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Abstract

We study regular expressions that use variables, or parameters, which are interpreted as
alphabet letters. We consider two classes of languages denoted by such expressions: under
the possibility semantics, a word belongs to the language if it is denoted by some regular ex-
pression obtained by replacing variables with letters; under the certainty semantics, the word
must be denoted by every such expression. Such languages are regular, and we show that
they naturally arise in several applications such as querying graph databases and program
analysis. As the main contribution of the paper, we provide a complete characterization of
the complexity of the main computational problems related to such languages: nonempti-
ness, universality, containment, membership, as well as the problem of constructing NFAs
capturing such languages. We also look at the extension when domains of variables could be
arbitrary regular languages, and show that under the certainty semantics, languages remain
regular and the complexity of the main computational problems does not change.

Keywords: regular expressions with variables, possibility semantics, certainty semantics,
graph databases

1. Introduction

In this paper we study parameterized regular expressions like (0x)∗1(xy)∗ that combine
letters from a finite alphabet Σ, such as 0 and 1, and variables, such as x and y. These
variables are interpreted as letters from Σ. This gives two ways of defining the language of
words over Σ denoted by a parameterized regular expression e. Under the first – possibility
– semantics, a word w ∈ Σ∗ is in the language L3(e) if w is in the language of some
regular expression e′ obtained by substituting alphabet letters for variables. Under the
second – certainty – semantics, w ∈ L2(e) if w is in the language of all regular expressions
obtained by substituting alphabet letters for variables. For example, if e = (0x)∗1(xy)∗, then
01110 ∈ L3(e), as witnessed by the substitution x 7→ 1, y 7→ 0. The word 1 is in L2(e), since
the starred subexpressions can be replaced by the empty word. As a more involved example
of the certainty semantics, the reader can verify that for e′ = (0|1)∗xy(0|1)∗, the word 10011
is in L2(e′), although no word of length less than 5 can be in L2(e′).

These semantics of parameterized regular expressions arise in a variety of applications,
in particular in the fields of querying graph-structured data, and static analysis of programs.
We now explain these connections.
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Applications in graph databases. Graph databases, that describe both data and its topology,
have been actively studied over the past few years in connection with such diverse topics
as social networks, biological data, semantic Web and RDF, crime detection and analyzing
network traffic; see [1] for a survey. The abstract data model is essentially an edge-labeled
graph, with edge labels coming from a finite alphabet. This finite alphabet can contain,
for example, types of relationships in a social network or a list of RDF properties. In this
setting one concentrates on various types of reachability queries, e.g., queries that ask for
the existence of a path between nodes with certain properties so that the label of the path
forms a word in a given regular language [2, 3, 4, 5]. Note that in this setting of querying
topology of a graph database, it is standard to use a finite alphabet for labeling [1].

As in most data management applications, it is common that some information is missing,
typically due to using data that is the result of another query or transformation [6, 7, 8].
For example, in a social network we may have edges a

x
7−→ b and a′ x

7−→ b′, saying that the
relationship between a and b is the same as that between a′ and b′. However, the precise
nature of such a relationship is unknown, and this is represented by a variable x. Such graphs
G whose edges are labeled by letters from Σ and variables from a set W can be viewed as
automata over Σ∪W. In checking the existence of paths between nodes, one normally looks
for certain answers [9], i.e., answers independent of a particular interpretation of variables.

In the case of graph databases such certain answers can be found as follows. Let a, b be
two nodes of G. One can view (G, a, b) as an automaton, with a as the initial state, and b
as the final state; its language, over Σ ∪ W is given by some regular expression e(G, a, b).
Then we can be certain about the existence of a word w from some language L that is the
label of a path from a to b iff w also belongs to L2(e(G, a, b)), i.e., iff L ∩ L2(e(G, a, b)) is
nonempty. Hence, computing L2(e) is essential for answering queries over graph databases
with missing information.

Applications in program analysis. That regular expressions with variables appear naturally
in program analysis tasks was noticed, for instance, in [10, 11, 12]. One uses the alphabet
that consists of symbols related to operations on variables, pointers, or files, e.g., def for
defining a variable, use for using it, open for opening a file, or malloc for allocating a pointer.
A variable then follows: def(x) means defining variable x. While variables and alphabet
symbols do not mix freely any more, it is easy to enforce correct syntax with an automaton.
An example of a regular condition with parameters is searching for uninitialized variables:
(¬def(x))∗use(x).

Expressions like this are evaluated on a graph that serves as an abstraction of a program.
One considers two evaluation problems: whether under some evaluation of variables, either
some path, or every path between two nodes satisfies it. This amounts to computing L3(e)
and checking whether all paths, or some path between nodes is in that language. In case of
uninitialized variables one would be using ‘some path’ semantics; the need for the ‘all paths’
semantics arises when one analyzes locking disciplines or constant folding optimizations
[10, 12]. So in this case the language of interest for us is L3(e), as one wants to check
whether there is an evaluation of variables for which some property of a program is true.

Parameterized regular expressions appeared in other applications as well, e.g., in phase-
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sequence prediction for dynamic memory allocation [13], or as a compact way to express a
family of legal behaviors in hardware verification [14], or as a tool to state regular constraints
in constraint satisfaction problems [15].

At the same time, however, very little is known about the basic properties of the languages
L2(e) and L3(e). Thus, our main goal is to determine the exact complexity of the key
problems related to languages L2(e) and L3(e). We consider the standard language-theoretic
decision problems, such as membership of a word in the language, language nonemptiness,
universality, and containment. Since the languages L2(e) and L3(e) are regular, we also
consider the complexity of constructing NFAs, over the finite alphabet Σ, that define them.

For all the decision problems, we determine their complexity. In fact, all of them are
complete for various complexity classes, from NLogspace to Expspace. We establish
upper bounds on the running time of algorithms for constructing NFAs, and then prove
matching lower bounds for the sizes of NFAs representing L2(e) and L3(e). Finally, we look
at extensions where the range of variables need not be just Σ but Σ∗. Under the possibility
semantics, such languages need not be regular, but under the certainty semantics, we prove
regularity and establish complexity bounds.

Related work There are several related papers on the possibility semantics, notably [16,
17, 18]. Unlike the investigation in this paper, [17, 18] concentrated on the L3(e) semantics
in the context of infinite alphabets. The motivation of [17] comes from the study of infinite-
state systems with finite control (e.g., software with integer parameters). In contrast, for the
applications outlined in the introduction, finite alphabets are more appropriate [1, 4, 10, 11].
Results in [17] show that under the possibility semantics and infinite alphabets, the resulting
languages can also be accepted by non-deterministic register automata [18], and both closure
and decidability become problematic. For example, universality and containment are unde-
cidable over infinite alphabets [17]. In contrast, in the classical language-theoretic framework
of finite alphabets, closure and decidability are guaranteed, and the key questions are related
to the precise complexity of the main decision problems, with most of them requiring new
proof techniques.

An analog of the L2 semantics was studied in the context of graph databases in [7].
The model used there is more complex than the simple model of parameterized regular
expressions. Essentially, it boils down to automata in which transitions can be labeled
with such parameterized expressions, and labels can be shared between different transitions.
Motivations for this model come from different ways of incorporating incompleteness into
the graph database model. Due to the added complexity, lower bounds for the model of [7]
do not extend automatically to parameterized regular expressions, and in the cases when
complexity bounds happen to be the same, new proofs are required.

Different forms of succinct representations of regular languages, for instance with squar-
ing, complement, and intersection, are known in the literature, and both decision problems
[19] and algorithmic problems [20] have been investigated for them. However, even though
parameterized regular expressions can be exponentially more succinct than regular expres-
sions, it appears that parameterized regular expressions cannot be used to succinctly define
an arbitrary regular expression, nor any arbitrary union or intersection of them. Thus, the
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study of these expressions requires the development of new tools for understanding the lower
bounds of their decision problems.

When we let variables range over words rather than letters, under the possibility semantics
L3 we may obtain, for example, pattern languages [21] or languages given by expressions
with backreferences [22]. These languages need not be regular, and some of the problems
(e.g., universality for backreferences) are undecidable [16]. In contrast, we show that under
the certainty semantics L2 regularity is preserved, and complexity is similar to the case of
variables ranging over letters.

Organization Parameterized regular expressions and their languages are formally defined
in Section 2. In Section 3 we define the main problems we study. Complexity of the main
decision problems is analyzed in Section 4, and complexity of automata construction in
Section 5. In Section 6 we study extensions when domains of variables need not be single
letters.

2. Preliminaries

Let Σ be a finite alphabet, and V a countably infinite set of variables, disjoint from Σ.
Regular expressions over Σ ∪ V will be called parameterized regular expressions. Regular
expressions, as usual, are built from ∅, the empty word ε, symbols in Σ and V, by operations
of concatenation (·), union (|), and the Kleene star (∗). Of course each such expression only
uses finitely many symbols in V. The size of a regular expression is measured as the total
number of symbols needed to write it down (or as the size of its parse tree).

We write L(e) for the language defined by a regular expression e. If e is a parameterized
regular expression that uses variables from a finite set W ⊂ V, then L(e) ⊆ (Σ ∪W)∗. We
are interested in languages L2(e) and L3(e), which are subsets of Σ∗. To define them, we
need the notion of a valuation ν which is a mapping from W to Σ, where W is the set of
variables mentioned in e. By ν(e) we mean the regular expression over Σ obtained from e
by simultaneously replacing each variable x ∈ W by ν(x). For example, if e = (0x)∗1(xy)∗

and ν is given by x 7→ 1, y 7→ 0, then ν(e) = (01)∗1(10)∗.
We now formally define the certainty and possibility semantics for parameterized regular

expressions.

Definition 1 (Acceptance). Let e be a parameterized regular expression. Then:

• L2(e) :=
⋂
{L(ν(e)) | ν is a valuation for e} (certainty semantics)

• L3(e) :=
⋃
{L(ν(e)) | ν is a valuation for e} (possibility semantics).

Since each parameterized regular expression uses finitely many variables, the number of
possible valuations is finite as well, and thus both L2(e) and L3(e) are regular languages
over Σ∗.

The usual connection between regular expressions and automata extends to the param-
eterized case. Each parameterized regular expression e over Σ ∪ W, where W is a finite
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set of variables in V, can of course be translated, in polynomial time, into an NFA Ae over
Σ ∪W such that L(Ae) = L(e). Such equivalences extend to L2 and L3. Namely, for an
NFA A over Σ ∪ W, and a valuation ν : W → Σ, define ν(A) as the NFA over Σ that is
obtained from A by replacing each transition of the form (q, x, q′) in A (for q, q′ states of A
and x ∈ W) with the transition (q, ν(x), q′). The following is just an easy observation:

Lemma 1. Let e be a parameterized regular expression, and Ae be an NFA over Σ∪V such
that L(Ae) = L(e). Then, for every valuation ν, we have L(ν(e)) = L(ν(Ae)).

Hence, if we define L2(A) as
⋂

ν L(ν(A)), and L3(A) as
⋃

ν L(ν(A)), then the lemma implies
that L2(e) = L2(Ae) and L3(e) = L3(Ae). Since one can go from regular expressions to
NFAs in polynomial time, this will allow us to use both automata and regular expressions
interchangeably to establish our results.

3. Basic Problems

We now describe the main problems we study here. For each problem we shall have two
versions, depending on which semantics – L2 or L3 – is used. So each problem will have a
subscript ∗ that can be interpreted as 2 or 3.

We start with decision problems:

Nonemptiness∗ Given a parameterized regular expression e, is L∗(e) 6= ∅?

Membership∗ Given a parameterized regular expression e and a word w ∈ Σ∗, is w ∈
L∗(e)?

Universality∗ Given a parameterized regular expression e, is L∗(e) = Σ∗?

Containment∗ Given parameterized regular expressions e1 and e2, is L∗(e1) ⊆ L∗(e2)?

A special version of nonemptiness is the problem of intersection with a regular language
(used in the database querying example in the introduction):

NonemptyIntReg∗ Given a parameterized regular expression e, and a regular expression
e′ over Σ, is L(e′) ∩ L∗(e) 6= ∅?

The last problem is computational rather than a decision problem:

ConstructNFA∗ Given a parameterized regular expression e, construct an NFA A over
Σ such that L∗(e) = L(A).

The table in Fig. 1 summarizes the main results in Sections 4 and 5.
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Problem
Semantics

Certainty 2 Possibility 3

Nonemptiness Expspace-complete NLogspace-complete
(for automata)

Membership coNP-complete NP-complete
Containment Expspace-complete Expspace-complete
Universality Pspace-complete Expspace-complete
NonemptyIntReg Expspace-complete NP-complete
ConstructNFA double-exponential single-exponential

Figure 1: Summary of complexity results

4. Decision problems

In this section we consider the five decision problems – nonemptiness, membership, uni-
versality, containment and intersection with a regular language – and provide precise com-
plexity bounds for them. We shall also consider two restrictions on regular expressions;
these will indicate when the problems are inherently very hard or when their complexity
can be lowered in some cases. One source of complexity is the repetition of variables in
expressions like (0x)∗1(xy)∗. When no variable appears more than once in a parameterized
regular expression, we call it simple. Infinite languages are another source of complexity,
so we consider a restriction to expressions of star-height 0, in which no Kleene star is used:
these denote finite languages, and each finite language is denoted by such an expression.

4.1. Nonemptiness

The problem Nonemptiness3 has a trivial algorithm, since L3(e) 6= ∅ for every param-
eterized regular expression e (except when L(e) = ∅, which can be verified with a single
pass over the expression). So we study this problem for the certainty semantics only; for the
possibility semantics, we look at the related problem Nonemptiness-Automata3, which,
for a given NFA A over Σ ∪ V asks whether L3(A) 6= ∅.

Theorem 1. • The problem Nonemptiness2 is Expspace-complete.

• The problem Nonemptiness-Automata3 is NLogspace-complete.

The result for the possibility semantics is by a standard reachability argument. Note
that the bound is the same here as in the case of infinite alphabets studied in [17]. To see
the upper bound for Nonemptiness2, note that there are exponentially many valuations
ν, and each automaton ν(Ae) is of polynomial size, so we can use the standard algorithm
for checking nonemptiness of the intersection of a family of regular languages which can be
solved in polynomial space in terms of the size of its input; since the input to this problem is
of exponential size in terms of the original input, the Expspace bound follows. The hardness
is by a generic (Turing machine) reduction; in the proof we use the following property of the
certainty semantics:
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Lemma 2. Given a set e1, . . . , ek of parameterized expressions of size at most n ≥ k, it is
possible to build, in time O(|Σ| · k2 ·n) an expression e′ such that L2(e′) is empty if and only
if L2(e1) ∩ · · · ∩ L2(ek) is empty.

The reason the case of the L2(e) semantics is so different from the usual semantics of
regular languages is as follows. It is well known that checking whether the intersection of the
languages defined by a finite set S of regular expressions is nonempty is Pspace-complete
[23], and hence under widely held complexity-theoretical assumptions no regular expression
r can be constructed in polynomial time from S such that L(r) is nonempty if and only
if

⋂

s∈S L(s) is nonempty. Lemma 2, on the other hand, says that such a construction is
possible for parameterized regular expressions under the certainty semantics. Next we prove
Lemma 2:

Proof: Assume first that Σ has at least two symbols. Let e1, . . . , ek be parameterized regular
expressions as stated in the Lemma, and let a, b be different symbols in Σ. We use (Σ − a)
as a shorthand for the expression whose language is the union of every symbol in Σ different
from a, and define Ai = [(Σ − a)∗ · a · (Σ − a)∗]i, for 1 ≤ i ≤ k − 1. Finally, let x1, . . . , xk−1

be fresh variables. We define e′ as

(Σ − a)∗ · x1 · (Σ − a)∗ · x2 · (Σ − a)∗ · · ·xk−1 · (Σ − a)∗·
(
bakb · e1 | b · A1 · bakb · e2 | b · A2 · bakb · e3 | · · · | b · Ak−1 · bakb · ek

)

We prove next that L2(e′) 6= ∅ if and only if L2(e1) ∩ · · · ∩ L2(ek) 6= ∅. For the if
direction, consider a word w ∈ Σ∗ that belongs to L2(e1) ∩ · · · ∩ L2(ek). Then it can be
observed from the construction of e′ that the word (c̄kab)k−1bakbw belongs to L2(e′) where c̄
is the concatenation (say, in lexicographical order) of all the symbols in Σ different from a.

