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Abstract
We consider the containment problem for regular queries with memory and reg-
ular queries with data tests: two recently proposed query languages for graph
databases that, in addition to allowing the user to ask topological queries, also
track how the data changes along paths connecting various points in the database.
Our results show that the problem is undecidable in general. However, by allow-
ing only positive data comparisons we find natural fragments with better static
analysis properties: the containment problem is PSPACE-complete in the case of
regular queries with data tests and EXPSPACE-complete in the case of regular
queries with memory.
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1. Introduction

Managing graph-structured data is one of the most active topics in the database
community these days. Although first introduced in the eighties [12, 13], the
model has recently gained popularity due to a high demand from services that
find the relational model too restrictive, such as social networks, Semantic Web,
crime detection networks, biological databases and many others. There are sev-
eral vendors offering graph database systems [14, 16, 27] and a growing body of
literature on the subject (for a survey see, e.g., [2, 7, 33]).

In such applications data is usually modelled as a graph, with each node de-
scribing one entity in the database, for example a user in a social network, and
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the edges of the graph representing various connections between nodes, such as
friends in a social network, supervisor connections in a database modelling the
structure of a company, etc. Nodes can have various types of connections, so usu-
ally each edge in the graph is labelled. Finally, nodes by themselves contain the
actual data, modelled as traditional relational data with values coming from an
infinite domain [2].

To query graph-structured data, one can, of course, use traditional relational
languages and treat the model as a relational database. What makes graph
databases attractive in modern applications is the ability to query intricate nav-
igational patterns between objects, thus obtaining more information about the
topology of the stored data and how it relates to the actual data. Earliest graph
query languages, such as regular path queries (RPQs) [13] and conjunctive regular
path queries (CRPQs) [9, 12], concentrate on retrieving the topology of the graph
and ignore the actual data stored. These languages have been well studied in last
decades, and many extensions were defined for them, such as 2-way RPQs [9],
which allow backward navigation; nested regular expressions [5], which allow
existential tests; or extended CRPQs [3], which allow checks of nontrivial rela-
tions amongst paths. Industry is also taking account of navigational languages.
For example, RPQs have been added to SPARQL, a query language for Semantic
Web graph databases [18], as a primitive for querying navigational properties of
graphs.

But purely navigational languages such as RPQs or CRPQs cannot reason on
the data stored in the nodes. Thus such data was usually queried using relational
languages, without a way of specifying the interplay between the data stored and
various navigational patterns connecting the data.

This interplay is indeed a requirement in many applications using graph-
structured data. For example, in a database modelling the inner workings of a
company one might be interested in finding chains of people living in the same
city that are connected by professional links, or in a social network one could look
for a sequence of friends, all of which like the same type of music. Recently, sev-
eral languages that can handle such queries have been proposed [23, 24, 26] and
they were all built on the idea of extending RPQs, or some variation thereof, with
the ability to reason about data values that appear along the navigated path.

Our goal is to study static analysis aspects of this new generation of graph
query languages, understanding them as basic building blocks for more complex
navigational languages. We concentrate on the query containment problem, which
is the problem of deciding, given two queries in some graph language, whether
the answer set of the first query is contained in the answer set of the second one.
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Deciding query containment is a fundamental problem in database theory, and is
relevant to several complex database tasks such as data integration [22], query op-
timisation [1], view definition and maintenance [17], and query answering using
views [10].

The importance of this problem motivated sustained research for relational
query languages (see, e.g., [1]), XML query languages (see e.g. [29]) and even
extensions of RPQs and other graph query languages [3, 4, 9, 15, 21]. The overall
conclusion is that containment is generally undecidable for first order logic and
other similar formalisms (see, e.g., [1]), but becomes decidable if we restrict to
queries with little or no negation. For example, containment of conjunctive queries
is NP-complete, while containment of RPQs, 2-way RPQs and nested regular
expressions is PSPACE-complete. For CRPQs it jumps to EXPSPACE-complete.

While much is known about the containment problem for the above mentioned
classes of queries, no detailed study has been conducted for query languages that
deal both with navigational and data aspects of graph databases. Therefore, in
this work we concentrate on the containment problem for languages which mix
topological properties and data values. Namely, we consider regular queries with
memory (or RQMs for short) and regular queries with data tests (or RQDs), both
introduced in [26]. We primarily concentrate on containment, but the techniques
presented here can easily be adapted to deal with other similar problems, such as
satisfiability or equivalence of queries.

The intuition behind RQMs is that one can navigate through a graph in the
same way as with RPQs, but along the path it is also possible to store a data
value into a register and compare it with another value encountered later on the
path. This idea is very similar to the one of register automata [19, 28] and in
fact one can show that these two formalisms are equivalent [25]. RQDs operate
in a similar fashion, but storing and comparing values adheres to a more strict
stack-like discipline, so they enjoy much better evaluation properties.
Contributions By using equivalence of RQMs with register automata, we obtain
our first result: the problem of checking whether one RQM is contained in another
RQM is undecidable. This, of course, opens up the question of fragments of
the language that do have decidable containment problem. The class of positive
RQMs is one of such fragments, in which we allow testing if two data values are
equal, but not if they are different. We show that the problem of positive RQM
query containment is decidable and, in fact, EXPSPACE-complete.

Next we move onto the class of RQDs, which was shown to be strictly con-
tained in the class of RQMs [26]. The imposed restrictions to RQMs are quite
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heavy, and computational complexity of query evaluation drops by almost one ex-
ponent when we consider RQDs instead of RQMs [26]. For this reason one may
expect the containment problem to be decidable for RQDs. On the contrary, as
we show, it remains undecidable even in this restricted scenario. However, this
changes once again when we consider positive RQDs, for which a PSPACE algo-
rithm for testing containment is obtained. This is the best possible bound for any
extension of RPQs, since their containment is already PSPACE-hard [11].

Overall, we see that when containment is considered, the situation is quite dif-
ferent for languages handling both topology and data than it is for traditional graph
languages allowing only navigational queries. While for the latter containment is
generally decidable, we show that for the languages considered here the problem
resembles behaviour of relational algebra, where containment is undecidable for
the full language, but various restrictions on the use of negation lead to decidable
fragments.
Organization In Section 2 we formally define the data model and the problem
studied. In Section 3 we introduce RQMs and the model of register automata used
throughout this paper and then study their containment problem. We do the same
for RQDs and the corresponding automata in Section 4. We conclude with some
remarks about future work in Section 5.
Remark Some of the results of this paper have been announced previously in [20]
where they appeared without proofs. In this extended version we provide the
missing proofs and substantial new material, including the definition an analysis
of the automata versions for RQMs and RQDs (the latter being a novel class of
register automata), and several additional examples.

2. Preliminaries

Data graphs Let Σ be a finite alphabet of labels and D an infinite set of data
values. A data graph over labels Σ and data values D is a triple 〈V,E, ρ〉, where

– V is a finite set of nodes,

– E ⊆ V × Σ× V is a set of labelled edges, and

– ρ : V → D is a function that assigns a data value to each node in the graph.
An example of a data graph is shown in Figure 1. If data values are not impor-

tant, we disregard ρ and only talk about graphs 〈V,E〉 over Σ.
Regarding data values, this paper follows [23, 26] and the standard convention

for data trees (as a model for XML), and assumes that data values are attached to
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Figure 1: A data graph over labels {a, b, c} and natural numbers as data values, in which nodes
are vi, 1 ≤ i ≤ 6.

nodes. There are several ways to attach data values to graphs, such as in the edges
or both in nodes and edges, but they are essentially equivalent [32].

We also assume that each node is assigned a single data value. This is not a real
restriction, since a node with data values of several attributes can be modelled in
our formalism as follows: for each attribute, the node is connected to a dedicated
auxiliary node by an edge labelled with the attribute name, and the data value
of the auxiliary node is the value of the attribute; moreover, in order to allow
collecting multiple attribute values on a single path, each such auxiliary node is
connected back to the original node by an edge with a special label back.
Paths A path between nodes v1 and vn in a graph 〈V,E〉 is a sequence

v1a1v2a2v3 . . . vn−1an−1vn,

such that each (vi, ai, vi+1), for 1 ≤ i < n, is an edge in E. The label of the path
is the word a1 . . . an−1 obtained by reading the edge labels appearing along this
path.
Queries The default core of any query language for graphs is regular path queries
(or RPQs), which are just regular languages over labels Σ, usually defined by
regular expressions. The evaluation JeKG of an RPQ e over a graph G, is the set
of all pairs (v, v′) of nodes in G such that there exists a path from v to v′ with the
label from the language of e.

There are a number of extensions of RPQs proposed in the literature. In
this paper we concentrate on those that are capable of dealing with data values,
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namely, RQMs and RQDs, introduced in the following sections. All queries in
these classes are binary, that is, their evaluations (i.e., answers) are sets of pairs
of nodes. Same as for RPQs, we denote by JeKG the evaluation of such a query e
over a data graph G.
Containment and Equivalence A query e is contained in a query e′, written
e ⊆ e′, if for each data graph G over labels Σ and data values D we have that

JeKG ⊆ Je′KG.

Queries e and e′ are equivalent, written e ≡ e′, if and only if JeKG = Je′KG for
every G.

The containment and equivalence are at the core of many static analysis tasks,
such as query optimisation. All the classes of queries considered in this paper are
closed under union, so these two problems are easily interreducible: e ≡ e′ if and
only if e and e′ contain each other, and e ⊆ e′ if and only if e∪e′ ≡ e′. This is why
we concentrate just on the first problem, that is, consider the following decision
problem parametrised by a class of queries Q.

CONTAINMENT(Q)
Input: Queries e and e′ from Q.
Question: Is e contained in e′?

The semantics of RPQs is defined for graphs, but it is straightforward to see
that, for any two RPQs e and e′, we have that e ⊆ e′ if and only if L(e) ⊆ L(e′),
where L(e) and L(e′) are the word languages accepted by regular expressions e
and e′, respectively, [11]. From this fact we obtain that containment of RPQs is
PSPACE-complete, following the classic result that containment of regular expres-
sions is PSPACE-complete. Since all of the classes of queries studied in this paper
are extensions of RPQs, this establishes a lower bound for containment of any of
these classes.

3. Regular Queries with Memory

Regular queries with memory, or RQMs for short, were introduced in [26]
(where they were called regular expressions with memory) as a formalism for
querying data graphs that allows data comparisons while navigating through the
structure of the graph. They are based on register automata, an extension of finite-
state automata for words over infinite alphabets.
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The idea of RQMs is the following. They can store data values in a number
of named registers, while parsing the input graph according to a specified regular
navigation pattern. Also, they can compare the current data value with values that
had previously been stored. An example of an RQM is the expression ↓x.a+[x=],
which returns all pairs (v1, v2) of nodes in a graph that have the same data value
and are connected by a path labelled only with a’s. Intuitively the expression
works as follows: it first stores the data value of the node v1 into the register x,
and, after navigating an a-labelled path, it checks that the node v2 at the end of
this path has the same data value as the first node. This check is done via the test
x=, which makes sure that the data value of v2 is the same as the one stored in
register x.

The proposal of RQMs as a formalism for querying data graphs was moti-
vated not only by their ability to handle data values, but also by the low com-
putational complexity of their evaluation: it is PSPACE-complete in general, and
NLOGSPACE-complete if the query is fixed (i.e., in data complexity) [26]. Hence,
in the general case it is the same as for first-order or relational algebra queries, and,
while slightly higher than for the latter two, the data complexity is still reasonable.

3.1. Syntax and Semantics of RQMs
Let X be a set of registers. A condition over X is a positive Boolean combi-

nation of atoms of the form x= or x 6=, for x ∈ X .

Definition 3.1. A regular query with memory (or RQM) over an alphabet of labels
Σ and a set of registers X is an expression satisfying the grammar

e := ε | a | e ∪ e | e · e | e+ | e[c] | ↓x.e

where ε is the empty word, a ranges over labels, x over registers, and c over
conditions.

Before formally defining the semantics, let us give some examples of RQMs
and explain their intuitive meaning.

Example 3.2.
1. The RQM ↓x.(a[x=])+ returns all pairs of nodes connected by a path, along

which all the edges are labelled a and all data values are equal. The evaluation
starts with ↓x, which stores the first data value into register x. The subexpres-
sion (a[x=])+ then checks that each subsequent label along the path is a, and
that the data value of each node on this path is equal to the one of the first
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HG(ε) = {(s, s) | s is a state}
HG(a) = {([v1, λ], [v2, λ]) | (v1, a, v2) ∈ E}
HG(e1 ∪ e2) = HG(e1) ∪HG(e2)
HG(e1 · e2) = HG(e1) • HG(e2)
HG(e+) = HG(e) ∪ (HG(e) • HG(e)) ∪ (HG(e) • HG(e) • HG(e)) ∪ . . .
HG(e[c]) = {([v1, λ1], [v2, λ2]) |

([v1, λ1], [v2, λ2]) ∈ HG(e) and ρ(v2), λ2 |= c}
HG(↓x.e) = {([v1, λ1], [v2, λ2]) |

([v1, λ1], [v2, λ2]) ∈ HG(e) and λ1(x) = ρ(v1)}

Table 1: Definition of functionHG with respect to a data graph G.

node (this is done by comparison with the value stored in the register x). The
fact that this subexpression has + indicates that the sequence of checks is of
arbitrary none-zero length.

2. The RQM ↓x.(a[x 6=])+ returns all pairs of nodes connected by a path where
all edges are labelled with a and the first data value is different from all other
data values. It works analogously as the expression above, except that it
checks for inequality.

3. The RQM ↓x.(a · b)+[x 6=] returns all pairs of nodes connected by a path,
whose label is of the form ab · · · ab, and the first data value is different from
the last. Note that the order of + and the condition check is different from the
previous examples: the condition is checked only once, after verifying that
the label is in (a · b)+, that is, at the end of the path.

To define what it means for a data value to satisfy a condition we need the
following notion. An assignment of registersX is a partial function fromX to the
set of data values D. We will also write Image(λ) for the range of an assignment
λ. Intuitively, an assignment models the current state of the registers at some point
of the computation, with some registers containing stored data values, and some
still being empty. Formally, a data value d and an assignment λ satisfy a condition
x= (or x 6=), written d, λ |= x= (or, d, λ |= x 6=, respectively), if and only if λ(x)
is defined and d = λ(x) (or d 6= λ(x), respectively). This satisfaction relation is
extended to general conditions in the usual way.

Given a data graph G and a set of registers X , a state is a pair consisting of a
node of G and an assignment of X .

The semantics of RQMs over a data graph G = 〈V,E, ρ〉 is defined in terms
of a function HG, which binds each RQM with a set of pairs of states in the

8



graph. The intuition of the set HG(e), for some RQM e, is as follows. Given
states s1 = [v1, λ1] and s2 = [v2, λ2], the pair (s1, s2) is in HG(e) if there exists
a path from v1 to v2, such that expression e can parse this path assuming that the
registers are initialized according to λ1, modified and tested as dictated by e, and
the resulting assignment after traversing the path is λ2.

Formally, given a data graph G = 〈V,E, ρ〉, the functionHG is constructed by
the inductive definition in Table 1. The symbol • in the table refers to the usual
(left) composition of binary relations:

HG(e1) • HG(e2) =

{(s1, s2) | ∃s such that (s1, s) ∈ HG(e1) and (s, s2) ∈ HG(e2)}.

