Outline

Navigation and Patterns

Rule-based languages

Moving to RDF

Outline

Navigation and Patterns

Rule-based languages paih Queries for RDF

Moving to RDF Triple Algebra

Practical Concerns

Lifting graph languages to support RDF graphs

RDF documents

acts_in

(Kevin Bacon

(Ryan Gosling)

acts_in

A 4

acts in

(

Magnolia)

A

acts_in

(u

Crazy, Stupid Love)1

acts_in
Subject | Predicate Object
Bacon acts_in Footloose
Ross directs Footloose
Moore acts_in Magnolia

KU

lanne Moora

(+

(Footloose)4
directs

.

erbert Ross)

RDF documen’[s (Ryan Gosling) (Mag:olia)

acts_in acts_in

A 4
Crazy, Stupid Love)

acts in G

Kulianne Moora

acts_in

(Kevin Bacon

acts_in s
(Footloose)4 kHerbert Ross)
directs

Subject | Predicate Object

Bacon | acts in <|Eoatlogse big difference v/s graphs:

s directs | s — Iabells are not flxgd |
. . — Predicates store information
acts_in ﬁﬁVlemha

Moore

RDF documents

Subject | Predicate Object
Bacon acts_in Footloose
Ross directs Footloose
Moore acts_in Magnolia

/

Current navigation approaches
treat RDF documents as graphs

acts_in
Bacon | Footloose
More | Magnolia

directs

Ross

Footloose

Property Paths

Essentially adding 2RPQs to SPARQL (query language for RDF)

Property Paths

Essentially adding 2RPQs to SPARQL (query language for RDF)

To evaluate 2RPQs in RDF we treat them as graphs,
the predicates becomes the labels

acts_in
Subject | Predicate Object Bacon | Footloose
Bacon acts_in Footloose > More | Magnolia
Ross directs Footloose
Moore acts_in Magnolia directs

Ross Footloose

Property Paths

Essentially adding 2RPQs to SPARQL (query language for RDF)

To evaluate 2RPQs in RDF we treat them as graphs,
the predicates becomes the labels

Good thing: [Kostylev, R., Romero, Vrgoc 15]

Evaluation/Containment results from graphs
transfer to Property Paths

Problem:
SPARQL + Property Paths requires a mixed strategy

Problem:
SPARQL + Property Paths requires a mixed strategy

SPARLQ logically treats RDF documents as triples
Property Paths logically treats RDF documents as graph

SPARLQ logically treats RDF documents as triples |
outputs either mappings or RDF

Property Paths logically treats RDF documents as graph,
the output are pairs of nodes

SPARLQ logically treats RDF documents as triples |
outputs either mappings or RDF

Property Paths logically treats RDF documents as graph,
the output are pairs of nodes

Even worse than lacking algebraic closure!

Very difficult to implement (requires different engines,
not clear how to optimise...)

Need a language

- Capable of expressing basic navigation (at least path queries)
- Closed Input/output:

Evaluated over RDF,

Producing RDF as input
- Algebraically closed

Need a language

- Capable of expressing basic navigation (at least path queries)
- Input/output closed:

Evaluated over RDF,

Producing RDF as input
- Algebraically closed

We already learned: need transitive closure over patterns

Need a language

- Capable of expressing basic navigation (at least path queries)
- Input/output closed:

Evaluated over RDF,

Producing RDF as input
- Algebraically closed

We already learned: need transitive closure over patterns

Problem is, patterns are no longer binary!

Outline

Navigation and Patterns

Rule-based languages path Queries for RDF

Moving to RDF Triple Algebra

Practical Concerns

Defining the PToperator over tertiary relations

For the binary case it's just the composition of relations

Defining the PToperator over tertiary relations

For the binary case it's just the composition of relations

But for tertiary relations we have several possibilities

How to define the PT operator?

How to define the PToperator?

Classical graph reachability

(middle element of triples represent labels, or properties)

How to define the PToperator?

o
o~ o
o~ O
o~ o

Another possibility:
Use the middle element as start of next triple

How to define the PToperator?

Combining different ways of reachability

How to define the PToperator?

