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•Unstructured Data:  
•     advantages of going without schema

{ 
 “name”: “Crazy, Stupid Love”  
 “director: “Glenn Ficarra” 
},  
{ 
 “name”: “Matrix”  
 “director”: [“Lana W.”, “Lilly W.” ] 
}
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•As databases grow,  
•we need a way to understand what they have 
•and how to query them



•So, it appears we do need schemas  
•     - for JSON data 
•     - for graphs 
•     - even for tabular or text data!



•This talk: 

Schemas for graphs and other forms of semi-structured data

•SHACL (Shapes Constraint Language) 
•ShEx (Shape Expressions) 
!
   JSON Schema



•Why these? Why now? 

SHACL: W3C recommendation (Mid 2017) 
ShEx Group still working (last update 4’2019) 
JSON Schema: Working Group in IETF 
!
Also working group for schemas in property graphs 



Schemas for graphs and other forms of semi-structured data

Juan L. Reutter
PUC Chile 

Felipe Pezoa, Domagoj Vrgoč, Martín Ugarte, Fernando Suarez, Pierre Bouhris,  
Ognjen Savkovic, Julien Corman, Fernando Florenzano, Iovka Boneva, Sławek Staworko 
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JSON

{ 
 “name”: “Crazy, Stupid Love”  
 “director: “Glenn Ficarra” 
},  
{ 
 “name”: “Matrix”  
 “director”: [Lana W., Lilly W. ] 
}



Data is always about resources,  
and linking resources with other resources.

Schema imposes conditions on some of them. 
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Shape-based Schemas - general form

LFRQVWLW\SH

7([)

ĳ([)

language to express shapes language to express constraints

Answers of this query must be of a shape

Nodes of the shape must satisfy this query

7([) � ĳ([)



JSON Schema {!
  “name”: “Aconcagua”, !
  “elevation”: 6960, !
  “country”: “Argentina”, !
  “first_ascender”: {!
    “name”: “Matthias”, !
    “surname”: “Zurbriggen”!
  }!
}
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JSON Schema {!
  “name”: “Aconcagua”, !
  “elevation”: 6960, !
  “country”: “Argentina”, !
  “first_ascender”: {!
    “name”: “Matthias”, !
    “surname”: “Zurbriggen”!
  }!
}

“definitions”: {!
  “person”: {!
! “type”: “object”, !
! “properties”: {!
!   ! “name”: {“type”: “string”},!
! ! “surname”: {“type”: “string”}!
  ! ! }!
! }!
}

“$ref”: “#/definitions/person”



JSON Schema

LW\SH root shape must conform root JSON Schema

LFRQVW There must be a name (string),  
 there must be a country (string),…

If there is a first ascender, then it satisfies shape person



Real JSON schemas use a lot of shapes



Shape-based Schemas - general form
LFRQVWLW\SH

language to express shapes language to express constraints

Answers of this query must be of shape S

Nodes of shape S must satisfy this query.  
                   Query can use shape names!   
    

S Set of shapes (person, address, mountain, etc…)

76([)

ĳ6([)
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SHACL
:personShape!
! a   sh:NodeShape ;!
! sh:property [!
! sh:path  :spouse ;!
! sh:node  :personShape!
! ] .

:movieShape!
! a   sh:NodeShape ;!
! sh:targetClass  :movie ;!
! sh:property [!
! ! sh:path  :starring ;!
! ! sh:node  :personShape!
! ] ;!
! sh:property [!
! ! sh:path  :director ;!
! ! sh:minCount  1 ;!
! ! sh:node  :personShape!
! ] ;

All nodes of type :movie must conform to :movieShape
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! a   sh:NodeShape ;!
! sh:targetClass  :movie ;!
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must satisfy :personShape
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SHACL
:personShape!
! a   sh:NodeShape ;!
! sh:property [!
! sh:path  :spouse ;!
! sh:node  :personShape!
! ] .