On the other hand, assume that a word w belongs to L2(e′). It is clear that w must
contain the substring bakb. Thus, there are words u, v ∈ Σ∗ such that w = u · bakb · v, and
u does not contain the word bakb as a substring. Our goal is to prove that v belongs to
L2(e1) ∩ · · · ∩ L2(ek). But first we need to show that u contains exactly k − 1 appearances
of the symbol a. We prove this statement by contradiction. Assume first that u contains
less than k − 1 appearances of the symbol a. Then consider a valuation ν that maps each
variable in e′ to the symbol a. Since ν(e′) is of the form

((Σ − a)∗a)k−1(Σ − a)∗ ·
(
bakb · ν(e1) | b · A1 · bakb · ν(e2) |

b · A2 · bakb · ν(e3) | · · · | b · Ak−1 · bakb · ν(ek)
)
,

we conclude that the language of ν(e′) cannot contain any word that starts with u·bakb, since
we have assumed that u contains less than k−1 appearances of the symbol a. Next, assume
that u contains more than k − 1 appearances of the symbol a, and consider a valuation ν ′

that maps each variable in e′ to the symbol b. Then ν ′(e′) is of the form

((Σ − a)∗b)k−1(Σ − a)∗(bakb · ν ′(e1) | b · A1 · bakb · ν ′(e2) |

b · A2 · bakb · ν ′(e3) | · · · | b · Ak−1 · bakb · ν ′(ek)).
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Recall that we define Ai as Ai = [(Σ − a)∗ · a · (Σ − a)∗]i. Then notice that any word in
L(ν ′(e′)) is such that the symbol a cannot appear more than k−1 times before the substring
bakb. We conclude that L(ν ′(e′)) cannot contain a word starting with u · bakb.

We have just proved that w can be decomposed into u · bakb · v, where u does not contain
the substring bakb and has exactly k−1 appearances of the symbol a. With this observation,
it is not difficult to show that, if a valuation ν assigns the symbol a to exactly j variables in
{x1, . . . , xk−1} (0 ≤ j ≤ k − 1), then v must belong to L2(ek−j). This proves that v belongs
to L2(e1) ∩ · · · ∩ L2(ek), which was to be shown.

For the case when Σ contains a single symbol a, notice that for each 1 ≤ i ≤ k it is the
case that L2(ei) = L(e′i), where e′i is the expression resulting from replacing all parameters in
ei with the symbol a. We perform this replacement, and afterwards augment Σ with a fresh
new symbol. The construction previously explained can be then used on input e′1, . . . , e

′
k.

The correctness of this algorithm follows directly from the proof of the previous case, and
the fact that the expressions e′1, . . . , e

′
k contain no variables.

Regarding the size of the expression e′, we have that the size of the first part of e′,
corresponding to (Σ − a)∗ · x1 · (Σ − a)∗ · x2 · (Σ − a)∗ · · ·xk−1 · (Σ − a)∗, is O(|Σ| · k).
Furthermore, the second part comprises of a union of k expressions, each of them of size
O(|Σ| · k · n). Thus, the size of e′ is O(|Σ| · k2 · n). 2

Lower bound for certainty semantics: To complete the proof of Theorem 1, we prove an
Expspace lower bound for Nonemptiness2, using a reduction from the acceptance problem
for deterministic Turing machines that work in exponential space. Along the proof we use
the shorthand [i] to denote the binary representation of the number i < 2n as a string of n
symbols from {0, 1}. For example, [0] corresponds to the word 0n, and [2] corresponds to
the word 0n−210.

Let L ⊆ Σ∗ be a language that belongs to Expspace, and let M be a Turing machine
that decides L in Expspace. Given an input ā ∈ Σ∗, we construct in polynomial time with
respect to M and ā a parameterized regular expression eM,ā such that L2(eM,ā) 6= ∅ if and
only if M accepts ā.

Assume that M = (Q, Γ, q0, {qm}, δ), where Q = {q0, . . . , qm} is the set of states, Γ =
{0, 1, B} is the tape alphabet (B is the blank symbol), the initial state is q0, qm is the unique
final state, and δ : (Q \ {qm}) × Γ → Q × Γ × {L, R} is the transition function. Notice
that we assume without loss of generality that no transition is defined on the final state
qm. Furthermore, we also assume without loss of generality that every accepting run of M
ends after an odd number of computations. Since M decides L in Expspace, there is a
polynomial S() such that, for every input ā over Σ, M decides ā using space of order 2S(|ā|).

Let ā = a0a1 · · ·ak−1 ∈ Σ∗ be an input for M (that is, each ai, 0 ≤ i ≤ k − 1, is a
symbol in Σ). For notational convenience we will assume from now on that S(|ā|) = n. Due
to Lemma 2, it suffices to construct a set E of parameterized regular expressions, such that
⋂

e∈E L2(e) is empty if and only if M accepts on input ā.
Consider the alphabet Σ = {0, 1}. The idea of the reduction is to code the run of M on

input ā into a word in Σ∗, in such a way that
⋂

e∈E L2(e) contains precisely the words that
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code an accepting run τ for M on input ā. In intuitive terms, such a word w represents the
sequence of “instant descriptions” of M with respect to run τ . We do it as follows.

Assume that M performs m computations according to the run τ . With each 1 ≤ i ≤ 2n

and i ≤ j ≤ m, we associate a symbol bi,j ∈ Γ∪ (Γ×Q), in such a way that bi,j corresponds
to the symbol in the i-th cell of the tape in the j-th step of the run τ , if the head of M
in the j-th step of the computation is not pointing into such cell, and otherwise as the pair
(c, q), where c is the symbol in the i-th cell of the tape in the j-th step of the run τ , and q
is the state of M in the j-th step of τ . We need each bi,j to be coded as a string over {0, 1}.
In order to do this, let p = |Γ∪ (Γ×Q)|. We shall code each symbol in Γ∪ (Γ×Q) in unary,
i.e. as a p-bit string. We denote by [bi,j ] the unary representation of the symbol bi,j.

We also need to include information about the action that was performed in each cell of
M at each step of the computation (i.e. read the cell, point the cell after moving the pointer,
or nothing). More precisely, let [nothing] = 100, [read] = 101 and [head] = 111, and define,
for each 1 ≤ i ≤ 2n and 1 ≤ j ≤ m, the string [aci,j] as [read] if M is to read the content
of the i-th cell at the j-th step of the computation; [head], if after the j-th computation M
moves the head to point into the i-th cell of the tape, and [nothing] otherwise.

Roughly speaking, the idea is to define w = w1 ·w2 · · ·wm, where each wj is of the form:

[ac(0,j)] · [b(0,j)] · [0] · [b(0,j+1)]·

[ac(1,j)] · [b(1,j)] · [1] · [b(1,j+1)]·

...

[ac(2n−1,j)] · [b(2n−1,j)] · [2
n − 1] · [b(2n−1,j+1)] (1)

For example, assume that in the first step of the computation, M reads the first cell of
the tape, writes a blank symbol, changes from state q0 to q1, and advances to the right. That
is, the first and second configurations of M are as depicted in the following figure:

a0 a1 a2 · · · ak B · · · =⇒ B a1 a2 · · · ak B · · ·
↑ ↑
q0 q1

Then w1 corresponds to the string

[read] · [(a0, q0)] · [0] · [B] ·
[head] · [a1] · [1] · [(a1, q1)] ·

[nothing] · [a2] · [2] · [a2] ·
...

[nothing] · [ak] · [k] · [ak] ·
[nothing] · [B] · [k + 1] · [B] ·

...
[nothing] · [B] · [2n − 1] · [B] ·
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Essentially, we use 4 substrings to describe the action on each cell of the tape. The first
substring, of length 3, refers to the action performed in that computation. In this case,
an action [read] accompanies the first cell, since it was the cell read in the first step of
the computation, and an action [head] accompanies the second cell, since as a result of the
computation the head of M is now pointing into that cell. As expected, all other actions
in w1 are set to [nothing], since nothing was done to those cells in the first step of the
computation. The second substring (of length p) refers to the content of the cell before the
computation, the third is of length n, and contains the number identifying a particular cell
as the i-th cell, from left to right, where i is binary, and the fourth string, of length p, is the
content of that cell right after the computation.

Finally, we also need to explicitly distinguish even and odd computations of M. Formally,
let [even] = 000 and [odd] = 001. We construct E in such a way that if there is a word w in
⋂

e∈E L2(e) then it is of the form:

[even] · w1 · [even] · [odd] · w2 · [odd] · [even] · w3 · [even] · · · [odd] · wm · [odd],

where each wj is of the form (1), as explained above.
The rest of the proof is devoted to construct such set E. We divide the set E into sets

E1, E2, E3, E4 and E5.
First, E1 contains only the expression

(

[even]
(
[action](0 | 1)p(0 | 1)n(0 | 1)p

)∗
[even][odd]

(
[action](0 | 1)p(0 | 1)n(0 | 1)p

)∗
[odd]

)∗

,

where [action] is just a shorthand for the expression ([read] | [head] | [nothing]). In intuitive
terms, it ensures that all words accepted by

⋂

e∈E L2(e) are repetitions of sequences of
subwords of length 3 + 2p + n, contained between [even] or [odd] strings.

So far, we only have that all words in
⋂

e∈E L2(e) must be of the above form. The next
step is to ensure that the number of substrings of the form

(
[action](0 | 1)p(0 | 1)n(0 | 1)p

)

between any two strings [even] or [odd] has to be precisely 2n (one for each cell used in the
tape) and, furthermore, the numbers in binary representation used to code the position of
the cell in each of these substrings (i.e., the part corresponding to (0 | 1)n ) have to be
arranged in numerical order. To ensure this we use a set of regular expressions E2. It is
defined in such a way that the language

⋂

e∈E2 L(e) corresponds to the language accepted
by the expression:

(
([even] | [odd]) · [action] · (0 | 1)p · [0] · (0 | 1)p ·

[action] · (0 | 1)p · [1] · (0 | 1)p ·

...

[action] · (0 | 1)p · [2n − 1] · (0 | 1)p · ([even] | [odd])
)∗

The definition of the set E2 is standard, but very technical, and it is therefore omitted.
It is based on the idea of representing the string [0] · [1] · · · [2n − 1] as an intersection of a

10



polynomial number of regular expressions stating all together that, for each even i ≤ 2n − 1,
the string [i] has to be followed by the string [i + 1], and likewise for each odd number (see
e.g. [23]).

Next, we ensure that the state and contents of the cells are carried along the descriptions.
More precisely, E3 must ensure that, if for some 1 ≤ i < 2n and 1 ≤ j ≤ m, the word wj

features a substring of the form:

[even] · · · [action] · (0 | 1)p · [i] · [b(i,j)] · · · [even],

with b(i,j) ∈ Γ ∪ (Γ × Q), then it must be directly followed by a string of form

[odd] · · · [action] · [b(i,j)] · [i] · · · [odd],

so that the slots representing the content of the i-th cell after the j-th computation coincide
with the slots representing the content of the i-th cell before the j + 1-th computation.

It is straightforward to state such a condition by enumerating all cases, for each 0 ≤
i ≤ 2n − 1, but this would yield exponentially many equations. Instead, we exploit the use
of parameters in our expression. We include in E3 parameterized expressions E3

1 and E3
2 ,

where E3
1 (and, correspondingly, E3

2) force that the content of the cell x1 · x2 · · ·xn after an
even (correspondingly, odd) computation corresponds exactly to the state before the next
computation. To define E3

1 , consider the following expressions, for each b ∈ Γ ∪ (Γ × Q):

E3
(1,b,even) = [even] · ([action] · (0 | 1)p · (0 | 1)n · (0 | 1)p)∗·

[action] · (0 | 1)p · x1 · · ·xn · [b]·

([action] · (0 | 1)p · (0 | 1)n · (0 | 1)p)∗ · [even]

E3
(1,b,odd) = [odd] · ([action] · (0 | 1)p · (0 | 1)n · (0 | 1)p)∗·

[action] · [b] · x1 · · ·xn · (0 | 1)p·

([action] · (0 | 1)p · (0 | 1)n · (0 | 1)p)∗ · [odd]

Then we define E3
1 as follows:

E3
1 =

(
⋃

b∈Γ∪(Γ×Q)

(
E3

(1,b,even) · E
3
(1,b,odd)

)
)∗

Expression E3
2 is defined accordingly, simply by interchanging the order of [even] and [odd]

strings, carefully checking that the first step of the computation is even, and allowing for
the possibility that a word representing a computation ends in an odd configuration (that
is, an odd configuration may be followed by an even configuration with the aforementioned
properties, or may be the last configuration of the computation).

All that is left to do is to construct regular expressions that ensure that each of the
substrings wj (1 ≤ j ≤ m) of the word w in

⋂

e∈E L2(e) represent valid computations of M.
This is done by set E4 of expressions, accepting all words such that:

11



• Between each two consecutive [even] or [odd] strings there is exactly one [read] and one
[head] in the slots devoted to [action] in form (1).

• No other cell can change its context, except for those marked with [read] or [head], and

• The content that changes in the cells marked by [read] and [head] respects the transition
function δ of M.

Moreover, we also add a set of expressions E5, accepting words such that:

• The initial configuration of M is encoded as the first step of the computation repre-
sented by w.

• The last computation ends in a final state of M.

It is a tedious, but straightforward task to define the sets E4 and E5 of expressions.
Furthermore, the fact that

⋂

e∈E L2(e) is empty if and only if M accepts on input ā follows
immediately from the remarks given along the construction. This finishes the proof. 2

The generic reduction used in the proof of Expspace-hardness of Nonemptiness2 also
provides lower bounds on the minimal sizes of words in languages L2(e) (note that the
language L3(e) always contains a word of linear size in |e|).

Corollary 1. There exists a polynomial p : N → N and a sequence of parameterized regular
expressions {en}n∈N such that each en is of size at most p(n), and every word in the language
L2(en) has size at least 22n

.

Before explaining the proof, we note that the single-exponential bound is easy to see
(it was hinted at in the first paragraph of the introduction, and which was in fact used in
connection with querying incomplete graph data in [7]). For each n, consider an expression
en = (0|1)∗x1 . . . xn(0|1)∗. If a word w is in L2(en), then w must contain every word in
{0, 1}n as a subword, which implies that its length must be at least 2n + (n − 1).

Proof of Corollary 1: Clearly, for each n ∈ N, it is possible to construct a deterministic
Turing machine Mn over alphabet Σ = {0, 1} that on input 1n works for exactly 22n

steps,
using 2n cells. Furthermore, it is possible to specify this machine using polynomial size with
respect to n.

Next, using the construction in the reduction of Theorem 1, construct a set of parameter-
ized regular expressions E(Mn,1n) such that the single word wn ∈

⋂

e∈E(Mn,1n)
L2(e) represents

a run (or, more precisely, a sequence of configurations) of Mn on input 1n. Note that each
set E(Mn,1n) is of size polynomial with respect to n. Moreover, according to the reduction
in the proof of Theorem 1,

⋂

e∈E(Mn,1n)
L2(e) contains a single word, of length greater than

22n

, representing the single run of Mn on input 1n.
For each n, we define en as the expression such that L2(en) is empty if and only if

⋂

e∈E(Mn,1n)
L2(e) is empty, constructed as in the proof of Lemma 2, so that en is of size

12



polynomial with respect to E(Mn,1n). It follows from the proof of such lemma that every
word accepted by L2(en) has size at least 22n

. 2

It is also possible to show that the problem Nonemptiness2 remains Expspace-hard
over the class of simple regular expressions. Indeed, the reduction on the proof of Theorem
1 can be modified so that all the expressions in E are simple. As expected, the proof then
becomes much more technical, and we have omitted it for the sake of space. We can also
show that the use of Kleene star has a huge impact on complexity.