Finally, the evaluation JeKG of an RQM e over a data graph G is the following
set of pairs of nodes in G, where ⊥ is the assignment with the empty domain:

{(v, v′) | ∃λ such that ([v,⊥], [v′, λ]) ∈ HG(e)}.

Example 3.3. Consider the evaluations of the expressions from Example 3.2 over
the data graph in Figure 1:

1. the evaluation of ↓x.(a[x=])+ is {(v6, v5)};
2. the evaluation of ↓x.(a[x 6=])+ is {(v1, v2), (v1, v5), (v2, v5), (v2, v3)}; and

3. the evaluation of ↓x.(a · b)+[x 6=] contains (v1, v4) and (v6, v4), but does not
contain (v2, v4).

Note that RQMs have the same algebraic properties as usual regular expres-
sions: for example, composition · and union ∪ are associative, and ∪ is also com-
mutative. We will use these properties silently, for example, omit parentheses in
compositions and unions of several sub-expressions. Besides this, RQMs obey
some algebraic laws that involve their specific operators. The following proposi-
tion immediately follows from the definitions.

Proposition 3.4. The following equivalences hold for any RQMs e1 and e2, regis-
ter x, and condition c:

(↓x.e1) · e2 ≡ ↓x.(e1 · e2),
e1 · (e2[c]) ≡ (e1 · e2)[c].

Same as for the associativity and commutativity laws, we will use these equiv-
alences and omit parentheses accordingly. We will also use standard abbreviations
e∗ for ε ∪ e+ and ek for the composition e · . . . · e of k copies of an RQM e.
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Figure 2: The data graph Gw corresponding to the data word w = d1a1d2 . . . an−1dn (identifiers
of the intermediate nodes are omitted).

3.2. From Graphs to Words
As we mentioned in the preliminaries, standard algorithms for containment of

RPQs rely on the fact that two RPQs are contained if and only if the regular lan-
guages they define are contained [11]. In this section we show a similar behaviour
for RQMs.

Data words are a widely studied extension of words over finite alphabets [30],
in which every position carries not only a label from the finite alphabet Σ, but also
a data value from the infinite domainD. However, just for uniformity of presenta-
tion, we follow [26] and opt to the following essentially equivalent definition, by
which data values are attached not to positions in a word, but “between” them.1

Definition 3.5. A data word over a finite alphabet of labels Σ and an infinite set of
data values D is a sequence d1a1d2a2 . . . an−1dn, where n > 0, di ∈ D, for each
1 ≤ i ≤ n, and ai ∈ Σ, for each 1 ≤ i < n.

Every data word w = d1a1d2 . . . an−1dn can be easily transformed to a data
graph Gw, consisting of n different nodes with data values d1, . . . , dn, which are
connected by edges labelled with a1, . . . , an−1, as illustrated in Figure 2.

The semantics of RQMs over data words is defined in the straightforward way:
a data word w is accepted by an RQM e if and only if (v, v′) ∈ JeKGw , where v
and v′ are the first and the last nodes of Gw. The set of all data words accepted by
an RQM e is denoted by L(e).

Coming back to graphs, each path

v1a1v2a2v3 . . . vn−1an−1vn,

in a data graph 〈V,E, ρ〉 has the corresponding data word

ρ(v1)a1ρ(v2)a2ρ(v3) . . . ρ(vn−1)an−1ρ(vn).

1In [26] to distinguish this notion from the original, the term “data path” was used.
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As noted in [26], for each RQM e, data graph G, and nodes v, v′ of G, it
holds that (v, v′) ∈ JeKG if and only if there exists a path between v and v′ such
that its corresponding data word is accepted by e. Exploiting usual techniques in
query containment we arrive at the following proposition, similar to the property
of RPQs, mentioned in the preliminaries.

Proposition 3.6. Given two RQMs e and e′, it holds that e ⊆ e′ if and only if
L(e) ⊆ L(e′).

Proof. In this proof we will use the following result from [23]: a pair of nodes
(v, v′) of a data graph G belongs to JeKG if and only if there is a path from v to v′

such that its corresponding data word belongs to L(e).
Assume first that e ⊆ e′. By definition, it means that JeKG ⊆ Je′KG, for

every data graph G. Consider any data word w = d1a1d2a2 . . . an−1dn such that
w ∈ L(e). By definition we have that (v, v′) ∈ JeKGw , where Gw is the data graph
corresponding to w, as denoted in Figure 2. Then by our assumption we have that
(v, v′) ∈ Je′KGw . From this and the definition of L(e′), it follows that w ∈ L(e′),
as desired.

For the backward direction, suppose thatL(e) ⊆ L(e′) and take any data graph
G and pair of nodes (v, v′) ∈ JeKG. By the aforementioned fact, there is a path
from v to v′ in G whose corresponding data word w belongs to L(e). Then by
our assumption we have that w ∈ L(e′), so using the same fact for e′ we get that
(v, v′) ∈ Je′KG.

Note that in this proposition e ⊆ e′ is defined on data graphs, but L(e) and
L(e′) are sets of data words.

3.3. Automata for RQMs
As it is usual when dealing with query languages based on regular expres-

sions, to establish an upper bound for the containment of RQMs we use a class of
automata that subsumes RQMs—namely, register automata [19, 26]. A register
automaton is essentially a finite state automaton equipped with a finite set of reg-
isters allowing it to store data values for later comparisons. It can move to the next
state either by matching the current label from a finite alphabet or by comparing
the current data value with the ones in the registers. Since we use data words it is
best to draw the formal definition from [26].

Definition 3.7. A register data word automaton with the registers X over an al-
phabet of labels Σ is a tuple 〈P, rs, qf , γ〉, where

11



– P is a set of states that is a disjoint union of data states R and word states Q;

– rs ∈ R and qf ∈ Q are the initial and the final states, respectively;

– γ is a pair consisting of

- the data transition relation δ ⊆ R× CX × 2X ×Q, where CX is the set of
all conditions over X and 2X is the set of all subsets of X , and

- the word transition relation α ⊆ Q× Σ×R.

The intuition behind this definition is that since we alternate between data
values and labels (word symbols) in data words, we also alternate between data
states, which expect data value as the next symbol, and word states, which expect
labels as the next symbol. We start with a data value, so the initial state rs is a
data state, and end with a data value, so the final state qf , seen after reading that
value, is a word state.

In a data state, the automaton checks if the current data value and assignment
of the registers satisfy the condition, and if they do, moves to a word state and
updates some of the registers with the read data value. In a word state a regis-
ter automaton behaves as a usual nondeterministic final state automaton (NFA),
except that it moves to a data state.

Example 3.8. Consider again the expression ↓x.(a[x=])+ from Example 3.2. An
equivalent register automaton is depicted in Figure 3(a), where data transition
arrows are labelled with conditions and sets of assigned registers, and word tran-
sition arrows are labelled with alphabet symbols. It uses data states {rs, r} and
word states {q, qf} with initial state rs and final state qf , respectively, while γ
is given by the data transitions (rs, true, {x}, q) and (r, x=, ∅, qf ), and the word
transitions (q, a, r) and (qf , a, r).

Next, consider the expression ↓x.a·↓y.(a[x=] ∪ a[y=])+, over registers {x, y},
which specifies all data words over a single label a whose each data value is equal
to either the first or the second data value (stored in registers x and y, respectively).
An equivalent register automaton is depicted in Figure 3(b).

The semantics of register automata is given in terms of configurations. Given
a set D of data values, a configuration of a register automaton A = 〈P, rs, qf , γ〉
over registers X is a pair [p, λ], where p is either a data or word state in P and
λ : X ⇀ D is an assignment of the registers. A configuration is initial if it is of
the form [rs,⊥], for the assignment⊥ with the empty domain, and a configuration
is final if its state is qf . A configuration [p2, λ2] is reachable from a configuration
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rsstart q r qf
(true, {x}) a

(x=, ∅)

a

(a)

rsstart q1

r1 q2 r2 qf

(true, {x})

a

(true, {y})
a

(x=, ∅)

(y=, ∅)

a

(b)

Figure 3: Register automata equivalent to RQMs in Example 3.8.

[p1, λ1] by a symbol u ∈ D ∪ Σ, denoted as [p1, λ1] ⇒A
u [p2, λ2], if one of the

following holds:

1. u is a data value in D, and there is a data transition (p1, c, Y, p2) in δ such that
u, λ1 |= c and

λ2(x) =

{
u, x ∈ Y,
λ1(x), x /∈ Y ;

2. u is a label in Σ, there is a word transition (p1, u, p2) in α, and λ1 = λ2.

A run of A on a data word w = u1, . . . , un is a a sequence of configurations
[p0, λ0], . . . , [pn, λn] such that [p0, λ0] is initial and [pi−1, λi−1] ⇒A

ui
[pi, λi] for

each 1 ≤ i ≤ n. The run is accepting if [pn, λn] is a final configuration. A data
word w is accepted by A if there is an accepting run of A on w. The language of
all data words accepted by A is denoted by L(A).

The key property of register automata that we will use is the fact that they
capture RQMs, and that the translation from an RQM to its equivalent automaton
can be done efficiently.
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Proposition 3.9 ([25, 26]).

1. For every RQM e there is a register automaton A such that L(e) = L(A).
Moreover, A can be constructed in time polynomial in the size of e.

2. For every register automaton A there is an RQM e such that L(A) = L(e).

Although Proposition 3.9 was stated for general register automata, the proof
in [26] also shows that if the starting expression does not have inequalities, then
the resulting automaton is also free of inequalities, and vice versa.

3.4. Containment of RQMs: Main Results
The connection between RQMs and register automata means bad news, as the

containment problem for these type of automata is known to be undecidable [28].
Together with Proposition 3.9, this result implies that containment is also unde-
cidable for RQMs.

Corollary 3.10. The problem CONTAINMENT(RQMs) is undecidable.

As we see, the power that RQMs gain through its data manipulation mecha-
nism comes with a high price for static analysis tasks. But this result naturally
leads to the question of finding decidable subclasses. Previous work on automata
has found that testing containment of an expression using at most one register
in an expression using at most two registers is decidable [28], but this approach
seems too restrictive for our case. We concentrate instead on positive RQMs, that
is, RQMs that use only atoms of the form x= in the conditions. It is already known
that the containment of positive RQMs is decidable [31], but so far the complexity
is not known. The next theorem fills the gap.

Theorem 3.11. Problem CONTAINMENT(positive RQMs) is EXPSPACE-
complete.

Next two sections are devoted to the proof of this theorem. We show the upper
bound in Section 3.5 and then continue with the lower bound in Section 3.6.

3.5. Containment of Positive RQMs: Upper Bound
It is more convenient to study the corresponding problem for register au-

tomata, which is stated as follows: given register automata A and A′ that use
no inequalities in the conditions in their transitions, is it true that L(A) ⊆ L(A′)?
By Propositions 3.6 and 3.9 we know that an exponential space algorithm for
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this problem automatically yields an exponential space algorithm for CONTAIN-
MENT(positive RQMs), simply by transforming the expressions into their equiva-
lent automata.

Lemma 3.12. The problem of checking whether L(A) ⊆ L(A′) for register au-
tomata A and A′ that do not use inequalities is in EXPSPACE.

Proof. The idea of the proof is to simulate both A and A′ with NFAs of exponen-
tial size, from which the EXPSPACE bound follows since containment of NFAs
can be solved in polynomial space. In order to do this let us first show that
the space of data words we need to analyse can be reduced to words where the
number of data values is somehow bounded by the number of registers. In order
to formalise this observation, we need the following notion: a data word w =
d1a1d2a2 . . . an−1dn is `-bounded in memory, for a positive number `, if for each
position in w the number of data values appearing both in the left and in the right
ofw is always less than or equal to `. That is, if |{d1, . . . , di}∩{di+1, . . . , dn}| ≤ `
for any i, 1 ≤ i < n. We then have the following claim, assuming that register
automaton A has ` registers.

Claim 3.13. If A 6⊆ A′, then there is an `-bounded in memory data word in L(A)
but not in L(A′).

Proof. Let w = d1a1d2a2 . . . an−1dn be a data word witnessing the fact that A 6⊆
A′, and let

[rs,⊥], [q1, λ1], [r1, λ1], . . . , [rn−1, λn−1], [qf , λn]

be an accepting run of A on w. If w is `-bounded in memory, then the claim is
proved. Otherwise, there is a number i such that |{d1, . . . , di}∩{di+1, . . . , dn}| >
`. Therefore, there exists a data value d /∈ Image(λi) such that dj = d and
dk = d for some j ≤ i and k > i. Consider the data word w′ obtained from w
by replacing all dk such that dk = d and k > i with a fresh data value. On the
one hand, w′ is still such that w′ ∈ L(A), because we can obtain an accepting
run from the run on w by replacing all occurrences of d in λk, k > i, with the
new data value. On the other hand, A′ uses only equalities, so we still have that
w′ /∈ L(A′). If w′ is `-bounded in memory, then the claim is proved. Otherwise,
we can repeat the replacement as above until the conditions are satisfied. This
process is terminating, because each i can be considered at most n times.

By this claim we can focus solely on words that are `-bounded in memory.
To begin with, observe that these words (for a given `) can be encoded as a word
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over the alphabet {1, . . . , `} × {old, new} ∪ Σ; the idea is to keep labels in Σ
untouched, and for data symbols a pair (i, old) represents a data value i that has
been seen before in the word, whereas the pair (i, new) represents a new data value
(taking up the place of the i-th data value that can be repeated on this word).

Thus, we can simulate automata A and A′ by usual NFAs B and B′, respec-
tively, both over the alphabet Γ = ({1, . . . , `} × {old, new}) ∪ Σ.

Next we give a formal construction of NFA B corresponding to register au-
tomaton A = 〈P, rs, qf , γ〉, while the construction of B′ corresponding to A′ is
analogous.
1. The states of B are all the configurations [p, λ] of A such that the range of

assignment λ is {1, . . . , `} (recall that λ can still be undefined for some regis-
ters).

2. The initial state of B is [rs,⊥] and the final states are all [qf , λ] for any λ.

3. The transition relation of B is defined as follows:

– first, B copies all label transitions of A, that is, for all labels a in Σ and states
[q, λ] and [r, λ] of B such that [q, λ] ⇒A

a [r, λ], the transition relation of B
contains the triple ([q, λ], a, [r, λ]);

– next, B also simulates A on its data transitions whenever we see a pair of the
form (i, old), that is, with a data value we have already seen before; formally,
the transition relation of B contains the triple ([r, λ1], (i, old), [q, λ2]) for each
pair of states [r, λ1] and [q, λ2] of B such that [r, λ1]⇒A

i [q, λ2];
– finally, when the read symbol is of the form (i, new), B simulates A on the

assignment of registers obtained from the previous one by erasing value
i from the registers; formally, given an assignment λ, let us denote by
λ[i→⊥] the new assignment obtained from λ by leaving undefined all reg-
isters x with λ(x) = i; then the transition relation of B contains a triple
([r, λ1], (i, new), [q, λ2]) for each pair of states [r, λ1], [q, λ2] of B and 1 ≤
i ≤ ` such that [r, λ

[i→⊥]
1 ]⇒A

i [q, λ2].

