Classification of Annotation Semirings over Query Containment

Егор В. Костылев Juan L. Reutter András Z. Salamon

LFCS, University of Edinburgh

Relational Database annotation

Relational Database annotation: Comments

Takes	Student	Course		
	Jane		Top mark	Wants TA
	Jane	Physics		
	Anne	History	Class	Rep.

Likes	Student	Course	
	Jane	Algebra	Wants TA
	Anne	Literature	

Relational Database annotation: Comments

Takes	Student	Course		
	Jane		Top mark	Wants TA
	Jane	Physics		
	Anne	History	Class	Rep.

Likes	Student	Course	
	Jane	Algebra	Wants TA
	Anne	Literature	

SELECT	Student, Course	
FROM	Takes, Likes	(Jane, Algebra):
WHERE	Takes.S = Likes.S	Top mark Wants TA
AND	Takes.C = Likes.C	

Takes	Student	Course			
	Jane		Teach. Offic	ce	Stud. Union
	Jane	Physics			
	Anne	History	Tea	ich.	Office

Likes	Student	Course	
	Jane	Algebra	Stud. Union
	Anne	Literature	

SELECT	Student, Course
FROM	Takes, Likes
WHERE	Takes.S = Likes.S
AND	Takes.C = Likes.C

(Jane, Algebra): Stud. Union

Relational Database annotation: Bag Semantics

Takes	Student	Course	
	Jane	Algebra	2
	Jane	Physics	1
	Anne	History	3

Likes	Student	Course	
	Jane	Algebra	2
	Anne	Literature	1

SELECT	Student, Course
FROM	Takes, Likes
WHERE	Takes.S = Likes.S
AND	Takes.C = Likes.C

(Jane, Algebra): $2 \times 2 = 4$

Relational Database annotation: Fuzzy Databases

Takes	Student	Course	
	Jane	Algebra	
	Jane	Physics	0.3
	Anne	History	1

Likes	Student	Course	
	Jane	Algebra	0.5
	Anne	Literature	1

SELECT	Student, Course
FROM	Takes, Likes
WHERE	Takes.S = Likes.S
AND	Takes.C = Likes.C

(Jane, Algebra): $0.6 \times 0.5 = 0.3$

Semirings

(Green et al. 07):

- Domains of annotations are commutative semirings.
- ► Typical example: natural numbers
- $\blacktriangleright \ \mathcal{K} = \langle \textit{\textbf{K}}, +, \times, \textit{\textbf{0}}, \textit{\textbf{1}} \rangle$

Semirings

(Green et al. 07):

- ► Domains of annotations are commutative semirings.
- Typical example: natural numbers
- $\blacktriangleright \ \mathcal{K} = \langle \textit{\textit{K}}, +, \times, \textit{0}, \textit{1} \rangle$

More examples:

- Comments: $\langle \{c_1, c_2, c_3, \cdots \}, \cup, \uplus, \emptyset, \mathbb{U} \rangle$
- Belief: $\langle x, y, z, \dots, \cup, \cap, \emptyset, \mathbb{U} \rangle$
- Fuzzy Databases $\langle [0, 1], \max, \times, 0, 1 \rangle$

Semirings

(Green et al. 07):

- Domains of annotations are commutative semirings.
- ► Typical example: natural numbers
- $\blacktriangleright \ \mathcal{K} = \langle \textit{\textit{K}}, +, \times, \textit{0}, \textit{1} \rangle$

For query evaluation (positive relational algebra):

- Joins we Multiply the annotations
- Unions we Add the annotations

Query Containment

- Optimization
- Querying using views
- Information integration

▶ ...

We study query containment in annotated databases

- Not the same as Set Semantics
- ► Varies depending on the annotation domain
- ► Open Problems (Bag Semantics)

- Not the same as Set Semantics
- ► Varies depending on the annotation domain
- ► Open Problems (Bag Semantics)

$$Q_1 := \exists u \exists v, \exists w \ Takes(u, v), Takes(u, w)$$
$$Q_2 := \exists u \exists v \ Takes(u, v)$$

- Not the same as Set Semantics
- ► Varies depending on the annotation domain
- Open Problems (Bag Semantics)

$$\begin{array}{rcl} Q_1 & := & \exists u \exists v, \exists w \; Takes(u, v), \; Takes(u, w) \\ Q_2 & := & \exists u \exists v \; Takes(u, v) \end{array}$$

