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Relational Database annotation



Relational Database annotation: Comments

Takes Student Course

Jane Algebra Top mark Wants TA
Jane Physics
Anne History Class Rep.

Likes Student Course

Jane Algebra Wants TA
Anne Literature



Relational Database annotation: Comments

Takes Student Course

Jane Algebra Top mark Wants TA
Jane Physics
Anne History Class Rep.

Likes Student Course

Jane Algebra Wants TA
Anne Literature

SELECT Student, Course

FROM Takes, Likes

WHERE Takes.S = Likes.S

AND Takes.C = Likes.C

(Jane, Algebra):
Top mark Wants TA



Relational Database annotation: Belief

Takes Student Course

Jane Algebra Teach. Office Stud. Union
Jane Physics
Anne History Teach. Office

Likes Student Course

Jane Algebra Stud. Union
Anne Literature

SELECT Student, Course

FROM Takes, Likes

WHERE Takes.S = Likes.S

AND Takes.C = Likes.C

(Jane, Algebra):
Stud. Union



Relational Database annotation: Bag Semantics

Takes Student Course

Jane Algebra 2
Jane Physics 1
Anne History 3

Likes Student Course

Jane Algebra 2
Anne Literature 1

SELECT Student, Course

FROM Takes, Likes

WHERE Takes.S = Likes.S

AND Takes.C = Likes.C

(Jane, Algebra):
2 × 2 = 4



Relational Database annotation: Fuzzy Databases

Takes Student Course

Jane Algebra 0.6
Jane Physics 0.3
Anne History 1

Likes Student Course

Jane Algebra 0.5
Anne Literature 1

SELECT Student, Course

FROM Takes, Likes

WHERE Takes.S = Likes.S

AND Takes.C = Likes.C

(Jane, Algebra):
0.6 × 0.5 = 0.3



Semirings

(Green et al. 07):

◮ Domains of annotations are commutative semirings.

◮ Typical example: natural numbers

◮ K = 〈K ,+,×, 0, 1〉



Semirings

(Green et al. 07):

◮ Domains of annotations are commutative semirings.

◮ Typical example: natural numbers

◮ K = 〈K ,+,×, 0, 1〉

More examples:

◮ Comments: 〈{c1, c2, c3, · · · },∪,⊎, ∅, U〉

◮ Belief: 〈x , y , z , . . . ,∪,∩, ∅, U〉

◮ Fuzzy Databases 〈[0, 1],max,×, 0, 1〉



Semirings

(Green et al. 07):

◮ Domains of annotations are commutative semirings.

◮ Typical example: natural numbers

◮ K = 〈K ,+,×, 0, 1〉

For query evaluation (positive relational algebra):

◮ Joins we Multiply the annotations

◮ Unions we Add the annotations



Query Containment

◮ Optimization

◮ Querying using views

◮ Information integration

◮ ...

We study query containment in annotated databases



What is so special about containment?

◮ Not the same as Set Semantics

◮ Varies depending on the annotation domain

◮ Open Problems (Bag Semantics)
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What is so special about containment?

◮ Not the same as Set Semantics

◮ Varies depending on the annotation domain

◮ Open Problems (Bag Semantics)

Q1 := ∃u∃v ,∃w Takes(u, v),Takes(u,w)

Q2 := ∃u∃v Takes(u, v)

Q2 is contained in Q1 under Set Semantics or Bag Semantics

Q2 is not contained in Q1 over fuzzy databases



Previous Work has focused on particular semirings

◮ Bag Semantics

◮ Probabilistic Databases

◮ Various semirings for provenance

But new applications may use new semirings

We focus on classes of semirings



Contributions

◮ Identify several classes of semirings for annotation with
decision procedures for checking: containment of CQs and
UCQs.