To state the correctness of the encoding, consider, for each `-bounded in mem-
ory data word w = d1a1d2a2 · · · an−1dn, a word w′ = b1a1b2a2 · · · an−1bn over Γ
where each bi is defined as follows:

1. if di = dj for some j < i then bi = (m, old), where m, 1 ≤ m ≤ `, is the
number mentioned in bj;

2. if di 6= dj for all j < i, then bi = (m, new), where m is such that
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– either bj for any j < i does not mention m,

– or dj 6= dk for all k > i, where j is the maximal number such that bj
mentions m.

Note that the existence of w′ is guaranteed by definition of `-bounded in memory
data word. The following claim immediately follows from the definitions.

Claim 3.14. Register automaton A (or A′) accepts `-bounded in memory data
word w if and only if B (or B′) accepts w′.

Combining Claims 3.13 and 3.14, we have that A ⊆ A′ if and only if B ⊆ B′.
Both B and B′ are of exponential size by construction, so their containment can
be checked in EXPSPACE by a standard containment algorithm for NFAs.

From the proof above we can immediately obtain the following result for `-
bounded positive RQMs, that is, positive RQMs that can use at most ` registers.

Corollary 3.15. Problem CONTAINMENT(`-bounded positive RQMs) is PSPACE-
complete for fixed any natural number `.

Proof. The upper bound follows from the fact that in this case the NFAs B and B′
simulating A and A′ are of polynomial size, and their containment can be checked
in PSPACE. The lower bound is inherited from the containment problem for usual
regular expressions.

3.6. Containment of Positive RQMs: Lower Bound
Next we show the exponential space lower bound for the containment of arbi-

trary positive RQMs.

Lemma 3.16. The problem CONTAINMENT(positive RQMs) is EXPSPACE-hard.

Proof. The proof is by reduction of the complement of the acceptance problem for
a Turing machine that works in EXPSPACE. Some ideas of this proof are adapted
from [6, Theorem 6].

Let L be a language that belongs to EXPSPACE over some alphabet Γ′, M be
a deterministic Turing machine that decides L in EXPSPACE, and w be a word
(plain, without data values) over Γ′. Next we show how to construct, in polyno-
mial time in the size of M and w, RQMs e and e′ such that L(e) ⊆ L(e′) if and
only if M does not accept w as input. By Proposition 3.6 this is enough for a proof
of the lemma.
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Let M = 〈Q, qs, qacc, qrej, δ〉, where Q is the set of states, qs ∈ Q is the initial
state, qacc, qrej ∈ Q are the accepting and the rejecting states, respectively, and

δ : (Q \ {qacc, qrej})× Γ → Q× Γ× {−1,+1}

is the transition function with Γ = Γ′ ∪ { }, for the blank symbol of the tape.
Furthermore, let w be a word over Γ. Since M decides L in EXPSPACE, there
exists a polynomial P that does not depend on w such that M decides w using 2n

cells for n = P(|w|).
In the proof the following notation will be convenient: for any alphabet Ω =

{b1, . . . , b`}, we denote by the same symbol Ω the regular expression b1∪ · · ·∪ b`.
We now turn to the construction of RQMs e and e′. We also give some intuition

on the reduction as we go deeper into the construction. The alphabet of e and e′ is

Σ = Γ ∪ (Q× Γ) ∪ {#,&,%,4}.

RQM e is

↓x0.4 · ↓x1.
(
4[x=0 ] ∪4[x=1 ]

)
·
(
Σ[x=0 ] ∪ Σ[x=1 ]

)∗
.

Intuitively, e ensures that the first two labels in the word are the symbol 4,
and that all data values in a data word are equal to the first or the second value.
In other words, L(e) consists of all data words d1a1d2a2 · · · dk−1ak−1dk such that
a1 = a2 = 4, each ai belongs to Σ and each di, for 3 ≤ i ≤ k, is equal to one of
d1 or d2.

Assume for a moment that we only consider those data words in which the
first data value is different from the second (we will enforce this by means of e′,
as we explain later on in the proof). Then we can arbitrarily designate these values
by numbers 0 and 1: 0 is the first data value of the word and 1 is the second data
value. In this case, words accepted by e are all those words that use only 0 and 1
as their data values.

We need more notation. Given a number i, 0 ≤ i ≤ 2n for n = P(|w|),
that is written in binary as dndn−1 · · · d1, with all dj ∈ {0, 1}, let 〈i〉 denote its
representation as a data word

#dn#dn−1# · · ·#d1.

For example, 〈0〉 is the data word (#0)n, and 〈2〉 is the data word (#0)n−2#1#0.
(Formally, these representations are not really data words, because they start with
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labels, not data values; however, we allow this inconsistency for brevity, keeping
in mind that such words are used only as sub-words of proper data words.)

Then, we represent any configuration of the Turing machine with state q, the
head at cell i, and the contents of the cells a0 . . . a2n−1 with each aj ∈ Γ, by the
data word

& 0 〈0〉 a0 0 & 0 〈1〉 a1 0

· · · & 0 〈i− 1〉 ai−1 0 & 0 〈i〉 (q, ai) 0 & 0 〈i+ 1〉 ai+1 0 · · ·
& 0 〈2n − 1〉 a2n−1 0. (1)

Intuitively, the sub-words 〈0〉, 〈1〉, 〈2〉, . . . , 〈2n − 1〉 index each of the 2n used
cells of M, and the symbol following such a word represents either the content of
the cell plus the state of M, if M is pointing at that particular cell at the given step
of the computation, or just the contents of the cell, if the head does not point here.
Note that the data value 0 after each &, each aj and (q, ai) is there just because we
need some data value between labels. It does not play any other role and could be
1 instead.

Since every configuration of M can be represented as such a data word, any run
of M on input w can be seen as a sequence (i.e., concatenation) of representations
of consequent configurations, separated by a special label %. To initialise the two
different data values 0 and 1, we also add a special prefix to the representation.
Formally, a run of M on w of length m is represented as a data word

04 14 0 % 0 u1 % 0 u2 . . . % 0 um, (2)

where each uj is of the form (1) and represents the j-th configuration of M on the
run. Data value 0 after the second4 and each % plays the same auxiliary role as
in the representations of configurations.

The idea of the reduction is as follows. We have already defined RQM e,
which accepts the words that have only 0 and 1 as data values. In turn, RQM e′

accepts all the words from L(e) that are either not representations of runs of M on
w of form (2), or representations of runs that are not accepting. Hence, there is an
accepting run of M on w if and only if there is a data word that is in L(e) but not
in L(e′).

RQM e′ is a union of six parts e′0 ∪ e′1 ∪ e′2 ∪ e′3 ∪ e′4 ∪ e′5. These parts have the
following intuitive interpretations:

– e′0 accepts all data words that use a single data value (instead of two);

– e′1 accepts all words with the wrong sequences of labels;
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– e′2 accepts all words that are not concatenations of sequences of numbered
contents of 2n cells, possibly paired with states, as in (1);

– e′3 accepts all concatenations of words of the form (1) such that some of these
words do not represent valid configurations for M;

– e′4 accepts all words whose first configuration is not the initial configuration
of M on input w;

– e′5 accepts all words containing two consecutive configurations that do not
agree with transition function δ;

– e′6 accepts all words whose last configuration is not a final configuration.

Next we formally define these parts of e′.
Expression e′0: it is defined as ↓x0.(Σ[x=])∗.
Expression e′1: it accepts all data words with4 as first two labels that do not have
a proper structure in the labels, that is, whose projections to labels do not satisfy
the regular expression 4 · 4 · (% · (& · (#n · (Γ ∪ (Q × Γ)))∗)∗)∗. Note that
this is in fact an ordinary regular expression. It is also straightforward to see that
the complement of this expression can be defined as an expression of polynomial
size.
Expression e′2: it accepts all words with a “configuration” in which cells are not
numbered in the proper order from 〈0〉 to 〈2〉n − 1. To this end, e′2 = ↓x0.4 ·
↓x1.4 · e′′2, where e′′2 is the union of

– RQMs
Σ∗ ·% ·& ·#∗ ·#[x=1 ] · Σ∗,
Σ∗ ·#[x=0 ] ·#∗ · Σ · (% · Σ∗ ∪ ε),

which look for configurations starting with something different from 〈0〉 and
ending with something different from 〈2n − 1〉, respectively;

– RQMs

Σ∗ ·& ·#n−1 ·#[x=0 ] · Σ ·& ·#n−1 ·#[x=0 ] · Σ∗,
Σ∗ ·& ·#i ·#[x=0 ] ·#n−i−2 ·#[x=0 ] · Σ ·& ·#i ·#[x=1 ] · Σ∗,
Σ∗ ·& ·#i ·#[x=1 ] ·#n−i−2 ·#[x=0 ] · Σ ·& ·#i ·#[x=0 ] · Σ∗,

with 0 ≤ i ≤ n − 2, which look for a configuration where an even number,
that is, a number ending with 0 in its binary representation, is not followed by
the next one: indeed, the first RQM checks that the next number does not end
with 0, and the other ones check that each of the first n− 1 digits is the same
in both numbers;
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– similarly, RQMs

Σ∗ ·& ·#n−2 ·#[x=0 ] ·#[x=1 ] · Σ ·& ·#n−2 ·# ·#[x=1 ] · Σ∗,
Σ∗ ·& ·#n−2 ·#[x=0 ] ·#[x=1 ] · Σ ·& ·#n−2 ·#[x=0 ] ·# · Σ∗,
Σ∗ ·& ·#i ·#[x=0 ] ·#n−i−3 ·#[x=0 ] ·#[x=1 ] · Σ ·& ·#i ·#[x=1 ] · Σ∗,
Σ∗ ·& ·#i ·#[x=1 ] ·#n−i−3 ·#[x=0 ] ·#[x=1 ] · Σ ·& ·#i ·#[x=0 ] · Σ∗,

with 0 ≤ i ≤ n − 3, which look for a configuration where a number ending
with 01 in binary is not followed by the next one: the first two RQMs check
that the next number does not end with anything except 10, and the other ones
check that each of the first n− 2 digits is the same in both numbers;

– similarly, RQMs that deal with numbers ending with 011, 0111, etc.: e.g.,
for 0111 the first four RQMs check that the next number does not end with
anything except 1000, and the other ones check that each of the first n − 4
digits is the same in both numbers.

Expression e′3: it accepts all words with “configurations” with no heads of the
machine and more than one head. To this end, e′3 is the union of RQMs

Σ∗ ·% ·
(
Σ \ ((Q× Γ) ∪ {%})

)∗ · (% · Σ∗ ∪ ε),
Σ∗ · (Q× Γ) ·

(
Σ \ ((Q× Γ) ∪ {%})

)∗ · (Q× Γ) · Σ∗,

which look for two % without a label from Q×Γ between them (or for the last %
in the word without such a label after it), and for two labels from Γ × Q without
% between them, respectively. Note that e′3 does not manipulate any data values.
Expression e′4: it accepts all words whose first configuration is not initial. To this
end, if w = a0 · · · ak then e′4 = 4 · 4 ·% · e′′4, where e′′4 is the union of RQMs

& ·#n ·
(
Σ \ {(qs, a0)}

)
· Σ∗,

& ·#n · (qs, a0) · & ·#n ·
(
Σ \ {a1}

)
· Σ∗,

· · ·
& ·#n · (qs, a0) · & ·#n · a1 · . . . ·& ·#n ·

(
Σ \ {ak}

)
· Σ∗,

& ·#n · (qs, a0) · & ·#n · a1 · . . . ·& ·#n · ak ·
(
Σ \ {%}

)∗ · & ·#n · · Σ∗.

The first of them looks for words with something different from (qs, a0) in the
position corresponding to the first cell in the first configuration, next k look for
words with something different from a1, . . . , ak in the positions for the next k
cells, and the last one looks for words with something different from in all the
following cells.
Expression e′5: it accepts all words whose consecutive configurations do not agree
with the transition function δ. To this end, it is the union of
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– RQMs

Σ∗ ·# · ↓y1.# · ↓y2.# · . . . · ↓yn−1.# · ↓yn.a ·(
Σ \ {%}

)∗ ·% · (Σ \ {%})∗ ·
#[y=1 ] ·#[y=2 ] · . . . ·#[y=n ] ·

(
(Γ \ {a}) ∪ (Q× (Γ \ {a}))

)
· Σ∗

for each a ∈ Γ, which look for consecutive configurations with different con-
tents of a cell not under the head in the first of the configurations;

– RQMs

Σ∗ ·# · ↓y1.# · ↓y2.# · . . . · ↓yn−1.# · ↓yn.(q, a) ·(
Σ \ {%}

)∗ ·% · (Σ \ {%})∗ ·
#[y=1 ] ·#[y=2 ] · . . . ·#[y=n ] ·

(
(Γ \ {a′}) ∪ (Q× Γ)

)
· Σ∗

for each q, a and a′ such that δ(q, a) has a′ as the new symbol, which look for
consecutive configurations whose contents of the cell under the head does not
change according to δ;

– RQMs

Σ∗ ·# · ↓y1.# · ↓y2.# · . . . · ↓yn−1.# · ↓yn.(q, a) ·(
Σ \ {%}

)∗ ·% · (Σ \ {%})∗ ·(
Γ ∪ ((Q \ {q′})× Γ)

)
·& ·#[y=1 ] ·#[y=2 ] · . . . ·#[y=n ] · Σ∗

for each q, a and q′ such that δ(q, a) has −1 as the direction and q′ as the new
state, which look for consecutive configurations such that the head does not
move left properly; and

– RQMs

Σ∗ ·# · ↓y1.# · ↓y2.# · . . . · ↓yn−1.# · ↓yn.(q, a) ·(
Σ \ {%}

)∗ ·% · (Σ \ {%})∗ ·
#[y=1 ] ·#[y=2 ] · . . . ·#[y=n ] · Γ ·& ·#n ·

(
Γ ∪ ((Q \ {q′})× Γ)

)
· Σ∗

for each q, a and q′ such that δ(q, a) has +1 as the direction and q′ as the new
state, which look for consecutive configurations such that the head does not
move right properly.
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Expression e′6: it accepts all words that do not represent an accepting run. To this
end, it is the union of RQMs

Σ∗ · (q, a) ·
(
Σ \ {%}

)∗
for all q ∈ Q \ {qacc} and a ∈ Γ, which look for configurations that do not have
the final state (paired with a symbol from Γ) after the last %.

With these definitions at hand, it is now straightforward to show that L(e) ⊆
L(e′) if and only if M does not accept input w: indeed, on the one hand, according
to the construction, a data word in L(e) but not in L(e′), if it exists, represents a
run of M on w, and, moreover, this run is accepting; on the other hand, if M
accepts w, then there exists its accepting run that is represented by some data
word in L(e) but not in L(e′).

All in all, positive RQMs appear as a natural subclass of RQMs with decid-
able query containment. However, when comparing the complexity with the one
for RPQs, we see that allowing positive data test comparisons results in an expo-
nential jump (unless of course we fix the amount of registers). In the following
section we consider another class of queries extending RPQs, which also allows
for data value comparisons, but in a more restricted way than RQMs. As we will
see, the positive subclass of this class has the same complexity of containment as
RPQs.

4. Regular Queries with Data Tests

Looking for classes of queries capable of handling data values, but with better
query answering properties than RQMs, the authors of [26] introduced regular
queries with data tests, or RQDs for short (these were called regular expressions
with equality in the original paper). An example of such a query is the expression
a(b+)=c, whose intention is to return all pairs of nodes connected by a path la-
belled ab · · · bc and where the data values before and after the sequence of b’s are
the same.