 Q_1 is contained in Q_2 under Set Semantics Q_1 is not contained in Q_2 under Bag Semantics

- Not the same as Set Semantics
- ► Varies depending on the annotation domain
- Open Problems (Bag Semantics)

$$\begin{array}{rcl} Q_1 & := & \exists u \exists v, \exists w \; Takes(u, v), \; Takes(u, w) \\ Q_2 & := & \exists u \exists v \; Takes(u, v) \end{array}$$

 Q_2 is contained in Q_1 under Set Semantics or Bag Semantics Q_2 is not contained in Q_1 over fuzzy databases

Previous Work has focused on particular semirings

- Bag Semantics
- Probabilistic Databases
- ► Various semirings for provenance

But new applications may use new semirings

We focus on classes of semirings

Contributions

- Identify several classes of semirings for annotation with decision procedures for checking: containment of CQs and UCQs.
- Generalize previous work
- ► Some results by known techniques (homomorphisms)
- ► Others using new machinery, based on
 - Relationships between queries and polynomials
 - Small model properties

- \blacktriangleright Formalization of $\mathcal K\text{-containment}$
- ► Some results in the paper

Outline

- \blacktriangleright Formalization of $\mathcal K\text{-containment}$
- ► Some results in the paper

Bag Semantics: $\langle \mathbb{N},+,\times\rangle$

$Q := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w)$

	Takes	Student	Course	#
1:		J	A	2
		J	Р	1

Bag Semantics: $\langle \mathbb{N}, +, \times \rangle$

• For each homomorphism h from Q to I:

- 1. Compute the annotation of h(Q)
- 2. Sum over all homomorphisms.

$$Q := \exists u, \exists v, \exists w \; Takes(u, v), Takes(u, w)$$

	Takes	Student	Course	#
1:		J	Α	2
		J	Р	1

Bag Semantics: $\langle \mathbb{N}, +, \times \rangle$

• For each homomorphism h from Q to I:

- 1. Compute the annotation of h(Q)
- 2. Sum over all homomorphisms.

 $Q := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w)$ h(Q) := Takes(J, A), Takes(J, P) $I: \frac{Takes \ Student \ Course \ \#}{J \ A \ 2}$ $J \ P \ 1$

 $Q_1(I) = \frac{2 \cdot 1}{2}$

Bag Semantics: $\langle \mathbb{N}, +, \times \rangle$

• For each homomorphism h from Q to I:

- 1. Compute the annotation of h(Q)
- 2. Sum over all homomorphisms.

 $Q := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w)$ h(Q) := Takes(J, P), Takes(J, A) $I: \frac{Takes \ Student \ Course \ \#}{J \ A \ 2}$ $I: \frac{J \ A \ 2}{J \ P \ 1}$

 $Q_1(I) = 2 \cdot 1 + \mathbf{1} \cdot \mathbf{2}$

Bag Semantics: $\langle \mathbb{N}, +, \times \rangle$

• For each homomorphism h from Q to I:

- 1. Compute the annotation of h(Q)
- 2. Sum over all homomorphisms.

 $Q := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w)$ h(Q) := Takes(J, A), Takes(J, A) $I: \frac{Takes \ Student \ Course \ \#}{J \ A \ 2}$ $I: \frac{J \ A \ 2}{J \ P \ 1}$

 $Q_1(I) = 2 \cdot 1 + 1 \cdot 2 + 2 \cdot 2$

Bag Semantics: $\langle \mathbb{N}, +, \times \rangle$

• For each homomorphism h from Q to I:

- 1. Compute the annotation of h(Q)
- 2. Sum over all homomorphisms.

 $Q := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w)$ h(Q) := Takes(J, P), Takes(J, P) $I: \frac{Takes \ Student \ Course \ \#}{J \ A \ 2}$ $I: \frac{J \ A \ 2}{J \ P \ 1}$

 $Q_1(I) = 2 \cdot 1 + 1 \cdot 2 + 2 \cdot 2 + 1 \cdot 1 = 9$

Fuzzy Databases: $\langle [0, 1], \max, \times \rangle$

- For each homomorphism h from Q to I:
 - 1. Compute the annotation of h(Q)
 - ▶ {2.] Sum over all homomorphisms.

