

PUC Chile

Juan L. Reutter!

Navigational and Rule-Based Languages !
for Graph Databases

Gaby Chris

Paul

Mary

is_friend

works_with
is_friend

married_to

PUC

works_for

works_for

Graph Databases

Gaby Chris

Paul

Mary

is_friend

works_with
is_friend

married_to

PUC

works_for

works_for

Graph Databases - Social Networks
- Biological DBs
- Geographic Models
!
- RDF

Object
relation

relation
relation

relation

relation

relation

Graph Databases - Nodes represent objects
!
- Edges represent relations

Object

Object

Object

Object

Object
relation

relation
relation

relation

relation

relation

Graph Databases - Nodes represent objects
!
- Edges represent relations

Object

Object

Object

Object

* = (9,()

9 is set of nodes
(� 9� Ȉ� 9 is set of edges
Ȉ set of labels (finite)

Gaby Chris

Paul

Mary

is_friend

works_with
is_friend

married_to

PUC

works_for

works_for

Graph as Relational Databases

Gaby Chris

Paul

Mary

is_friend

works_with
is_friend

married_to

PUC

works_for

works_for

Graph as Relational Databases

is_friend

Gaby Chris

Mary Gaby

works_for

Chris PUC

Mary PUC

works_with

Chris Mary

married_to

Gaby Paul

Gaby Chris

Paul

Mary

is_friend

works_with
is_friend

married_to

PUC

works_for

works_for

Graph as Relational Databases

is_friend

Gaby Chris

Mary Gaby

works_for

Chris PUC

Mary PUC

works_with

Chris Mary

married_to

Gaby Paul So really graphs are a
special type of relational DB

Graph queries are fundamentally different
!

(this is one of the reasons we study them)

Graph queries are fundamentally different
!

(this is one of the reasons we study them)

• Patterns
!

!
• Navigation

Graph queries are fundamentally different:
Patterns

a

ac

c

c

d
d

b

• Graph DB

• Pattern

• Interested in matching
• the pattern in a graph

Graph queries are fundamentally different:
Patterns

a

ac

c

c

d
d

b

a

ac

c

c

d
d

b

a

a
c

c

cd
d

b

a

a

c
c

c

d

d

b

• Graph DB

• Pattern

• Interested in matching
• the pattern in a graph

Graph queries are fundamentally different:
Patterns

a

ac

c

c

d
d

b

• Pattern

• Interested in matching
• the pattern in a graph

Graph queries are fundamentally different:
Patterns

a

ac

c

c

d
d

b

• Pattern

• Interested in matching
• the pattern in a graph

• Nightmare query for
• relational DBs!

Graph queries are fundamentally different:
Patterns

a

ac

c

c

d
d

b

• Pattern

• Interested in matching
• the pattern in a graph

�]��]��]��]��]��]��]� F([,]�) � D(]�,]�) � G(]�,]�)�
G(]�,]�) � E(\,]�) � F(]�,]�) � F(]�,]�) � D(]�,]�)

F �� D �� G �� G �� E �� F �� F �� D

• Nightmare query for
• relational DBs!

Graph queries are fundamentally different
!

(this is one of the reasons we study them)

• Patterns: Graphs must be optimised for pattern matching
!

!
• Navigation

Graph queries are fundamentally different:
Navigation

• Graph DB

is_friend

works_withis_friend
married

works_for

works_for

Graph queries are fundamentally different:
Navigation

• Graph DB

is_friend

works_withis_friend
married

works_for

works_for

• Do I have a friend
• that works at Google?

Graph queries are fundamentally different:
Navigation

• Graph DB

is_friend

works_withis_friend
married

works_for

works_for

• Do I have a friend
• that works at Google?

• Can I reach a Googler
• via a chain of friends?

Graph queries are fundamentally different:
Navigation

• Graph DB

is_friend

works_withis_friend
married

works_for

works_for

• Do I have a friend
• that works at Google?

• Can I reach a Googler
• via a chain of friends?

• Can I reach a Googler
• via a chain of
• friends and / or coworkers?

Graph queries are fundamentally different:
Patterns

• Do I have a friend
• that works at Google?

• Can I reach a Googler
• via a chain of friends?

• Can I reach a Googler
• via a chain of
• friends and / or coworkers?

Graph queries are fundamentally different:
Patterns

• Do I have a friend
• that works at Google?

• Can I reach a Googler
• via a chain of friends?

• Can I reach a Googler
• via a chain of
• friends and / or coworkers?

• Nightmare query for
• relational DBs!