All RQDs can be expressed as RQMs, but when expressing RQDs we can re-
strict the usage of registers: each stored data value can be retrieved and compared
only once, and the order of these storing and retrieving operations is not arbitrary,
but on the “first in, last out” discipline. The data complexity of RQDs’ evaluation
is the same as for RQMs—in NLOGSPACE, but the combined complexity is much
better, in PTIME [26].
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4.1. Syntax and Semantics of RQDs
The syntax for RQDs can be defined in a direct, much simpler way than for

RQMs, without even mentioning registers and conditions.

Definition 4.1. A regular query with data tests (or RQD) over an alphabet of
labels Σ is an expression satisfying the grammar

e := ε | a | e ∪ e | e · e | e+ | e= | e 6=

where a ranges over labels in Σ.

Again, before the formal definition of semantics we give some examples of
RQDs and their connection to RQMs.

Example 4.2. Recall RQMs from Example 3.3 (we consider them here in different
order for better understanding of the relation between RQMs and RQDs).
1. The RQM ↓x.(a · b)+[x 6=] can be written as the RQD ((a · b)+) 6=: the first

data value is stored, then the sequence of ab’s is read, and then the value
is retrieved and compared for inequality with the current one. Note that the
stored value is used just once.

2. The RQM ↓x.(a[x=])+ can be written as the RQD (a=)+: the first data value
is stored; then a is read; then the stored data value is retrieved and compared
with the current one for equality; if successful, this current value (equal to
the original!) is stored again, another a is read, and so on. If the parsing
continues, then the current data value is always equal to the original one, even
if we use each stored value just once.

3. Contrary to the previous case, it can be shown that the RQM ↓x.(a[x 6=])+

cannot be expressed as an RQD: indeed, after the first comparison the orig-
inal data value is lost, and storing the current data value (different from the
original) cannot help with correct comparison on the next step.

4. The RQM ↓x.a · ↓y.b[y=] · a[x=] can be written as the RQD (a · b= · a)=.
However, the very similar RQM ↓x.a · ↓y.b[x=] · a[y=] is not expressible as
an RQD, since the sequence in which data values have to be retrieved does
not respect the ”first-in-last-out” discipline required by RQD syntax.

The semantics of RQDs is also defined in a much simpler way than for RQMs.
The evaluation JeKG of an RQD e over a data graph G = 〈V,E, ρ〉 is the set of all
pairs (v1, v2) of nodes in V defined recursively in Table 2.
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JεKG = {(v, v) | v ∈ V }
JaKG = {(v, v′) | (v, a, v′) ∈ E}
Je1 · e2KG = Je1KG • Je2KG
Je1 ∪ e2KG = Je1KG ∪ Je2KG
Je+KG = JeKG ∪ (JeKG • JeKG) ∪ (JeKG • JeKG • JeKG) ∪ . . .
Je=KG = {(v, v′) | (v, v′) ∈ JeKG, ρ(v) = ρ(v′)}
Je 6=KG = {(v, v′) | (v, v′) ∈ JeKG, ρ(v) 6= ρ(v′)}

Table 2: Semantics of RQDs with respect to a data graph G. The composition of binary relations
is again denoted •.

As Example 4.2 suggests, and as is formally shown in [26], the class of RQDs
is strictly contained in the class of RQMs. Indeed, to transform an RQD to
RQM we just need to recursively replace each subexpression of the form e∼,
∼ ∈ {=, 6=}, with the subexpression ↓x.e[x∼], where x is a previously unused
register. However, as we have seen, there are RQMs which cannot be transformed
to RQDs.

As any RQM, each RQD e defines the language L(e) of data words, which
consists of all w such that (v, v′) ∈ JeKGw , with Gw as in the Figure 2. Hence,
Proposition 3.6 allows us to reduce query containment to language containment
as for RQMs: e ⊆ e′ holds for two RQDs e and e′ if and only if L(e) ⊆ L(e′).
This is why we concentrate on containment of languages in the rest of this section.

4.2. Containment of General RQDs
RQDs were originally introduced as a restriction of RQMs that enjoys much

better query evaluation properties. In the light of this result, one might also hope
for good behaviour when query containment is considered. Surprisingly, it is not
the case, and containment is undecidable for RQDs, same as for RQMs. In fact,
we will prove a stronger result that the universality problem for RQDs, defined
below, is undecidable. Let Σ[D]∗ denote the set of all data words over the alphabet
Σ and set of data values D.

UNIVERSALITY(RQD)
Input: An RQD e.
Question: Does L(e) = Σ[D]∗?

The undecidability of this problem immediately implies that, given two RQDs
e and e′, checking whether L(e) ⊆ L(e′) is undecidable: indeed, we can just
take (a1 ∪ . . . ∪ ak)∗ with Σ = {a1, . . . , ak} as e (from containment) and e (from
universality) as e′ for a reduction.
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Theorem 4.3. The problem UNIVERSALITY(RQD) is undecidable.

Proof. The proof is by reduction of the Post correspondence problem (PCP),
which is well-known to be undecidable. The proof borrows from [28], where
the universality of register automata was shown to be undecidable.

A PCP instance is a set of pairs (u, u′) of non-empty words over a finite al-
phabet Γ. A solution of a PCP instance I is a sequence

(u1, u
′
1), . . . , (uk, u

′
k)

of pairs from I (possibly with repetitions) such that

u1 · · ·uk = u′1 · · ·u′k.

PCP is the problem to check whether a PCP instance has a solution, and it is
undecidable.

Let I be a PCP instance. In the rest of the proof we will show how to construct
an RQD e over some alphabet Σ such that L(e) = Σ[D]∗ if and only if I has
a solution. Throughout the reduction we will use the following notation: given
a data word w = d1a1d2 . . . an−1dn, we denote by w̄ the reversal of w, that is,
w̄ = dnan−1 . . . d2a1d1.

Let Σ = Γ∪{$,#}, where $ and # are two special symbols not in Γ. Next we
describe restrictions on a word over this alphabet and then show that, on the one
hand, words under these restrictions encode solutions of PCP instance I , and, on
the other, the negation of these restrictions can be written as an RQD. This implies
that I has a solution if and only if the RQD is not universal.

To this end, consider a data word w#w̄′ over Σ such that

w = 0 $c1 a1d1 · · · an1dn1 $c2 an1+1dn1+1 · · · an1+n2dn1+n2 · · · · · ·
$ck an1+···+nk−1+1dn1+···+nk−1+1 · · · an1+···+nk

dn1+···+nk
,

and

w′ = 0 $c′1 a
′
1d
′
1 · · · a′m1

d′m1
$c′2 a

′
m1+1d

′
m1+1 · · · a′m1+m2

d′m1+m2
· · · · · ·

$c′` a
′
m1+···+m`−1+1d

′
m1+···+m`−1+1 · · · a′m1+···+m`

d′m1+···+m`
,

with numbers k ≥ 1, ` ≥ 1, ni ≥ 1 for 1 ≤ i ≤ k, mi ≥ 1 for 1 ≤ i ≤ `, data
values 0, ci for 1 ≤ i ≤ k, c′i for 1 ≤ i ≤ `, di for 1 ≤ i ≤ n and n = n1+· · ·+nk,
and d′i for 1 ≤ i ≤ m and m = m1 + · · · + m`, as well as labels ai from Γ for
1 ≤ i ≤ n and a′i for 1 ≤ i ≤ m, such that the following conditions hold:
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1. all ci are pairwise different and all di are pairwise different;

2. all c′i are pairwise different and all d′i are pairwise different;

3. c1 = c′1 and ck = c′`;

4. d1 = d′1 and dn = d′m;

5. if ci = c′j then ci+1 = c′j+1 for all 1 ≤ i < k, 1 ≤ j < `;

6. if di = d′j then di+1 = d′j+1 for all 1 ≤ i < n, 1 ≤ j < m;

7. if di = d′j then ai = a′j for all 1 ≤ i ≤ n, 1 ≤ j ≤ m;

8. an1+···+ni−1+1 · · · an1+...+ni
is the first word of a pair in I for all 1 ≤ i ≤ k;

9. if ci = c′j , then (an1+···+ni−1+1 · · · an1+···+ni
, a′m1+···+mj−1+1 · · · a′m1+···+mj

) ∈
I for all 1 ≤ i ≤ k, 1 ≤ j ≤ `;
Having the restrictions on a data word at hand, next we show that every data

word satisfying them encodes a solution of I , and, other way round, every solution
can be represented by such a word.

First, note that conditions 1, 2, 4 and 6 force that d1 · · · dn = d′1 · · · d′m and,
in particular, n = m. Hence, by condition 7, a1 · · · an = a′1 · · · a′m. Similarly,
conditions 1, 2, 3 and 5 force that c1 · · · ck = c′1 · · · c′` and, in particular, k = `.
Moreover, conditions 8 and 9 say that the word of labels from Γ after any ci is the
first component of a pair in I , and it pairs with the word after c′j that is equal to
ci (which is only possible if i = j). Therefore, the sequence of these pairs, for
1 ≤ i ≤ k, is a solution of I .

For the other direction, let (u1, u
′
1), . . . , (uk, u

′
k) be a solution of I . Then we

can take a1 · · · an = a′1 · · · a′m = u1 · · ·uk = u′1 · · ·u′k, ci = c′i = i for all 1 ≤ i ≤
k and dj = d′j = j for all 1 ≤ j ≤ n to satisfy all the conditions.

We are left to construct an RQD e over Σ that accepts a data word such that it
is either not of the form w#w̄′ as above, or at least one of conditions 1–9 is not
satisfied. To this end, RQD e is the union e0 ∪ · · · ∪ e9 of the following RQDs,
using the usual abbreviation ∆ for the regular expression b1 ∪ · · · ∪ b` over any
alphabet ∆ = {b1, . . . , b`}, and the abbreviation Σ# for Σ \ {#}.

– Expression e0 accepts all data words whose projection to labels Σ do not
satisfy the regular expression ($Γ+)+#(Γ+$)+. As this is an ordinary regular
expression, it is straightforward to define its complement.

– Expression e1 accepts all data words such that condition 1 does not hold. To
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this end, it is the union of

Σ∗# · $ · (Σ∗# · $)= · Σ∗,
Σ∗# · Γ · (Σ∗# · Γ)= · Σ∗,

which look for the same data value immediately after two $ before # and
immediately after two labels from Γ before #, respectively.

– Expression e2 accepts all data words such that condition 2 does not hold.
Symmetrically to e1, it is the union of

Σ∗ · ($ · Σ∗#)= · $ · Σ∗#,
Σ∗ · (Γ · Σ∗#)= · Γ · Σ∗#.

– Expression e3 accepts all data words such that condition 3 does not hold. To
this end, it is the union of

$ · (Σ∗)= · $,
Σ∗# · $ · (Γ+ ·# · Γ+)= · $ · Σ∗#.

– Expression e4 accepts all data words such that condition 4 does not hold. To
this end, it is the union of

$ · Γ · (Σ∗)= · Γ · $,
Σ∗# · (#)= · Σ∗#.

– Expression e5 accepts all data words such that condition 5 does not hold. To
this end, it is

Σ∗# · $ · (Γ+ · $ · (Σ∗) 6= · $ · Γ+)= · $ · Σ∗#.

– Expression e6 accepts all data words such that condition 6 does not hold.
Similarly to e5, it is

Σ∗# · Γ · ($∗ · Γ · (Σ∗) 6= · Γ · $∗)= · Γ · Σ∗#.

– Expression e7 accepts all data words such that condition 7 does not hold. To
this end, it is the union of

Σ∗# · ai · (Σ∗)= · aj · Σ∗#

for all ai, aj ∈ Γ such that ai 6= aj .
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– Expression e8 accepts all data words such that condition 8 does not hold. To
this end, it is the following RQD, where e¬ is the regular expression accepting
the language Γ+ \{u1, . . . , up} for u1, . . . , up all the first components of pairs
in I:

Σ∗# · $ · e¬ · ($ ∪#) · Σ∗#.

– Expression e9 accepts all data words such that condition 9 does not hold.
To this end, it is the union of the following RQDs for each first component
u of a pair in I , where e¬u is the regular expression accepting the language
Γ+\{u′1, . . . , u′p} for u′1, . . . , u

′
p all the second components of pairs in I having

u as the first component:

Σ∗# · $ · (u · ($ · Γ+)∗ ·# · (Γ+ · $)∗ · e¬u)= · $ · Σ∗#.

By this construction, e represents exactly those data words for which the re-
strictions above do not hold. Therefore, the PCP instance I has no solution if and
only if L(e) = Σ[D]∗, as required.

Having this result at hand, we obtain our first result on containment of RQDs.

Corollary 4.4. The problem CONTAINMENT(RQDs) is undecidable.

4.3. Positive RQDs and pdt-Automata
The negative result of Corollary 4.4 naturally opens the search for subclasses

of RQDs with decidable containment problem. Similarly to positive RQMs, we
now consider the class of positive RQDs, that is, RQDs where subexpressions of
the form e6= are not allowed. We can obtain a positive RQM from a positive RQD
by the procedure described above that transforms an RQD into an RQM. Hence,
we again have an inclusion of the corresponding classes, and from Theorem 3.11
we conclude that containment of positive RQDs is decidable and in EXPSPACE.
However, this time we show that the complexity of containment is reduced to
PSPACE-complete, which is the best possible bound in light of the PSPACE lower
bound for plain RPQs.

In the previous section we showed that RQMs can be captured by register
automata, and then used this fact to establish the matching upper bound on con-
tainment of positive RQMs. We follow a similar strategy for positive RQDs, and
begin with introducing a subclass of register automata that captures this formal-
ism. We call this class automata with positive data tests, or pdt-automata for short.
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Intuitively, pdt-automata impose a restriction on register automata that guarantee
that the comparisons behave in a “first in, last out” discipline, in the same way as
positive RQDs restrict RQMs. In particular, they have the following special policy
for manipulation of registers:

1. only tests for conjunctions of equalities are allowed,

2. the registers are ordered and arranged in a stack,

3. (positive) comparisons of the current data value can be performed only with
the value stored in the register on the top of the stack, and, moreover, after
such a comparison the stored value is lost and the register becomes unused
(i.e., the value is popped off), and

4. the current data value can be stored only in the currently unused register just
above the top of the stack (i.e., pushed into).

To define pdt-automata formally, it is convenient to have the following notions.
An action is a pair 〈m1,m2〉 of nonnegative numbers m1 and m2 (we choose to
denote pairs of numbers as actions to improve the readability of the machinery we
use in this section). LetM denote the set of all such actions.

Definition 4.5. A register automaton 〈P, rs, qf , γ〉 with γ = (δ, α) and regis-
ters X = {x1, . . . , x`} over labels Σ is a pdt-automaton if there are assignments
Depth : P → {0, . . . , `} and Action : δ →M such that the following holds:

– Depth(rs) = 0 and Depth(qf ) = 0;

– for every data transition (r, c, Y, q) ∈ δ with Action(r, c, Y, q) = 〈m1,m2〉,
we have that:

- Depth(r)−m1 ≥ 0,
- Depth(r)−m1 +m2 = Depth(q),
- c =

∧
x=i , where i ranges as Depth(r) ≥ i > Depth(r)−m1;

- Y = {xi | Depth(r)−m1 < i ≤ Depth(q)};

– Depth(q) = Depth(r) for every word transition (q, a, r) ∈ α.