 $Q_1(I) = \max(0.7 \times 0.3, 0.3 \times 0.7, 0.7 \times 0.7, 0.3 \times 0.3) = 0.49$

Query Containment over Annotated Databases

- Semirings with partial order $\leq_{\mathcal{K}}$
- \blacktriangleright For Bag Semantics, Fuzzy databases we use the order \leq
- ► For comments, belief, provenance we use order ⊆: {Wants TA} ⊆ {Top Mark, Wants TA}

Query Containment over Annotated Databases

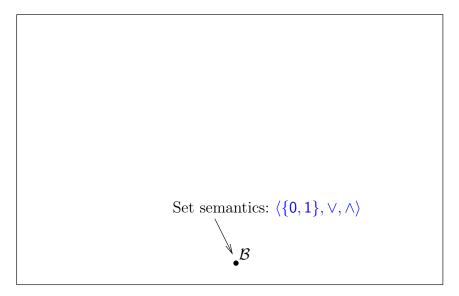
- Semirings with partial order $\leq_{\mathcal{K}}$
- \blacktriangleright For Bag Semantics, Fuzzy databases we use the order \leq
- ► For comments, belief, provenance we use order ⊆: {Wants TA} ⊆ {Top Mark, Wants TA}

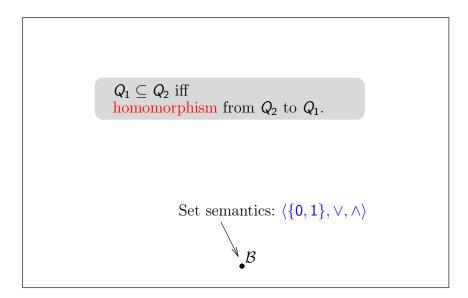
Definition of containment (boolean queries):

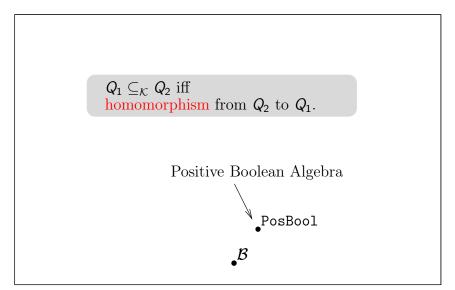
 Q_1 is \mathcal{K} -contained in $Q_2 \Leftrightarrow Q_1(I) \preceq_{\mathcal{K}} Q_2(I)$, for all instances I

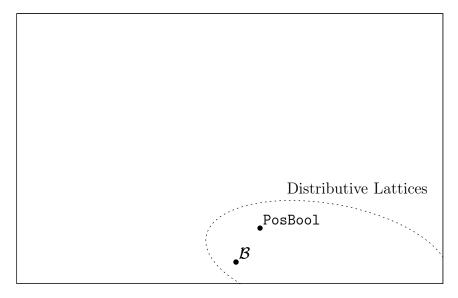
▶ Write $Q_1 \subseteq_{\mathcal{K}} Q_2$

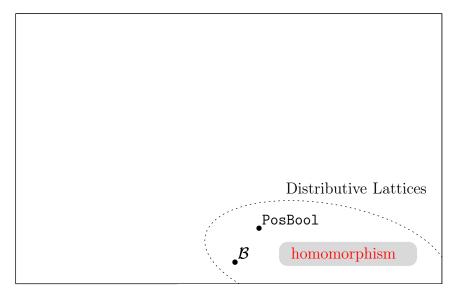
- \blacktriangleright Formalization of $\mathcal K\text{-containment}$
- ► Some results in the paper