Graph queries are fundamentally different:
Patterns

• It implies using
• recursion in SQL,
• not always supported,
• poorly optimised

• Do I have a friend
• that works at Google?

• Can I reach a Googler
• via a chain of friends?

• Can I reach a Googler
• via a chain of
• friends and / or coworkers?

• Nightmare query for
• relational DBs!

Graph queries are fundamentally different
!

(this is one of the reasons we study them)

• Patterns: Graphs must be optimised for pattern matching
!

!
• Navigation: Graphs must be optimised for navigation

Graph queries are fundamentally different
!

(this is one of the reasons we study them)

• Patterns: Graphs must be optimised for pattern matching
!

!
• Navigation: Graphs must be optimised for navigation

This talk:
Query languages mixing patterns + navigation

Juan L. Reutter!

Navigational and Rule-Based Languages !
for Graph Databases

PUC Chile

Outline

• Navigation and Patterns
!

• Rule-based languages
!
!
• Moving to RDF

• Navigation and Patterns
!

•
!
!
•

Outline

Path Queries (definition, evaluation)
!
!
Conjunctions of Path Queries
 (definition, evaluation)
!
Beyond Patterns

• Navigation and Patterns
!

•
!
!
•

Outline

Path Queries
!
!
Conjunctions of Path Queries

!
Beyond Patterns

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps
Notation

Notation

This is a path
between n1 and n4

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

Notation

This is a path
between n1 and n4

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

The label of this path is
helps knows

Notation

This is a path
between n1 and n5

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

The label of this path is
helps knows helps

Notation

n5 is connected to n4
via an inverse edge, helps−

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

Notation

The label of this path is
knows− knows knows

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

knows−

knows

knows

Navigational Primitives:

Regular Path Queries (RPQs):
!
 Select pairs of nodes connected by a path,
 whose label conforms to a regular expression
!

!

!
Nested Path Queries (NPQs):
!
 Adds existential test [] to 2RPQs

Navigational Primitives:

Regular Path Queries (RPQs):
!
 Select pairs of nodes connected by a path,
 whose label conforms to a regular expression
!
Two-way Regular Path Queries (2RPQs):
!
 Select pairs of nodes connected by a path,
 whose label conforms to a regular expression with inverses
!
Nested Path Queries (NPQs):
!
 Adds existential test [] to 2RPQs

Example of an RPQ

knows+

Find nodes connected by a sequence of knows edges

Example of an RPQ

knows+

Find nodes connected by a sequence of knows edges

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

Find nodes connected by a sequence of knows edges,
 (forward or backward)

(knows | knows−)+"

Example of a 2RPQ

Find nodes connected by a sequence of knows edges,
 (forward or backward)

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

knows−

knows

knows

(knows | knows−)+"

Example of a 2RPQ

Find nodes connected by a sequence of knows edges or
helps edges

(knows | helps)+

Another 2RPQ (this query is also an RPQ)

Find nodes connected by a sequence of knows edges or
helps edges

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

(knows | helps)+

Another 2RPQ (this query is also an RPQ)

Navigational Primitives:

Regular Path Queries (RPQs):
!
 Select pairs of nodes connected by a path,
 whose label conforms to a regular expression
!
Two-way Regular Path Queries (2RPQs):
!
 Select pairs of nodes connected by a path,
 whose label conforms to a regular expression with inverses
!
Nested Path Queries (NPQs):
!
 Adds existential test [] to 2RPQs

Navigational Primitives continued:

Regular Path Queries (RPQs):
!
 Select pairs of nodes connected by a path,
 whose label conforms to a regular expression
!
Two-way Regular Path Queries (2RPQs):
!
 Select pairs of nodes connected by a path,
 whose label conforms to a regular expression with inverses
!
Nested Path Queries (NPQs):
!
 Adds existential test [] to 2RPQs

(knows[helps])+"

Find nodes connected by a sequence of knows edges,
where each node in the path also helps someone

Example of an NPQ

Example of an NPQ

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

(knows[helps])+"

Find nodes connected by a sequence of knows edges,
where each node in the path also helps someone

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

Example of an NPQ

(knows[helps])+"

Find nodes connected by a sequence of knows edges,
where each node in the path also helps someone

Evaluation

The evaluation of an Path Query Q over a graph G is

all pairs (u,v) of nodes such that

 - u is connected to v by a path satisfying Q

Evaluation problem (RPQs):

Given graph G, nodes u,v from G, path query Q.
Is (u,v) in the evaluation of Q over G?

Evaluation problem (RPQs):

knows

n2

u n3

helps

n4

v

knows

knows

helpshelps

Graph G, two nodes u and v

knows+
Path Query Q

Given graph G, nodes u,v from G, path query Q.
Is (u,v) in the evaluation of Q over G?