Proposition 2. The problem Nonemptiness2 is Σp
2-complete over the class of expressions

of star-height 0.

Proof: It is easy to see that, if e does not use Kleene star, then all the words w ∈ L2(e) are
of size polynomial with respect to the size of e. This immediately gives a ΣP

2 algorithm for
the emptiness problem: Given a a parameterized regular expression e not using Kleene star,
guess a word w, and check that w ∈ L2(e). The proof then follows from the easy fact that
Membership2 can be solved in coNP, by guessing a valuation ν such that w 6∈ L(ν(e))
(we shall show in Section 4.2 that this bound turns out to be tight).

The ΣP
2 hardness is established via a reduction from the complement of the ∀∃ 3-SAT

satisfiability problem, which is known to be ΠP
2 -complete. This problem is defined as fol-

lows: A formula ϕ is given as the conjunction of clauses {C1, . . . , Cp}, each of which has 3
variables taken from the union of disjoint sets {x1, . . . , xm} and {y1, . . . , yt}. The problem
asks whether there exists an assignment σx̄ for {x1, . . . , xm} such that for every assignment
σȳ for {y1, . . . , yt} it is the case that ϕ is not satisfiable.

Let ϕ := ∀x1 · · · ∀xm∃y1 . . .∃yt C1 ∧ · · · ∧ Cp be an instance of ∀∃ 3-SAT. From ϕ we
construct in polynomial time a parameterized regular expression e over alphabet Σ = {0, 1}
such that there exists an assignment σx̄ for {x1, . . . , xm} such that for every assignment σȳ

for {y1, . . . , yt} it is the case that ϕ is not satisfiable if and only if L2(e) is not empty.
Let each Cj (1 ≤ j ≤ p) be of the form (ℓ1

j ∨ ℓ2
j ∨ ℓ3

j), where each literal ℓi
j, for 1 ≤ j ≤ p

and 1 ≤ i ≤ 3, is either a variable in {x1, . . . , xm} or {y1, . . . , yt}, or its negation. We
associate with each propositional variable xk, 1 ≤ k ≤ m, a fresh variable Xk (representing
the positive literal) and a fresh variable X̂k (representing the negation of such literal). In
the same way, with each propositional variable yk , 1 ≤ k ≤ t, we associate fresh variables
Yk and Ŷk. Then let W = {X1, . . . , Xm, X̂1, . . . , X̂m}∪ {Y1, . . . , Yt, , Ŷ1, . . . , Ŷt}∪ {Z}, where
Z is a fresh variable as well.

We define an expression e over Σ = {0, 1} and W as follows:

e := (Z · 0 · e1) | (1 · Z · e2),

where e1 is the regular expression 1100 · (0 | 1)m · 000, and

e2 : = e2,1,1 | · · · | e2,1,m | e2,2,1 | · · · | e2,2,m | e2,3,1 | · · · | e2,3,t | e2,4,

where
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• for each 1 ≤ k ≤ m, we have that e2,1,k = 1100 · (0 | 1)k−1 · Xk · (0 | 1)m−k · 000;

• for each 1 ≤ k ≤ m, e2,2,k =
(
Xk · X̂k · 00 · (0 | 1)m · 000

)
|
(
11 ·Xk · X̂k · (0 | 1)m · 000

)
;

• for each 1 ≤ k ≤ t, e2,3,k =
(
Yk · Ŷk · 00 · (0 | 1)m · 000

)
|
(
11 · Yk · Ŷk · (0 | 1)m · 000

)
;

• Let h be a function that maps each literal ℓi
j to the variable Xk, if ℓi

j corresponds

to xk or to X̂k, if ℓi
j corresponds to ¬xk (1 ≤ j ≤ p, 1 ≤ i ≤ 3 and 1 ≤ k ≤ m);

or to Yk, if ℓi
j corresponds to yk or to Ŷk, if ℓi

j corresponds to ¬yk. Then define

e2,4 = 1100 · (0 | 1)m ·
(
h(ℓ1

1) · h(ℓ2
1) · h(ℓ3

1) | · · · | h(ℓ1
p) · h(ℓ2

p) · h(ℓ3
p)

)
.

We prove that L2(e) 6= ∅ if and only if there exists an assignment σx̄ for {x1, . . . , xm}
such that for every assignment σȳ for {y1, . . . , yt} it is the case that ϕ is not satisfiable.

(⇐): Assume first that there exists such an assignment. Define a1, . . . , am ∈ {0, 1} as
follows: for each 1 ≤ k ≤ m, ak = 0 if and only if σx̄ assigns the value 1 to the variable xk.
We claim the word w = 101100 · a1 · · ·am · 000 belongs to L2(e). To prove this claim, let
ν : W → Σ be an arbitrary valuation for the variables in e. We show that w ∈ L(ν(e)). The
proof is done via a case analysis:

• Assume first that ν(Z) = 1. Then, since 1100 · a1 · · ·am · 000 clearly belongs to the
language defined by e1, we have that w ∈ L(ν(e)).

• Next, assume that ν(Z) = 0, and for some 1 ≤ k ≤ m it is the case that ν(Xk) = ν(X̂k).
Then, it is easy to see that 1100 · a1 · · ·am · 000 belongs to the language defined by the
expression

ν(e2,2,k) =
(
ν(Xk) · ν(X̂k) · 00 · (0 | 1)m · 000

)
|
(
11 · ν(Xk) · ν(X̂k) · (0 | 1)m · 000

)
.

Thus we have that w ∈ L(ν(e)).

• Assume now that ν(Z) = 0, and for some 1 ≤ k ≤ t it is the case that ν(Yk) = ν(Ŷk).
Then, it is easy to see that 1100 · a1 · · ·am · 000 belongs to the language defined by the
expression

ν(e2,3,k) =
(
ν(Yk) · ν(Ŷk) · 00 · (0 | 1)m · 000

)
|
(
11 · ν(Yk) · ν(Ŷk) · (0 | 1)m · 000

)
.

Thus we have that w ∈ L(ν(e)).

The remaining valuations are such that ν(Z) = 0, ν(Xk) 6= ν(X̂k) for each 1 ≤ k ≤ m, and
for each 1 ≤ k ≤ t we have that ν(Yk) 6= ν(Ŷk). We continue with those cases.

• Assume first that for some 1 ≤ k ≤ m it is the case that ν(Xk) = 1 but σx̄(xk) = 0.
Then ak = 1, and thus we have that that the word 1100 · a1 · · ·am · 000 belongs to
the language defined by ν(e2,1,k), that corresponds to the expression 1100 · (0 | 1)k−1 ·
ν(Xk) · (0 | 1)m−k · 000. This implies that w belongs to the language defined by ν(e).
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• The case where for some 1 ≤ k ≤ m it is the case that ν(Xk) = 0 but σx̄(xk) = 1 is
analogous to the previous one.

• The only remaining possibilities are such that ν(Z) = 0, ν(Xk) 6= ν(X̂k) for each
1 ≤ k ≤ m, for each 1 ≤ k ≤ t we have that ν(Yk) 6= ν(Ŷk), and for each 1 ≤ k ≤ m
it is the case that ν(Xk) = σx̄(xk). Define the following valuation σȳ for the variables
in {y1, . . . , yt}: σȳ(yk) = ν(Yk), for each 1 ≤ k ≤ t. From our initial assumption, there
exists at least a clause Cj , 1 ≤ j ≤ p, that is falsified under the assignment σx̄, σȳ.

Then using the fact that ν(Xk) 6= ν(X̂k) for each 1 ≤ k ≤ m, for each 1 ≤ k ≤ t we
have that ν(Yk) 6= ν(Ŷk), and for each 1 ≤ k ≤ m it is the case that ν(Xk) = σx̄(xk), we
conclude that ν(h(ℓ1

j )) · ν(h(ℓ2
j )) · ν(h(ℓ3

j )) corresponds to the string 000, which proves
that 1100 · a1 · · ·am · 000 belongs to L(ν(e2,4)), and thus w is denoted by ν(e).

(⇒): Assume now that there exists a word w ∈ Σ∗ that belongs to L2(e). We first state
some facts about the general form of w. It is straightforward to show that w must begin
with the prefix 10: if w begins with 00 then it cannot be denoted by ν1(e), where ν1 is the
valuation that assigns a letter 1 to all variables in e; if w begins with 11 then it is not in
the language of ν0(e), where ν0 is the valuation that assigns the letter 0 to all variables in
e and if w begins with 01 then it cannot be denoted by any of the ν(e)’s, for any valuation
ν. We can then assume that w = 10 · v, with v ∈ Σ∗. Furthermore, let ν be an arbitrary
valuation such that ν(Z) = 1. Since w belongs to L(ν(e)), from the form of w it follows that
v belongs to ν(e1) (which is in fact e1, since this expression does not contain any variables).
So we have that v is of form 1100 · (0 | 1)m · 000.

Define from v the following valuation σx̄ for the propositional variables {x1, . . . , xm}:
σx̄(xk) = 1 if v is of form 1100 · (0 | 1)k−1 · 0 · (0 | 1)m−k · 000 (that is, if the k + 4-th bit of v
is 0), and σx̄(xk) = 0 if v is of form 1100 · (0 | 1)k−1 · 1 · (0 | 1)m−k · 000 (the k + 4-th bit of v
is 1).

Next we show that for each valuation σȳ for {y1, . . . , yt} it is the case that ϕ is not
satisfied with valuation σx̄, σȳ. Assume for the sake of contradiction that there is a valuation
σȳ for {y1, . . . , yt} such that σx̄, σȳ satisfies ϕ. Define the following valuation ν : W → Σ:

• ν(Z) = 0

• ν(Xk) = σx̄(xk), for each 1 ≤ k ≤ m,

• ν(Yk) = σȳ(yk), for each 1 ≤ k ≤ t,

• ν(X̂k) = 1 if and only if ν(Xk) = 0,

• ν(Ŷk) = 1 if and only if ν(Yk) = 0

Let us now show that 10 · v /∈ L(ν(e)), contradicting our initial assumption that w ∈ L2(e).
Since ν(Z) = 0, one concludes that v must belong to L2(e2). Since ν(Xk) 6= ν(X̂k), for

each 1 ≤ k ≤ m, and for each 1 ≤ k ≤ t we have that ν(Yk) 6= ν(Ŷk), it is easy to see
that the word v cannot be in L(ν(e2,2,k)), for 1 ≤ k ≤ m, or in L(ν(e2,3,k)), for 1 ≤ k ≤ t.
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Moreover, since σx̄(xk) = 1 = ν(Xk) if v is of form 1100(0 | 1)k−10(0 | 1)m−k000, and
σx̄(xk) = 0 = ν(Xk) if v is of form 1100(0 | 1)k−11(0 | 1)m−k000, we have that v cannot be
in L(ν(e2,1,k)) for 1 ≤ k ≤ m. The only remaining possibility is that the word v belongs to
L(ν(e2,4)). This implies that for some 1 ≤ j ≤ p, it is the case that ν(h(ℓ1

1))·ν(h(ℓ2
1))·ν(h(ℓ3

1))
corresponds to the string 000. From the definition of ν, this implies that the j-th clause of
ϕ is not satisfied under σx̄, σȳ, which is a contradiction. We conclude that for each valuation
σȳ for {y1, . . . , yt} it is the case that ϕ is not satisfied with valuation σx̄, σȳ, which was to be
shown. 2

4.2. Membership

It is easy to see that Membership2 can be solved in coNP, and Membership3 in NP:
one just guesses a valuation witnessing w ∈ L(v(e)) or w 6∈ L(v(e)). These bounds turn out
to be tight.

Theorem 3. • The problem Membership2 is coNP-complete.

• The problem Membership3 is NP-complete.

Note that for the case of the possibility semantics, the bound is the same as for languages
over the infinite alphabets [17] (for all problems other than nonemptiness and membership,
the bounds will be different). The hardness proof in [17] relies on the infinite size of the
alphabet, but one can find an alternative proof that uses only finitely many symbols. Both
proofs are by variations of 3-SAT or its complement.

Instead of directly proving the above Theorem, we show that intractability follows already
from much simpler cases. Indeed, the restrictions to expressions without repetitions, or to
finite languages, by themselves do not lower the complexity, but together they make it
polynomial.

Proposition 4. The complexity of the membership problem remains as in Theorem 3 over
the classes of simple expressions, and expressions of star-height 0. Over the class of simple
expressions of star-height 0, Membership3 can be solved in polynomial time (actually, in
time O(nm log2 n), where n is the size of the expression and m is the size of the word).

Proof: For the sake of readability, in this proof we use ∪ – instead of | – for representing
the operation of union between regular expressions.

1) 3-semantics: We first consider the 3-semantics. We start by showing NP-hardness of
Membership3, for regular expressions of star-height 0. We use a reduction from Positive

1-3 3-SAT, which is the following NP-hard decision problem: Given a conjunction ϕ of
clauses, with exactly three literals each, and in which no negated variable occurs, is there a
truth assignment to the variables so that each clause has exactly one true variable?

The reduction is as follows. Let ϕ = C1 ∧ · · · ∧ Cm be a formula in CNF, where each Ci

(1 ≤ i ≤ m) is a clause consisting of exactly tree positive literals. Let {p1, . . . , pn} be the
variables that appear in ϕ. With each propositional variable pi (1 ≤ i ≤ n) we associate
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a different variable xi ∈ V. We show next how to construct, in polynomial time from ϕ, a
parameterized regular expression e over alphabet Σ = {a, 0, 1} and a word w over the same
alphabet, such that there is an assignment to the variables of ϕ for which each clause has
exactly one true variable if and only if w ∈ L3(e).

The parameterized regular expression e is defined as ae1ae2a · · ·aema, where the regular
expression ei, for 1 ≤ i ≤ m, is defined as follows: Assume that Ci = (pj ∨ pk ∨ pℓ), where
1 ≤ j, k, ℓ ≤ n. Then ei is defined as (xjxkxℓ | xjxℓxk | xkxjxℓ | xkxℓxj | xℓxjxk | xℓxkxj). That
is, ei is just the union of all the possible forms in which the variables in V that correspond to
the propositional variables that appear in Ci can be ordered. Further, the word w is defined
as (a100)ma. Clearly, e and w can be constructed in polynomial time from ϕ. Next we show
that there is an assignment for variables {p1, . . . , pn} for which each clause has exactly one
true variable if and only if w ∈ L3(e).

Assume first that w ∈ L3(e). Then there exists a valuation ν : {x1, . . . , xn} → Σ such
that w ∈ L(ν(e)). Thus, it must be the case that the word a100 belongs to ν(aei), for each
1 ≤ i ≤ m. But this implies that if Ci = (xj ∨xk ∨xℓ), then ν assigns value 1 to exactly one
of the variables in the set {xj , xk, xℓ} and it assigns value 0 to the other two variables. Let
us define now a propositional assignment σ : {p1, . . . , pn} → {0, 1} such that σ(pi) = ν(xi),
for each 1 ≤ i ≤ n. It is not hard to see then that for each clause Cj, 1 ≤ j ≤ m, σ assigns
value 1 to exactly one of its propositional variables.

Assume, on the other hand, that there is a propositional assignment σ : {p1, . . . , pn} →
{0, 1} that assigns value 1 to exactly one variable in each clause Ci, 1 ≤ i ≤ m. Let us define
ν as a valuation from {x1, . . . , xn} into {0, 1} such that ν(xi) = 1 if and only if σ(pi) = 1.
Clearly then 100 ∈ L(ν(ei)), for each 1 ≤ i ≤ m. Thus, (a100)ma ∈ L(ν(e)). We conclude
that w ∈ L3(e).