◮ Generalize previous work

◮ Some results by known techniques (homomorphisms)

◮ Others using new machinery, based on
◮ Relationships between queries and polynomials
◮ Small model properties



Outline

◮ Formalization of K-containment

◮ Some results in the paper



Outline

◮ Formalization of K-containment

◮ Some results in the paper



Query Evaluation on annotated databases

Bag Semantics:〈N, +,×〉

Q := ∃u,∃v ,∃w Takes(u, v),Takes(u,w)

I :

Takes Student Course #

J A 2
J P 1



Query Evaluation on annotated databases

Bag Semantics:〈N, +,×〉

◮ For each homomorphism h from Q to I :

1. Compute the annotation of h(Q)
2. Sum over all homomorphisms.

Q := ∃u,∃v ,∃w Takes(u, v),Takes(u,w)

I :

Takes Student Course #

J A 2
J P 1



Query Evaluation on annotated databases

Bag Semantics:〈N, +,×〉

◮ For each homomorphism h from Q to I :

1. Compute the annotation of h(Q)
2. Sum over all homomorphisms.

Q := ∃u,∃v ,∃w Takes(u, v),Takes(u,w)

h(Q) := Takes(J,A),Takes(J,P)

I :

Takes Student Course #

J A 2
J P 1

Q1(I ) = 2 · 1



Query Evaluation on annotated databases

Bag Semantics:〈N, +,×〉

◮ For each homomorphism h from Q to I :

1. Compute the annotation of h(Q)
2. Sum over all homomorphisms.

Q := ∃u,∃v ,∃w Takes(u, v),Takes(u,w)

h(Q) := Takes(J,P),Takes(J,A)

I :

Takes Student Course #

J A 2
J P 1

Q1(I ) = 2 · 1 + 1 · 2



Query Evaluation on annotated databases

Bag Semantics:〈N, +,×〉

◮ For each homomorphism h from Q to I :

1. Compute the annotation of h(Q)
2. Sum over all homomorphisms.

Q := ∃u,∃v ,∃w Takes(u, v),Takes(u,w)

h(Q) := Takes(J,A),Takes(J,A)

I :

Takes Student Course #

J A 2
J P 1

Q1(I ) = 2 · 1 + 1 · 2 + 2 · 2



Query Evaluation on annotated databases

Bag Semantics:〈N, +,×〉

◮ For each homomorphism h from Q to I :

1. Compute the annotation of h(Q)
2. Sum over all homomorphisms.

Q := ∃u,∃v ,∃w Takes(u, v),Takes(u,w)

h(Q) := Takes(J,P),Takes(J,P)

I :

Takes Student Course #

J A 2
J P 1

Q1(I ) = 2 · 1 + 1 · 2 + 2 · 2 + 1 · 1 = 9



Query Evaluation on annotated databases

Fuzzy Databases:〈[0, 1], max,×〉

◮ For each homomorphism h from Q to I :

1. Compute the annotation of h(Q)
◮ {2.] Sum over all homomorphisms.

Q := ∃u,∃v ,∃w Takes(u, v),Takes(u,w)

I :

Takes Student Course Probability

J A 0.7
J P 0.3

Q1(I ) = max
(

0.7 × 0.3, 0.3 × 0.7, 0.7× 0.7, 0.3 × 0.3
)

= 0.49



Query Containment over Annotated Databases

◮ Semirings with partial order �K

◮ For Bag Semantics, Fuzzy databases we use the order ≤

◮ For comments, belief, provenance we use order ⊆:
{Wants TA} ⊆ {Top Mark,Wants TA}



Query Containment over Annotated Databases

◮ Semirings with partial order �K

◮ For Bag Semantics, Fuzzy databases we use the order ≤

◮ For comments, belief, provenance we use order ⊆:
{Wants TA} ⊆ {Top Mark,Wants TA}

Definition of containment (boolean queries):

Q1 is K-contained in Q2 ⇔ Q1(I ) �K Q2(I ), for all instances I

◮ Write Q1 ⊆K Q2



Outline

◮ Formalization of K-containment

◮ Some results in the paper



Previous Work

B

Set semantics: 〈{0, 1},∨,∧〉



Previous Work - Chandra & Merlin ’77

B

Q1 ⊆ Q2 iff
homomorphism from Q2 to Q1.

Set semantics: 〈{0, 1},∨,∧〉



Previous Work

B

PosBool

B

Q1 ⊆K Q2 iff
homomorphism from Q2 to Q1.

Positive Boolean Algebra



Previous Work - Grahne et al. ’97

Distributive Lattices
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PosBool
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Distributive Lattices



Previous Work

B

PosBool

B homomorphism

PosBool

BB

PosBool

B

N

Distributive Lattices



Previous Work - Chaudhuri & Vardi ’93

PosBool

B homomorphism

PosBool

BB

PosBool

B

N

B

PosBool

B

Distributive Lattices

then Q1 ⊆K Q2.
If surjective homomorphism from Q2 to Q1.