Evaluation problem (RPQs):

Algorithm:
!
1.- Transform query Q into an automata
2.- Graph G also an automata, u is the starting state,
 v is the final state

Given graph G, nodes u,v from G, path query Q.
Is (u,v) in the evaluation of Q over G?

Evaluation problem (RPQs):

Algorithm:
!
1.- Transform query Q into an automata
2.- Graph G also an automata, u is the starting state,
 v is the final state
3.- Compute the cross product:
4.- If nonempty, (u,v) is in the evaluation of Q over G

Given graph G, nodes u,v from G, path query Q.
Is (u,v) in the evaluation of Q over G?

Transform query and graph into automata

q1 q2
knows

knows

knows

n2

u n3

helps

n4

v

knows

knows

helpshelps

Query Q
(as NFA)

Graph G
(as NFA)
(u is initial state)
(v is final state)

Compute cross product

q1 q2
knows

knows

knows

n2

u n3

helps

n4

v

knows

knows

helpshelps

Query Q
(as NFA)

Graph G
(as NFA)
(u is initial state)
(v is final state)

X

If cross product accepts a word,
(u,v) belongs to the evaluation of Q

Query Q
(as NFA)

Graph G
(as NFA)
(u is initial state)
(v is final state)

X

If cross product accepts a word,
(u,v) belongs to the evaluation of Q

Query Q
(as NFA)

Graph G
(as NFA)
(u is initial state)
(v is final state)

X

This is also an automaton.
!
!

(the words of this automaton are the paths between u and v that satisfy Q)

Evaluation problem:

- NLogSpace-complete
Evaluation of RPQs is: [Cruz, Mendelzon, Wood 87]

- Linear in the graph, if the query is fixed (data complexity)

Given graph G, nodes u,v from G, path query Q.
Is (u,v) in the evaluation of Q over G?

Evaluation problem:

Same holds for 2RPQs ([Calvanese, De Giacomo, Lenzerini, Vardi 00]):
algorithm: add first all inverses to the graph.
 each 2RPQ is now an RPQ over this new graph

Evaluation of RPQs is: [Cruz, Mendelzon, Wood 87]

Given graph G, nodes u,v from G, path query Q.
Is (u,v) in the evaluation of Q over G?

- NLogSpace-complete
- Linear in the graph, if the query is fixed (data complexity)

Evaluation problem:

- NLogSpace-complete if the number of nested []’s is fixed

Evaluation of NPQs is: [Perez, Arenas, Gutierrez 10]

- in PTIME otherwise

- Linear in the graph, if the query is fixed (data complexity)

Given graph G, nodes u,v from G, path query Q.
Is (u,v) in the evaluation of Q over G?

Evaluation problem:

- NLogSpace-complete if the number of nested []’s is fixed

Evaluation of NPQs is: [Perez, Arenas, Gutierrez 10]

- in PTIME otherwise

Idea: if Q is u[e]w, then first evaluate e.
 add new label e to the Graph (query is now a 2RPQ)
!
 Repeat for nested []s

- Linear in the graph, if the query is fixed (data complexity)

Given graph G, nodes u,v from G, path query Q.
Is (u,v) in the evaluation of Q over G?

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

Evaluation algorithm for NPQs (example)

(knows[helps])+"

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

Evaluation algorithm for NPQs (example)

(knows[helps])+"

[helps]

[helps][helps]

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

Evaluation algorithm for NPQs (example)

(knows[helps])+"

[helps]

[helps][helps]

(knows[helps])+"

This is now an RPQ!

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

Evaluation algorithm for NPQs (example)

(knows[helps])+"
Need to do this incrementally,
inside out

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

Evaluation algorithm for NPQs (example)

(knows[helps])+"

[helps]

[helps][helps]

Need to do this incrementally,
inside out

• Navigation and Patterns
!

•
!
!
•

Outline

Path Queries (definition, evaluation)
!
!
Conjunctions of Path Queries
 (definition, evaluation)
!
Beyond Patterns

As a query language, path queries are not enough,
!
need to mix navigation with patterns

First we see how to represent patterns with logic

Logical Representation of patterns

Patterns correspond to Conjunctive Queries,
over the vocabulary of all labels and their inverses

(Conjunctive Queries: conjunctions of atoms,
 some variables existentially quantified)

Logical Representation of patterns

Find all people that know a helper

x y z

knows helps

Logical Representation of patterns

Find all people that know a helper

x y z

knows helps

4([) = �\�]
�
NQRZV([, \) � KHOSV(\,])