Therefore, assignments Depth and Action impose certain restrictions on how
a pdt-automaton can manipulate registers. These restrictions reflect the difference
between RQMs and RQDs: in the latter all comparisons are stack-based, in the
sense that one cannot store two data values to registers x1 and then x2, but then
compare them to current data values in the same order (e.g., one RQDs cannot de-
fine languages of data words of the form d1ad2ad1ad2a · · · , which are definable
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Figure 4: Pdt-automaton equivalent to the RQD in Example 4.6; Depth and Action labels are given
below states and data transitions, respectively.

by RQDs). Thus, to simulate RQDs with register automata we need to impose the
condition that one can never process a condition of the form x=i unless i is actually
the last register that we have used to store a data value. The depth function is key
for this restriction, as it represents the index of the last register in which we have
stored a data value. Moreover, note that equalities in RQDs are restricted in scope,
so one cannot compare a value in a word with two values in different positions that
are farther away in the word. Thus, to simulate RQDs we need to restrict register
automata so that, after a condition x=, one cannot compare the contents of register
x again until one re-stores another value there. In order to enforce this, we assign
an action to each transition, which is a pair where the first component represents
which registers are being used in the condition, and the second component repre-
sents which registers are being used to store the current data value. For example,
an action of the form 〈m, 0〉 states that m topmost registers (relative to the num-
ber Depth of currently used registers) are compared in the condition, and that the
current data value is not stored anywhere; an action of the form 〈0,m〉 states that
this transition has no condition but the current data value is stored in the next m
available registers; and 〈m1,m2〉 is a combined action, which first compares with
the value in the topmost m1 registers, and then stores the value in the next m2

available registers once we have freed the m1 registers used in the comparison.
Note that by this definition assignments Depth and Action unambiguously de-

fine the equality conditions c and assigned registers Y of all data transitions of an
pdt-automaton. Hence, we will write (r, 〈m1,m2〉, q) instead of (r, c, Y, q) for a
data transition with an action 〈m1,m2〉, that is, assume that δ ⊆ R×M×Q.

Example 4.6. Consider again the RQD (a=)+ from Example 4.2. The pdt-
automaton in Figure 4 accepts the same language as this RQD, where Depth and
Action labels are given below states and data transitions.

When reading the first data value, we go from the state rs, with depth 0, to the
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state q1, with depth 1, via the action 〈0, 1〉, that is, we are storing a data value in
the first register x1, and now this register is on the top of the stack and ready to be
used in a comparison. We then move from q1 to r1 by reading the label a. Here
we have two options. First, we can decide that this is the end of the word and
follow the transition to qf by using the comparison x=1 , that is, parsing the action
〈1, 0〉, thus bringing the depth down to zero. Second, we can decide that we wish
to continue processing the input by checking that the current data value equals to
the one in x and at the same time storing this value into x1 again in order to do
further comparisons. This brings us back to the state q1, where the process starts
again. Note that in this transition we first reduce the depth to 0 (by using x=), and
then increase it back to 1 as reflected by the action 〈1, 1〉.

Remark 4.7. Note that pdt-automata have a similar flavour as k-pebble automata
of [28], which also force registers to be used in a stack-like manner. However,
while we show that containment of pdt-automata is decidable (see Theorem 4.12),
the problem is undecidable in the case of pebble automata [28], thus suggesting
that the latter is much more expressive.

Just as register automata capture RQMs, pdt-automata capture positive RQDs.
The following proposition can be checked by immediate inspection of the con-
struction in [25] for RQMs.

Proposition 4.8. For every RQD e there exists an pdt-automaton Ae such that
L(e) = L(Ae). Moreover, Ae can be constructed in time polynomial in |e|.

4.4. Monoid of Actions
The definition of pdt-automata introduces actions, that is, pairs of non-negative

numbers. Our algorithm for containment of RQDs makes use of the following
binary composition operator ◦ on the setM of actions:

〈m1,m2〉 ◦ 〈m′1,m′2〉 =

{
〈m1,m2 −m′1 +m′2〉, if m2 ≥ m′1,
〈m1 −m2 +m′1,m

′
2〉, otherwise.

It is now not difficult to show that the algebraic structure 〈M, ◦〉 is a monoid.
The proof is just a case by case analysis that we leave for the appendix.

Proposition 4.9. Operation ◦ is associative and 〈0, 0〉 is neutral for ◦.

We take advantage of the associativity of ◦ to omit parentheses when writing
compositions of several actions. The following property of the neutral element is
immediate.
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Corollary 4.10. Let µ1, . . . , µn be actions such that µj ◦ · · · ◦ µk = 〈0, 0〉 for
some j and k, 1 ≤ j ≤ k ≤ n. Then µ1 ◦ · · · ◦ µn = 〈0, 0〉 if and only if
µ1 ◦ · · · ◦ µj−1 ◦ µk+1 ◦ · · · ◦ µn = 〈0, 0〉.

Finally, the key property of the monoid 〈M, ◦〉 that we use is the following:
the composition of actions along some consecutive transitions in a run of a pdt-
automaton is 〈m1,m2〉 if and only if, first, the difference of the depths of states in
the beginning and in the end of the sequence arem1−m2, and, second, the smallest
number of a register manipulated along the transitions is exactly the depth in the
beginning minus m1− 1. The following lemma formalises this property; its proof
is also in the appendix.

Lemma 4.11. Let

[r0, λ0], [q1, λ1], [r1, λ1], . . . , [rn−1, λn−1], [qn, λn]

be a run of a pdt-automaton, where, for every 1 ≤ i ≤ n, configuration [qi, λi]
is reachable from [ri−1, λi−1] by a transition with action µi. For every j and k,
1 ≤ j ≤ k ≤ n, the numbers m1 and m2 in 〈m1,m2〉 = µj ◦ · · · ◦µk are such that

– Depth(rj−1)−m1 +m2 = Depth(qk),

– Depth(ri−1) − m′1 ≥ Depth(rj−1) − m1 for any i, j ≤ i ≤ k, with µi =
〈m′1,m′2〉,

– there exists i, j ≤ i ≤ k, such that Depth(ri−1) −m′1 = Depth(rj−1) −m1

for µi = 〈m′1,m′2〉 (i.e., the inequality above becomes an equality).

4.5. Containment of Positive RQDs
In what follows we prove that containment of pdt-automata can be done in

PSPACE, which implies, together with Proposition 4.8, that containment of RQDs
over data graphs is in PSPACE as well (recall that the matching lower bound fol-
lows from the PSPACE-hardness of containment of usual RPQs).

Theorem 4.12. The problem of deciding whetherL(A) ⊆ L(A′) for pdt-automata
A and A′ is in PSPACE.

Proof. The idea of the proof is to construct a transition system (i.e., an NFA over
a special alphabet) U(A,A′) whose language is nonempty if and only if there is
a data word that is accepted by A but not by A′ (in other words, the language of
the transition system corresponds to all witnesses for the non-containment of A in
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A′), and then show that the problem of deciding whether the language of U(A,A′)
is empty is in PSPACE. This last result suffices for the proof: if the language of
U(A,A′) is empty then there is no word that is accepted by A and not by A′, and
thus it must be that the language of A is contained in the language of A′.

The idea of using such a transition system is not new, and is commonly used
when analysing standard finite automata. However, in our case we cannot con-
struct such a system in the direct way, because the number of data values in a
data word is not bounded, and thus to simulate all possible runs for A′ directly
we would need to search over a space of configurations that can be arbitrarily big.
Therefore, our transition system does not work with data values, but rather with a
finite number of their representatives. Moreover, to archive desired space bounds,
these representatives are compressed by means of an involved data structure.

The definition and functionality of U(A,A′) are quite technical. Therefore, we
proceed in the following two steps:
1. we first show how to construct an auxiliary transition system S(A,A′), which

possesses all the properties required for U(A,A′) except that its state space is
exponential, and hence its emptiness can be decided in EXPSPACE;

2. then we explain how to reduce, by means of transforming S(A,A′) to
U(A,A′), the space usage of the algorithm from exponential to polynomial
and prove that it does not affect the correctness of the construction.
Note that the upper complexity bound obtained at the first step does not give

any improvement in comparison to the general case of register automata as in
Theorem 3.11.

Along the proof we assume that A = 〈P, rs, qf , γ〉 is a pdt-automaton with
registers X = {x1, . . . , x`}, states P = R ∪Q for data and word states R and Q,
respectively, and transition relation γ = (δ, α) for data and word transitions δ and
α, respectively; similarly, A′ = 〈P ′, r′s, q′f , γ′〉 is a pdt-automaton with registers
X ′ = {x′1, . . . , x′`′}, states P ′ = R′ ∪Q′, and transition relation γ′ = (δ′, α′).

Step 1. For the beginning, assume that both A and A′ are such that in each of
their data transitions there is at most one register manipulation, that is, all their
actions are among 〈0, 1〉, 〈1, 0〉, and 〈0, 0〉. A witness for non-containment of A
in A′ could be an accepting run of A on a data word w such that A′ does not have
an accepting run on w. However, we do not need to check all such data words:
instead, to comprehensively model the behaviour of A it is enough to specify, for
each data value in a word, whether it is equal to some data values currently stored
in the stack of registers of A, and assume that it is a fresh one otherwise; for A′, it

34



is enough to keep track which registers of A′ have same values as registers of A.
Moreover, since A and A′ are pdt-automata with the special structure, it is enough
to specify if a current data value is equal to the value on the top of the stack of
registers in A or not; regarding A′, we only need to track the corresponding runs
that do not store any values not in the registers of A. Therefore, a simple transition
system for these type of automata would have the following structure:

– each state consists of a state of A and a set of states of A′, each of which has
a stack of reactions, that is, Boolean flags indicating whether the data values
in the registers of A were pushed to the registers of A′ or not;

– the initial state consists of the initial states of A and A′ (the latter as a singleton
set), while the final state conists of the final state of A and all subsets of states
of A′ that do not contain the final state;

– each transition corresponds to a transition of A, while the set of states of A′
updates taking the data manipulations into account:

- if A passes action 〈0, 1〉 then A′ should remember whether it pushes the data
value or not;

- if A passes action 〈1, 0〉 then A′ should pop (and compare) the data value
only if it was pushed when the value was pushed in A;

- if A passes action 〈0, 0〉 then A′ should neither push nor pop as well.

Note that in this simple case we do not to remember anything about the stack
of A, because its depth is uniquely defined by the state. This is not the case in
general, because the current data value can be pushed to register stack several
times. However, such subsets must contain only consecutive registers according
to the order of automaton A. Moreover, the reaction of an accepting run of A′
to pushing a value into the stack of registers of A may be arbitrary: for example,
expression ((e1)=e2)= is contained in (e1(e2)=)= (in fact, they are equivalent),
despite the fact that after parsing e1 the action of the former is 〈1, 0〉, that is, the
data value is popped off, while the action of the latter is 〈0, 1〉 that is, the value
is pushed into. Next we show how to generalise the intuition to the case of pdt-
automata with arbitrary actions. We also formally prove the correctness of the
resulting algorithm.

We define a transition system S(A,A′), which is an NFA working on words of
a special form, as follows.

System S(A,A′) works on action words, that is, words of the form
µ1a1µ2a2 · · · an−1µn, where all ai are labels in Σ, and all µi are actions in M.
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Same as in the simplified example above, the actions in such a word are the ac-
tions passed by pdt-automaton A. So, such a word represents a data word in which
all the data values are different unless they are forced to be equal by the actions.

The states S of S(A,A′), called instantaneous descriptions (IDs) in order to
avoid confusion with the states of register automata, are pairs [[p, S],F ] where
[p, S] and F are defined as follows (note that they generalise the construction in
step 1):

– the pair [p, S], called a state-stack tuple, or s-s tuple for short, consists of
a state p ∈ P and a stack S of positive numbers such that Σ1≤i≤|S|S[i] =
Depth(p), where |S| is the size of S and S[i] is its i’th element; and

– F is a possibly empty set of pairs [p′, R], called state-reaction tuples with
respect to S, or s-r tuples, where p′ ∈ P ′ and R is a stack of actions inM (i.e.,
pairs of non-negative numbers) such that |R| = |S|.
The initial ID of S(A,A′) is [[rs, S∅], {[r′s, R∅]}], where S∅ and R∅ are empty

stacks. The final IDs are all [[qf , S∅],F ] such that F is a set of s-r tuples that does
not contain [q′f , R∅].

Intuitively, IDs of S(A,A′) store the required information about a run of A on
a data word represented by an action word as well as all runs of A′ on this data
word: an s-s tuple keeps the sizes of groups of registers in A that must store the
same data value, while s-r tuples keep the “reactions” of A′ as in the simplified
case above.

The transitions of S(A,A′) over labels in Σ are standard, but defining the tran-
sitions over actions requires a bit more of work. Intuitively, there are four types of
transitions, each one representing one of the four different ways for manipulating
registers in a transition of A in a run on a data word: no manipulation, pushing the
current fresh data value into the stack of registers several times, popping the value
off in such a way that the value is not in the stack any more; popping it off and,
possibly, pushing it back so it is left in the stack. In turn, s-r tuples in R propagate
all possible transitions of A′ accordingly:

– if A does not manipulate registers, then A′ should not do so as well;

– if A pushes a data value but does not pop anything before, then A′ should
store the corresponding action in stack R;

– if A pops all copies of the data value, then A′ should clear from this data
value as well;

36



– if A pops, but not all copies, then A′ should continue to accumulate the
overall reacting action on the top of the stack.

Therefore, in the definition of the transition relation of S(A,A′) we need the
following notions. Given an s-s tuple [p, S] and a number m, 0 < m ≤ Depth(p),
the level Lev(S,m) of S and m is the number satisfying the inequalities

ΣLev(S,m)<i≤|S|S[i] < m ≤ ΣLev(S,m)≤i≤|S|S[i],

and the remainder Rem(S,m) is the number

ΣLev(S,m)≤i≤|S|S[i]−m.

Intuitively, if m is the number of registers whose contents are compared in the
current transition, then Lev(S,m) is the group in S to which the last (i.e., the
deepest) compared register belongs, and the remainder Rem(S,m) is the number
of registers left non-compared in this group.