:movieShape!
! a   sh:NodeShape ;!
! sh:targetClass  :movie ;!
! sh:property [!
! ! sh:path  :starring ;!
! ! sh:node  :personShape!
! ] ;!
! sh:property [!
! ! sh:path  :director ;!
! ! sh:minCount  1 ;!
! ! sh:node  :personShape!
! ] ;

Neighbours of nodes assigned :movieShape,  
connected by :director,  
must satisfy :personShape, 
we need at least 1
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SHACL
:personShape!
! a   sh:NodeShape ;!
! sh:property [!
! sh:path  :spouse ;!
! sh:node  :personShape!
! ] .

:movieShape!
! a   sh:NodeShape ;!
! sh:targetClass  :movie ;!
! sh:property [!
! ! sh:path  :starring ;!
! ! sh:node  :personShape!
! ] ;!
! sh:property [!
! ! sh:path  :director ;!
! ! sh:minCount  1 ;!
! ! sh:node  :personShape!
! ] ;

Neighbours of nodes assigned :personShape,  
connected by :spouse,  
must satisfy :personShape
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language to express shapes language to express constraints

Answers of this query must be of shape S

Nodes of shape S must satisfy this query.  
                   Query can use shape names!   
    

S Set of shapes (person, address, mountain, etc…)
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SHACL

LW\SH

LFRQVW - Is a string, is a number, … 
- # of neighbours connected by a path  
- what my neighbours satisfy (these can be other shapes)

S
76([)
ĳ6([)

semantics is not trivial!

~ FO with 2 variables + counting + paths 
           (modal logic with counting)

Individual nodes 
Answers of query  {?x  rdf:type  U}  



ShEx

very similar to SHACL (will return to this this) 

LW\SH allows any pattern of the form {?x  p  U}  or {U  p  ?x}

LFRQVW



Why do we study Shape-based Schemas?

All these languages are specifications or established drafts 

Need for formal specification. 

Understand best way of defining things 

How to solve tasks:   validation, satisfiability, … 
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Need for formal specification?

the weather in Santiago, Chile would comply to this schema,
but the JSON file {"Country": "Croatia", "City": 5}

would not as the value of the city is not a string.
To the best of our knowledge, JSON Schema is the only

general attempt to define a schema language for JSON doc-
uments, and it is slowly being established as the default
schema specification for JSON. The definition is still far from
being a standard (the specification is currently in its fourth
draft [10]), but there is already a growing body of appli-
cations that support JSON schema definitions, and a good
deal of tools and packages that enable the validation of doc-
uments against JSON Schema. There have been other alter-
natives for defining schemas for JSON documents, but these
are either based on JSON Schema itself or have been de-
signed with a particular set of use cases in mind. To name a
few of them, Orderly [16] is an attempt to improve the read-
ability of a subset of JSON Schema, Swagger [2], RAML
[29] and Google discovery [12] are proposals for standardis-
ing API definition that use JSON Schema, and JSON-LD
[26] is a context specific definition to specify RDF as JSON.

Despite all the advantages of a schema definition, the
adoption of JSON Schema has been rather slow. One of
the issues that have prevented the widespread recognition
of JSON Schema as a standard for JSON meta-data is the
ambiguity of its specification. The current draft addresses
most typical problems that would show up when using JSON
Schema, but the definitions lack the detail needed to qual-
ify as a guideline for practical use. As a result we end up
having huge di↵erences in the validators that are currently
available: most of them work for general cases, but their
semantics di↵er significantly when analysing border cases.

The lack of a formal definition has also discouraged the
scientific community to get involved: to the best of our
knowledge there has been no formal study of general schema
specifications for JSON, nor has there been any formal dis-
cussion regarding the design choices taken by the JSON
Schema specification. A formal specification would also help
the development of automation tools for APIs. There is al-
ready software for automatically generating documentation
[14] and API clients [13, 15], but all of them su↵er from the
same problems as validators.

Looking to fill this gap, we present in this paper a formal
grammar for the specification of JSON Schema documents,
and provide a formal semantics to standardise the meaning
of all the features in JSON Schema. For space reasons we
cannot present the full formal definition, but we have identi-
fied and formalised a semantic core that is enough to express
any possible JSON Schema. The full definition can be found
on our web page dedicated to JSON Schema [1, 25].