�

Logical Representation of patterns

Graph
Relacional

representation

• Pattern • Conjunctive "
• Queries

Patterns correspond to Conjunctive Queries,
over the vocabulary of all labels and their inverses

Patterns + Navigation

Look for nodes x and y connected by
- a path of knows, and
- a path of helps

 y

knows+

helps+

x

Patterns + Navigation

Look for nodes x and y connected by
- a path of knows, and
- a path of helps

 y

knows+

helps+

x

4([, \) =
�
NQRZV+([, \) � KHOSV+([, \)

�

We represent navigational patterns as CQs
over the vocabulary of:
- all labels and their inverses
- any path query

Example of Navigational Pattern

All nodes x and y that have helped each other
an have indirect common friend

 y

knows+

 z

knows+

helps

helps
x

Example of Navigational Pattern

All nodes x and y that have helped each other
an have indirect common friend

 y

knows+

 z

knows+

helps

helps

4([, \) = �]
�
KHOSV([, \) � KHOSV(\, [)�

NQRZV+([,]) � NQRZV+(\,])
�

x

Conjunctive Regular Path Queries (CRPQs)

4(]̄) = /�([�, \�) � · · · � /Q([Q, \Q)

]̄ {[�, . . . , [Q, \�, . . . , \Q}

/�, . . . , /Q

is a tuple of variables in
are Regular Path Queries (RPQs)

Conjunctive 2-way Regular Path Queries
 (C2RPQs)

4(]̄) = /�([�, \�) � · · · � /Q([Q, \Q)

]̄ {[�, . . . , [Q, \�, . . . , \Q}

/�, . . . , /Q

is a tuple of variables in
are 2-Way Regular Path Queries (2RPQs)

Conjunctive Nested Path Queries (CNPQs)

4(]̄) = /�([�, \�) � · · · � /Q([Q, \Q)

]̄ {[�, . . . , [Q, \�, . . . , \Q}

/�, . . . , /Q

is a tuple of variables in
are Nested Path Queries (NPQs)

Different primitives give rise to
 different navigational queries

CRPQs - C2RPQs - CNPQs

All based on the same idea:
!
 edges of patterns can be connected by path queries

Evaluation

Query 4(]̄) = /�([�, \�) � · · · � /Q([Q, \Q)

Evaluation

D̄

Query

Tuple is in the evaluation of Q over G

4(]̄) = /�([�, \�) � · · · � /Q([Q, \Q)

Evaluation

ı {[�, . . . , [Q}
{\�, . . . , \Q}

ı(]̄) = D̄

D̄

Query

Tuple is in the evaluation of Q over G if there is mapping

nodes V
of G ,:

4(]̄) = /�([�, \�) � · · · � /Q([Q, \Q)

Evaluation

ı {[�, . . . , [Q}
{\�, . . . , \Q}

ı(]̄) = D̄

D̄

/L

Query

Tuple is in the evaluation of Q over G if there is mapping

nodes V
of G

such that each is connected to by means ofı([L) ı(\L)

,:

4(]̄) = /�([�, \�) � · · · � /Q([Q, \Q)

Evaluation example

n2

n1 n3

knows

n4

n5

knows

knows knows

helpshelps

4([, \) =
�
NQRZV+([, \) � KHOSV+([, \)

�

Evaluation example

n2

n1 n3

knows

n4

n5

knows

knows knows

helpshelps

x n1
y n3

4(Q�, Q�) =
�
NQRZV+(Q�, Q�) � KHOSV+(Q�, Q�)

�

Evaluation example

n2

n1 n3

knows

n4

n5

knows

knows knows

helpshelps

x n1
y n5

4(Q�, Q�) =
�
NQRZV+(Q�, Q�) � KHOSV+(Q�, Q�)

�

(checking if a tuple belongs to the answer of a navigational graph pattern)
Complexity of Evaluation Problem

Complexity of Evaluation Problem

For CQs already NP-complete:
- guess a mapping, check in PTIME

Complexity of Evaluation Problem

For CQs already NP-complete:
- guess a mapping, check in PTIME

Still NP-complete for CNPQs
!
 Membership:
 - evaluate all NPQs first (in ptime), add them as labels
 - then the CNPQ is just a CQ over extended voacbulary
!
 Hardness already for CQs

Evaluation example

n2

n1 n3

knows

n4

n5

knows

knows knows

helpshelps

4([, \) =
�
NQRZV+([, \) � KHOSV+([, \)