Next we prove NP-hardness of Membership3 for simple expressions. We use a reduction
from 3-SAT. Let ϕ =

∧

1≤i≤n(ℓ1
i ∨ ℓ2

i ∨ ℓ3
i ) be a propositional formula in 3-CNF over variables

{p1, . . . , pm}. That is, each literal ℓj
i , for 1 ≤ i ≤ n and 1 ≤ j ≤ 3, is either pk or ¬pk, for

1 ≤ k ≤ m. Next we show how to construct in polynomial time from ϕ, a simple regular
expression e over alphabet Σ = {a, b, c, d, 0, 1} and a word w over the same alphabet such
that ϕ is satisfiable if and only if w ∈ L3(e).

The regular expression e is defined as f ∗, where f := a(f1 ∪ g1 ∪ · · · ∪ fm ∪ gm)b, and the
regular expressions fi and gi are defined as follows: Intuitively, fi (resp. gi) codifies pi (resp.
¬pi) and the clauses in which pi (resp. ¬pi) appears. Formally, we define fi (1 ≤ i ≤ m) as

(
(ci ∪

⋃

{1≤j≤n|pi = ℓ1j or pi = ℓ2j or pi = ℓ3j}

dj) · xi),

where xi is a fresh variable in V. In the same way we define gi as

( (ci ∪
⋃

{1≤j≤n|¬pi = ℓ1
j

or ¬pi = ℓ2
j

or ¬pi = ℓ3
j
}

dj) · x̄i),

where x̄i is a fresh variable in V. The variable xi (resp. x̄i) is said to be associated with
pi (resp. ¬pi) in e. Clearly, e is a simple regular expression and can be constructed in
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polynomial time from ϕ.
The word w is defined as:

ac1b ac0b acc1b acc0b · · ·acm1b acm0b ad1b add1b · · ·adn1b.

Clearly, w can be constructed in polynomial time from ϕ. Next we show that ϕ is satisfiable
if and only if w ∈ L3(e).

Assume first that w ∈ L3(e). That is, there is a valuation ν for the variables in the set
{x1, x̄1, . . . , xm, x̄m} over Σ such that w ∈ L(ν(e)). But then, given the form of w, it is clear
that aci1b and aci0b belong to L(ν(f)), for each 1 ≤ i ≤ m. Notice that the only way for
this to happen is that both ν(xi) and ν(x̄i) take its value in the set {0, 1}, and, further,
ν(xi) 6= ν(x̄i). For the same reasons, adj1b ∈ L(ν(f)), for each 1 ≤ j ≤ n. But the only way
for this to happen is that for each 1 ≤ j ≤ n it is the case that either the variable associated
with ℓ1

j or with ℓ2
j or with ℓ3

j in e is assigned value 1 by ν. Thus, the propositional assignment
σ : {p1, . . . , pm} → {0, 1}, defined as σ(pi) = 1 if and only if ν(xi) = 1, is well-defined and
satisfies ϕ.

Assume, on the other hand, that there is a satisfying propositional assignment σ :
{p1, . . . , pm} → {0, 1} for ϕ. Consider the following valuation ν for e: For each 1 ≤ i ≤ m it
is the case that ν(xi) = σ(pi) and ν(x̄i) = 1 − σ(xi). Using essentially the same techniques
as in the previous paragraph it is possible to show that w ∈ L(ν(e)), and, therefore, that
w ∈ L3(e).

Next we show that Membership3 can be solved in time O(mn · log2 n) for simple ex-
pressions of star-height 0. Given a regular expression e ∈ REG(Σ,V) that is simple and of
star-height 0, one can construct in time O(n · log2 n) [24] an ε-free NFA A over Σ ∪ V that
accepts precisely L(e), and satisfies the following two properties: (1) Its underlying directed
graph is acyclic (this is because e does not mention the Kleene star), and (2) for each x ∈ V
that is mentioned in e there is at most one pair (q, q′) of states of A such that A contains
a transition from q to q′ labeled x (this is because e is simple). From Lemma 1, checking
whether w ∈ L3(e), for a given word w ∈ Σ∗, is equivalent to checking whether w ∈ L(ν(A)),
for some valuation ν for A. We show how the latter can be done in polynomial time.

First, construct in time O(m) a deterministic finite automaton (DFA) B over Σ such
that L(B) = {w}. We assume without loss of generality that the set Q of states of A is
disjoint from the set P of states of B. Next we construct, the following NFA A′ over the
alphabet Σ ∪ (V × Σ) as follows: The set of states of A′ is Q × P . The initial state of A′

is the pair (q0, p0), where q0 is the initial state of A and p0 is the initial state of B. The
final states of A′ are precisely the pairs (q, p) ∈ Q × P such that q is a final state of A and
p is a final state of B. Finally, there is a transition in A′ from state (q, p) to state (q′, p′)
labeled a ∈ Σ if and only if there is a transition in A from q to q′ labeled a and there is a
transition in B from p to p′ labeled a. There is a transition in A′ from state (q, p) to state
(q′, p′) labeled (x, a) ∈ V × Σ if and only there is a transition in A from q to q′ labeled
x and there is a transition in B from p to p′ labeled a. Clearly, such construction can be
performed by checking all combinations of transitions of both A and B, and thus it can be
performed in time O(mn · log2 n). Checking whether L(A′) 6= ∅ can easily be done in linear
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time with respect to the size of A′, thus obtaining the O(mn · log2 n) bound. We prove next
that checking this is equivalent to checking whether w ∈ L(ν(A)), for some valuation ν for
A, which finishes the proof of the proposition in terms of the 3-semantics.

Assume first that L(A′) 6= ∅. Let (q0, p0)
u1−→ (q1, p1)

u2−→ · · ·
un−1
−−−→ (qn−1, pn−1)

un−→ (qn, pn)
be an accepting run of A′. That is, u1u2 · · ·un ∈ (Σ ∪ (V × Σ))∗ and (qn, pn) is a final state
of A′. Since the underlying directed graph of A is acyclic, and each variable x mentioned in
e appears in at most one transition of A, it must be the case that for each 1 ≤ i < j ≤ n, if
ui = (xi, ai) ∈ V ×Σ and uj = (xj , aj) ∈ V ×Σ then xi 6= xj . This implies that we can define
a mapping ν : W → Σ, where W is the set of variables used in transitions of A, such that
ν(x) = a, if ui = (x, a) for some 1 ≤ i ≤ n, and ν(x) is an arbitrary element a′ ∈ Σ, otherwise.

It is not hard to see that q0
a1−→ q1

a2−→ · · ·
an−1
−−−→ qn−1

an−→ qn is also an accepting run of L(ν(A))
and that a1a2 · · ·an = w. The latter can be proved as follows: Let f : {u1, . . . , un} → Σ be
the mapping such that f(ui) = ui, if ui = a ∈ Σ, and f(ui) = a, if ui = (x, a) ∈ V ×Σ. Then

clearly p0
f(u1)
−−−→ p1

f(u2)
−−−→ · · ·

f(un−1)
−−−−→ pn−1

f(un)
−−−→ pn is an accepting run of B, and, therefore,

w = f(u1) · · · f(un). Further, let g : {u1, . . . , un} → Σ be the mapping such that g(ui) = ui,
if ui = a ∈ Σ, and g(ui) = ν(x) = a, if ui = (x, a) ∈ V × Σ. Then clearly f(ui) = g(ui), for

each 1 ≤ i ≤ n, and, further, q0
g(u1)
−−−→ q1

g(u2)
−−−→ · · ·

g(un−1)
−−−−→ qn−1

g(un)
−−−→ qn is an accepting run

of L(ν(A)). We conclude that w ∈ L(ν(A)).
Assume, on the other hand, that w ∈ L(ν(A)), for some valuation ν for A. Suppose that

w = a1a2 · · ·an, where each ai ∈ Σ (1 ≤ i ≤ n), and let q0
a1−→ q1

a2−→ · · ·
an−1
−−−→ qn−1

an−→ qn be
an accepting run of L(ν(A)); i.e. qn is a final state of A. Assume that i1 < i2 < · · · < im
are the only indexes in the set {0, 1, . . . , n − 1} such that, for each 1 ≤ j ≤ m, there is no
transition labeled aij+1 from qij to qij+1 in A. Then there must be a transition in A from qij to

qij+1 labeled xij ∈ V. Consider an arbitrary accepting run p0
a1−→ p1

a2−→ · · ·
an−1
−−−→ pn−1

an−→ pn

of B; i.e. pn is a final state of B. Then it is clear that

(q0, p0)
a1−→ (q1, p1) · · · (qi1 , pi1)

(xi1
,ai1+1)

−−−−−−→ (qi1+1, pi1+1) · · ·

(qim , pim)
(xim ,aim+1)
−−−−−−−→ (qim+1, pim+1) · · · (qn−1, pn−1)

an−→ (qn, pn)

is an accepting run of A′. Thus, L(A′) 6= ∅.

2) 2-semantics: Now we deal with the 2-semantics. That Membership2 is coNP-hard,
even over the class of expressions of star-height 0, follows from Theorem 5. In fact, such the-
orem proves something stronger: Membership2 is coNP-hard for the class of expressions
of star-height 0, even for a fixed word w. Next we prove that Membership2 is coNP-hard,
even over the class of simple regular expressions.

We use a reduction from 3-SAT to the complement of Membership2 over the class of
simple expressions. Let ϕ =

∧

1≤i≤n(ℓ1
i ∨ ℓ2

i ∨ ℓ3
i ) be a propositional formula in 3-CNF over

variables {p1, . . . , pm}. That is, each literal ℓj
i , for 1 ≤ i ≤ n and 1 ≤ j ≤ 3, is either pk or

¬pk, for 1 ≤ k ≤ m. Next, we show how to construct in polynomial time from ϕ, a simple
regular expression e over alphabet Σ = {a, b, 0, 1} and a word w over the same alphabet such
that ϕ is satisfiable if and only if w 6∈ L2(e).
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We start by defining w as the following word, where we have distinguished several prefixes
that will be used in the rest of the proof:

1111a 11111a b 1110a 11110a b 111111a 1111111a b 111110a 1111110a b · · ·
︸ ︷︷ ︸

w′,w′′,w+
i

,w−

i
,wu

j

w−

i
︷ ︸︸ ︷

· · · 12i+11a 12i+21a
︸ ︷︷ ︸

w+
i

b 12i+10a 12i+20a b · · · 12m+11a 12m+21a b 12m+10a 12m+20a b

︸ ︷︷ ︸

w′,w′′,wu
j

13(m+1)+10a 13(m+1)+20a 13(m+1)+30a b 16(m+1)+10a 16(m+1)+20a 16(m+1)+30a b · · ·
︸ ︷︷ ︸

w′,w′′,wu
j

wu
j

︷ ︸︸ ︷

· · · 13j(m+1)+10a 13j(m+1)+20a 13j(m+1)+30a b · · ·
︸ ︷︷ ︸

w′,w′′

w′

︷ ︸︸ ︷

· · · 13n(m+1)+10a 13n(m+1)+20a 13n(m+1)+30a b
︸ ︷︷ ︸

w′′

b aa. (2)

As it is shown above, we denote by w′ the prefix of w such that w = w′aa and by w′′ the
prefix of w such that w = w′′baa. Clearly, w can be constructed in polynomial time from ϕ.

The regular expression e is defined as (Σ∗b ∪ ε)f(bΣ∗ ∪ ε), where f is defined as:

(
(f1 ∪ g1 ∪ · · · fm ∪ gm)(a ∪ ε)

)∗
.

Intuitively fi (resp. gi) codifies pi (resp. ¬pi) and the clauses in which pi (resp. ¬pi) appears.
Formally, we define fi (1 ≤ i ≤ m) as

(
({w′} ∪ {w′′} ∪ 12i+1∪

⋃

{1≤j≤n|pi = ℓ1j}

13j(m+1)+1 ∪
⋃

{1≤j≤n|pi = ℓ2j}

13j(m+1)+2 ∪
⋃

{1≤j≤n|pi = ℓ3j}

13j(m+1)+3) · xia
)
,

where xi is a fresh variable in V. In the same way we define gi as

(
({w′} ∪ {w′′} ∪ 12i+2∪

⋃

{1≤j≤n|¬pi = ℓ1j}

13j(m+1)+1 ∪
⋃

{1≤j≤n|¬pi = ℓ2j}

13j(m+1)+2 ∪
⋃

{1≤j≤n|¬pi = ℓ3j}

13j(m+1)+3) · x̄ia
)
,

where x̄i is a fresh variable in V. The variable xi (resp. x̄i) is said to be associated with
pi (resp. ¬pi) in e. Clearly, e is a simple regular expression and can be constructed in
polynomial time from ϕ.
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Next we show that ϕ is satisfiable if and only if w 6∈ L2(e).
We prove first that if w 6∈ L2(e) then ϕ is satisfiable. Assume that w 6∈ L2(e). Then

there exists a valuation ν : {x1, x̄1, . . . , xm, x̄m} → Σ such that w 6∈ L(ν(e)). First of all,
we prove that for each 1 ≤ i ≤ m both ν(xi) and ν(x̄i) belong to the set {0, 1}. Assume,
for the sake of contradiction, that this is not the case. Suppose first that ν(xi) = a, for
some 1 ≤ i ≤ m. Then it is clear that L(w′aa) ⊆ L(ν(e)) (because L(w′ν(xi)a) ⊆ L(ν(e))).
But w = w′aa, and, therefore, w ∈ L(ν(e)), which is a contradiction. Suppose now that
ν(xi) = b, for some 1 ≤ i ≤ m. Then, again, it is clear that L(w′′baa) ⊆ L(ν(e)) (because
L(w′′ν(xi)aa) ⊆ L(ν(e))). As in the previous case, w = w′′baa, and, therefore, w ∈ L(ν(e)),
which is a contradiction. The other case, when ν(x̄i) ∈ {a, b}, for some 1 ≤ i ≤ m, is
completely analogous.

Next we prove that for each 1 ≤ i ≤ m it is the case that ν(xi) = 1 − ν(x̄i). Assume
otherwise. Then for some 1 ≤ i ≤ m it is the case that ν(xi) = ν(x̄i). Suppose first that
ν(xi) = ν(x̄i) = 1. Consider the unique prefix w1 of w that is of the form u12i+11a12i+21a, for
u ∈ Σ∗. Then w is of the form w1w2, where w2 ∈ bΣ∗. Since w 6∈ L(ν(e)), it must be the case
that w 6∈ L((Σ∗b∪ε)ν(f)(bΣ∗∪ε)). It follows that w1 6∈ L((Σ∗b∪ε)ν(f)). But since w1 is of
the form u12i+11a12i+21a, it follows that u = ε or u = u′b, for some u′ ∈ Σ∗. In any case it
must hold that 12i+11a12i+21a 6∈ L(ν(f)). Notice, however, that L(12i+1ν(xi)a12i+2ν(x̄i)a) ⊆
L(ν(f)). Hence, 12i+11a12i+21a ∈ L(ν(f)), which is a contradiction. Suppose, on the other
hand, that ν(xi) = ν(x̄i) = 0. Consider the unique prefix w1 of w that is of the form
u12i+10a12i+20a, for u ∈ Σ∗. Then w is of the form w1w2, where w2 ∈ bΣ∗. Since w 6∈
L(ν(e)), it must be the case that w 6∈ L((Σ∗b ∪ ε)ν(f)(bΣ∗ ∪ ε)). It follows that w1 6∈
L((Σ∗b ∪ ε)ν(f)). But since w1 is of the form u12i+10a12i+20a, it follows that u = ε or
u = u′b, for some u′ ∈ Σ∗. In any case it must hold that 12i+10a12i+20a 6∈ L(ν(f)). Notice,
however, that L(12i+1ν(xi)a12i+2ν(x̄i)a) ⊆ L(ν(f)). Hence, 12i+10a12i+20a ∈ L(ν(f)), which
is a contradiction.