Our framework allows us to conduct a formal study of
several aspects of the JSON Schema specification. We begin
with the problem of validating a JSON document against a
schema, providing tight bounds for the computational com-
plexity of this problem. We also study the expressive power
of JSON Schema as a language for defining classes of JSON
documents. Since JSON Schema is the only native schema
definition for JSON we cannot compare to other standards;
instead we provide comparison with respect to automata
theory and logic, the two most important theoretical yard-
sticks for expressive power. These theoretical tools allows
us, for example, to conclude that JSON Schema can define
relationships that are not available in the schema definitions
for XML that are currently used in practice.

We also study the e�ciency of JSON Schema in practice
using two sets of experiments. First we analyse the impact of
validating the most involved features in JSON schema, un-
der JSON documents of increasing size, and conclude that it
is not di�cult to implement a validation system that scales
well with the data. Afterwards we demonstrate a practical
use case of increasing importance: a JSON Schema defini-
tion for Wikidata [32, 30], the central storage for Wikime-
dia data [3]. We show the general picture of a Schema for
Wikidata, and then validate all 18.4 million entities in its
database, at a speed of almost 200 entities per second.
Organisation. In Section 2 we show the problems we run
into because of the lack of a formal specification and define
syntax and semantics of JSON Schema. In Section 3 we
prove the existence of e�cient algorithms for the schema
validation problem. Next, in Section 4, using our in-house
validation tool, we analyse the usability of JSON Schema in
practice. We conclude in Section 5.

2. A FORMAL MODEL FOR JSON
SCHEMA

One of the main problems of JSON Schema is the lack
of a formal specification. To illustrate why this is an issue
we created four border-case schemas, and validated them
using five di↵erent validators. These tests use schemas that
are allowed by the current JSON Schema draft [10], but the
valuation of their features is not fully specified by the draft.
The first test (T1) evaluates whether or not a collection
of key-value pairs is considered to be ordered. The second
test (T2) checks the behaviour of validators for a schema
specifying both that the document is an integer and a string.
Next, the test (T3) states that the document is an object,
but also adds an integer constraint to it. Lastly, (T4) uses
definitions and references to force an infinite loop, while also
allowing the object to be a simple string. For space reasons
the full code of the tests and their details are left out from
the paper, but can be found on our web page [1].

V1 V2 V3 V4 V5
T1: N Y Y N Y
T2: Y N Y N Y
T3: N Y N N N
T4: – – N – –

Y valid
N invalid
– unsupported

Table 1: Validating four documents against four border-case
schemas using five di↵erent validators. The outcomes stress
the di↵erence between the validators’ semantics.

Table 1 shows the outcome of this process, It is impor-
tant to mention that all validators successfully validate the
JSON Schema test-suite [4]. As we can see, no two valida-
tors behave the same on all inputs, which is clearly not the
desired behaviour. This illustrates the need for a formal
definition of JSON Schema which will either disallow am-
biguous schemas, or formally specify how these should be
evaluated.

2.1 JSON Documents and JSON Pointer
We start by fixing some notation regarding JSON docu-

ments and introducing JSON Pointer, a simple query lan-
guage for JSON that is heavily used in the JSON Schema
specification. For readability we skip most of the encod-

Each test T1-T4: validating a document against a schema!
V1-V5: first 5 validators in google search!

(circa 10/2015)

JSON Schema was quite messy when we started (2015)
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Need for formal specification?

SHACL official W3C recommendation 

ShEx report late 2018
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Why do we study Shape-based Schemas?

All these languages are specifications or established drafts 

Need for formal specification. 

Understand best way of defining things 

How to solve tasks:   validation, satisfiability, … 

Graphs



SHACL/ShEx

Best way of defining things 
!
    - syntax 
    - semantics 

Tasks:   validation, satisfiability, … 



Defining Shape-based Schemas

LFRQVWLW\SH + + 6HPDQWLFV
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Defining Shape-based Schemas

LW\SH

- must select particular node 
- Specs use very simple queries {?x  p  U}  or {U  p  ?x}

Any unary query would do  
!

