We say that a non-recursive

DTD D is anextended nested relationalDTD if all rules of

D are of the formℓ → ℓ̃0 . . . ℓ̃m, or ℓ → ℓ0 + . . . + ℓm, where

all theℓi ’s andℓ̃i ’s are distinct, and each̃ℓi is one ofℓi , ℓi?,ℓ∗i
or ℓ+i (as usual,ℓ? stands forℓ|ǫ andℓ+ for ℓℓ∗).

The procedure INLSCHEMA can be extended to these

DTDs. For each elementℓ that is under the operator ?, the

transformation creates a special relationℓ that references the

relation of the nearest appropriate ancestor ofℓ. Furthermore,

the transformation for a rule of the formℓ1 → ℓ+2 can be de-

fined by including a dependency that ensures that there is at

least one tuple in the relationRℓ2 for each tuple inRℓ1. Fi-

nally, for the choice operatorℓ → ℓ0 + . . . + ℓm the transfor-

mation would create one relationRℓ for each possible choice

of ℓ0, . . . , ℓm. Then, it is possible to extend all the procedures

in a way that still satisfiesRequirements 1-5 under extended

nested relational DTDs.
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