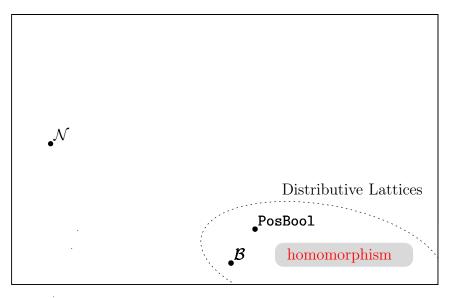


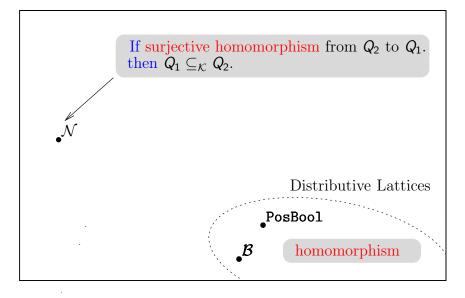


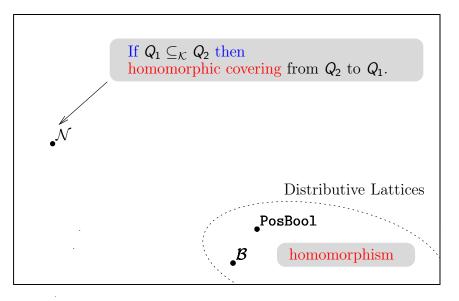


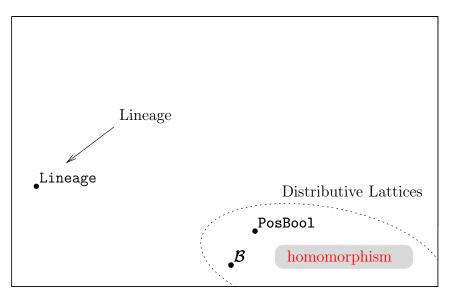


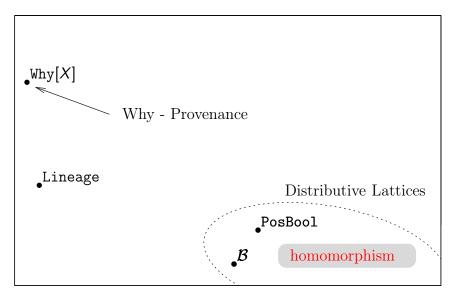
Previous Work

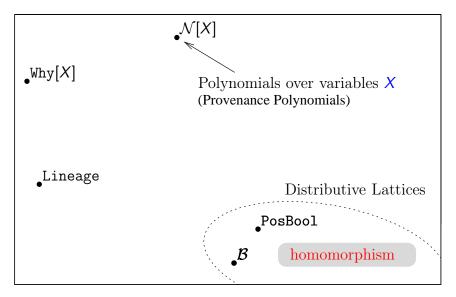


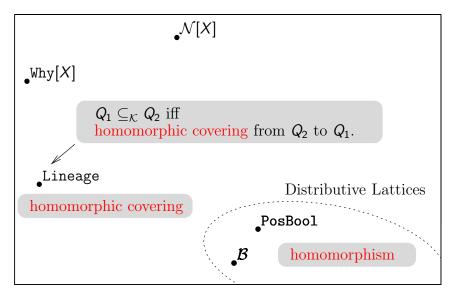


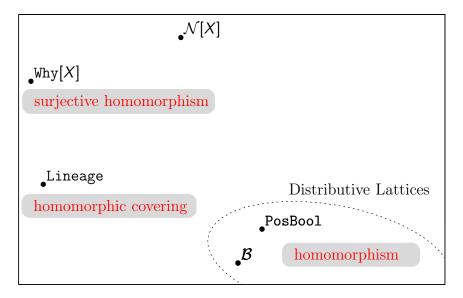


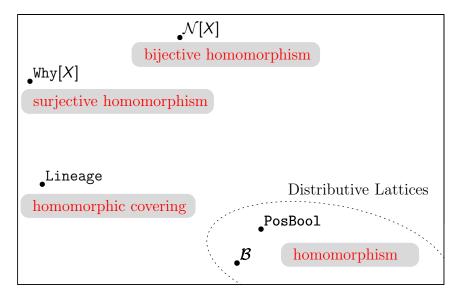












- ► Different types of mappings (homomorphisms)
- \blacktriangleright For a semiring ${\cal K}$ they can be:
- Sufficient condition for containment
- Necessary condition for containment
- Decision procedure for containment

- Different types of mappings (homomorphisms)
- \blacktriangleright For a semiring ${\cal K}$ they can be:
- Sufficient condition for containment

If mapping from \mathcal{Q}_2 to \mathcal{Q}_1 then $\mathcal{Q}_1 \subseteq_\mathcal{K} \mathcal{Q}_2$

- Necessary condition for containment
- Decision procedure for containment

Summing up, we have:

- ► Different types of mappings (homomorphisms)
- \blacktriangleright For a semiring ${\cal K}$ they can be:
- Sufficient condition for containment
- Necessary condition for containment

If $Q_1 \subseteq_{\mathcal{K}} Q_2$ then mapping from Q_2 to Q_1

- ► Different types of mappings (homomorphisms)
- \blacktriangleright For a semiring ${\cal K}$ they can be:
- Sufficient condition for containment
- Necessary condition for containment
- Decision procedure for containment