Way of selecting nodes that must be of shape S

LW\SH � LFRQVWif 
!
then most likely this does not affect the expressive power 



Defining Shape-based Schemas

What nodes of shape S must satisfyLFRQVW
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Defining Shape-based Schemas: SHACL

What nodes of shape S must satisfyLFRQVW

- unary tests (is a string, is this node, etc)  
- shape tests (node is assigned a shape) 
- counting neighbours:  
!
!
!
!
!
- comparing paths:  
    
    

�Q S. ĳ
�Q S. ĳ min/max # of p-neighbours satisfying ĳ

(4(S�, S�) set of    -neighbours = set of    -neighboursS� S�

Paths are defined using RPQs/property paths



SHACL
:movieShape!
! a   sh:NodeShape ;!
! sh:targetClass  :movie ;!
! sh:property [!
! ! sh:path  :starring ;!
! ! sh:node  :personShape!
! ] ;!
! sh:property [!
! ! sh:path  :director ;!
! ! sh:minCount  1 ;!
! ! sh:node  :personShape!
! ] ;

�� �VWDUULQJ.(¬�SHUVRQ6KDSH)



SHACL
:movieShape!
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SHACL
:movieShape!
! a   sh:NodeShape ;!
! sh:targetClass  :movie ;!
! sh:property [!
! ! sh:path  :starring ;!
! ! sh:node  :personShape!
! ] ;!
! sh:property [!
! ! sh:path  :director ;!
! ! sh:minCount  1 ;!
! ! sh:node  :personShape!
! ] ;

ĳ�PRYLH6KDSH =�� �VWDUULQJ.(¬�SHUVRQ6KDSH)� �� �GLUHFWRU.(�SHUVRQ6KDSH)

7�PRYLH6KDSH = {?[ UGI�W\SH �PRYLH}
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What nodes of shape S must satisfyLFRQVW

- unary tests (is a string, is this node, etc)  
- shape tests (node is assigned a shape) 
    
    

spouse

partner
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partner

VSRXVH @�SHUVRQ6KDSH ;
SDUWQHU @�SHUVRQ6KDSH



Defining Shape-based Schemas: ShEx

What nodes of shape S must satisfyLFRQVW

- unary tests (is a string, is this node, etc)  
- shape tests (node is assigned a shape) 
    
    

director

starring

. 

. 

. GLUHFWRU @�SHUVRQ6KDSH ;
(VWDUULQJ @�SHUVRQ6KDSH)[�, �]



Defining Shape-based Schemas: ShEx

What nodes of shape S must satisfyLFRQVW

- unary tests (is a string, is this node, etc)  
- shape tests (node is assigned a shape) 
- regular bag expressions over p @S    
  interpreted over bag of neighbours 
    
    H[S = S @V | İ | H[S|H[S | H[S; H[S | H[S[P, Q]



So which one is better?

Word is still open for consideration.

Both formalisms are incomparable: 

(D @6; D @6)[�, ∗]
a

a

. 

.  (even) 

.
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Complexity issues (data complexity):  
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 - checking if a ShEx constraint holds is not 
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So which one is better?

Word is still open for consideration.

Both formalisms are incomparable 

Complexity issues (data complexity): 
!
 - checking if a SHACL constraint holds in a node is tractable 
 - checking if a ShEx constraint holds is not 
!
 (usually one restricts to ShEx where the * is not nested)



So which one is better?

Word is still open for consideration.

Both formalisms are incomparable 

Complexity issues.

Expressive power / ease to write



SHACL/ShEx

Tasks:   validation, satisfiability, … 

Best way of defining things 
!
    - syntax 
    - semantics 



Semantics
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Semantics: !
iteratively assign shapes when needed?

 Kevin Bacon Kyra Sedgwick

spouse

spouse

:personShape!
! a   sh:NodeShape ;!
! sh:property [!
! sh:path  :spouse ;!
! sh:node  :personShape!
! ] .