Formally, the transition relation γS ⊆ S × (M∪Σ)×S of system S(A,A′) is
defined as follows, where cases 1(a)–1(d) correspond to the four ways of register
manipulation described above:

1. ([[r, S1],F1], µ, [[q, S2],F2]) ∈ γS for a data state r, word state q, stacks S1 and
S2, sets of s-r tuples F1 and F2, and action µ ∈ M if (r, µ, q) ∈ δ and one of
the following holds:

(a) µ = 〈0, 0〉, S1 = S2, and F2 consists of all s-r tuples [q′, R2] for each of
which there is [r′, R1] ∈ F1 with (r′, 〈0, 0〉, q′) ∈ δ′ and R1 = R2;

(b) µ = 〈0,m2〉 for m2 > 0, S2 = (S1[1], . . . , S1[|S1|],m2) (i.e., S2 can be
obtained from S1 by pushing m2 into), and F2 consists of the s-r tuples
[q′, R2] for each of which there is [r′, R1] ∈ F1 with (r′, µ′, q′) ∈ δ′ and
R2 = (R1[1], . . . , R1[|R1|], µ′);

(c) µ = 〈m1, 0〉 for m1 > 0 such that the reminder Rem(S1,m1) = 0,
S2 = (S1[1], . . . , S1[Lev(S1,m1) − 1]), and F2 consists of the s-r tu-
ples [q′, R2] for each of which there is [r′, R1] ∈ F1 with (r′, µ′, q′) ∈ δ′,
R2 = (R1[1], . . . , R1[Lev(S1,m1)− 1]) and

R1[Lev(S1,m1)] ◦ · · · ◦ R1[|R1|] ◦ µ′ = 〈0, 0〉; (3)

(d) µ = 〈m1,m2〉 for m1 > 0 such that at least one of m2 and Rem(S1,m1)
is not 0, S2 = (S1[1], . . . , S1[Lev(S1,m1) − 1],Rem(S1,m1) + m2), and
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F2 consists of the s-r tuples [q′, R2] for each of which there is [r′, R1] ∈ F1

with (r′, µ′, q′) ∈ δ′ and

R2 = (R1[1], . . . , R1[Lev(S1,m1)−1], R1[Lev(S1,m1)]◦ · · · ◦R1[|R1|]◦µ′);

2. ([[q, S1],F1], a, [[r, S2],F2]) ∈ γS for a word state q, data state r, stacks S1 and
S2, sets of s-r tuples F1 and F2, and label a, if (q, a, r) ∈ α, S1 = S2 and F2

consists of the s-r tuples [r′, R2] for each of which there is an s-r tuple [q′, R1]
in F1 such that (q′, a, r′) ∈ α′ and R1 = R2.

A run of S(A,A′) on an action word w = µ1a1µ2a2 · · · an−1µn is a sequence
s′0, s1, s

′
1, s2, s

′
2, . . . , s

′
n−1, sn of IDs such that s′0 is initial, (s′i−1, µi, si) ∈ γS for

each i, 1 ≤ i ≤ n, and (si, ai, s
′
i) ∈ γS for each i, 1 ≤ i < n. It is accepting if sn

is final, and in this case S(A,A′) accepts w.
Next we show the correctness of the transition system, that is, prove that sys-

tem S(A,A′) accepts at least one action word if and only if L(A) 6⊆ L(A′). In
particular, Claim 4.13 states the forward direction of this equivalence, where we
show that a data word represented by the action word, as explained above, wit-
nesses the non-containment; next, Claim 4.14 states the backward direction.

Claim 4.13. For each action word accepted by S(A,A′) there is a data word
accepted by A and rejected by A′.

Proof. Assume that S(A,A′) accepts an action word µ1a1µ2a2 · · · an−1µn, and let
s′0, s1, s

′
1, s2, s

′
2, . . . , sn−1, s

′
n−1, sn be the corresponding accepting run with all s′i

of the form [[ri, Si],F ′i ] and all si of the form [[qi, Si],Fi] such that [[r0, S0],F ′0] =
[[rs, S∅], {[r′s, R∅]}], [qn, Sn] = [qf , S∅] and Fn does not contain any s-r tuple
[q′f , R∅]. We construct a data word w = d1a1d2a2 · · · an−1dn and then prove that
w ∈ L(A) while w /∈ L(A′).

In w we take each label ai from the action word, so to finish the definition of
w we need to define each of the data values di. As said above, we need data values
such that any two of them are different unless they are forced to be equal by the
actions in the action word.

Formally, we first set di as a fresh data value whenever µi = 〈0, 0〉. Next
we we iterate over all k such that Rem(Sk−1,m1) = 0 for µk = 〈m1, 0〉 and
m1 > 0 in the increasing order. Let k1 be the smallest of these numbers. Since
Rem(Sk1−1,m1) = 0, there must exist a number j < k1 such that Depth(rj−1) =
Depth(qk1). Let j1 be the greatest of such numbers and d∗ be a fresh data value.
We then set di = d∗, for all i ∈ [j1, k1] such that µi 6= 〈0, 0〉.
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Continuing with the iteration, let k2 be the second smallest number such that
Rem(Sk2−1,m1) = 0 for µk2 = 〈m1, 0〉, m1 > 0, and let j2 be defined for k2 as j1
for k1. There could be two cases:

– the intervals [j2, k2] and [j1, k1] are disjoint, in which case we define di for all
i with j2 ≤ i ≤ k2 in exactly the same way as for [j1, k1];

– [j2, k2] contains [j1, k1] (that is, j2 < j1); in this case we do the same as for
[j1, k1], except that we do not redefine di for j1 ≤ i ≤ k1.

Note that the case of [j2, k2] and [j1, k1] having non-empty intersection but [j2, k2]
does not contain [j1, k1] is not possible by construction.

Next we prove that w ∈ L(A), by showing that the following sequence of
configurations is an accepting run of A on w:

[r0, λ0], [q1, λ1], [r1, λ1], [q2, λ2], [r2, λ2], . . . , [qn−1, λn−1], [rn−1, λn−1], [qn, λn],

where data states ri and word states qi are taken from the run

s′0, s1, s
′
1, s2, s

′
2, . . . , sn−1, s

′
n−1, sn,

λ0 = ⊥ and λi, for i > 0, assigns registers

xDepth(ri−1)−m1+1, . . . , xDepth(ri−1)−m1+m2

to di, where µi = 〈m1,m2〉, and all other registers as λi−1.
Since ([[qi, Si],Fi], ai, [[ri, Si],F ′i ]) ∈ γS, we have that (qi, ai, ri) ∈ α, and

therefore [qi, λi] ⇒A
ai

[ri, λi] for all i. We also know that λ0 = ⊥, r0 = rs,
and qn = qf . Hence, all that is left to prove is that [ri−1, λi−1] ⇒A

di
[qi, λi]

for every i, and we do it by showing that the transition (ri−1, µi, qi) in δ,
existing by the fact that ([[ri−1, Si−1],F ′i−1], µi, [[qi, Si],Fi]) ∈ γS, is appli-
cable in this case as well. In fact, λi differs from λi−1 only on registers
xDepth(ri−1)−m1+1, . . . , xDepth(ri−1)−m1+m2 , for µi = 〈m1,m2〉, and contains di in
all these registers by construction, so we only need to show that λi−1 contains di
in all xDepth(ri−1), . . . , xDepth(ri−1)−m1+1. If m1 = 0 then the check is trivial, so in
what follows we assume that m1 > 0.

Consider first the case when j1 ≤ i ≤ k1, where k1 is the smallest number such
that Rem(Sk1−1,m1) = 0 for µk1 = 〈m1, 0〉,m1 > 0, and j1 is the greatest number
such that j1 < k1 and Depth(rj1−1) = Depth(qk1). By construction, di = dj1 . By
the requirements for the run of S(A,A′), Depth(ri1−1) −m′1 ≥ Depth(rj1−1) for
any i1, j1 ≤ i1 ≤ k1, with µi1 = 〈m′1,m′2〉. In particular, Depth(ri−1) − m1 ≥
Depth(rj1−1), that is, all the registers tested on step i are above Depth(rj1−1). On
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the one hand, all the values in these registers are written after step j1; on the other,
the only data value that is written between j1 and i is dj1 . In other words, λi−1
contains di in all xDepth(ri−1), . . . , xDepth(ri−1)−m1+1, as required.

Consider now the case when j1 ≤ i ≤ k1 does not hold, but j2 ≤ i ≤
k2, where k2 is the second smallest number such that Rem(Sk2−1,m1) = 0 for
µk2 = 〈m1, 0〉, m1 > 0, and j2 is the greatest number such that j2 < k2 and
Depth(rj2−1) = Depth(qk2). If j2 > k1 then we can reason exactly as in the
previous case. If j2 < j1, then the reasoning is again similar. By construction,
di = dj2 . By the requirements for the run of S(A,A′), Depth(ri1−1) − m′1 ≥
Depth(rj2−1) for any i1, j2 ≤ i1 ≤ k2, with µi1 = 〈m′1,m′2〉. In particular,
Depth(ri−1) − m1 ≥ Depth(rj2−1), that is, all the registers tested on step i are
above Depth(rj2−1). The only data value in these registers is dj2; indeed, if i < j1,
then all these registers are written between j2 and i, and the only data value that is
written on these steps is dj2 ; otherwise, that is, if j1 < k1 < i, dj1 is also written
to some registers on steps between j1 and k1, but all these registers are emptied by
step k1. In other words, λi−1 contains di in all xDepth(ri−1), . . . , xDepth(ri−1)−m1+1,
as required.

Reasoning like this, we can consider all i except those that do not belong to any
interval. In these cases, however, m1 = 0, because µi = 〈0, 0〉 by construction.
Hence, as already discussed, the check is trivial.

Finally, we need to show thatw /∈ L(A′). Assume for the sake of contradiction
that it is not the case and there is an accepting run of A′ on data word w of the
form

[r′0, λ
′
0], [q

′
1, λ
′
1], [r

′
1, λ
′
1], . . . , [r

′
n−1, λ

′
n−1], [q

′
n, λ

′
n]

with [r′0, λ
′
0] = [r′s,⊥] and q′n = q′f . Let, for each i, µ′i be the action of the

transition witnessing [r′i−1, λ
′
i−1] ⇒A′

di
[q′i, λ

′
i]. We prove that this implies that Fn

contains the s-r tuple [q′f , R∅], which would contradict the fact that sn is final and
the run of S(A,A′) is accepting.

We construct stacks of actions Ri, for 0 ≤ i ≤ n, as follows. First, let R0 = R∅.
Then, every other Ri is defined on the base of Ri−1 depending on µi as follows:
1. if µi = 〈0, 0〉 then Ri = Ri−1;

2. if µi = 〈0,m2〉 for m2 > 0 then Ri = (Ri−1[1], . . . , Ri−1[|Ri−1|], µ′i);

3. if µi = 〈m1, 0〉 for m1 > 0 such that the reminder Rem(Si−1,m1) = 0 then

Ri = (Ri−1[1], . . . , Ri−1[Lev(Si−1,m1)− 1]);
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4. if µi = 〈m1,m2〉 such that m1 > 0, and m2 or Rem(Si−1,m1) is not 0 then

Ri = (Ri−1[1], . . . , Ri−1[Lev(Si−1,m1)− 1],

Ri−1[Lev(Si−1,m1)] ◦ · · · ◦ Ri−1[|Ri−1|] ◦ µ′i).

Next we show, by induction on i, that [r′i, Ri] ∈ F ′i and [q′i, Ri] ∈ Fi. For
the basis of the induction, [r′0, R0] ∈ F ′0 by construction. Let [r′i−1, Ri−1] ∈ F ′i−1.
We show that [q′i, Ri] ∈ Fi. Knowing that (r′i−1, µ

′
i, q
′
i) ∈ δ′, we have four cases,

depending on the form of µi as above.
Case 1. If µi = 〈0, 0〉, then we only need to prove that µ′i = 〈0, 0〉. Let µ′i =
〈m′1,m′2〉. We first show that m′1 = 0. On the one hand, µi = 〈0, 0〉, so di is a
fresh data value that is different from all d1, . . . , di−1. On the other, Image(λ′i−1)
consists only of these data values by construction. Therefore, di /∈ Image(λ′i−1)
and no comparisons can be performed in [r′i−1, λ

′
i−1]⇒A′

di
[q′i, λ

′
i], that is, m′1 = 0.

Next we show that m′2 = 0. Indeed, all of the values written to registers must be
tested by the end of the accepting run of A′, so di, which does not appear among
di+1, . . . , dn, cannot be written to any register x′ ∈ X ′. Therefore, m′2 = 0.
Hence, (r′i−1, 〈0, 0〉, q′i) ∈ δ′, and [q′i, Ri] ∈ Fi by definition.
Case 2. If µi = 〈0,m2〉 for m2 > 0, then [q′i, Ri] ∈ Fi by definition.
Case 3. If µi = 〈m1, 0〉 form1 > 0 and Rem(Si−1,m1) = 0 then the only thing we
need to check is equation (3) (for Ri−1 as R1, Si−1 as S1 and µ′i as µ′). Let first i be
the smallest number with the properties, that is, i = k1 in the construction above.
In this case (3) boils down to µ′j1◦· · ·◦µ

′
k1

= 〈0, 0〉, where j1 is the greatest number
with Depth(rj1−1) = Depth(qk1). Since the run of A′ is accepting, we have that
Depth(r′j1−1) = Depth(q′k1); the proof of this fact is very similar to the reasoning
in case 1: Depth(r′j1−1) > Depth(q′k1) would mean that dj1 is successfully tested
for equality with some value written to a register before j1, which, however, is not
possible by construction; also Depth(r′j1−1) < Depth(q′k1) would mean that the
data value dj1 in the register x′Depth(r′j1−1)+1, which does not appear in the word after
k1, is never tested after k1, so q′n could not be final. Moreover, by the same reason
Depth(r′h−1) −m′1 ≥ Depth(r′j1−1) for any h, j1 ≤ h ≤ k1, and µ′h = 〈m′1,m′2〉.
Hence, by Lemma 4.11 µ′j1 ◦ · · · ◦ µ

′
k1

= 〈0, 0〉 as required. Let now i = k2 in the
construction above. If j2 > k1, then we can check (3) in exactly the same way.
If j2 < j1, that is, the interval [j1, k1] is contained in the interval [j2, k2], then (3)
boils down to µ′j2 ◦ · · · ◦ µ

′
j1−1 ◦ µ

′
k1+1 ◦ · · · ◦ µ′k2 = 〈0, 0〉. It holds by applying

Corollary 4.10 to the same construction. Reasoning like this, we can check (3) for
all relevant i.

41



Case 4. If µi = 〈m1,m2〉 such thatm1 > 0, andm2 or Rem(Si−1,m1) is not equal
to 0, then [q′i, Ri] ∈ Fi again by definition.

Let now [q′i, Ri] ∈ Fi. Then [r′i, Ri] ∈ F ′i holds because (q′i, ai, r
′
i) ∈ α′ by the

properties of the accepting run of A′.
Hence, we have that [q′n, Rn] ∈ Fn. We know that q′n = q′f . Also, Rn = R∅,

because |Rn| = |Sn| = |S∅| = 0. So, Fn contains the s-r tuple [q′f , R∅], which
contradicts to the fact that the run of S(A,A′) is accepting. It means that the
assumption is wrong and w /∈ L(A′), as required.

Having the forward direction of the correctness proved, we move to the back-
ward direction.

Claim 4.14. For each data word accepted by A and rejected by A′ there is a action
word accepted by S(A,A′).

Proof. Assume that there is a data word w = d1a1d2a2 · · · an−1dn such that w ∈
L(A) but w /∈ L(A′). Since w ∈ L(A), there is an accepting run of A on w of the
form

[r0, λ0], [q1, λ1], [r1, λ1], . . . , [qn−1, λn−1], [rn−1, λn−1], [qn, λn]

with [r0, λ0] = [rs,⊥] and qn = qf .
On the base of the data word and the run, we next construct an action word

µ1a1µ2a2 · · · an−1µn and a sequence s′0, s1, s
′
1, s2, s

′
2, . . . , s

′
n−1, sn of IDs of sys-

tem S(A,A′) with all s′i = [[ri, Si],F ′i ] and all si = [[qi, Si],Fi]; then we prove
that the sequence is an accepting run of S(A,A′) on the action word. Note that the
lengths of the action word and the sequence are the same as the lengths of data
word w and the accepting run of A, respectively; moreover, all the labels ai, data
states ri and word states qi are also the same.