We can then define a propositional assignment σ : {p1, . . . , pm} → {0, 1} such that
σ(pi) = ν(xi), for each 1 ≤ i ≤ m. Notice, from our previous remarks, that σ(¬pi) =
1−ν(xi) = ν(x̄i), for each 1 ≤ i ≤ m. We prove next that σ satisfies ϕ. Assume this is not the
case. Then for some 1 ≤ j ≤ n it is the case that σ(ℓ1

j) = σ(ℓ2
j) = σ(ℓ3

j) = 0. Consider now

the unique prefix w1 of w such that w1 is of the form ub13j(m+1)+10a13j(m+1)+20a13j(m+1)+30a,
for u ∈ Σ∗. Then w is of the form w1w2, where w2 ∈ bΣ∗. Since w 6∈ L(ν(e)), it must be the
case that w 6∈ L(Σ∗bν(f)bΣ∗). It follows that w1 6∈ L(Σ∗bν(f)). But since w1 is of the form
ub13j(m+1)+10a13j(m+1)+20a13j(m+1)+30a, it is the case that

13j(m+1)+10a13j(m+1)+20a13j(m+1)+30a 6∈ L(ν(f)).

Let q1, q2 and q3 be the variables in e associated with ℓ1
j , ℓ2

j and ℓ3
j , respectively. Then it

cannot be the case that ν(q1) = ν(q2) = ν(q3) = 0. Assume otherwise. It is clear that
L(13j(m+1)+1ν(q1)a13j(m+1)+2ν(q2)a13j(m+1)+3ν(q3)a) ⊆ L(ν(f)), and, therefore,

13j(m+1)+10a13j(m+1)+20a13j(m+1)+30a ∈ L(ν(f)),

which is a contradiction. Thus, either ν(q1) = σ(ℓ1
j) = 1 or ν(q2) = σ(ℓ2

j) = 1 or ν(q3) =
σ(ℓ3

j) = 1. This is our desired contradiction.
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We prove second that if ϕ is satisfiable then w 6∈ L2(e). Assume that ϕ is satisfiable.
Then there exists a propositional assignment σ : {p1, . . . , pm} → {0, 1} that satisfies ϕ. We
define a valuation ν : {x1, x̄1, . . . , xm, x̄m} → {0, 1} for e as follows: For each 1 ≤ i ≤ m it is
the case that ν(xi) = σ(pi) and ν(x̄i) = 1 − σ(pi). We prove next that w 6∈ L(ν(e)).

Clearly, w 6∈ L(ν(e)) if and only if for each words w1, w2, w3 ∈ Σ∗ such that w = w1w2w3

it is the case that w1 6∈ L(Σ∗b ∪ ε) or w2 6∈ L(ν(f)) or w3 6∈ L(bΣ∗ ∪ ε). Thus, in order to
prove that w 6∈ L(ν(e)) it is enough to prove that for each words w1, w2, w3 ∈ Σ∗ such that
w = w1w2w3,

(*) if w1 ∈ L(Σ∗b ∪ ε) and w3 ∈ L(bΣ∗ ∪ ε) then w2 6∈ L(ν(f)).

Take arbitrary words w1, w2, w3 ∈ Σ∗ such that w = w1w2w3. We consider several cases:

1. Either w1 6∈ L(Σ∗b ∪ ε) or w3 6∈ L(bΣ∗ ∪ ε). Then (*) is trivially true.

2. It is the case that w1 ∈ L(Σ∗b∪ε), w3 ∈ L(bΣ∗∪ε), and w2 is of the form 12i+11a12i+21au,
for some 1 ≤ i ≤ m and u ∈ Σ∗. Assume, for the sake of contradiction, that
w2 ∈ L(ν(f)). Since clearly there is no word accepted by L(ν(f)) with prefix baa,
it must be the case that w3 is not the empty word, and, therefore, that w3 ∈ L(bΣ∗).
Thus, the only possibility for w2 to belong to L(ν(f)) is that 12i+11a ∈ L(ν(fi)) and
12i+21a ∈ L(ν(gi)). But this can only happen if ν(xi) = 1 and ν(x̄i) = 1, which is our
desired contradiction (since ν(xi) = 1 − ν(x̄i)).

3. It holds that w1 ∈ L(Σ∗b∪ ε), w3 ∈ L(bΣ∗ ∪ ε), and w2 is of the form 12i+10a12i+20au,
for some 1 ≤ i ≤ m and u ∈ Σ∗. This case is completely analogous to the previous
one.

4. It is the case that w1 ∈ L(Σ∗b ∪ ε), w3 ∈ L(bΣ∗ ∪ ε), and w2 is of the form

13j(m+1)+10a13j(m+1)+20a13j(m+1)+30au,

for some 1 ≤ j ≤ n and u ∈ Σ∗. Assume, for the sake of contradiction, that w2 ∈
L(ν(f)). It is easy to see that the only way in which this can happen is that ν(q1) =
ν(q2) = ν(q3) = 0, where q1, q2 and q3 are the variables in e that are associated with
ℓ1
j , ℓ2

j and ℓ3
j , respectively. Thus, σ(ℓ1

j ) = σ(ℓ2
j) = σ(ℓ3

j) = 0, which is or desired
contradiction.

This finishes the proof of the proposition. 2

Membership for fixed words We next consider a variation of the membership problem:
Membership∗(w) asks, for a parameterized regular expression e, whether w ∈ L∗(e). In
other words, w is fixed. It turns out that for the 3-semantics, this version is efficiently solv-
able, but for the 2-semantics, it remains intractable unless restricted to simple expressions.

Theorem 5. 1. There is a word w ∈ Σ∗ such that the problem Membership2(w) is
coNP-hard (even over the class of expressions of star-height 0).

2. For each word w ∈ Σ∗, the problem Membership2(w) is solvable in linear time, if
restricted to the class of simple expressions.
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3. For each word w ∈ Σ∗, the problem Membership3(w) is solvable in time O(n log2 n),
where n is the size of the expression.

Proof: We prove each item separately:

(1) We proved in [7] that there exists a word w ∈ Σ∗ and a class A of NFAs over alphabet
({0, 1} ∪ V) such that the problem of checking, for a given A ∈ A, whether w ∈ L(ν(A)),
for each valuation ν for A, is a coNP-hard problem. It is clear from the construction in [7]
that there is a polynomial time algorithm that, given an NFA A ∈ A, constructs a star-free
regular expression e over alphabet ({0, 1} ∪ V) such that L(A) = L(e). We can conclude,
from Lemma 1, that the problem Membership2(w) is coNP-hard, even if restricted to the
class of star-free regular expressions.

(2) Second, we prove that, for each word w ∈ Σ∗, the problem Membership2(w) can be
solved in polynomial time (actually, in linear time with respect to the size of the expression)
if restricted to the class of simple expressions. In order to do this, we first define a high-
level procedure CheckSimpleNonMemb

2
, that takes as input a simple parameterized regular

expression e over Σ and a nonempty finite set W ⊂ Σ∗, and checks whether there exists
an assignment ν for e such that no word from W belongs to L(ν(e)). Then the answer to
Membership2(w) for an expression e is ¬CheckSimpleNonMemb

2
(e, {w}).

The procedure CheckSimpleNonMemb
2

works recursively on input e and W. For each
internal node of the parse tree of e it iterates over some sets W1 (or pairs of sets (W1, W2)
respectively), and for each such set (or pair) calls itself recursively on the children of the
analyzed node. If the returned answers of one of the sets (or pairs) satisfy a given condition,
the call accepts.

The details of the definition of CheckSimpleNonMemb
2

are following:

1. If e = ε, then CheckSimpleNonMemb
2
(e, W) accepts if and only if ε 6∈ W.

2. If e = a, for a ∈ Σ, then CheckSimpleNonMemb
2
(e, W) accepts if an only if a /∈ W.

3. If e = x, for x ∈ V, then CheckSimpleNonMemb
2
(e, W) accepts if and only if W does

not contain all one-letter words.

4. If e is of the form e1 ∪ e2, then CheckSimpleNonMemb
2
(e, W) accepts if and only if

CheckSimpleNonMemb
2
(e1, W) accepts and CheckSimpleNonMemb

2
(e2, W) accepts.

5. If e is of the form e1e2, then CheckSimpleNonMemb
2
(e, W) accepts if and only if there

exist finite sets W1 ⊂ Σ∗, W2 ⊂ Σ∗ such that: (1) For each word w1w2 ∈ W it is the
case that w1 ∈ W1 or w2 ∈ W2, (2) CheckSimpleNonMemb

2
(e1, W1) accepts and (3)

CheckSimpleNonMemb
2
(e2, W2) accepts.

6. If e is of the form (e1)
∗, then CheckSimpleNonMemb

2
(e, W) accepts if and only if ε 6∈ W

and there is a finite set W1 ⊂ Σ∗ such that: (1) For each w1, w2, . . . , wk ∈ Σ+,
if w1w2 · · ·wk ∈ W then at least one wi (1 ≤ i ≤ k) belongs to W1, and (2)
CheckSimpleNonMemb

2
(e1, W1) accepts.

It is interesting to see why CheckSimpleNonMemb
2

needs to operate on sets of words
instead of single words. The above procedure may construct non-singleton sets in case of
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concatenation and Kleene star and we cannot analyse their elements separately, because in
each case we must judge existence of a valuation ν, which would simultaneously prevent all
possible matches of w on ν(e) from being accepting.

Next we prove that the procedure descibed above is sound and complete; that is, we
prove that for each simple expression e over Σ and W ⊂ Σ∗, CheckSimpleNonMemb

2
accepts

input e and W if and only if there exists a valuation ν for e such that no word in W belongs
to L(ν(e)). We do this by induction:

1. The basis cases – when e = ε, e = a, for a ∈ Σ, or e = x, for x ∈ V – are trivial.

2. Assume e is of the form e1 ∪ e2. Then there is a valuation ν for e such that no
word in W belongs to L(ν(e)) if and only if there is a valuation ν for e such that for
each w ∈ W we have w 6∈ L(ν(e1)) and w 6∈ L(ν(e2)). But since we consider only
simple expressions here, the latter holds if and only if there are valuations ν1 for e1

and ν2 for e2 such that (a) no word w ∈ W belongs to L(ν1(e1)), and (b) no word
w ∈ W belongs to L(ν2(e2)). By the inductive hypothesis, the latter holds if and
only if CheckSimpleNonMemb

2
(e1, W) accepts and CheckSimpleNonMemb

2
(e2, W) ac-

cepts, which, by definition, is equivalent to the fact that CheckSimpleNonMemb
2
(e, W)

accepts.

3. Assume e is of the form e1e2. Then there is a valuation ν for e such that no word
w ∈ W belongs to L(ν(e)) if and only if there is a valuation ν for e such that for
each word w1w2 ∈ W it is the case that w1 6∈ L(ν(e1)) or w2 6∈ L(ν(e2)). But since we
consider only simple expressions here, the latter holds if and only if there are valuations
ν1 for e1 and ν2 for e2 such that for each w1w2 ∈ W it is the case w1 6∈ L(ν1(e1)) or
w2 6∈ L(ν2(e2)).
Clearly, the latter holds if and only if there are valuations ν1 for e1 and ν2 for e2 and
there are finite sets W1, W2 ⊂ Σ∗ such that: (1) For each w1w2 ∈ W it is the case
that w1 ∈ W1 or w2 ∈ W2, and (2) no word w1 ∈ W1 belongs to L(ν1(e1)), and (3)
no word w2 ∈ W2 belongs to L(ν2(e2)). By the inductive hypothesis, the latter holds
if and only if there are finite sets W1, W2 ⊂ Σ∗ such that for each word w1w2 ∈ W it
is the case that w1 ∈ W1 or w2 ∈ W2, and both CheckSimpleNonMemb

2
(e1, W1) and

CheckSimpleNonMemb
2
(e2, W2) accept. By definition, the latter is equivalent to the

fact that CheckSimpleNonMemb
2
(e, W) accepts.

4. Assume e is of the form (e1)
∗. Then there is a valuation ν for e such that no word

w ∈ W belongs to L(ν(e)) if and only if ε 6∈ W and there is a valuation ν1 for e1 such
that for each w1, w2, . . . , wk ∈ Σ+, if w1w2 · · ·wk ∈ W then some wi (1 ≤ i ≤ k) does
not belong to L(ν1(e1)). Clearly, the latter holds if and only if ε 6∈ W and there is a
valuation ν1 for e1 and a finite set W1 ⊂ Σ∗ such that: (1) For each w1, w2, . . . , wk ∈ Σ+,
if w1w2 · · ·wk ∈ W then some wi (1 ≤ i ≤ k) belongs to W1, and (2) no word from
W1 belongs to L(ν1(e1)). By the inductive hypothesis, the latter holds if and only
if ε 6∈ W and CheckSimpleNonMemb

2
(e1, W1) accepts for some finite set W1 ⊂ Σ∗

that satisfies the following: For each w1, w2, . . . , wk ∈ Σ+, if w1w2 · · ·wk ∈ W then
some wi (1 ≤ i ≤ k) belongs to W1. By definition this is equivalent to the fact that
CheckSimpleNonMemb

2
(e, W) accepts.
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Next we show that there is an implementation of the procedure CheckSimpleNonMemb
2

that works in O(|e|) time, if we assume that the input consists of a simple parameterized
regular expression e and a fixed set of words W.

The implementation works recursively as follows: If e is of the form ε, or a, for a ∈ Σ,
or x ∈ V, or e1 ∪ e2, then we implement recursively in the same way as it is described in
CheckSimpleNonMemb

2
. If, on the other hand, e is of the form e1e2 or (e1)

∗, then we have
to be slightly more careful since we have to define how to search for sets W1 and W2. We
do this as follows:

1. Assume first that e is of the form e1e2. Then CheckSimpleNonMemb
2

accepts e and
W if and only if there are finite sets W1, W2 ⊂ Σ∗ such that: (1) If w1w2 ∈ W,
then w1 ∈ W1 or w2 ∈ W2, (2) CheckSimpleNonMemb

2
(e1, W1) accepts, and (3)

CheckSimpleNonMemb
2
(e2, W2) accepts. Our implementation, however, does not look

over arbitrary sets W1 and W2, but only over the sets which can be constructed as
follows: For each w ∈ W and for each w1, w2 ∈ Σ∗ such that w = w1w2, either pick
up w1 and place it in W1 or pick up w2 and place it in W2. If for some pair (W1, W2)
constructed in this way it is the case that CheckSimpleNonMemb

2
(e1, W1) accepts and

CheckSimpleNonMemb
2
(e2, W2) accepts, then CheckSimpleNonMemb

2
(e, W) accepts.

2. Assume second that e is of the form (e1)
∗. Then CheckSimpleNonMemb

2
accepts if

and only if ε 6∈ W and there is a finite set W1 ⊂ Σ∗ such that: (1) For each
w1, w2, . . . , wk ∈ Σ+, if w1w2 · · ·wk ∈ W then some wi (1 ≤ i ≤ k) belongs to W1, and
(2) CheckSimpleNonMemb

2
(e1, W1) accepts. Again, our implementation does not look

over arbitrary sets W1, but only over the sets which can be constructed as follows: For
each decomposition w1w2 · · ·wk of a word in W, where wi ∈ Σ+ for each 1 ≤ i ≤ k,
pick up an arbitrary 1 ≤ i ≤ k and place wi in W1. If for some set W1 constructed
in this way CheckSimpleNonMemb

2
(e1, W1) accepts, then CheckSimpleNonMemb

2
(e, W)

accepts. Clearly, our implementation continues being sound and complete.