“Spouses of persons are persons”
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Semantics: !
guess a partial good assignment

“My neighbours are not blue”

“I have a blue neighbour”
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Graph validating a schema

graph

V�, . . . , VQ

7V� , . . . ,7VQ

ĳV� , . . . ,ĳVQ
shapes

some nodes are  
assigned shapes

nodes in a shape  
must satisfy these

Can I assign shapes and satisfy all constraints?

• Assignment respects  
!
• Assignment agrees with 
!

• Every node is assigned a shape, its negation, or nothing 

7V� , . . . ,7VQ
ĳV� , . . . ,ĳVQ
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“My neighbours are not blue”

“I have a blue neighbour”

      2 31

blue not blue
greennot green not green

node 2 must be green

Graph validating a schema



“My neighbours are not blue”

“My neighbours are not green”

all nodes must be black

“My neighbours are not red”

“I’m green or blue or red”

Deciding if a graph validates a schema is NP-complete

Graph validating a schema
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Graph validating a schema: !
restrictions / aproximations

- Consider only complete assignments 

“My neighbours are not blue”

“I have a blue neighbour”

 2 31

node 2 must be green

Does not validate

complete assignment => partial assignment
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Graph validating a schema: !
restrictions / aproximations

- Consider only complete assignments 

- Restrict schemas using stratified negation

“My neighbours are not blue”

“I have a blue neighbour”
- still NP-hard 
- only need complete assignments



Graph validating a schema: !
restrictions / aproximations

- Consider only complete assignments 

- Restrict schemas using stratified negation 
!
       + 
!
- Only care about assignments that can be built iteratively

- easy to compute 
- misses assignments: may not validate reasonable graphs
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- All notions of assignment are equivalent

- Can even be transformed into SPARQL queries

- Problem in PTIME if checking constraints is in PTIME



Graph validating a schema: !
everything is pretty when non-recursive

- All notions of assignment are equivalent

- Can even be transformed into SPARQL queries

- Problem in PTIME if checking constraints is in PTIME

:personShape!
! a   sh:NodeShape ;!
! sh:property [!
! sh:path  :spouse ;!
! sh:node  :personShape!
! ] .



Best way of defining things 

Tasks:   validation, satisfiability, … 

SHACL/ShEx



Validation

graph

V�, . . . , VQ
7V� , . . . ,7VQ
ĳV� , . . . ,ĳVQ

Is this valid?
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- Compute SPARQL query 
- Build rules from answers of this query
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Validation … as in ASP

graph

V�, . . . , VQ
7V� , . . . ,7VQ
ĳV� , . . . ,ĳVQ

“evaluate”

set of instantiated rules

D � E � F � G � F

D � E � F � G � F
D � E � F � G � F

D � E � F � G � F logical 
reasoner

YES/NO

For classes of schemas  
we know validation is in PTIME This runs in PTIME
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Approach introduces design considerations
LFRQVWLW\SH

language to express shapes language to express constraints

fast queries! fast queries!
queries without many answers

SHACL 
ShEx (no nesting of *)true in
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V�, . . . , VQ
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“evaluate”

set of instantiated rules

D � E � F � G � F

D � E � F � G � F
D � E � F � G � F
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Further / Ongoing Work 



graph

V�, . . . , VQ
7V� , . . . ,7VQ
ĳV� , . . . ,ĳVQ

“evaluate”

set of instantiated rules

D � E � F � G � F

D � E � F � G � F
D � E � F � G � F

D � E � F � G � F logical 
reasoner

YES/NO 
and fix it like this

Further / Ongoing Work 



Understand what is fast / what is not

Explanations

Property Graphs? Text? CSV? 
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Understand what is fast / what is not

Explanations

Property Graphs? Text? CSV? 

Further / Ongoing Work 

More theory (satisfiability,  
    data exchange, …)

Schema design

Learn schemas

Query Optimisation



Schemas for graphs and other forms of semi-structured data

Juan L. Reutter
PUC Chile 
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