We define the actions in the action word as the actions passed by A when
accepting the data word: let each µi be the action of the transition witnessing
[ri−1, λi−1] ⇒A

di
[qi, λi] in the accepting run of A on w. In turn, stacks Si as well

as sets of s-r tuples Fi and F ′i are defined as follows: let S0 = S∅, F ′0 = {[r′s, R∅]},
and every other Si, Fi and F ′i be constructed as in the definition of transition
relation γS by taking µi as µ, ri−1 as r, Si−1 as S1, F ′i−1 as F1, qi as q, Si as S2,
and Fi as F2 in the first case, and by taking ai as a, qi as q, Si as S1, Fi as F1, ri
as r, Si as S2, and F ′i as F2 in the second case.
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It is straightforward to check that s′0, s1, s
′
1, s2, s

′
2, . . . , s

′
n−1, sn is a run of

S(A,A′) on µ1a1µ2a2 · · · an−1µn. Indeed, by definition, s′0 = [[r0, S0],F ′0] is ini-
tial, while ([[ri−1, Si−1],F ′i−1], µi, [[qi, Si],Fi]) and ([[qi, Si],Fi], ai, [[ri, Si],F ′i ])
belong to γS for each i.

We are left to show that the run is accepting, that is, sn is final. Recall first
that qn = qf ; moreover, the depth Depth(qn) is 0, so Sn = S∅. Hence, we only
need to show that Fn does not contain the s-r tuple [q′f , R∅]. Assume for the sake
of contradiction that it is not true and Fn contains this s-r tuple. We show that in
this case there exists an accepting run of A′ on w, which contradicts the fact that
w /∈ L(A′).

Since Fn contains [q′f , R∅], there exist s-r tuples [q′i, Ri] ∈ Fi, 0 ≤ i ≤ n,
and [r′i, Ri] ∈ F ′i , 1 ≤ i ≤ n, as well as actions µ′i, such that r′0 = r′s,
R0 = R∅, (r′i−1, µ

′
i, q
′
i) ∈ δ′, µ′i satisfies the conditions in the definition of γS,

and (q′i, ai, r
′
i) ∈ α′ for all i, and [q′n, Rn] = [q′f , R∅].

We define assignments λ′i of X ′, for 0 ≤ i ≤ n. The initial assignment λ′0 is
⊥, and each λ′i, for 1 ≤ i ≤ n, is defined as follows:

– it is di on x′Depth(r′i−1)−m′1+1, . . . , x
′
Depth(r′i−1)−m′1+m′2

, for µ′i = 〈m′1,m′2〉;
– it coincides with λ′i−1 on all other x′.

Next we prove that the sequence of configurations

[r′0, λ
′
0], [q

′
1, λ
′
1], [r

′
1, λ
′
1], . . . , [r

′
n−1, λ

′
n−1], [q

′
n, λ

′
n]

is an accepting run of A′ on data word w. Since (q′i, ai, r
′
i) ∈ α′, we know

that [q′i, λ
′
i] ⇒A′

ai
[r′i, λ

′
i] for all i. We also know that λ′0 = ⊥, r′0 = r′s,

and q′n = q′f . Hence, it is left to be proven that [r′i−1, λ
′
i−1] ⇒A′

di
[q′i, λ

′
i]

for every i, and we prove it by showing that the transition (r′i−1, µ
′
i, q
′
i) in δ′

is applicable in this case as well. In fact, λ′i differs from λ′i−1 only on reg-
isters x′Depth(r′i−1)−m′1+1, . . . , x

′
Depth(r′i−1)−m′1+m′2

and contains di in all these reg-
isters by construction, so we only need to show that λ′i−1 contains di in all
x′Depth(r′i−1)

, . . . , x′Depth(r′i−1)−m′1+1. If m′1 = 0 then the check is trivial, so in what
follows we assume that m′1 > 0.

Consider first the case when j1 ≤ i ≤ k1, where k1 is the smallest num-
ber such that Rem(Sk1−1,m1) = 0 for µk1 = 〈m1, 0〉, m1 > 0, and j1 is the
greatest number such that j1 < k1 and Depth(rj1−1) = Depth(qk1). By the re-
quirements for the run of S(A,A′), µ′j1 ◦ · · · ◦ µ

′
k1

= 〈0, 0〉, so, by Lemma 4.11,
Depth(r′j1−1) = Depth(q′k1) and Depth(r′i1−1) − m′′1 ≥ Depth(r′j1−1) for any
i1, j1 ≤ i1 ≤ k1 and µi1 = 〈m′′1,m′′2〉. In particular, Depth(r′i−1) − m′1 ≥
Depth(r′j1−1), that is, all the registers tested on step i are above Depth(r′j1−1).
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On the one hand, all the values in these registers are written after step j1; on the
other, the only data value that is written between j1 and i is dj1 . Since m′1 > 0,
that is, µ′i 6= 〈0, 0〉, we have that µi 6= 〈0, 0〉 by construction. So, λ′i−1 contains di
in x′Depth(r′i−1)

, . . . , x′Depth(r′i−1)−m′1+1 as required.
Consider now the case when j1 ≤ i ≤ k1 does not hold, but j2 ≤ i ≤

k2, where k2 is the second smallest number such that Rem(Sk2−1,m1) = 0 for
µk2 = 〈m1, 0〉, m1 > 0, and j2 is the greatest number such that j2 < k2 and
Depth(rj2−1) = Depth(qk2). If j2 > k1 then we can reason exactly as in the
previous case. If j2 < j1, then µ′j2 ◦ · · · ◦ µ

′
j1−1 ◦ µ

′
k1+1 ◦ · · · ◦ µ′k2 = 〈0, 0〉 by

the requirements on the run. By Corollary 4.10, µ′j2 ◦ · · · ◦ µ
′
i2

= 〈0, 0〉, so, by
Lemma 4.11, Depth(r′j2−1) = Depth(q′k2) and Depth(r′i1−1)−m

′′
1 ≥ Depth(r′j2−1)

for any i1, j2 ≤ i1 ≤ k2, and µi1 = 〈m′′1,m′′2〉. In particular, Depth(r′i−1)−m′1 ≥
Depth(r′j2−1). If i < j1, then, as in the previous case, the only value in the tested
registers is dj2 , and it is the same value as di, as required. If i > k1, then the
same holds, because the value dj1 , which was pushed into some registers above
Depth(r′j2−1) between j1 and k1, is already completely popped off before k1 + 1.

Reasoning like this, we can consider all i except those that do not belong to any
interval. In these cases, however, m′1 = 0, because µ′i = 〈0, 0〉 by construction.
Hence, as already discussed, the check is trivial.

We conclude that the sequence of configurations [r′0, λ
′
0], [q

′
1, λ
′
1], [r

′
1, λ
′
1],

. . . , [r′n−1, λ
′
n−1], [q

′
n, λ

′
n] is an accepting run of A′ on w, which contradicts, how-

ever, the fact that w /∈ L(A′). So, our assumption was wrong and the run of
S(A,A′) is accepting, as required.

Claims 4.13 and 4.14 guarantee that L(A) ⊆ L(A′) if and only if system
S(A,A′) accepts an action word. However, reducing to the emptiness problem
of S(A,A′) gives us any essential gain in complexity in comparison with much
simpler algorithm in the proof of Theorem 3.11. It is not surprising that there are
reachable IDs of S(A,A′) with s-r tuples in their sets F having the same state,
but different stacks of actions. Moreover, there are examples with F containing
exponential number of s-r tuples, so checking the emptiness of S(A,A′) in the
standard way can require exponential space as well. Nevertheless, it is possible
to reduce the space usage from exponential to polynomial, and we will devote the
second part of the proof to showing how it can be done.

Step 2. The key observation to stay in polynomial space is that even if the number
of s-r tuples in the set F can be exponential, this set is never arbitrary, and a lot
of the information in the stacks of actions is shared: if a stack can be seen as a
unary tree, then every set of such trees that appears on a run can be represented
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as a directed acyclic graph (dag), whose size is polynomial. For example, if the
expressions have the form c · (a · (a · (a · b . . . )= . . . )= . . . )= . . . and c · (a∗ ·
(a∗ · b . . . )= . . . )= . . . , then before reading b there are two s-r tuples with stacks
of actions (〈0, 1〉, 〈0, 0〉, 〈0, 1〉) and (〈0, 1〉, 〈0, 1〉, 〈0, 0〉). These stacks have the
common first action, 〈0, 1〉, so we can keep it in memory just once, together with
links to the rests of the stacks. In the rest of this proof we formalise this intuition
and show its correctness.

Let N0 be the set of all natural numbers with 0 and ? be a special symbol.
A reaction dag D for pdt-automaton A′ is a rooted labelled dag with nodes from
N0 × (Q′ ∪ {?}) such that

– the root v0 is (0, ?), and this is the only node with ?;

– the first component g of each node (g, q′), called level, is such that the length
of each directed path (i.e., the number of edges along this path) from the root
to (g, q′) is g;

– all the leaves have the same level, denoted by ‖D‖;

– every edge is labelled with an action inM;

– every leaf v is labelled with a possibly empty set of states B(v) ⊆ P ′ of A′.
In fact, we will concentrate on reaction dags that have either only data states

in the sets B(v) of its leaves v or only word states in these sets.
A reaction dag D represents an s-r tuple [p′, R] if it has a path from the root to

a leaf v such that p′ ∈ B(v) and the actions along this path, from the root to the
leaf, are the actions in the stack R, from the bottom to the head.

Essentially, we are going to show that the sets of s-r tuples in all reachable
IDs of S(A,A′) are representable by reaction dags. This is enough for a PSPACE

algorithm for containment, because, contrary to sets of s-r tuples, every reaction
dag is of polynomial size by definition (the size of a stack in an s-r tuple is bounded
by the maximal depth of a state in A′). To this end, we define another transition
system, U(A,A′), that runs on action words and differs from S(A,A′) by reaction
dags in IDs instead of sets of s-r tuples.

The IDs U of U(A,A′) are pairs [[p, S],D] where
– [p, S] is an s-s tuple with p ∈ P (i.e., a state of A) and stack S of positive

numbers such that Σ1≤i≤|S|S[i] = Depth(p); and

– D is a reaction dag such that ‖D‖ = |S|.
The initial ID of U(A,A′) is [[rs, S∅],D∅], where D∅ is the reaction dag consist-

ing of only the root v0 and such thatB(v0) = {r′s}. The final IDs are [[qf , S∅],Df ],
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where Df is any reaction dag such that q′f 6∈ B(v0) (note that the ‖Df‖ = |S∅| = 0,
so the root is the only leaf of Df ).

The transition relation γU ⊆ U × (M∪Σ)×U of system U(A,A′) is defined
as follows:

1. ([[r, S1],D1], µ, [[q, S2],D2]) ∈ γU for a data state r, word state q, stacks S1
and S2, reaction dags D1 and D2, and action µ ∈ M if (r, µ, q) ∈ δ and one
of the following holds:

(a) µ = 〈0, 0〉, S1 = S2, and D2 is the same as D1 except that q′ ∈ B(v) for a
leaf v in D2 if and only if there is r′ ∈ B(v) in D1 with (r′, 〈0, 0〉, q′) ∈ δ′;

(b) µ = 〈0,m2〉 for m2 > 0, S2 = (S1[1], . . . , S1[|S1|],m2), and D2 can be
obtained from D1 by

– adding all the nodes vnew = (‖D1‖ + 1, q′new) labelled as B(vnew) =
{q′new} and edges (v, vnew) labelled by µ′, such that v = (‖D1‖, q′),
(r′, µ′, q′new) ∈ δ′, and r′ ∈ B(q′); and

– removing all the labels of nodes of level ‖D1‖ and all the nodes that are
not on a path from the root to a node of level ‖D1‖+ 1;

(c) µ = 〈m1, 0〉 for m1 > 0 such that the reminder Rem(S1,m1) = 0, S2 =
(S1[1], . . . , S1[Lev(S1,m1)− 1]), and D2 can be obtained from D1 by

– removing all the nodes of levels greater than Lev(S1,m1) − 1 (together
with all the edges involving them); and

– adding a word state q′new to the label B(v) of a new leaf v =
(Lev(S1,m1) − 1, q′) if and only if there is a path from v to a leaf v1
in D1 with r′ ∈ B(v1) such that (r′, µ′, q′new) ∈ δ′ and µ′′ ◦ µ′ = 〈0, 0〉,
where µ′′ is the composition of edge labels along the path;

(d) µ = 〈m1,m2〉 for m1 > 0 such that at least one of m2 and Rem(S1,m1)
is not 0, S2 = (S1[1], . . . , S1[Lev(S1,m1)− 1],Rem(S1,m1) +m2), and D2

can be obtained from D1 by

– removing all the nodes of levels greater than Lev(S1,m1) − 1 (together
with all the edges involving them);

– adding all the nodes vnew = (Lev(S1,m1), q
′
new) labelled as B(vnew) =

{q′new} and edges (v, vnew) labelled by µ′′ ◦ µ′, such that v =
(Lev(S1,m1) − 1, q′), there is a path from v to a leaf v1 in D1 with
r′ ∈ B(v1) such that (r′, µ′, q′new) ∈ δ′ and µ′′ is the composition of
edge labels along the path; and
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– removing all the nodes that are not on a path from the root to a node of
level Lev(S1,m1);

2. ([[q, S1],D1], a, [[r, S2],D2]) ∈ γU for a word state q, data state r, stacks S1
and S2, reaction dags D1 and D2, and label a, if (q, a, r) ∈ α, S1 = S2, and
D2 is the same as D1 except that r′ ∈ B(v) for a leaf v in D2 if and only if
q′ ∈ B(v) in D1 for (q′, a, r′) ∈ α′.
Note that some new nodes vnew added to a reaction dag in cases 1(b) and 1(d)

may have several new incoming edges.
A run of transition system U(A,A′) on an action word w =

µ1a1µ2a2 · · · an−1µn is a sequence u′0, u1, u
′
1, u2, u

′
2, . . . , u

′
n−1, un of IDs such that

u′0 is initial, (u′i−1, µi, ui) ∈ γU for each i, 1 ≤ i ≤ n, and (ui, ai, u
′
i) ∈ γU for each

i, 1 ≤ i < n. It is accepting if un is final, and in this case U(A,A′) accepts w.

Claim 4.15. An action word is accepted by system U(A,A′) if and only if it is
accepted by system S(A,A′).

Proof. We start with the forward direction. Let w = µ1a1µ2a2 · · · an−1µn be an
action word and v′0, v1, v

′
1, v2, v

′
2, . . . , v

′
n−1, vn be an accepting run of U(A,A′) on

w with all v′i = [[ri, Si],D′i] and all vi = [[qi, Si],Di]. We will construct an accept-
ing run s′0, s1, s

′
1, s2, s

′
2, . . . , s

′
n−1, sn of S(A,A′) on w, with all s′i = [[ri, Si],F ′i ]

and all si = [[qi, Si],Fi]. Note that ri, Si, and qi are the same in both of the runs,
so we only need to define F ′i and Fi.