Main |dea: don't choose, just take all possibilities

Reachabillity over tertiary relations

O

01 So (0))

Think of this operation:

Reachabillity over tertiary relations

O

01 So (0))

Think of this operation:

T(S1,p2,02) — T(S17p1701)7 T(827p2702) 01 =382

Reachabillity over tertiary relations

O

01 So (0))

Think of this operation:

T(S1,p2,02) — T(S17p1701)7 T(827p2702) 01 =382

(S’] 7p2 702)

>
01=39S7

Reachabillity over tertiary relations

Think of this operation:

Reachabillity over tertiary relations

Think of this operation:

T(81,p2,02) < T(S1,p1,01), T(S2,p2,02), Pp1 = S2

Reachabillity over tertiary relations

Think of this operation:
T(81,p2,02) < T(S1,p1,01), T(S2,p2,02), Pp1 = S2

(S'] ap2 702)
D]
P1=S2

Reachabillity over tertiary relations

Classical graph reachability:

Reachabillity over tertiary relations

Classical graph reachability:

(81,P2,02) 4+

T <
01=39S9

Reachabillity over tertiary relations

Classical graph reachability:

(81,P2,02) 4+

>
01=352

(81,P2,09) (81,P2,09) (81,P2,02)

=T U T < T U (T xx T) x T U---

01=3S2 01=3S2 01=3S2

Reachabillity over tertiary relations

Reachabillity over tertiary relations

.07 T
o
o~ o
o~ o
o~ O ez
>)

P1=3S2

Reachabillity over tertiary relations

O 4
o o
o~ O
O/NO ((81,P2,09)
T

|
P1D2<182)

(81,P2,09) (81,P2,09) (S1,P2,09)

=T U T x T U (T x T) x T U---

P1=S2 P1=3S2 P1=S2

Triple Algebra (TriAL)

Triple Algebra (TriAL)

T is a TriAL expression
(T represents the whole set of triples)

Triple Algebra (TriAL)

T is a TriAL expression
(T represents the whole set of triples)

if R and R’ are TriAL expressions, then

R U R and R— R’ are TriAL expressions

Triple Algebra (TriAL)

T is a TriAL expression
(T represents the whole set of triples)

if R and R’ are TriAL expressions, then

R U R and R— R’ are TriAL expressions

(%.9,2)
R Ef R’ is a TriAL expression, for

Triple Algebra (TriAL)

T is a TriAL expression
(T represents the whole set of triples)

if R and R’ are TriAL expressions, then

R U R and R— R’ are TriAL expressions

(%.9,2)
R %ﬂ R’ is a TriAL expression, for

X, Y, Zc {81,Sz,p1,P2,02,02}

¢ equalities over {S1, S2,pP1,P2,02,02}

Positive TriAL

T is a TriAL expression
(T represents the whole set of triples)

if R and R’ are TriAL expressions, then

RUR an%re TriAL expressions

(%.9,2)
R %ﬂ R’ is a TriAL expression, for

X, Y, Zc {31,Sz,p1,P2,02,02}

¢ equalities over {S1, S2,pP1,P2,02,02}

Recursive TriAL

(R)"=RU R<RU (R<R)<RU ---

Recursive TriAL

(R)"=RURXRU (RxR) <R U ---

(<RT=RURNRURNKRNR) U ---

(note that these two are not necessarily the same)

Recursive Triple Algebra (examples)

Cﬁ B .u Chelps ! .u
knows knows knows
Say u is a friend of v if Find all nodes connected

u knows v and u helps v by a chain of friends

Recursive Triple Algebra (examples)

Gﬁ - .u Chelps ! .'
knows knows knows
Say u is a friend of v if Find all nodes connected
u knows v and u helps v by a chain of friends
(81:P1,01)
Friends: T <] R’

S1=S8y, 01=05, p1=helps, po=knows

Recursive Triple Algebra (examples)

Gﬁ - .u Chelps ! .'
knows knows knows
Say u is a friend of v if Find all nodes connected
u knows v and u helps v by a chain of friends
(81:P1,01)
Friends: T <] R’

S1=S8y, 01=05, p1=helps, po=knows

(81,P2,02) 4+

(Friends]
01=982

Recursive Triple Algebra (examples)

rdfs:subclass Person)
(Actor rdfs:subclass
rfd:type
(Director)

A

k

rfd:type

acts_in s
(Footloose)4 kHerbert Ross)
directs

Recursive Triple Algebra (examples)

rdfs:subclass Person)
(Actor rdfs:subclass
rfd:type
(Director)

A

k

rfd:type

acts_in s
(Footloose)4 kHerbert Ross)
directs

(S'] 7p1 702)

Applying transitivity (T <)"
01=S,, py=rdf:type, po=rdf:subclass
of subclass:

Evaluation

Is a triple (s,p,0) in the evaluation of a
recursive TriAL expression over a graph?

Evaluation

Is a triple (s,p,0) in the evaluation of a
recursive TriAL expression over a graph?

