
Outline

• Navigation and Patterns
!

• Rule-based languages
!
!
• Moving to RDF

• Navigation and Patterns
!

• Rule-based languages
!
!
• Moving to RDF

Outline

Path Queries for RDF
!
!
Triple Algebra
!
!
Practical Concerns

Lifting graph languages to support RDF graphs

RDF documents

 Kevin Bacon

Footloose

Crazy, Stupid Love

Herbert Ross

Ryan Gosling

Julianne Moore

Magnolia

acts_in

acts_in

acts_in

directs

acts_in

acts_in

Subject Predicate Object

Bacon acts_in Footloose

Ross directs Footloose

Moore acts_in Magnolia

RDF documents

 Kevin Bacon

Footloose

Crazy, Stupid Love

Herbert Ross

Ryan Gosling

Julianne Moore

Magnolia

acts_in

acts_in

acts_in

directs

acts_in

acts_in

Subject Predicate Object

Bacon acts_in Footloose

Ross directs Footloose

Moore acts_in Magnolia

big difference v/s graphs:
labels are not fixed
Predicates store information

RDF documents

Subject Predicate Object

Bacon acts_in Footloose

Ross directs Footloose

Moore acts_in Magnolia

acts_in

Bacon Footloose

More Magnolia

directs

Ross Footloose

Current navigation approaches
treat RDF documents as graphs

Property Paths

Essentially adding 2RPQs to SPARQL (query language for RDF)

Property Paths

Essentially adding 2RPQs to SPARQL (query language for RDF)

To evaluate 2RPQs in RDF we treat them as graphs,
 the predicates becomes the labels

Subject Predicate Object

Bacon acts_in Footloose

Ross directs Footloose

Moore acts_in Magnolia

acts_in

Bacon Footloose

More Magnolia

directs

Ross Footloose

Property Paths

To evaluate 2RPQs in RDF we treat them as graphs,
 the predicates becomes the labels

Good thing: [Kostylev, R., Romero, Vrgoc 15]
!
Evaluation/Containment results from graphs
 transfer to Property Paths

Essentially adding 2RPQs to SPARQL (query language for RDF)

Problem:
SPARQL + Property Paths requires a mixed strategy

Problem:
SPARQL + Property Paths requires a mixed strategy

SPARLQ logically treats RDF documents as triples
Property Paths logically treats RDF documents as graph

SPARLQ logically treats RDF documents as triples ,
 outputs either mappings or RDF
!
Property Paths logically treats RDF documents as graph,
 the output are pairs of nodes

SPARLQ logically treats RDF documents as triples ,
 outputs either mappings or RDF
!
Property Paths logically treats RDF documents as graph,
 the output are pairs of nodes

Even worse than lacking algebraic closure!
!
Very difficult to implement (requires different engines,
 not clear how to optimise…)

Need a language

- Capable of expressing basic navigation (at least path queries)
- Closed Input/output:
 Evaluated over RDF,
 Producing RDF as input
- Algebraically closed

Need a language

- Capable of expressing basic navigation (at least path queries)
- Input/output closed:
 Evaluated over RDF,
 Producing RDF as input
- Algebraically closed

We already learned: need transitive closure over patterns

Need a language

We already learned: need transitive closure over patterns

- Capable of expressing basic navigation (at least path queries)
- Input/output closed:
 Evaluated over RDF,
 Producing RDF as input
- Algebraically closed

Problem is, patterns are no longer binary!

• Navigation and Patterns
!

• Rule-based languages
!
!
• Moving to RDF

Outline

Path Queries for RDF
!
!
Triple Algebra
!
!
Practical Concerns

Defining the operator over tertiary relations 3+

For the binary case it’s just the composition of relations

Defining the operator over tertiary relations 3+

For the binary case it’s just the composition of relations

But for tertiary relations we have several possibilities

How to define the operator?3+

Classical graph reachability
!
(middle element of triples represent labels, or properties)

How to define the operator?3+

Another possibility:
Use the middle element as start of next triple

How to define the operator?3+

Combining different ways of reachability

How to define the operator?3+

How to define the operator?3+

Main Idea: don’t choose, just take all possibilities

Reachability over tertiary relations

Think of this operation:

V�
V�

S� S�

R� R�

Reachability over tertiary relations

Think of this operation:

R� = V�7(V�,S�, R�),7(V�,S�, R�)7(V�,S�, R�) �

V�
V�

S� S�

R� R�

Reachability over tertiary relations

Think of this operation:

R� = V�7(V�,S�, R�),7(V�,S�, R�)7(V�,S�, R�) �

7
(V�,S�,R�)

��
R�=V�

7

V�
V�

S� S�

R� R�

Reachability over tertiary relations

Think of this operation:

V�

V�S�

S�

R�

R�

Reachability over tertiary relations

Think of this operation:

7(V�, S�, R�) � 7(V�, S�,R�), 7(V�, S�, R�), S� = V�

V�

V�S�

S�

R�

R�

Reachability over tertiary relations

Think of this operation:

7
(V�,S�,R�)

��
S�=V�

7

7(V�, S�, R�) � 7(V�, S�,R�), 7(V�, S�, R�), S� = V�

V�

V�S�

S�

R�

R�

Reachability over tertiary relations

Classical graph reachability:

Reachability over tertiary relations

Classical graph reachability:

�
7

(V�,S�,R�)

��
R�=V�

�+

Reachability over tertiary relations

Classical graph reachability:

�
7

(V�,S�,R�)

��
R�=V�

�+

= 7 � 7
(V�,S�,R�)

��
R�=V�

7 � (7
(V�,S�,R�)

��
R�=V�

7)
(V�,S�,R�)

��
R�=V�

7 � · · ·

Reachability over tertiary relations

Reachability over tertiary relations

�
7

(V�,S�,R�)

��
S�=V�

�+

Reachability over tertiary relations

= 7 � 7
(V�,S�,R�)

��
S�=V�

7 � (7
(V�,S�,R�)

��
S�=V�

7)
(V�,S�,R�)

��
S�=V�

7 � · · ·

�
7

(V�,S�,R�)

��
S�=V�

�+

Triple Algebra (TriAL)

Triple Algebra (TriAL)

7 is a TriAL expression
 (T represents the whole set of triples)

Triple Algebra (TriAL)

7 is a TriAL expression
 (T represents the whole set of triples)

if and are TriAL expressions, then 5 5′

5 ∪ 5′ 5− 5′and are TriAL expressions

Triple Algebra (TriAL)

7 is a TriAL expression
 (T represents the whole set of triples)

if and are TriAL expressions, then 5 5′

5 ∪ 5′ 5− 5′and are TriAL expressions

5
([,\,])

��
כ
5� is a TriAL expression, for

Triple Algebra (TriAL)

7 is a TriAL expression
 (T represents the whole set of triples)

if and are TriAL expressions, then 5 5′

5 ∪ 5′ 5− 5′and are TriAL expressions

5
([,\,])

��
כ
5� is a TriAL expression, for

{V�, V�, S�, S�, R�, R�}[, \,] �
כ equalities over {V�, V�, S�, S�, R�, R�}

Positive TriAL

7 is a TriAL expression
 (T represents the whole set of triples)

5
([,\,])

��
כ
5� is a TriAL expression, for

{V�, V�, S�, S�, R�, R�}[, \,] �
כ equalities over {V�, V�, S�, S�, R�, R�}

if and are TriAL expressions, then 5 5′

5 ∪ 5′ 5− 5′and are TriAL expressions

Recursive TriAL

= 5 ∪ 5 ◃▹ 5 ∪ (5 ◃▹ 5) ◃▹ 5 ∪ · · ·(5 ��)+

Recursive TriAL

= 5 ∪ 5 ◃▹ 5 ∪ (5 ◃▹ 5) ◃▹ 5 ∪ · · ·(5 ��)+

= 5 ∪ 5 ◃▹ 5 ∪ 5 ◃▹ (5 ◃▹ 5) ∪ · · ·(�� 5)+

(note that these two are not necessarily the same)

a n1

knows

helps

b

helps

knows

nkn1

knows

helps

Recursive Triple Algebra (examples)