B



Previous Work - Chaudhuri & Vardi ’93

PosBool

B homomorphism

PosBool

BB

PosBool

B

N

B

PosBool

B

Distributive Lattices

If Q1 ⊆K Q2 then
homomorphic covering from Q2 to Q1.

B



Previous Work - Green ’09

B

PosBool

B

Lineage

PosBool

BB homomorphism

Lineage

Distributive Lattices



Previous Work - Green ’09

B

PosBool

B homomorphism

Lineage

PosBool

BB

Why[X ]

Why - Provenance

Distributive Lattices



Previous Work - Green ’09

(Provenance Polynomials)

B

PosBool

B homomorphism

Lineage

PosBool

B

N [X ]

B

Why[X ]
Polynomials over variables X

Distributive Lattices



Previous Work - Green ’09

PosBool

B homomorphism

Lineage

PosBool

B

N [X ]

B

homomorphic covering

B

PosBool

B

Why[X ]

Distributive Lattices

Q1 ⊆K Q2 iff
homomorphic covering from Q2 to Q1.

B



Previous Work - Green ’09

PosBool

B homomorphism

Lineage

PosBool

B

N [X ]

B

homomorphic covering

Why[X ]

Distributive Lattices

surjective homomorphism

B



Previous Work - Green ’09

B homomorphism

Lineage

PosBool

B

N [X ]

B

homomorphic covering

Why[X ]

Distributive Lattices

surjective homomorphism

bijective homomorphism

B

PosBool



Summing up, we have:

◮ Different types of mappings (homomorphisms)

◮ For a semiring K they can be:

◮ Sufficient condition for containment

◮ Necessary condition for containment

◮ Decision procedure for containment
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Summing up, we have:

◮ Different types of mappings (homomorphisms)

◮ For a semiring K they can be:

◮ Sufficient condition for containment

◮ Necessary condition for containment

If Q1 ⊆K Q2 then mapping from Q2 to Q1

◮ Decision procedure for containment



Summing up, we have:

◮ Different types of mappings (homomorphisms)

◮ For a semiring K they can be:

◮ Sufficient condition for containment

◮ Necessary condition for containment

◮ Decision procedure for containment

Q1 ⊆K Q2 iff mapping from Q2 to Q1



We fully characterize the universe of semirings
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◮ Axiomatize classes of semirings for which different type of
mappings are sufficient, or necessary conditions for
K-containment of CQ’s

◮ Several classes for which K-containment is decidable
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◮ Generalize to Unions of CQs



We fully characterize the universe of semirings

◮ Axiomatize classes of semirings for which different type of
mappings are sufficient, or necessary conditions for
K-containment of CQ’s

◮ Several classes for which K-containment is decidable

◮ Generalize to Unions of CQs

◮ Additional decision procedures for K-containment



Outline

◮ Formalization of K-containment

◮ Some results in the paper

◮ Results for homomorphisms

◮ Results for homomorphic covering...
and a relevant class of polynomials



Containment of CQ’s for set semantics

◮ Model set semantics as B = 〈{0, 1},∨,∧, 0, 1〉

Q1 is B-contained in Q2 iff
there is a homomorphism from Q2 to Q1



Containment of CQ’s for set semantics

◮ Model set semantics as B = 〈{0, 1},∨,∧, 0, 1〉

Q1 is B-contained in Q2 iff
there is a homomorphism from Q2 to Q1

Is this true for any other semiring?



Many semirings behave as set semantics

◮ Boolean Algebra

◮ Event tables

◮ Type A systems (Ioannidis et al. 95)

◮ Distributive lattices



Many semirings behave as set semantics

◮ Boolean Algebra

◮ Event tables

◮ Type A systems (Ioannidis et al. 95)

◮ Distributive lattices

Can we characterize all semirings with this behavior?



Yes we can

A semiring K is in H if

1. a × a = a

2. 1 + a = 1

for all a ∈ K.



Yes we can
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1. a × a = a

2. 1 + a = 1
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H captures precisely all semirings that behave as Set Semantics
(wrt. containment of CQs)



Yes we can

A semiring K is in H if

1. a × a = a

2. 1 + a = 1

for all a ∈ K.

Theorem

H captures precisely all semirings that behave as Set Semantics
(wrt. containment of CQs)

If K is in H then

◮ Homomorphism is a decision procedure for K-containment



Yes we can

A semiring K is in H if

1. a × a = a

2. 1 + a = 1

for all a ∈ K.