�

n2

n1 n3

knows

n4

n5

knows, knows+

knows knows

helps, helps+helps, helps+

helps+

knows+

The augmented
graph is quadratic …

This is now a CQ over
helps, knows, helps+, knows+

4([, \) =
�
NQRZV+([, \) � KHOSV+([, \)

�

Data Complexity of Evaluation Problem

For CQs in LogSpace (and even lower)

(checking if a tuple is in the answer of a fixed navigational graph pattern)

NLogSpace-complete for CNPQs
!
 Membership:
 - compose algorithm for CQs + NPQs
!
 Hardness already for NPQs (even RPQs)

Recap

Recap

Most used navigational primitives:
!
 2RPQs: regular expressions over labels and their inverses
!
 NPQs: adds [] operator

More examples of path queries

 Kevin Bacon

Footloose Herbert Ross

Ryan Gosling

Julianne Moore

Magnolia

acts_in

acts_in

acts_in

directs

acts_in

acts_in

Crazy, Stupid Love

Look for all co-actors:
Bacon number query

More examples of path queries

(acted_in | acted_in−)+"

 Kevin Bacon

Footloose Herbert Ross

Ryan Gosling

Julianne Moore

Magnolia

acts_in

acts_in

acts_in

directs

acts_in

acts_in

Crazy, Stupid Love

(a 2RPQ)

More examples of path queries

 Kevin Bacon

Footloose Herbert Ross

Ryan Gosling

Julianne Moore

Magnolia

acts_in

acts_in

acts_in

directs

acts_in

acts_in

Crazy, Stupid Love

((acted_in | acted_in−)[directs]) +"

Look for all co-actors,
but each actor is also a director

(an NPQ)

More examples of navigational patterns

More examples of navigational patterns

Computes all x that knows a person p
 that acted and directed a movie m

4([) = �S�P
�
NQRZV�([, S) � DFWHGBLQ(S,P) � GLUHFWV(S,P)

�

More examples of navigational patterns

4([) = �D�U
�
(DFWHGBLQ|DFWHGBLQ�)+([, D) � FRDXWKRU+([, U)

�

Computes all x connected to an actor a (via acting)
 and researcher r (via coauthor)

Erdos - Bacon number query

Expressive power

RPQ 2RPQ NPQ

CRPQ C2RPQ CNPQadds �, �

adds D� []adds

Expressive power

RPQ 2RPQ NPQ

CRPQ C2RPQ CNPQadds �, �

adds D� []adds

Implemented in SPARQL (RDF databases)

Expressive power

RPQ 2RPQ NPQ

CRPQ C2RPQ CNPQadds �, �

adds D� []adds

(Partially) Implemented in CYPHER (Neo4j graph database)

• Navigation and Patterns
!

•
!
!
•

Outline

Path Queries
!
!
Conjunctions of Path Queries

!
Beyond Patterns

Two issues:
!
- Sometimes we need more expressive power
- Navigational patterns are not algebraically closed

What can’t navigational patterns do

People have recognised the need
for more expressive graph queries

People have recognised the need
for more expressive graph queries

more interplay
between pattern matching and navigation

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

knows

Beyond patterns

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

knows

Say u is a friend of v if
u knows v and u helps v

Beyond patterns

n2

n1 n3

helps

n4

n5

knows

knows knows

helpshelps

knows

Find all nodes connected by a chain of friends

Beyond patterns

Say u is a friend of v if
u knows v and u helps v

a n1

knows

helps

Beyond patterns

b

helps

knows

nkn2

knows

helps

Find all nodes connected by a chain of friends

Say u is a friend of v if
u knows v and u helps v

a n1

knows

helps

Beyond patterns

b

helps

knows

nkn2

knows

helps

a n1

knows

helps

()+

Find all nodes connected by a chain of friends

Say u is a friend of v if
u knows v and u helps v

A language is algebraically closed if one stays in
the same language when applying operators

Algebraically closed languages:
!
- Relational Algebra
- Conjunctive Queries
- Path Queries

Navigational Patterns are not
algebraically closed

CRPQs, C2RPQs and CNPQs are not
algebraically closed:
!
What is the kleene star of a pattern?

Navigational Patterns are not
algebraically closed

A language is algebraically closed if one stays in
the same language when applying operators

!
- One for pattern matching (the main DB engine)
- One for path queries

One problem of queries not algebraically closed
is that implementations end up with two engines:

!
- One for pattern matching (the main DB engine)
- One for path queries

Even though these queries are implemented,
their performance is not optimal.

Query planning and query optimisation is harder!

One problem of queries not algebraically closed
is that implementations end up with two engines:

In the lasts years we have seen renewed efforts
to find expressive graph languages

that are algebraically closed

The majority are based on Datalog