Say u is a friend of v if
u knows v and u helps v

Find all nodes connected
by a chain of friends

a n1

knows

helps

b

helps

knows

nkn1

knows

helps

Recursive Triple Algebra (examples)

)ULHQGV� 7
(V�,S�,R�)

��
V�=V�, R�=R�, S�=KHOSV, S�=NQRZV

5�

Say u is a friend of v if
u knows v and u helps v

Find all nodes connected
by a chain of friends

a n1

knows

helps

b

helps

knows

nkn1

knows

helps

Recursive Triple Algebra (examples)

)ULHQGV� 7
(V�,S�,R�)

��
V�=V�, R�=R�, S�=KHOSV, S�=NQRZV

5�

�
)ULHQGV

(V�,S�,R�)

��
R�=V�

�+

Say u is a friend of v if
u knows v and u helps v

Find all nodes connected
by a chain of friends

Recursive Triple Algebra (examples)

 Kevin Bacon

Footloose Herbert Ross

Actor

Person

acts_in

directs

rfd:type

Director

rfd:type

rdfs:subclass

rdfs:subclass

Recursive Triple Algebra (examples)

 Kevin Bacon

Footloose Herbert Ross

Actor

Person

acts_in

directs

rfd:type

Director

rfd:type

rdfs:subclass

rdfs:subclass

Applying transitivity
of subclass:

�
7

(V�,S�,R�)

��
R�=V�, S�=UGI�W\SH, S�=UGI�VXEFODVV

�+

Evaluation

Is a triple (s,p,o) in the evaluation of a
recursive TriAL expression over a graph?

Evaluation

Is a triple (s,p,o) in the evaluation of a
recursive TriAL expression over a graph?

(almost the same than graph path queries)

Evaluation of recursive TriAL is: [Libkin, R., Vrgoc 13]

PTIME-complete
NLogSpace-complete if the expression is fixed

Recursive Triple Algebra as
 Query Language

TriAL expressions are algebraically closed
but it is only a navigational primitive,
does not subsume CQs (graph patterns)

Think of them as the triplestore equivalent of path queries

Can add TriAL expressions to CQs (graph patterns).
 but language not algebraically closed anymore.

Recursive Triple Algebra as
 Primitive

Can add TriAL expressions to CQs (graph patterns).
 but language not algebraically closed anymore.

Other option: Triplestore equivalent of regular queries?

Recursive Triple Algebra as
 Primitive

Regular Queries using TriAL

Each is either a predicate, a label,
 or expressions or ,
 for a predicate

5L
(3 ��)+ (�� 3)+

3

6(]�,]�,]�) � 5�(X�, Y�,Z�), . . . , 5Q(XQ, YQ,ZQ)

Same as before, queries are sets of non-recursive rules

Regular Queries using TriAL

Each is either a predicate, a label,
 or expressions or ,
 for a predicate

5L
(3 ��)+ (�� 3)+

3

6(]�,]�,]�) � 5�(X�, Y�,Z�), . . . , 5Q(XQ, YQ,ZQ)

Evaluation remains NP-complete
 (NLogSpace-c if program is fixed)

Containment?

Moving to higher arities

Each is either a predicate, a label,
 or expressions or ,
 for a predicate

5L
(3 ��)+ (�� 3)+

3

Alternative for systems to implement
navigational patterns using a single engine

6(]̄) � 5�([̄�), . . . , 5Q([̄Q)

Recap

Definition of navigational primitives for triples is not immediate

Recap

Definition of navigational primitives for triples is not immediate

One option: Do “kleene closure” of joins:

= 5 ∪ 5 ◃▹ 5 ∪ (5 ◃▹ 5) ◃▹ 5 ∪ · · ·

= 5 ∪ 5 ◃▹ 5 ∪ 5 ◃▹ (5 ◃▹ 5) ∪ · · ·

(5 ��)+

(�� 5)+

Recap

Definition of navigational primitives for triples is not immediate

One option: Do “kleene closure” of joins:

= 5 ∪ 5 ◃▹ 5 ∪ (5 ◃▹ 5) ◃▹ 5 ∪ · · ·

= 5 ∪ 5 ◃▹ 5 ∪ 5 ◃▹ (5 ◃▹ 5) ∪ · · ·

(5 ��)+

(�� 5)+

Advantages: More expressive power,
 Can compute navigation using Triplestore engine

• Navigation and Patterns
!