/Evaluation of recursive TriAL is: [Libkin, R., Vrgoc 13]

PTIME-complete
NLogSpace-complete if the expression is fixed

-

(almost the same than graph path queries)

Recursive Triple Algebra as
Query Language

TriAL expressions are algebraically closed

but it is only a navigational primitive,
does not subsume CQs (graph patterns)

Think of them as the triplestore equivalent of path queries

Recursive Triple Algebra as
Primitive

Can add TriAL expressions to CQs (graph patterns).
but language not algebraically closed anymore.

Recursive Triple Algebra as
Primitive

Can add TriAL expressions to CQs (graph patterns).
but language not algebraically closed anymore.

Other option: Triplestore equivalent of regular queries?

Regular Queries using TriAL

8(21722723) — R1(U1,V1,W1), SRR Rn(UmeWn)

Each R;is either a predicate, a label,
or expressions (P)" or (< P)™,
for a predicate P

Same as before, queries are sets of non-recursive rules

Regular Queries using TriAL

8(217227Z3> — R1(U1,V1,W1), SRR Rn(UmeWn)

Each R;is either a predicate, a label,
or expressions (P)" or (< P)™,
for a predicate P

Evaluation remains NP-complete
(NLogSpace-c if program is fixed)

Containment?

Moving to higher arities
S(Z) < R1()_(1), Ce e Rn()_(n)

Each R;is either a predicate, a label,
or expressions (P)" or (< P)™,
for a predicate P

Alternative for systems to implement
navigational patterns using a single engine

Recap

Definition of navigational primitives for triples is not immediate

Recap

Definition of navigational primitives for triples is not immediate

One option: Do “kleene closure” of joins:

(Rt =RURXR U (R<R)<RU ---
(<Rt =RURXRURX(RXR) U -

Recap

Definition of navigational primitives for triples is not immediate

One option: Do “kleene closure” of joins:

(Rt =RURXR U (R<R)<RU ---
(<Rt =RURXRURX(RXR) U -

Advantages: More expressive power,
Can compute navigation using Triplestore engine

Outline

Navigation and Patterns

Rule-based languages path Queries for RDF

Moving to RDF Triple Algebra

Practical Concerns

Does this work in practice at all?

Implemented a (superset) of this language, on top of SPARQL
- Recursive SPARQL

Needed to add comparison with constants
(very important in practice)

1. Linked Movie Database
2. Yago (only movie facts)

Tiime (seconds)

Datasets:
100 -
40 -

20

LMDB
BYAGO

Q2

Queries:

1. Actors connected to Kevin Bacon via (acted_in | acted_in™)*
2. Actors connected to Kevin Bacon through movies with same

director.

an actor (like Clint Eastwood).

[R., Soto, Vrgoc 15]

Actors connected to Bacon via movies in which the director is also

180 1

Datasets: 160 - ©LMDB

140 - B YAGO

1. Linked Movie Database 1207

2. Yago (only movie facts) 1:2

60 -

Tiime (seconds)

40 -
20 -

Can express as a RQ or 0
a recursive TriAL exp.

Q2

_ [R., Soto, Vrgoc 15]
Queries:

1. Actors connected tg Keviq Bacon via (acted_in | acted_in™)*

2. Actors connected to|Kevin Bacon through movies with same
director.

3. Actors connected to Bacon via movies in which the director is also
an actor (like Clint Eastwood).

Comparison with SPARQL Path Queries
(Property Paths)

Compare our alternative with two RDF/SPARQL engines:
- Virtuoso
- Jena

Comparison with SPARQL Path Queries
(Property Paths)

Compare our alternative with two RDF/SPARQL engines:
- Virtuoso
- Jena

none of them can compute all actors
connected to Kevin Bacon (under default settings).

We do it in 160 seconds

Outline

Navigation and Patterns

Rule-based languages

Moving to RDF

Conclusions and Main Takeaways

Main Takeaways

Main Takeaways

Graph DBs: Pattern matching + Navigation

Main Takeaways

Graph DBs: Pattern matching + Navigation

Slowly showing up in industry.
Need to think about algebraically closed languages

Main Takeaways

Graph DBs: Pattern matching + Navigation

Slowly showing up in industry.
Need to think about algebraically closed languages

Already have alternatives, but need to keep working!

Specially for RDF

Challenges and open problems

Challenges and open problems

User friendly Datalog-based query languages
Translation from Datalog to lower level algebra for systems

Challenges and open problems

User friendly Datalog-based query languages
Translation from Datalog to lower level algebra for systems

Queries returning paths.

- any path?
- shortest path?
- all paths?

Challenges and open problems

User friendly Datalog-based query languages
Translation from Datalog to lower level algebra for systems

Queries returning paths. So far only navigation.
- any path? What about comparing values?
- shortest path? Arithmetic?

- all paths?