To estimate the time complexity of the above implementation, first we need to see that all
elements of all W encountered in the algorithm are subwords of w and thus every W belongs
to W, where W is the powerset of all subwords of w. Clearly the size of W is dependent
only on |w|. Also the number of cases tried by each subcall of CheckSimpleNonMemb

2
and

the number of steps needed to construct each W1 (and W2 respectively) is dependent only
on |w|. Hence all these values are constant.

If along the algorithm we memorize the answers to subcalls, then our complexity will be
upper-bounded by the complexity of a dynamic version of the above algorithm, which would
calculate CheckSimpleNonMemb

2
(e1, W1) for all subexpressions e1 of e′ and all W1 ∈ W in

a bottom-up order. In this approach, the computation of CheckSimpleNonMemb
2
(e1, W1)

would take constant time, because answers to subcalls would have been precomputed. Thus
the total complexity of CheckSimpleNonMemb

2
is linear with respect to the size of the parse

tree of e′ and thus with respect to e as well.

(3) We finally prove that, for each word w ∈ Σ∗, the problem Membership3(w) can be
solved in time O(n log2 n). Obviously, we can consider all labels a ∈ Σ which do not occur
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in w as equal. This simple observation makes the alphabet size fixed: |Σ| ≤ |w| + 1. Now,
let w be a word over Σ. Next we construct an algorithm that, given a parameterized regular
expression e over Σ, checks whether w ∈ L3(e).

Assume that W ⊂ V is the set of variables that appear in e. Using techniques from
[24] the algorithm first constructs an NFA A over Σ ∪W that is equivalent to e, with O(n)
states and O(n log2 n) transitions, and then performs a nondeterministic logarithmic space
algorithm on A. Let us assume, without loss of generality, that q0 is the unique initial state
of A. Further, assume that w = a1a2 · · ·am, where each ai (1 ≤ i ≤ m) is a symbol in Σ.
Then we perform the following nondeterministic algorithm over A: The algorithm works in
at most m + 1 steps. At each step 0 ≤ i ≤ m the state of the algorithm consists of a pair
(qi, µi), where qi ∈ Q and µi is a mapping from some subset Wi of W into Σ. The initial
state of the algorithm is (q0, µ0), where µ0 : ∅ → Σ (recall that q0 is the initial state of A).
Assume that the state of the algorithm in step i < m is (qi, µi). Then in step i + 1 the
algorithm nondeterministically picks up a pair (qi+1, µi+1) and checks that at least one of
the following conditions holds:

• There exists a transition labeled ai ∈ Σ from qi to qi+1 in A and µi = µi+1; that is,
both µi and µi+1 are mappings from Wi into Σ, and µi+1(x) = µi(x), for each x ∈ Wi.

• There exists a transition labeled x ∈ V from qi to qi+1 in A, x 6∈ Wi and µi+1 :
Wi∪{x} → Σ is defined as follows: µi+1(y) = µi(y), for each y ∈ Wi, and µi+1(x) = ai.

• There exists a transition labeled x ∈ V from qi to qi+1 in A, x ∈ Wi, µi(x) = ai and
µi = µi+1.

The procedure accepts if it reaches step n in state (qn, µn), for some accepting state qn of A.
Notice that, since w is fixed, the size of each mapping µ from a subset of W into Σ is also
fixed: |µ| ≤ min{|w|, |W|}. That is because the initial mapping is empty and in each step
of the algorithm it can grow only by one. This means that the nondeterministic procedure
described above works in NLogspace.

It is not hard to prove (esentially using the same techniques than in the second part of
the proof of Proposition 4) that the procedure described above accepts the parameterized
regular expression e if and only if w ∈ L3(e).

Now let M be the set of all mappings µ from subsets of W to Σ, which can occur
in the algorithm presented above, and V be the number of all states (q, µ), which can
occur therein. To see the precise time complexity, we need to estimate |M | and |V |. First,
|M | = O

(
|Σ|min{|w|,|W|}

)
, which is fixed in our case. Then, V = O(n · |M |), which is linear

in the number of states of A.
Now let us imagine a directed graph G with the set of vertices V , in which there is

an edge from state (q, µ) to state (q′, µ′) if and only if the pair (q′, µ′) can be picked up
from pair (q, µ) according to the algorithm presented above. Each edge (q, µ) → (q′, µ′)
corresponds to an edge q → q′ in A and for each edge q → q′ in A there are at most |M |
edges (q, µ) → (q′, µ′) (one for each µ ∈ M). Therefore, G has O(n log2 n) edges, since |M |
is fixed. We can also construct G in O(n log2 n) time and space.
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Finally, it suffices to perform a reachability search in G to see whether an accepting
state can be reached from node (q0, µ0) in G, which can clearly be done in linear time
with respect to the size of G, which gives us an algorithm with O(n log2 n) time complexity
or, by dropping the assumption of w being fixed — O

(
|w| · |Σ|min{|w|,|W|} · n log2 n

)
time

complexity. Moreover, we can spare space by not constructing G and by computing it “on
the fly”, because standard graph search algorithms run in O(V ) space. It might be also
useful in terms of time, because a fixed word w either attains an accepting state within a
short path or does not do so at all, so usually most parts of G would not be touched by the
search algorithm at all.

It is worth analysing the gain in performance, which the above method gives in com-
parison to the direct approach. The straightforward algorithm calculates an NFA accepting
L3(e) and runs reachability search on it. The size of such NFA is O(|Σ||W|), so the time
complexity becomes O(|w| · |Σ||W| ·n log2 n). Hence, the only gain, that the former algorithm
gives is lowering the exponent over Σ from |W| to min{|w|, |W|} and this is because it takes
into advantage a smaller class of mappings, confined by the length of the run of w on A. In
fact, this gain is very large if we speak of problem instances with a relatively small w and a
huge e. 2

On the other hand, it is straightforward to show that the membership problem for fixed
expressions can be solved efficiently for both semantics.

4.3. Universality

Somewhat curiously, the universality problem is more complex for the possibility seman-
tics L3. Indeed, consider a parameterized expression e over Σ, with variables in W. For
the certainty semantics, it suffices to guess a word w and a valuation ν : Σ → W such that
w 6∈ L(ν(e)). This gives a Pspace upper bound for this problem, which is the best that we
can do, as the universality problem is Pspace-hard even for standard regular expressions.
On the other hand, when solving this problem for the possibility semantics, one can expect
that all possible valuations for e will need to be analyzed, which increases the complexity
by one exponential. (In fact, when one moves to infinite alphabets, this problem becomes
undecidable [17]). The lower bound proof is again by a generic reduction.

Theorem 6. • The problem Universality2 is Pspace-complete.

• The problem Universality3 is Expspace-complete.

Proof: We only need to show the second part. We begin with the upper bound. It is
well known that there is an algorithm to decide whether the language of a standard regular
expression e (that is, without variables) is universal, that requires polynomial space with
respect to the size of the input expression e. Given a parameterized regular expression e′,
construct the regular expression e =

⋃
{ν(e′) | ν is a valuation for e′} without variables.

Clearly, L3(e′) = L(e). We can then decide universality of L3(e′) by first computing the
regular expression e, and then checking if L(e) is universal using the standard algorithm
for regular expressions without variables. Since the expression e is of size exponential with
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respect to the original expression e′ (the number of possible valuations for e′ is |Σ||W|, where
W is the set of variables in e′), the above procedure runs in Expspace.

For the lower bound we present a reduction from the complement of the acceptance
problem of a Turing machine. Let L be a language that belongs to Expspace, and let M be
a Turing machine that decides L in Expspace. Given an input ā we construct in polynomial
time with respect to M and ā a parameterized regular expression eM,ā over some alphabet
∆ such that L3(eM,ā) consists of all the strings over ∆ if and only if M does not accept
input ā.

Just as in section 4.1, we assume that M = (Q, Γ, q0, {qm}, δ), where Q = {q0, . . . , qm}
is the set of states, Γ is the tape alphabet (that contains the distinguished blank symbol B),
the initial state is q0, qm is the unique final state, and δ : (Q\{qm})×Γ → Q×Γ×{L, R} is
the transition function. Notice that we assume without loss of generality that no transition
is defined on the final state qm. Since M decides L in Expspace, there is a polynomial S()
such that, for every input ā over Σ, M decides ā using space of order 2S(|ā|).

Let ā = a0a1 · · ·ak−1 ∈ Σ∗ be an input for M (that is, each ai, 0 ≤ i ≤ k − 1 is a symbol
in Γ). For notational convenience we will assume from now on that S(|ā|) = n.

We also find it convenient to introduce the following notation. For an alphabet Σ =
{b1, . . . , bp} of symbols, we abuse notation and denote by Σ the regular expression (b1 | · · · | bp).
Thus, for example, assume that Γ = {b1, . . . , bp} ∪ {B}. Then, when we write (Γ∪ (Γ×Q))
we represent the language given by (b1 | · · · | bp | B | (b1, q0) | · · · | (B, qm)). Furthermore,
we reuse the notation introduced in Section 4.1, and write the shorthand [i] to denote the
binary representation of the number i as a string of n characters (i.e., [0] corresponds to the
word 0n, and [2] corresponds to the word 0n−210).

Our parameterized expression eM,ā uses the alphabet ∆ = {0, 1, #, &, %} ∪ Γ ∪ (Γ×Q).
The idea of the reduction is as follows. Using ∆, we represent a configuration of M by words
in ∆∗ of the form:

# · [0] · (Γ ∪ (Γ × Q)) · &·

[1] · (Γ ∪ (Γ × Q)) · &·

[2] · (Γ ∪ (Γ × Q)) · &

...

[2n − 1] · (Γ ∪ (Γ × Q)) · & · % (3)

Intuitively, the strings [0], [1], . . . , [2n − 1] indicate each one of the 2n cells of M, and the
symbol following these strings represents either the content of the cell, or the content of
the cell plus the state of M, if M is pointing into that particular cell of the tape in the
configuration that is being encoded.

Since each word of the form (3) represents a configuration of M, we can represent a run
of M on input ā as a sequence of concatenations of words of the form (3), as long as each one
of these configurations is consistent with the computation of M. The idea of the reduction
is to construct a parameterized regular expression eM,ā that represent all words w in ∆∗ that
are either not valid concatenations of subwords of the form (3), or, in case that they are,
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that the sequence of configurations represented by w is not a valid run of M on input ā. In
other words, any word in ∆∗ that does not belong to L3(eM,ā) is bound to represent a valid
run of M over input ā, thus obtaining that L3(e) 6= ∆∗ if and only if M accepts on input ā.

We split the definition of eM,ā into five parts: eM,ā = e1 | e2 | e3 | e4 | e5, where:

• e1 describes all the words that are not concatenations of subwords of form (3).

• e2 describes all the words that, even if they are concatenations of subwords of form
(3), these subwords do not represent valid configurations of M.

• e3 describes words that do not start with a subword of form (3) correctly describing
the initial configuration of M over input ā.

• e4 describes words whose final subword of form (3) does not contain any final states
(and is therefore not a final configuration of M).

• e5 describes words that contains two consecutive subwords of form (3) that represent
configurations α and β for M such that α and β do not agree on δ.

Next we show how to construct expressions e1, e2, e3, e4, e5. We do not provide the precise
details of e1, since it is straightforward to define it from (3). Expression e2 is defined as the
union of the following two expressions, stating that:

• Between a symbol # and % there is no symbol in (Γ×Q) (in other words, the machine
is pointing at none of the cells in that configuration):

e2
1 = ∆∗ · # · (∆ \ ({%} ∪ Γ × Q))∗ · % · ∆∗

• Between a symbol # and % there is more than one symbol in (Γ×Q) (a configuration
features two positions being read by the machine):

e2
2 = ∆∗ · # · (∆ \ {%})∗ · (Γ × Q) · (∆ \ {%})∗ · (Γ × Q) · (∆ \ {%})∗ · % · ∆∗

Expression e3 is the union of the following expressions, describing that:

• The first configuration does not contain the initial state in the first position of the
tape, reading the first symbol of the output:

e3
1 = # · [0] · Γ ∪

(
(Γ × Q) \ {(q0, a0)}

)
· ∆∗

• The rest of the k − 1 symbols of the tape do not agree with the input:

e3
2 = # · [0] · (Γ ∪ (Γ × Q)) · & · [1] · (Γ ∪ (Γ × Q) \ {a1}) · ∆

∗

... =
...

e3
k = # · [0] · (Γ ∪ (Γ × Q)) · & · · · [k − 1] · (Γ ∪ (Γ × Q) \ {ak−1}) · ∆

∗
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• The rest of the symbols of the first configuration are not blank symbols:

e3
k+1 = # · [0] · ∆ · & · · · [k − 1] · ∆ · & · (∆ \ {%})∗ · (0 | 1)n · (Γ ∪ (Γ × Q) \ {B}) · ∆∗

Expression e4 describes words whose final configuration is not in a final state:

e4 = ∆∗ · # · (∆ \ {%})∗ ·
(
Γ × (Q \ {qm})

)
· (∆ \ {%})∗ · %

Finally, we describe expression e5. Intuitively, it describes words that feature two subse-
quent configurations that are not consistent with each other. More precisely, it is the union
of the following expressions, stating that:

• A cell not pointed by the head changed its content from one configuration to the
subsequent one:

e5
1 =

⋃

a∈Γ

∆∗ · x1 · · ·xn · a · & · (∆ \ {%})∗ · %·

# ·
(
(0|1)n · (Γ ∪ (Γ × Q)) · &

)∗
· x1 · · ·xn ·

(
(Γ \ {a}) ∪ ((Γ \ {a}) × Q)

)
· ∆∗

• A configuration that is not final features a pair in Q × Σ for which no transition is
defined (the symbol # states the configuration is not the final one):

e5
2 =

⋃

{(a,q) | δ(q,a) is not defined}

∆∗ · (a, q) · ∆∗ · # · ∆∗

• The change of state does not agree with δ:

e5
3 =

⋃

{(a,q) | δ(q,a)=(q′,a′,{L,R})}

∆∗ · (a, q) · (∆ \ {%})∗ · %·

# · (∆ \ {%})∗ · (Γ × (Q \ {q′})) · ∆∗

• The symbol written in a given step does not agree with δ:

e5
4 =

⋃

{(a,q) | δ(q,a)=(q′,a′,{L,R})}

∆∗ · y1 · · · yn · (a, q) · (∆ \ {%})∗ · %·

(∆ \ {%})∗ · y1 · · · yn · (Γ \ {a′}) · ∆∗

• The movement of the head does not agree with δ:

e5
5 =

⋃

{(a,q) | δ(q,a)=(q′,a′,R)}

∆∗ · z1 · · · zn · (a, q) · (∆ \ {%})∗ · %·

(∆ \ {%})∗ · z1 · · · zn · a′ · & ·
(
ε | ((0|1)n · Γ · (∆ \ {%}))∗

)
· % · ∆∗
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e5
6 =

⋃

(a,q) | δ(q,a)=(q′,a′,L)

∆∗ · w1 · · ·wn · (a, q) · (∆ \ {%})∗ · %·

# ·
(
ε | ((∆ \ {%})∗ · (0|1)n · Γ · &)

)
· w1 · · ·wn · ∆∗

Having defined eM,ā, it is now straightforward to show that L3(eM,ā) = ∆∗ if and only
if M does not accept on input ā. This finishes the proof of the Expspace lower bound. 2

Similarly to the nonemptiness problem (studied in Section 4.1), the Expspace bound
for Universality3 is quite resilient, as it holds even for simple expressions (note that it
makes no sense to study expressions of star-height 0, as they denote finite languages and
thus cannot be universal).

Proposition 7. The problem Universality3 remains Expspace-hard over the class of
simple parameterized regular expressions.

Proof: We sketch how to adapt the reduction of Theorem 6 to hold for simple parameterized
regular expressions (i.e. without repetitions of variables).

Recall that the previous reduction used the alphabet {0, 1, %, #, &} ∪ Γ ∪ (Γ × Q). In
this case, we need a slightly bigger alphabet. Let ∆ = {0, 1, &, #even, %even, #odd, %odd} ∪
Γ ∪ (Γ × Q). The idea is to modify the way configurations are represented.