 $\mathcal{Q}_1 \subseteq_\mathcal{K} \mathcal{Q}_2$ iff mapping from \mathcal{Q}_2 to \mathcal{Q}_1

- Axiomatize classes of semirings for which different type of mappings are sufficient, or necessary conditions for *K*-containment of CQ's
- Several classes for which \mathcal{K} -containment is decidable

- Axiomatize classes of semirings for which different type of mappings are sufficient, or necessary conditions for *K*-containment of CQ's
- Several classes for which \mathcal{K} -containment is decidable
- Generalize to Unions of CQs

- Axiomatize classes of semirings for which different type of mappings are sufficient, or necessary conditions for *K*-containment of CQ's
- Several classes for which \mathcal{K} -containment is decidable
- Generalize to Unions of CQs
- ▶ Additional decision procedures for K-containment

- ▶ Formalization of K-containment
- ► Some results in the paper
- ► Results for *homomorphisms*
- Results for homomorphic covering... and a relevant class of polynomials

Containment of CQ's for set semantics

• Model set semantics as $\mathcal{B} = \langle \{0,1\}, \lor, \land, 0, 1 \rangle$

 Q_1 is \mathcal{B} -contained in Q_2 iff there is a homomorphism from Q_2 to Q_1 Containment of CQ's for set semantics

• Model set semantics as $\mathcal{B} = \langle \{0,1\}, \lor, \land, 0, 1 \rangle$

 Q_1 is \mathcal{B} -contained in Q_2 iff there is a homomorphism from Q_2 to Q_1

Is this true for any other semiring?

Many semirings behave as set semantics

- ► Boolean Algebra
- Event tables
- ► Type A systems (Ioannidis et al. 95)
- Distributive lattices

Many semirings behave as set semantics

- ► Boolean Algebra
- Event tables
- ► Type A systems (loannidis et al. 95)
- Distributive lattices

Can we characterize all semirings with this behavior?

A semiring \mathcal{K} is in \mathcal{H} if 1. $a \times a = a$ 2. 1 + a = 1for all $a \in \mathcal{K}$.

A semiring \mathcal{K} is in \mathcal{H} if 1. $a \times a = a$ 2. 1 + a = 1for all $a \in \mathcal{K}$.

Theorem

 \mathcal{H} captures precisely all semirings that behave as Set Semantics (wrt. containment of CQs)

A semiring \mathcal{K} is in \mathcal{H} if 1. $a \times a = a$ 2. 1 + a = 1

for all $a \in \mathcal{K}$.

Theorem

 \mathcal{H} captures precisely all semirings that behave as Set Semantics (wrt. containment of CQs)

If ${\mathcal K}$ is in ${\mathcal H}$ then

 \blacktriangleright Homomorphism is a decision procedure for $\mathcal{K}\text{-containment}$

A semiring \mathcal{K} is in \mathcal{H} if

1. $a \times a = a$ 2. 1 + a = 1for all $a \in \mathcal{K}$.

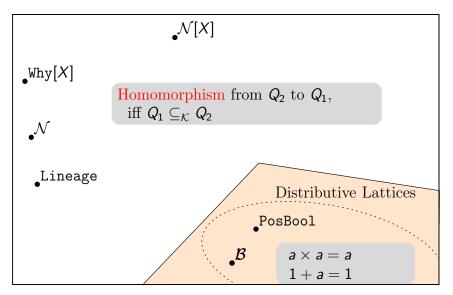
Theorem

 \mathcal{H} captures precisely all semirings that behave as Set Semantics (wrt. containment of CQs)

If Homomorphism is a decision procedure for $\mathcal{K}\text{-containment}$

• Then \mathcal{K} is in \mathcal{H}

 $\mathsf{Class}\;\mathcal{H}$



- ▶ Formalization of *K*-containment
- ► Some results in the paper
- ► Results for *homomorphisms*
- Results for homomorphic covering... and a relevant class of polynomials

Two options:

- Keep $a \times a = a$
- ► Keep 1 + *a* = 1

Two options:

- Keep $a \times a = a$
- ► Keep 1 + *a* = 1

Example:

• Lineage Lineage = $\langle \{x, y, z, w, \dots \}, \cup, \uplus \rangle$

► Homomorphisms are not sufficient condition

$$\begin{array}{rcl} Q_1 & := & \exists u, \exists v, \exists w \; \mathit{Takes}(u, v), \mathit{Likes}(u, w) \\ Q_2 & := & \exists u, \exists v \; \mathit{Takes}(u, v) \end{array}$$