Let F ′0 = F∅, and all the other sets of s-r tuples are iteratively defined exactly
as in the definition of γS, by taking, for each i, ri−1 as r, Si−1 as S1, F ′i−1 as F1,
µi as µ, qi as q, Si as S2 and Fi as F2 for a transition (ri−1, µi, qi) ∈ δ, and taking
qi as q, Si as S1, Fi as F1, ai as a, ri as r, Si as S2 and F ′i as F2 for a transition
(qi, ai, ri) ∈ α. The sequence s′0, s1, s

′
1, s2, s

′
2, . . . , s

′
n−1, sn is a run of S(A,A′) on

w by construction. We are left to show that it is an accepting run. Assume, for the
sake of contradiction, that it is not the case, that is, [q′f , R∅] ∈ Fn. We prove that
then Dn represents [q′f , R∅], that is, q′f ∈ B(v0) in Dn, which contradicts to the fact
that the run of U(A,A′) is accepting.

Since Fn contains [q′f , R∅], there exist s-r tuples [q′i, Ri] ∈ Fi and [r′i, Ri] ∈ F ′i ,
as well as actions µ′i, such that r′0 = r′s, R0 = R∅, (r′i−1, µ

′
i, q
′
i) ∈ δ′, µ′i satisfies the

conditions in the definition of γS, and (q′i, ai, r
′
i) ∈ α′ for all i. By construction,

D′0 = D∅ represents [r′0, R0], and it is straightforward to compare the definitions of
γS and γU, and see that Di represents [q′i, Ri] and D′i represents [r′i, Ri]. In particular,
Dn represents [q′f , R∅]. So, our assumption was wrong and the constructed run of
S(A,A′) is accepting.
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Next we prove the statement in the backward direction. Let w =
µ1a1µ2a2 · · · an−1µn be a action word and s′0, s1, s

′
1, s2, s

′
2, . . . , s

′
n−1, sn be an ac-

cepting run of S(A,A′) on w with all s′i = [[ri, Si],F ′i ] and all si = [[qi, Si],Fi].
We will construct an accepting run u′0, u1, u

′
1, u2, u

′
2, . . . , u

′
n−1, un of U(A,A′) on

w, with all u′i = [[ri, Si],D′i] and all ui = [[qi, Si],Di]. Note that ri, Si, and qi are
the same in both of the runs, so we only need to define D′i and Di.

Let D′0 = D∅, and all the following reaction dags are iteratively defined exactly
as in the definition of γU, by taking, for each i, ri−1 as r, Si−1 as S1, D′i−1 as D1,
µi as µ, qi as q, Si as S2 and Di as D2 for a transition (ri−1, µi, qi) ∈ δ, and
taking qi as q, Si as S1, Di as D1, ai as a, ri as r, Si as S2 and D′i as D2 for a
transition (qi, ai, ri) ∈ α. Then, the sequence u′0, u1, u

′
1, u2, u

′
2, . . . , u

′
n−1, un is a

run of U(A,A′) on w by construction. We are left to show that it is an accepting
run. Assume, for the sake of contradiction, that it is not the case, that is, [q′f , R∅] is
represented by Dn. We prove, by induction on i, that, first, if an s-r tuple [q′i, Ri] is
represented by Di then it is in Fi, and, second, if [r′i, Ri] is represented by D′i then
it is in F ′i . It will imply that [q′f , R∅] ∈ Fn, which contradicts to the fact that the
run of S(A,A′) is accepting.

For the basis of the induction, note that [r′s, R∅] is the only s-r tuple represented
by D′0, and it is in F0.

For the first part of the inductive step, let, for 1 ≤ i ≤ n, all s-r tuples repre-
sented by D′i−1 be in F ′i−1. We need to show that any [q′i, Ri] represented by Di is
in Fi. There are four cases, depending on the form of µi.

1. If µi = 〈0, 0〉, then, by construction, there is [r′i−1, Ri−1] represented by D′i−1
such that (r′i−1, 〈0, 0〉, q′i) ∈ δ′ and Ri−1 = Ri. Hence, [q′i, Ri] ∈ Fi by defini-
tion and the inductive hypothesis.

2. If µi = 〈0,m2〉 for m2 > 0, then there is [r′i−1, Ri−1] represented by D′i−1
such that (r′i−1, µ

′, q′i) ∈ δ′ and Ri = (Ri−1[1], . . . , Ri−1[|Ri−1|], µ′) for some
µ′. Again, [q′i, Ri] ∈ Fi by definition and the inductive hypothesis.

3. If µi = 〈m1, 0〉 for m1 > 0 and Rem(Si−1,m1) = 0 then
there is [r′i−1, Ri−1] represented by D′i−1 such that (r′i−1, µ

′, q′i) ∈ δ′,
Ri = (Ri−1[1], . . . , Ri−1[Lev(Si−1,m1) − 1]) and Ri−1[Lev(Si−1,m1)] ◦ · · · ◦
Ri−1[|Ri−1|] ◦ µ′ = 〈0, 0〉 for some µ′. Again, [q′i, Ri] ∈ Fi by definition and
the hypothesis.

4. If µi = 〈m1,m2〉 such thatm1 > 0, andm2 or Rem(Si−1,m1) is not equal to 0,
then there is [r′i−1, Ri−1] represented by D′i−1 such that (r′i−1, µ

′, q′i) ∈ δ′, Ri =
(Ri−1[1], . . . , Ri−1[Lev(Si−1,m1)−1], Ri−1[Lev(Si−1,m1)]◦ · · · ◦Ri−1[|Ri−1|]◦
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Data comparisions RQD RQM
none PSPACE-complete∗

positive PSPACE-complete EXPSPACE-complete
full undecidable undecidable

Table 3: Summary of results. The result, known before, are marked with an asterisk. Some classes
have synonyms, not given for clarity: i.e. RQDs and RQMs with no data comparisons are RPQs.

µ′) for some µ′. Again, [q′i, Ri] ∈ Fi by definition and the hypothesis.

For the second part of the inductive step, let, for 1 ≤ i ≤ n, all s-r tuples
represented by Di are in Fi. Therefore, any [r′i, Ri] represented by Di is in F ′i by
construction and the inductive hypothesis.

Hence, our assumption was wrong, and the run of U(A,A′) on w is accepting,
as required.

Claims 4.13, 4.14, and 4.15 guarantee thatL(A) ⊆ L(A′) if and only if system
U(A,A′) accepts an action word. To conclude the proof of the lemma, we need
to prove that emptyness of the language of U(A,A′) can be decided in PSPACE.
By definition, the number of IDs in U(A,A′) is infinite, because the components
of actions are generally unbounded. However, by Lemma 4.11, all the actions
〈m′1,m′2〉 that may appear in stacks of actions R in reachable IDs of S(A,A′), and,
hence as edge labels of reaction dags D in reachable IDs of U(A,A′), are such
that m′1 ≤ `′ and m′2 ≤ `′, where `′ is the number of registers of A′ (i.e., the
maximal depth of a state of A′). Hence, we can restrict ourselves only to such
actions in IDs. Then, by definition, such IDs can be represented in polynomial
space, because each reaction dag in such an ID has at most ` levels, for ` the
number of registers in A, and each level has at most |P | nodes. Hence, emptyness
of the language of U(A,A′) can be decided in PSPACE using standard algorithms
for NFAs.

Since pdt-automata capture RQDs and the translations are polynomial, the
PSPACE upper bound transfers to containment of RQDs. The matching lower
bound is inherited from containment of standard regular expressions.

Corollary 4.16. Problem CONTAINMENT(positive RQDs) is PSPACE-complete.
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5. Conclusions and Future Work
After conducting a detailed study of query containment for main classes of

queries for graphs with data, we conclude that the picture here is quite different
from the one for traditional navigational languages. In particular, there is a sharp
contrast between RPQs or CRPQs, where containment is decidable, and any of the
known extension of RPQs that handle data values. Undecidability for the class of
RQMs comes as not a surprise, due to high complexity of query evaluation and
powerful data manipulation mechanism, but we have seen that even the class of
RQDs with good query evaluation properties can have undecidable containment.

The main observation of this paper is that the presence of inequality tests is a
major detractor for the static analysis of data comparison queries. We summarise
all of the results in Table 3.

As far as future work is concerned, we think there is much to be done in terms
of static analysis of graph query languages. First, the obvious extension is to try
and work on two-way (positive) RQMs and RQDs, that is, the languages where
backward traversals of edges is allowed. Some results in this direction are given
in [20], where two-way RQMs were considered. Doing two-way RQDs would
possibly require extending register automata and pdt-automata into some form of
two-way automata, and it is not clear that all of our results continue to hold under
this extension. Second possibility is to study conjunctions of (positive) RQMs
and RQDs, which would probably require a combination of our techniques and
that of [9]. Finally, it could be interesting to look at graph queries over vari-
ous description logics, where some results are known, but only about 2RPQs and
C2RPQs [8].
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[6] Barceló, P., Reutter, J. L., and Libkin, L. (2013). Parameterized regular ex-
pressions and their languages. Theoretical Computer Science, 474:21–45.
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[32] Vrgoč, D. (2014). Querying graphs with data. PhD thesis, School of Infor-
matics, University of Edinburgh.

[33] Wood, P. T. (2012). Query languages for graph databases. SIGMOD Record,
41(1):50–60.

53



Appendix: Proofs of Proposition 4.9 and Lemma 4.11

Proposition 4.9. Operation ◦ is associative and 〈0, 0〉 is neutral for ◦.

Proof. For associativity, note that for any 〈m1,m2〉, 〈m′1,m′2〉 and 〈m′′1,m′′2〉 inM(
〈m1,m2〉 ◦ 〈m′1,m′2〉

)
◦ 〈m′′1,m′′2〉

=

{
〈m1,m2 −m′1 +m′2〉 ◦ 〈m′′1,m′′2〉, if m2 ≥ m′1,
〈m1 −m2 +m′1,m

′
2〉 ◦ 〈m′′1,m′′2〉, if m2 ≤ m′1,

=


〈m1,m2 −m′1 +m′2 −m′′1 +m′′2〉, if m2 ≥ m′1,m2 −m′1 +m′2 ≥ m′′1,
〈m1 −m2 +m′1 −m′2 +m′′1,m

′′
2〉, if m2 ≥ m′1,m2 −m′1 +m′2 ≤ m′′1,

〈m1 −m2 +m′1,m
′
2 −m′′1 +m′′2〉, if m2 ≤ m′1,m

′
2 ≥ m′′1.

〈m1 −m2 +m′1 −m′2 +m′′1,m
′′
2〉, if m2 ≤ m′1,m

′
2 ≤ m′′1,

=


〈m1,m2 −m′1 +m′2 −m′′1 +m′′2〉, if m2 ≥ m′1,m2 −m′1 +m′2 ≥ m′′1,
〈m1 −m2 +m′1,m

′
2 −m′′1 +m′′2〉, if m2 ≤ m′1,m

′
2 ≥ m′′1,

〈m1 −m2 +m′1 −m′2 +m′′1,m
′′
2〉, if m2 −m′1 +m′2 ≤ m′′1,m

′
2 ≤ m′′1.

The last equality holds because(
(m2 ≥ m′1) ∧ (m2 −m′1 +m′2 ≤ m′′1)

)
∨ ((m2 ≤ m′1) ∧ (m′2 ≤ m′′1))

is equivalent to
(m2 −m′1 +m′2 ≤ m′′1) ∧ (m′2 ≤ m′′1).

Indeed, if m2 ≥ m′1 and m2 −m′1 + m′2 ≤ m′′1 then m′2 ≤ m′′1, and if m2 ≤ m′1
and m′2 ≤ m′′1 then m2−m′1 +m′2 ≤ m′′1. Symmetrically, the last system is equal
to 〈m1,m2〉 ◦

(
〈m′1,m′2〉 ◦ 〈m′′1,m′′2〉

)
.

The neutrality axioms µ ◦ 〈0, 0〉 = µ and 〈0, 0〉 ◦ µ = µ for any µ ∈ M hold
by construction.

Lemma 4.11. Let

[r0, λ0], [q1, λ1], [r1, λ1], . . . , [rn−1, λn−1], [qn, λn]

be a run of a pdt-automaton, where, for every 1 ≤ i ≤ n, configuration [qi, λi]
is reachable from [ri−1, λi−1] by a transition with action µi. For every j and k,
1 ≤ j ≤ k ≤ n, the numbers m1 and m2 in 〈m1,m2〉 = µj ◦ · · · ◦µk are such that

– Depth(rj−1)−m1 +m2 = Depth(qk),
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– Depth(ri−1) − m′1 ≥ Depth(rj−1) − m1 for any i, j ≤ i ≤ k, with µi =
〈m′1,m′2〉,

– there exists i, j ≤ i ≤ k, such that Depth(ri−1) −m′1 = Depth(rj−1) −m1

for µi = 〈m′1,m′2〉 (i.e., the inequality above becomes an equality).

Proof. Let us fix j and prove the statement by induction on k.
If k = j, then it holds by definition of pdt-automata.
Assume that the statement holds for k − 1 ≥ j, that is, m1

1 and m1
2 in

〈m1
1,m

1
2〉 = µj ◦ · · · ◦µk−1 are such that Depth(rj−1)−m1

1 +m1
2 = Depth(qk−1);

Depth(ri−1) − m′1 ≥ Depth(rj−1) − m1
1 for any i, j ≤ i ≤ k − 1, and

µi = 〈m′1,m′2〉; and there is i such that Depth(ri−1) −m′1 = Depth(rj−1) −m1
1.

Let also µk = 〈m2
1,m

2
2〉. Next we show that the statement holds for k as well. We

need to show that m1 and m2 in 〈m1,m2〉 = 〈m1
1,m

1
2〉 ◦ 〈m2

1,m
2
2〉 = µj ◦ · · · ◦ µk

satisfy the conditions on the used registers. We have two cases.
Assume first that m1

2 ≥ m2
1. Then m1 = m1

1 and m2 = m1
2 − m2

1 + m2
2

by the definition of ◦. On the one hand, Depth(qk) = Depth(rk−1) − m2
1 + m2

2

by the definition of pdt-automata. On the other, Depth(rk−1) = Depth(qk−1)
and Depth(qk−1) = Depth(rj−1) − m1

1 + m1
2 by the assumption. Therefore,

Depth(qk) = Depth(rj−1)−m1
1 +m1

2 −m2
1 +m2

2 = Depth(rj−1)−m1 +m2, as
required. Next, by the assumption, the smallest number of a manipulated register
between j and k − 1 is Depth(rj−1)−m1

1 + 1, and this manipulation happens on
the step from [ri−1, λi−1] to [qi, λi]. On the one hand, Depth(rj−1) − m1

1 + 1 =
Depth(rk−1) − m1

2 + 1. On the other, the smallest number manipulated on the
step from [rk−1, λk−1] to [qk, λk] is Depth(rk−1) −m2

1 + 1. Since m1
2 ≥ m2

1, the
smallest number between j and k − 1 is the smallest between j and k as well, as
required.

The other case is when m1
2 < m2

1. Then m1 = m1
1 −m1

2 +m2
1 and m2 = m2

2,
and the proof goes in exactly the same lines as for the case m1

2 ≥ m2
1 except

that now the overall smallest number is Depth(rk−1) − m2
1 + 1 on the step from

[rk−1, λk−1] to [qk, λk].
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