• Rule-based languages
!
!
• Moving to RDF

Outline

Path Queries for RDF
!
!
Triple Algebra
!
!
Practical Concerns

Does this work in practice at all?

Implemented a (superset) of this language, on top of SPARQL
- Recursive SPARQL

Needed to add comparison with constants
 (very important in practice)

Datasets:

1. Linked Movie Database
2. Yago (only movie facts)

0

20

40

60

80

100

120

140

160

180

Q1 Q2 Q3

Tí
im

e
(s

ec
on

ds
)

LMDB

YAGO

(a) Query times on LMDB and YAGO

dataset

query
Q1 Q2 Q3

LMDB 37349 1172 14568

YAGO 25404 480 9416

(b) The number of output tuples

Dataset PROV1 PROV2 PROV3 PROV4

Time(sec) 12.3 22.8 33.8 46.5

No. tup. 220950 441900 667269 883800

(c) Query from Section 4 on PROV datasets

Fig. 3. Running times and the number of output tuples for the three datasets.

5.1 Query evaluation

Because of the novelty of our approach it was impossible to compare our times
against other implementations, or run standard benchmarks to test the per-
formance of our queries. Furthermore, while our formalism is similar to that of
recursive SQL, all of the RDF systems that we checked were either running RDF
natively, or running on top of a relational DBMS that did not support recursion
as mandated by the SQL standard. OpenLink Virtuoso does have a transitive
closure operator, but this operator can only compute transitivity when starting
in a given IRI. Our queries were more general than this, and thus we could not
compare them. For this reason we invented several queries that are very natural
over the considered datasets and tested their performance. As all property paths
can be expressed by linear recursive queries we will also test our implementation
against current SPARQL systems in the following subsection.

We start our round of experiments with movie-related queries over both
LMDB and YAGO. Since YAGO also contains information about movies, we
have the advantage of being able to test the same queries over di↵erent real
datasets (only the ontology di↵ers). We use three di↵erent queries, all of them
similar to that of Example 2 (precise queries are given in the online appendix).
The first query Q1 returns all the actors in the database that have a finite Bacon
number10, meaning that they co-starred in the same movie with Kevin Bacon,
or another actor with a finite Bacon number. A similar notion, well known in
mathematics, is the Erdős number. Note that Q1 is a property path query. To
test recursive capabilities of our implementation we use another two queries, Q2
and Q3, that apply various tests along the paths computing the Bacon number.
The query Q2 returns all actors with a finite Bacon number such that all the
collaborations were done in movies with the same director. Finally the query Q3
tests if an actor is connected to Kevin Bacon through movies where the director
is also an actor (not necessarily in the same movie). The structure of queries Q2
and Q3 is similar to the query from Example 2 and cannot be expressed using
property paths either. The results of the evaluation can be found in Figure 3(a).
As we can see the running times, although high, are reasonable considering the
size of the datasets and the number of output tuples (Figure 3(b)).

10 See http://en.wikipedia.org/wiki/Six Degrees of Kevin Bacon.

Queries:
1. Actors connected to Kevin Bacon via (acted_in | acted_in−)+
2. Actors connected to Kevin Bacon through movies with same

director.
3. Actors connected to Bacon via movies in which the director is also

an actor (like Clint Eastwood).

[R., Soto, Vrgoc 15]

Datasets:

1. Linked Movie Database
2. Yago (only movie facts)

0

20

40

60

80

100

120

140

160

180

Q1 Q2 Q3

Tí
im

e
(s

ec
on

ds
)

LMDB

YAGO

(a) Query times on LMDB and YAGO

dataset

query
Q1 Q2 Q3

LMDB 37349 1172 14568

YAGO 25404 480 9416

(b) The number of output tuples

Dataset PROV1 PROV2 PROV3 PROV4

Time(sec) 12.3 22.8 33.8 46.5

No. tup. 220950 441900 667269 883800

(c) Query from Section 4 on PROV datasets

Fig. 3. Running times and the number of output tuples for the three datasets.