- Homomorphism from Q_2 to Q_1
- ► Q₁ is not Lineage-contained in Q₂

► Homomorphisms are not sufficient condition

$$\begin{array}{rcl} Q_1 & := & \exists u, \exists v, \exists w \; \mathit{Takes}(u, v), \mathit{Likes}(u, w) \\ Q_2 & := & \exists u, \exists v \; \mathit{Takes}(u, v) \end{array}$$

	Takes	Student	Course	Lineage
1:		J	A	X
		J	Ρ	X

Lik	(es	Student	Course	Lineage
		J	A	У

► Homomorphisms are not sufficient condition

	Takes	Student	Course	Lineage
1:		J	A	X
		J	Р	X

Likes	Student	Course	Lineage
	J	A	у

- $\blacktriangleright Q_1(I) = \{x, y\}$
- $\blacktriangleright Q_2(I) = \{x\}$

We need a stricter notion of mapping

Idea:

▶ force both queries to target the same relations

Homomorphic Covering from Q_1 to Q_2

Intuition: Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

$$Q_1 := \exists u, \exists v, \exists w \; Takes(u, v), Likes(u, w)$$

$$Q_2 := \exists u, \exists v, \exists w \; Takes(u, v), Takes(u, w), Likes(u, w)$$

Homomorphic Covering from Q_1 to Q_2

Intuition: Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

$$Q_1 := \exists u, \exists v, \exists w \; Takes(u, v), Likes(u, w)$$

 $Q_2 := \exists u, \exists v, \exists w \; Takes(u, v), Takes(u, w), Likes(u, w)$

Homomorphic Covering from Q_1 to Q_2

Intuition: Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

 $Q_1 := \exists u, \exists v, \exists w \; Takes(u, v), Likes(u, w)$

 $Q_2 := \exists u, \exists v, \exists w \; Takes(u, v), Takes(u, w), Likes(u, w)$

Intuition: Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

$$Q_1 := \exists u, \exists v, \exists w \; Takes(u, v), Likes(u, w)$$

$$Q_2 := \exists u, \exists v, \exists w \; Takes(u, v), Takes(u, w), Likes(u, w)$$

Intuition: Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

 $Q_1 := \exists u, \exists v, \exists w \; Takes(u, v), Likes(u, w)$

 $Q_2 := \exists u, \exists v, \exists w \; Takes(u, v), Takes(u, w), Likes(u, w)$

Intuition: Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

$$Q_1 := \exists u, \exists v, \exists w \; Takes(u, v), Likes(u, w)$$

 $Q_2 := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w), Likes(u, w)$

There is a homomorphic covering from Q_1 to Q_2

Intuition:

Cover each atom of Q_2 with a homomorphism from Q_1 to Q_2

$$Q_1 := \exists u, \exists v, \exists w \ Takes(u, v), Likes(u, w)$$
$$Q_2 := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w), Likes(u, w)$$

There is a homomorphic covering from Q_1 to Q_2

$$\begin{array}{rcl} Q_3 & := & \exists u, \exists v \; \textit{Takes}(u, v) \\ Q_4 & := & \exists u, \exists v, \exists w \; \textit{Takes}(u, v), \textit{Likes}(u, w) \end{array}$$

There is no homomorphic covering from Q_3 to Q_4

We can now capture semirings satisfying $a \times a = a$

Let ${\mathcal K}$ be a semiring.

Theorem

If \mathcal{K} satisfies $\mathbf{a} \times \mathbf{a} = \mathbf{a}$

► Then Homomorphic covering is a sufficient condition for *K*-containment We can now capture semirings satisfying $a \times a = a$

Let ${\mathcal K}$ be a semiring.

If \mathcal{K} satisfies $a \times a = a$

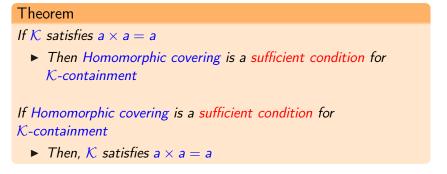
► Then Homomorphic covering is a sufficient condition for *K*-containment

If Homomorphic covering is a sufficient condition for \mathcal{K} -containment

• Then, \mathcal{K} satisfies $a \times a = a$

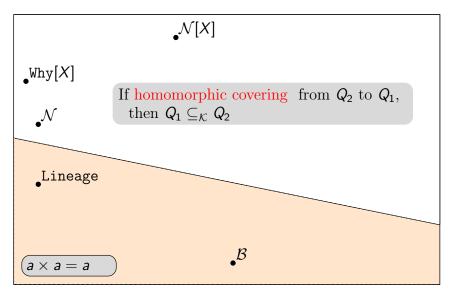
We can now capture semirings satisfying $a \times a = a$

Let \mathcal{K} be a semiring.