Previously, we had that runs of M were represented by words in the language:
(
# · [0] · (Γ ∪ (Γ × Q)) · & · · · [2n − 1] · (Γ ∪ (Γ × Q)) · & · %

)∗
.

We modify the coding, so that configurations are represented in the following way:

(
#even · [0] · (Γ ∪ (Γ × Q)) · & · · · [2n − 1] · (Γ ∪ (Γ × Q)) · & · %even·

#odd · [0] · (Γ ∪ (Γ × Q)) · & · · · [2n − 1] · (Γ ∪ (Γ × Q)) · & · %odd

)∗

The intuition is that configurations using #even and %even represent an even step of the
computation of the Turing machine, whereas configurations using #odd and %odd represent
an odd step. Notice that one can assume, without loss of generality, that the run of M over
input ā ends after an odd number of computations.

All that remain to do is to adapt the definition of the expression eM,ā = e1 | · · · | e5 so
that it works under this modified coding, and such that eM,ā is simple. We omit most of the
details, since most of the expressions in e1, . . . , e5 do not use parameters, and thus are not
difficult to modify.

To see how the expressions using parameters can be modified so that they are simple,
we show how to adapt the expression e5

1, that intuitively accepts all words describing two
configurations in which a cell not pointed by the head changed its content. It was defined
previously as

e5
1 =

⋃

a∈Γ

∆∗ · x1 · · ·xn · a · & · (∆ \ {%})∗ · %·

# ·
(
(0|1)n · (Γ ∪ (Γ × Q)) · &

)∗
· x1 · · ·xn ·

(
(Γ \ {a}) ∪ ((Γ \ {a}) × Q)

)
· ∆∗

31



A straightforward idea is to explicitly state even - odd and odd - even cases, that is,
redefine e5

1 as e5
1,e | e5

1,o, where

e5
1,e =

⋃

a∈Γ

∆∗ · x1 · · ·xn · a · & · (∆ \ {%even, %odd})
∗ · %even·

#odd ·
(
(0|1)n · (Γ ∪ (Γ × Q)) · &

)∗
· x1 · · ·xn ·

(
(Γ \ {a}) ∪ ((Γ \ {a}) × Q)

)
· ∆∗

e5
1,o =

⋃

a∈Γ

∆∗ · y1 · · · yn · a · & · (∆ \ {%even, %odd})
∗ · %odd·

#even ·
(
(0|1)n · (Γ ∪ (Γ × Q)) · &

)∗
· y1 · · · yn ·

(
(Γ \ {a}) ∪ ((Γ \ {a}) × Q)

)
· ∆∗

The problem is that these expressions are not simple: they reuse the variables x1, . . . , xn

or y1, . . . , yn. The solution is instead a bit more technical. We redefine e5
1 as e6

1,e | e6
1,o, where:

e6
1,e =

⋃

a∈Γ

∆∗#even · (∆ \ {%even})
∗·

(

x1 · · ·xn ·

(
(
a · & · (∆ \ {%even})

∗ · %even · #odd(∆ \ {%odd})
∗ · &

)
|

(
((Γ \ {a}) ∪ ((Γ \ {a}) × Q)) · (∆ \ {%odd, #even, %even})

∗
)
))∗

· %odd · ∆
∗

e6
1,o =

⋃

a∈Γ

∆∗#odd · (∆ \ {%odd})
∗·

(

y1 · · · yn

(
(
a · & · (∆ \ {%odd})

∗ · %odd · #even(∆ \ {#even})
∗ · &

)
|

(
((Γ \ {a}) ∪ ((Γ \ {a}) × Q)) · (∆ \ {%even, #odd, %odd})

∗
)
))∗

· %even · ∆
∗

Notice then that e6
1,e | e6

1,o is a simple parameterized regular expression. In order to see
that the intended meaning of these expressions remains the same, notice that L3(e5

1,e) ⊆
L3(e6

1,e) and L3(e5
1,o) ⊆ L3(e6

1,o). Moreover, it is not difficult to check that none of the
words that belong to L3(e6

1,e) but not to L3(e5
1,e) represent a valid run of M, and neither

does any word in L3(e6
1,o) but not in L3(e5

1,o). Thus, the words in L3(e6
1,e) but not in L3(e5

1,e)
(respectively, in L3(e6

1,o) but not in L3(e5
1,o)) are not harmful for our purposes, since these

extra words already belong to the language of some other disjunction in eM,ā.
With these observations, it is not difficult to modify the remainder of the reduction of

the proof of Theorem 6 so that every expression is simple. The proof then follows along the
same lines as the proof of Theorem 6. 2
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4.4. Containment

Recall that the Containment problem asks, given parameterized regular expressions e1

and e2, whether L2(e1) ⊆ L2(e2) or L3(e1) ⊆ L3(e2) holds. The bounds for the containment
problem are easily obtained from the fact that both nonemptiness and universality can be
cast as its versions. That is, we have:

Theorem 8. Both Containment2 and Containment3 are Expspace-complete.

Proof: Since Σ∗ ⊆ L3(e) iff Universality3(e) is true, and L2(e) ⊆ ∅ iff Nonemptiness2(e)
is false, we get Expspace-hardness for both containment problems. To check whether
L2(e1) ⊆ L2(e2), we must check that

⋂

ν L(ν(e1)) ∩ L(ν ′(e2)) = ∅ for each valuation ν ′ on
e2. This is doable in Expspace, since one can construct exponentially many automata for
L(ν(e1)) in Exptime, as well as the automaton for the complement L(ν ′(e2)), and checking
nonemptiness of the intersection of those is done in polynomial space in terms of their size,
i.e., in Expspace. Since this needs to be done for exponentially many valuations ν ′, the
overall Expspace bound follows. The proof for the L3 semantics is almost identical.

Containment with one fixed expression We look at two variations of the containment
problem, when one of the expressions is fixed: Containment∗(e1, ·) asks, for a parame-
terized regular expression e2, whether L∗(e1) ⊆ L∗(e2); and Containment∗(·, e2) is de-
fined similarly. The reductions proving Theorem 8 show that Containment2(·, e2) and
Containment3(e1, ·) remain Expspace-complete. For the other two versions of the prob-
lem, the proposition below shows that the complexity is lowered by at least one exponential.

Proposition 9. • Containment2(e1, ·) is Pspace-complete.

• Containment3(·, e2) is coNP-complete.

Proof: (Part 1) It is well known that Containment2(e1, ·) is Pspace-hard even for
standard regular expressions. For the upper bound, let e′1 be an expression such that
L(e′1) = L2(e1). Since e1 is fixed, the expression e′1 can be computed in constant time.
Then, it suffices to guess a valuation ν and a word w such that w ∈ L(e′1), but w /∈ L(ν(e2)),
which can clearly be done in Pspace.

(Part 2) We begin with the upper bound for the problem Containment3(·, e2). As-
sume that the input is a parameterized regular expression e1 over Σ, and that W ⊂ V is
the set of variables mentioned in e1. The following coNP algorithm solves the problem
Containment3(·, e2). First, construct a DFA Ae2 such that L(Ae2) = L3(e2), and then
construct AC

e2
, the DFA that accepts the complement of L(Ae2). Since e2 is fixed, AC

e2
can

be constructed in constant time. Next, guess a valuation ν : W → Σ, and, from ν(e1),
construct the NFA Aν(e1) that accepts L(ν(e1)). It is well-known that this automaton can
be constructed in polynomial time from ν(e1). Finally, check that Aν(e1) ∩ AC

e2
6= ∅, which

can be performed in polynomial time using a standard reachability test over the product
of Aν(e1) and AC

e2
. It is not hard to see that this algorithm is sound and complete for the
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problem. In fact, if Aν(e1)∩AC
e2
6= ∅, then there is a word w ∈ L(ν(e1)), and hence in L3(e1),

that does not belong to L3(e2). This implies that L3(e1) is not contained in L3(e2). On
the other hand, it is clear that if Aν(e1) ∩AC

e2
= ∅ for all possible valuations ν from W to Σ,

then L3(e1) is contained in L3(e2).
The lower bound is established via a reduction from 3-SAT to the complement of Containment2(·, e

where e2 is the following regular expression over the alphabet Σ = {0, 1, #}:

e2 :=
(
(10 | 01)∗#((0 | 1)3)∗000((0 | 1)3)∗

)
|
(
((0 | 1)2)∗(00 | 11)Σ∗

)
|
(
Σ∗#Σ∗#Σ∗

)
.

Notice that e2 mentions no variables, and hence L3(e2) = L(e2).
Let ϕ =

∧

1≤i≤n(ℓ1
i∨ℓ2

i∨ℓ3
i ) be a propositional formula in 3-CNF over variables {p1, . . . , pm}.

That is, each literal ℓj
i , for 1 ≤ i ≤ n and 1 ≤ j ≤ 3, is either pk or ¬pk, for 1 ≤ k ≤ m. Next

we show how to construct in polynomial time from ϕ a parameterized regular expression e1

over the alphabet Σ = {0, 1, #} such that ϕ is satisfiable if and only if L3(e1) 6⊆ L(e2).
Let W = {xi, x̂i | 1 ≤ i ≤ m}. Intuitively, each xi represents the value assigned to pi,

and x̂i represents the value of ¬pi. Moreover, assume that h is a mapping from the literals
ℓj
i (1 ≤ i ≤ n and 1 ≤ j ≤ 3) to W, defined as expected: h(ℓj

i ) = xk if ℓj
i is pk, for some

1 ≤ k ≤ m, and h(ℓj
i ) = x̂k if ℓj

i is ¬pk.
Define e1 as follows:

e1 = x1x̂1 · · ·xmx̂m#h(ℓ1
1)h(ℓ2

1)h(ℓ3
1) · · ·h(ℓ1

n)h(ℓ2
n)h(ℓ3

n).

We show that ϕ is satisfiable if and only if L3(e1) 6⊆ L(e2).

(⇒): Assume that ϕ is satisfiable by valuation σ. Let ν be a valuation from W to Σ,
defined as follows:

• For each 1 ≤ k ≤ m, ν(xk) = 1 if σ(pk) = 1, and ν(xk) = 0 otherwise.

• For each 1 ≤ k ≤ m, ν(x̂k) = 0 if σ(pk) = 1, and ν(x̂k) = 1 otherwise.

Notice that L(ν(e1)) consists of the single word:

ν(x1)ν(x̂1) · · ·ν(xm)ν(x̂m)#ν(h(ℓ1
1))ν(h(ℓ2

1))ν(h(ℓ3
1)) · · ·ν(h(ℓ1

n))ν(h(ℓ2
n))ν(h(ℓ3

n)).

We shall abuse notation and denote by ν(e1) both this word and the aforementioned ex-
pression. It is clear that ν(e1) contains a single symbol #, and starts with a prefix in
(01 | 10)∗#. Thus, if L3(e1) ⊆ L(e2) it must be that ν(e1) is defined by the expression
(10 | 01)∗#((0 | 1)3)∗000((0 | 1)3)∗. But this implies that there are literals ℓ1

i , ℓ2
i and ℓ3

i , for
some 1 ≤ i ≤ n, such that ν(h(ℓ1

i ))ν(h(ℓ2
i ))ν(h(ℓ3

i )) = 000. By construction of ν, it must be
the case that σ falsifies the i-th clause of ϕ, which contradicts the fact that σ is a satisfying
assignment.

(⇐): Assume on the other hand that L3(e1) 6⊆ L(e2). From the definition of the 3-
semantics, there is at least one valuation ν from W to Σ such that L(ν(e1)) 6⊆ L(e2). Notice
again that, by construction of e1, ν(e1) consists of the single word:

ν(x1)ν(x̂1) · · ·ν(xm)ν(x̂m)#ν(h(ℓ1
1))ν(h(ℓ2

1))ν(h(ℓ3
1)) · · ·ν(h(ℓ1

n))ν(h(ℓ2
n))ν(h(ℓ3

n)).

34



Again, we shall denote this word also by ν(e1). Then if L(ν(e1)) 6⊆ L(e2) it must be the
case that ν(e1) is not in L(e2). This immediately entails that ν(e1) cannot have two or more
copies of the symbol #, and thus we conclude that ν assigns to each variable W a symbol
in {0, 1}. From this it follows that the following valuation σ for the variables in ϕ is well
defined:

• σ(pi) = 1 if ν(xi) = 1, and σ(pi) = 0 if ν(xi) = 0

Next we show that for each 1 ≤ i ≤ m, it is the case that ν(xi) 6= ν(x̂i). Assume for the
sake of contradiction that for some i ≤ i ≤ m we have ν(xi) = ν(x̂i). From the construction
of e1 it must be the case that ν(e1) is denoted by the expression ((0 | 1)2)∗(00 | 11)Σ∗, which
contradicts the fact that ν(e1) is not in L(e2). Finally, we claim that ϕ is satisfiable by the
valuation σ. Assume the contrary. Then there is a clause (ℓ1

i ∨ ℓ2
i ∨ ℓ3

i ), for 1 ≤ i ≤ n, such
that, for each 1 ≤ j ≤ 3, if ℓj

i is the literal pk, for some 1 ≤ k ≤ m, then σ assigns the value
0 to pk, and if ℓj

i is the literal ¬pk, for some 1 ≤ k ≤ m, then σ assigns the value 1 to pk.
It is now straightforward to conclude that this fact contradicts the assumption that ν(e1) is
not in L(e2), by studying all of the 8 possible cases. 2

4.5. Intersection with a regular language

This problem is a natural analog of the standard decision problem solved in automata-
based verification; we also saw in the introduction that it arises when one computes certain
answers to queries over incompletely specified graph databases.

Checking whether L(e′) ∩ L2(e) 6= ∅ can be done in Expspace using the same brute-
force algorithm as for the nonemptiness problem (intersection of exponentially many regular
languages). Since the nonemptiness problem is a special case with e′ = Σ∗, we get the
matching lower bound by Theorem 1. For L3(e), an NP upper bound is easy: one just
guesses a valuation so that L(e′) ∩ L(ν(e)) 6= ∅. If e′ denotes a single word w, we have
an instance of the membership problem, and hence there is a matching lower bound, by
Theorem 3. Summing up, we have:

Corollary 2. • The problem NonemptyIntReg2 is Expspace-complete.

• The problem NonemptyIntReg3 is NP-complete.

5. Computing automata

In this section, we first provide upper bounds for algorithms for building NFAs over Σ cap-
turing L3(e) and L2(e), and then prove their optimality, by showing matching lower bounds
on the sizes of such NFAs. Recall that we are dealing with the problem ConstructNFA∗:
Given a parameterized regular expression e, construct an NFA A over Σ such that L(A) =
L∗(e).

Proposition 10. The problem ConstructNFA3 can be solved in single-exponential time,
and the problem ConstructNFA2 can be solved in double-exponential time.
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These bounds are achieved by using naive algorithms for constructing automata: namely,
one converts a parameterized regular expression e over variables in a finite set W into an
automaton Ae, and then for |Σ||W| valuations ν computes the automata ν(Ae). This takes
exponential time. To obtain an NFA for L3(e) one simply combines them with a nonde-
terministic choice; for L2(e) one takes the product of them, resulting in double-exponential
time.

We now show that these complexities are unavoidable, as the smallest NFAs capturing
L3(e) or L2(e) can be of single or double-exponential size, respectively. We say that the
sizes of minimal NFAs for L∗ are necessarily exponential (resp., double-exponential) if there
exists a family {en}n∈N of parameterized regular expressions such that:

• the size of each en is O(n), and

• every NFA A satisfying L(A) = L∗(en) has at least 2n (resp., 22n

) states.

Theorem 11. The sizes of minimal NFAs are necessarily double-exponential for L2, and
necessarily exponential for L3.