5.1 Query evaluation

Because of the novelty of our approach it was impossible to compare our times
against other implementations, or run standard benchmarks to test the per-
formance of our queries. Furthermore, while our formalism is similar to that of
recursive SQL, all of the RDF systems that we checked were either running RDF
natively, or running on top of a relational DBMS that did not support recursion
as mandated by the SQL standard. OpenLink Virtuoso does have a transitive
closure operator, but this operator can only compute transitivity when starting
in a given IRI. Our queries were more general than this, and thus we could not
compare them. For this reason we invented several queries that are very natural
over the considered datasets and tested their performance. As all property paths
can be expressed by linear recursive queries we will also test our implementation
against current SPARQL systems in the following subsection.

We start our round of experiments with movie-related queries over both
LMDB and YAGO. Since YAGO also contains information about movies, we
have the advantage of being able to test the same queries over di↵erent real
datasets (only the ontology di↵ers). We use three di↵erent queries, all of them
similar to that of Example 2 (precise queries are given in the online appendix).
The first query Q1 returns all the actors in the database that have a finite Bacon
number10, meaning that they co-starred in the same movie with Kevin Bacon,
or another actor with a finite Bacon number. A similar notion, well known in
mathematics, is the Erdős number. Note that Q1 is a property path query. To
test recursive capabilities of our implementation we use another two queries, Q2
and Q3, that apply various tests along the paths computing the Bacon number.
The query Q2 returns all actors with a finite Bacon number such that all the
collaborations were done in movies with the same director. Finally the query Q3
tests if an actor is connected to Kevin Bacon through movies where the director
is also an actor (not necessarily in the same movie). The structure of queries Q2
and Q3 is similar to the query from Example 2 and cannot be expressed using
property paths either. The results of the evaluation can be found in Figure 3(a).
As we can see the running times, although high, are reasonable considering the
size of the datasets and the number of output tuples (Figure 3(b)).

10 See http://en.wikipedia.org/wiki/Six Degrees of Kevin Bacon.

Queries:
1. Actors connected to Kevin Bacon via (acted_in | acted_in−)+
2. Actors connected to Kevin Bacon through movies with same

director.
3. Actors connected to Bacon via movies in which the director is also

an actor (like Clint Eastwood).

Can express as a RQ or
a recursive TriAL exp.

[R., Soto, Vrgoc 15]

Compare our alternative with two RDF/SPARQL engines:
 - Virtuoso
 - Jena

Comparison with SPARQL Path Queries
 (Property Paths)

Compare our alternative with two RDF/SPARQL engines:
 - Virtuoso
 - Jena

Comparison with SPARQL Path Queries
 (Property Paths)

none of them can compute all actors
connected to Kevin Bacon (under default settings).
!
We do it in 160 seconds

Outline

• Navigation and Patterns
!

• Rule-based languages
!
!
• Moving to RDF

• Conclusions and Main Takeaways

Main Takeaways

Main Takeaways

Graph DBs: Pattern matching + Navigation

Main Takeaways

Graph DBs: Pattern matching + Navigation

Slowly showing up in industry.
 Need to think about algebraically closed languages

Main Takeaways

Graph DBs: Pattern matching + Navigation

Slowly showing up in industry.
 Need to think about algebraically closed languages

Already have alternatives, but need to keep working!
!
 Specially for RDF

Challenges and open problems

Challenges and open problems

User friendly Datalog-based query languages
Translation from Datalog to lower level algebra for systems

Challenges and open problems

User friendly Datalog-based query languages
Translation from Datalog to lower level algebra for systems

Queries returning paths.
!
- any path?
- shortest path?
- all paths?

Challenges and open problems

User friendly Datalog-based query languages
Translation from Datalog to lower level algebra for systems

Queries returning paths.
!
- any path?
- shortest path?
- all paths?

So far only navigation.
!
What about comparing values?
Arithmetic?