 $a \times a = a$ captures homomorphic covering, as sufficient condition.

 $\mathsf{Class}\;\mathcal{H}$



Homomorphic covering as necessary condition

semirings ${\cal K}$ for which homomorphic covering is a necessary condition for ${\cal K}\mbox{-}{\rm containment}?$

- Bag Semantics \mathbb{N} should belong to this class.
- We axiomatize this class
- ► By abstracting query evaluation into polynomials.

When annotating each tuple with a different variable:

Evaluation of queries correspond to polynomials

► We need to understand the *structure* of these polynomials

$Q_1 := \exists u, \exists v, \exists w \; Takes(u, v), Takes(u, w)$				
<i>I</i> :	Takes	Student J J	Course A P	P x y

 $Q_1(I) = x \cdot y + y \cdot x + x \cdot x + y \cdot y = x^2 + 2xy + y^2$

CQ-admissible polynomials

Obtained from evaluating a CQ over an instance annotated with (different) variables.

Obtained from evaluating a CQ over an instance annotated with (different) variables.

- ► Not every polynomial is CQ-admissible
- Only homogeneous polynomials are

Only Homogeneous Polynomials

$$Q_{1} := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w)$$

$$I: \begin{array}{c|c} Takes & Student & Course & P \\ \hline J & A & x \\ J & P & y \end{array}$$

$$Q_1(I) = x \cdot y + y \cdot x + x \cdot x + y \cdot y = x^2 + 2xy + y^2$$

Only Homogeneous Polynomials

$$Q_{1} := \exists u, \exists v, \exists w \ Takes(u, v), Takes(u, w)$$

$$I: \begin{array}{c|c} Takes & Student & Course & P \\ \hline J & A & x \\ J & P & y \end{array}$$

$$Q_1(I) = x \cdot y + y \cdot x + x \cdot x + y \cdot y = x^2 + 2xy + y^2$$

- Only homogeneous polynomials
- Precise definition is more technical

Obtained from evaluating a CQ over an instance annotated with (different) variables.

- ► Not every polynomial is CQ-admissible
- Only homogeneous polynomials are
- Every polynomial is UCQ-admissible

Obtained from evaluating a CQ over an instance annotated with (different) variables.

- ► Not every polynomial is CQ-admissible
- Only homogeneous polynomials are
- Every polynomial is UCQ-admissible

In the paper:

Syntactic characterization of CQ-admissible polynomials.

Using CQ-admissible polynomials we define a class \mathcal{C} of semirings, such that:

Theorem

C captures homomorphic coverings as a necessary condition

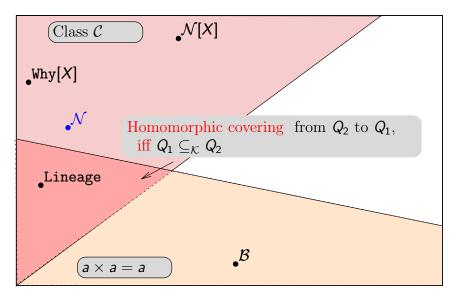
Note that \mathcal{C} contains Bag Semantics, but not Set Semantics.

The following are equivalent:

Theorem

- \mathcal{K} belongs to \mathcal{C} and satisfies $\mathbf{a} \times \mathbf{a} = \mathbf{a}$
- ▶ $Q_1 \subseteq_{\mathcal{K}} Q_2$ iff homomorphic covering from Q_2 to Q_1

Gives us a large class of semirings where $\mathcal K\text{-}\mathsf{containment}$ is decidable



- Similar theorems for surjective homomorphism, injective homomorphisms and bijective homomorphisms
- Extension to UCQs
- Complete Descriptions of CQs and UCQs
- Small model property and new procedures for semirings satisfying

a + a = a

► Well behaved Semirings:

a + a = a

- Containment of CQ-admissible polynomials over various semirings
- Views over annotated databases