Proof: We begin with the double exponential bound for L2. For each n ∈ N, let en

be the following parameterized regular expression over alphabet Σ = {0, 1} and variables
x1, . . . , xn+1:

en = ((0 | 1)n+1)∗ · x1 · · ·xn · xn+1 · ((0 | 1)n+1)∗.

Notice that each en uses n + 1 variables, and is of linear size in n. We first show a
technical lemma:

Lemma 3. Let u ∈ {0, 1}n+1 be a word of size n + 1. Then u is a subword of every word
w ∈ L2(en). Moreover, there is a match for u in w that starts in a position j of w (1 ≤ j ≤
|w|) such that j = 1 mod n + 1.

Proof: Consider an arbitrary word u = u1, . . . , un+1 ∈ {0, 1}n+1, and let ν be the valuation
for en such that ν(xi) = ui, for 1 ≤ i ≤ (n + 1). Then ν(en) = ((0 | 1)n+1)∗ · u · ((0 | 1)n+1)∗,
and thus all words w in L(ν(en)) contain u as a subword, matching in a position j = 1
mod n + 1 of w. The lemma follows since by definition L2(en) ⊆ L(ν(en)). 2

In order to show that every NFA deciding L2(en) has 22n

states, we use the following
result:

Theorem 12. [25] If L ⊂ Σ∗ is a regular language, and there exists a set of pairs P =
{(ui, vi) | 1 ≤ i ≤ m} ⊆ Σ∗ × Σ∗ such that:

1. uivi ∈ L, for every 1 ≤ i ≤ m, and
2. ujvi /∈ L, for every 1 ≤ i, j ≤ m and i 6= j,

then every NFA accepting L has at least m states.
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Given a collection S of words over {0, 1}, let wS denote the concatenation, in lexico-
graphical order, of all the words that belong to S, and let wS̄,n denote the concatenation of
all words in {0, 1}n+1 that are not in S.

Then define a set of pairs Pn = {(wS, wS̄,n) | S ⊂ {0, 1}n+1 and |S| = 2n}. Since there

are 2n+1 binary words of length n + 1, there are
(
2n+1

2n

)
different subsets of {0, 1}n+1 of size

2n, and thus Pn contains
(
2n+1

2n

)
≥ 22n

pairs. Next, we show that L2(en) and Pn satisfy
properties (1) and (2) in Theorem 12, which proves the double exponential lower bound.

1. We need to show that for every set S ⊂ {0, 1}n+1 of size 2n, the word wS ·wS̄,n belongs
to L(ν(en)), for every possible valuation ν : Σ → {x1, . . . xn+1}. Let then S be an
arbitrary subset of {0, 1}n+1 of size 2n, and let ν be an arbitrary valuation from Σ to
{x1, . . . , xn+1}. Define u = ν(x1) · · · ν(xn+1). Then u is a substring of either wS or
wS̄,n. Assume the former is true (the other case is analogous). Then the word wS ·wS̄,n

can be written in the form v · u · v′ · wS̄,n, with v, v′ ∈ L((0 | 1)n+1). This shows that
wS · wS̄,n belongs to L(ν(en)).

2. Assume for the sake of contradiction that there are distinct subsets S1, S2 of {0, 1}n+1

of size 2n such that wS1 ·wS̄2,n belongs to L2(en). Since S1 and S2 are distinct, proper
subsets of {0, 1}n+1 (they are of size 2n), there must be a word in {0, 1}n+1 that belongs
to S2 but not to S1. Let s be such word. Given that the word wS1 · wS̄2,n belongs to
L2(en), by Lemma 3 we have that s is a subword of wS1 ·wS̄2,n that matches wS1 ·wS̄2,n

in a position j such that j = 1 mod n + 1. There are two possibilities. First, it could
be that j < |wS1|. But since j = 1 mod n+1, this means that s corresponds to one of
the words in S1, that gives form to wS1 , which is a contradiction. On the other hand,
if j ≥ |wS1|, using essentially the same argument we conclude that s does not belong
to S2, which is also a contradiction.

We use essentially the same technique to address the 3-semantics. To show the expo-
nential lower bound for L3, define en = (x1 · · ·xn)∗, and let Pn = {(w, w) | w ∈ {0, 1}n}.
Clearly, Pn contains 2n pairs. All that is left to do is to show that L3(en) and Pn satisfy
properties (1) and (2) in Theorem 12.

1. From the fact that L3(en) =
⋃

w∈{0,1}n w∗, we have that for each u ∈ {0, 1}n the word

uu belongs to L3(en).

2. The same fact shows that for every u, v ∈ {0, 1}n, if u 6= v, then uv /∈
⋃

w∈{0,1}n w∗,

and thus uv /∈ L3(en).

This finishes the proof of the theorem. 2

Note that the bounds of Theorem 11 apply to simple regular expressions.

6. Extending domains of variables

So far we assumed that variables take values in Σ: our valuations were partial maps
ν : V → Σ. We now consider a more general case when the range of each variable is a regular
subset of Σ∗.
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Let e be a parameterized regular expression with variables x1, . . . , xn, and let L1, . . . , Ln ⊆
Σ∗ be nonempty regular languages. We shall write L̄ for (L1, . . . , Ln). A valuation in L̄ is
a map ν : x̄ → L̄ such that ν(xi) ∈ Li for each i ≤ n. Under such a valuation, each
parameterized regular expression e is mapped into a usual regular expression ν(e) over Σ, in
which each variable xi is replaced by the word ν(xi). Hence we can still define

L2(e; L̄) =
⋂
{L(ν(e)) | ν is a valuation over L̄}

L3(e; L̄) =
⋃
{L(ν(e)) | ν is a valuation over L̄}

According to this notation, L2(e) = L2(e; (Σ, . . . , Σ)), and likewise for L3.
Note however that intersections and unions are now infinite, if some of the languages

Li’s are infinite, so we cannot conclude, as before, that we deal with regular languages. And
indeed they are not: for example, L3(xx; Σ∗) is the set of square words, and thus not regular.

We now consider two cases. If each Li is a finite language, we show that all the complexity
results in Fig. 1 remain true. Then we look at the case of arbitrary regular Li’s. Languages
L3(e; L̄) need not be regular anymore, but languages L2(e; L̄) still are, and we prove that the
complexity bounds from the certainty column of Fig. 1 remain true. For complexity results,
we assume that in the input (e; L̄), each domain Li is given either as a regular expression or
an NFA over Σ.

6.1. The case of finite domains

If all domain languages Li’s are finite, all the lower bounds apply (they were shown when
each Li = Σ). For upper bounds, note that each finite Li contains at most exponentially
many words in the size of either a regular expression or an NFA that gives it, and each such
word is of polynomial size. Thus, the number of valuations is at most exponential in the
size of the input, and each valuation can be represented in polynomial time. The following
is then straightforward.

Proposition 13. If domains Li’s of all variables are finite nonempty subsets of Σ∗, then both
L2(e; L̄) and L3(e; L̄) are regular languages, and all the complexity bounds on the problems
related to them are exactly the same as stated in Fig. 1.

6.2. The case of infinite domains

We have already seen that if just one of the domains is infinite, then L3(e; L̄) need not
be regular (the L3(xx; Σ∗) example). Somewhat surprisingly, however, in the case of the
certainty semantics, we recover not only regularity but also all the complexity bounds.

Theorem 14. For each parameterized regular expression e using variables x1, . . . , xn and for
each n-tuple L̄ of regular languages over Σ, the language L2(e; L̄) ⊆ Σ∗ is regular. Moreover,
the complexity bounds are exactly the same as in the 2 column of the table in Fig. 1.

Proof sketch: We only need to be concerned about regularity of L2(e; L̄) and upper com-
plexity bounds, as the proofs of lower bounds apply for the case when all Li = Σ. For this,
it suffices to prove that there is a finite set U of NFAs so that L2(e; L̄) =

⋂

A∈U L(A). More-
over, it follows from analyzing the proofs of upper complexity bounds, that the complexity
results will remain the same if the following can be shown about the set U :
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• its size is at most exponential in the size of the input;

• checking whether A ∈ U can be done in time polynomial in the size of A;

• each A ∈ U is of size polynomial in the size of the input (e; L̄).

To show these, take Ae and from it construct a reduced automaton A′
e in which all transitions

(q, xi, q
′) are eliminated whenever Li is infinite. We then show that L2(Ae; L̄) = L2(A′

e; L̄)
(the definition of L2 extends naturally from regular expressions to automata for arbitrary
domains). The automaton A′

e represents a finite set U of NFAs, obtained by applying
valuations to each of the transitions of A′

e. Note that the set U is finite because the codomain
of the valuations is now finite, as it is the union of all finite Li’s. It is now possible to show
that these automata satisfy the required properties.

It will be more convenient for us to work with automata than with regular expressions.
We deal with NFAs with extended transitions, which can be not just of the form (q, a, q′),
where q and q′ are states, and a ∈ Σ, but also (q, w, q′), where w ∈ Σ∗. Such an automaton
accepts a word s ∈ Σ∗ in the standard way: in a run, in state q, if the subword starting in the
current position is w, it can skip w and move to q′ if there is a transition (q, w, q′). Note that
such automata are a mere syntactic convenience (they will appear as the results of applying
valuations), as any such automaton A can be transformed, in polynomial time, into a usual
NFA A′ so that L(A) = L(A′). Indeed, for each transition t = (q, w, q′) with w = a1 . . . am,
introduce new states q1

t , . . . , q
m−1
t and add transitions (q, a1, q

1
t ), (q

1
t , a2, q

2
t ), . . . , (q

m−1
t , an, q′)

to A′. Thus, we shall work with automata with extended transitions.
Let e be a parameterized regular expression with variables x1, . . . , xn, whose domains

are regular languages L1, . . . , Ln. Let Ae be an NFA equivalent to e, over the alphabet
Σ ∪ {x1, . . . , xn}. If we have a valuation ν so that ν(xi) ∈ Li for each i ≤ n, then ν(Ae)
is an automaton with extended transitions: in it, each transition (q, xi, q

′) is replaced by
(q, ν(xi), q

′). It is then immediate from the construction that L(ν(e)) = L(ν(Ae)) and thus
L2(e) =

⋂

ν L(ν(Ae)).
Next, consider finitary valuations ν, which are partial functions defined on variables xi

such that Li is a finite language; of course ν(xi) ∈ Li. On variables xj with infinite Lj such
valuations are undefined. By ν(Ae) we mean the automaton (with extended transitions)
resulting from Ae as follows. First, all transitions (q, a, q′), where a is a letter, are kept.
Second, if (q, xi, q

′) is a transition, then ν(Ae) contains (q, ν(xi), q
′) only if ν(xi) is defined.

In other words, transitions using variables whose domains are infinite, are dropped.
Let ν1, . . . , νM enumerate all the finitary valuations (clearly there are finitely many of

them). Let Ai = νi(Ae), for i ≤ M . We now show that L2(Ae) =
⋂

i≤M L(Ai).
First, if νi is a finitary valuation and ν is any extension of νi to a valuation on all the

variables x1, . . . , xn, then clearly L(νi(Ae)) ⊆ L(ν(Ae)). Moreover, let Vi be the set of all
valuations that are extensions of νi. Then we have that L(νi(Ae)) ⊆

⋂

z∈Vi
L(z(Ae)). But

note that every valuation ν is an extension of some finitary valuation νi, and thus L2(Ae) =
⋂

all valuations ν L(ν(Ae)) ⊇
⋂

i≤M L(νi(Ae)). For the reverse inclusion, let w ∈ L2(Ae); in
particular, w ∈ L(ν(Ae)) for every valuation ν. Take an arbitrary finitary valuation νi

and let Vi be the (infinite) set of all the valuations ν that extend νi. Let Vi(w) be the
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subset of Vi that contains valuations ν with the property that for each variable xj with
an infinite domain Lj , we have |ν(xj)| > |w|; clearly Vi(w) is an infinite set as well. Take
any ν ∈ Vi(w); we know from w ∈ L2(Ae) that w ∈ L(ν(Ae)). In particular, there is
an accepting run of ν(Ae) that never uses any transition (q, ν(xj), q

′) with Lj infinite, since
|ν(xj)| > |w|. Thus, such an accepting run may only use transitions resulting from valuations
of variables with finite domains, and hence it is also an accepting run of νi(Ae). This shows
that w ∈ L(νi(Ae)); since νi was chosen arbitrarily, it means that w ∈

⋂

i≤M L(νi(Ae)), and
thus proves L2(Ae) =

⋂

i≤M L(νi(Ae)) =
⋂

i≤M L(Ai).
This immediately shows that L2(e) = L2(Ae) is regular, as a finite intersection of regular

languages. Lower bounds on complexity apply immediately as they were all established for
the case when each Li = Σ. So we need to prove upper bounds. To do so, one can see, by
analyzing the proofs for the case when all domains are Σ, that it suffices to establish the
following facts on the set of automata Ai, for i < M :

• M is at most exponential in the size of the input;

• checking whether a given automaton A is one of the Ai’s can be done in time polynomial
in the size of A; and

• for each Ai, for i < M , its size it at most polynomial in the size of the input.

(To give a couple of examples, to see the Expspace-bound on Nonemptiness2, we
construct exponentially many automata of polynomial size and check nonemptiness of their
intersection. To see the NP upper bound on Membership3 for finite valuations, one guesses
a polynomial-size Ai, checks in polynomial time that it is indeed a correct automaton, and
then checks again in polynomial time whether a given word is accepted by it.)

Recall that the input to the problem we are considering is (e; L̄), or (Ae; L̄), and we can
assume that each Li is given by an NFA Bi (if part of the input is a regular expression, we
can convert it into an NFA in O(n log2 n) time [24]).

To show the bounds, assume without loss of generality that from each Bi all nonreachable
states, and states from which final states cannot be reached, are removed (this can be done
in polynomial time). Then L(Bi) is finite iff Bi does not have cycles. Thus, if ni is the
number of states of Bi, then the longest word accepted by Bi is of length ni, and hence the
size of each finite Li = L(Bi) is at most |Σ|ni+1. Hence, the total number of all the words
in the finite languages Li’s is less than |Σ|N , where N = n +

∑
ni, with the sum taken over

indexes i such that Li is finite. This means that in turn the number of finitary valuations
M , i.e. mappings from some of the variables xi’s into words in these finite languages is at
most |Σ|Nn, which is thus exponential in the size of the input.

The remaining two properties are easy. Since the length of each word accepted by one of
the Bi’s is at most the number of states in Bi, the size of all the automata νi(Ae) is bounded
by a polynomial in the size of the input; changing extended transitions in those to the usual
NFA transitions involves only a linear increase of size. To check whether an automaton A is
one of the Ai’s, we check whether all its transitions involving both states from Ae come from
Ae or from a single-letter valuation. Every other transition must be on a path between two
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states from Ae. One reads words on these paths, and checks if they form a finitary valuation.
This can easily be done in polynomial time. 2

7. Future work

For most bounds (except universality and containment), the complexity under the possi-
bility semantics is reasonable, while for the certainty semantics it is quite high (i.e., double-
exponential in practice). At the same time, the concept of L2(e) captures many query
answering scenarios over graph databases with incomplete information [7]. One of the future
directions of this work is to devise better algorithms for problems related to the certainty
semantics under restrictions arising in the context of querying graph databases.

Another line of work has to do with closure properties: we know that results of Boolean
operations on languages L2(e) and L3(e) are regular and can be represented by NFAs; the
bounds on sizes of such NFAs follow from the results shown here. However, it is conceivable
that such NFAs can be succinctly represented by parameterized regular expressions. To be
concrete, one can easily derive from results in Section 5 that there is a doubly-exponential size
NFA A so that L(A) = L2(e1) ∩L2(e2), and that this bound is optimal. However, it leaves
open a possibility that there is a much more succinct parameterized regular expression e so
that L2(e) = L2(e1)∩L2(e2); in fact, nothing that we have shown contradicts the existence
of a polynomial-size expression with this property. We plan to study bounds on such regular
expressions in the future.
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