Theorem

H captures precisely all semirings that behave as Set Semantics
(wrt. containment of CQs)

If Homomorphism is a decision procedure for K-containment

◮ Then K is in H



Class H

N [X ]

B

N

B

PosBool

B a × a = a

1 + a = 1

iff Q1 ⊆K Q2

Homomorphism from Q2 to Q1,

Distributive Lattices
Lineage

Why[X ]



Outline

◮ Formalization of K-containment

◮ Some results in the paper

◮ Results for homomorphisms

◮ Results for homomorphic covering...
and a relevant class of polynomials



Moving away from H

Two options:

◮ Keep a × a = a

◮ Keep 1 + a = 1



Moving away from H

Two options:

◮ Keep a × a = a

◮ Keep 1 + a = 1

Example:

◮ Lineage Lineage = 〈{x , y , z ,w , . . . },∪,⊎〉



Semirings satisfying a × a = a



Semirings satisfying a × a = a

◮ Homomorphisms are not sufficient condition

Q1 := ∃u,∃v ,∃w Takes(u, v), Likes(u,w)

Q2 := ∃u,∃v Takes(u, v)

◮ Homomorphism from Q2 to Q1

◮ Q1 is not Lineage-contained in Q2



Semirings satisfying a × a = a

◮ Homomorphisms are not sufficient condition

Q1 := ∃u,∃v ,∃w Takes(u, v), Likes(u,w)

Q2 := ∃u,∃v Takes(u, v)

I :

Takes Student Course Lineage

J A x

J P x

Likes Student Course Lineage

J A y



Semirings satisfying a × a = a

◮ Homomorphisms are not sufficient condition

Q1 := ∃u,∃v ,∃w Takes(u, v), Likes(u,w)

Q2 := ∃u,∃v Takes(u, v)

I :

Takes Student Course Lineage

J A x

J P x

Likes Student Course Lineage

J A y

◮ Q1(I ) = {x , y}

◮ Q2(I ) = {x}



We need a stricter notion of mapping

Idea:

◮ force both queries to target the same relations



Homomorphic Covering from Q1 to Q2

Intuition:
Cover each atom of Q2 with a homomorphism from Q1 to Q2

Q1 := ∃u,∃v ,∃w Takes(u, v), Likes(u,w)

Q2 := ∃u,∃v ,∃w Takes(u, v),Takes(u,w), Likes(u,w)
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Homomorphic Covering from Q1 to Q2

Intuition:
Cover each atom of Q2 with a homomorphism from Q1 to Q2

Q1 := ∃u,∃v ,∃w Takes(u, v), Likes(u,w)

Q2 := ∃u,∃v ,∃w Takes(u, v),Takes(u,w), Likes(u,w)

There is a homomorphic covering from Q1 to Q2



Homomorphic Covering from Q1 to Q2

Intuition:
Cover each atom of Q2 with a homomorphism from Q1 to Q2

Q1 := ∃u,∃v ,∃w Takes(u, v), Likes(u,w)

Q2 := ∃u,∃v ,∃w Takes(u, v),Takes(u,w), Likes(u,w)

There is a homomorphic covering from Q1 to Q2

Q3 := ∃u,∃v Takes(u, v)

Q4 := ∃u,∃v ,∃w Takes(u, v), Likes(u,w)

There is no homomorphic covering from Q3 to Q4



We can now capture semirings satisfying a × a = a

Let K be a semiring.

Theorem

If K satisfies a × a = a

◮ Then Homomorphic covering is a sufficient condition for
K-containment



We can now capture semirings satisfying a × a = a

Let K be a semiring.

Theorem

If K satisfies a × a = a

◮ Then Homomorphic covering is a sufficient condition for
K-containment

If Homomorphic covering is a sufficient condition for
K-containment

◮ Then, K satisfies a × a = a



We can now capture semirings satisfying a × a = a

Let K be a semiring.

Theorem

If K satisfies a × a = a

◮ Then Homomorphic covering is a sufficient condition for
K-containment

If Homomorphic covering is a sufficient condition for
K-containment

◮ Then, K satisfies a × a = a

a × a = a captures homomorphic covering, as sufficient condition.



Class H

Why[X ]

N [X ]

B

N then Q1 ⊆K Q2

If homomorphic covering from Q2 to Q1,

a × a = a

Lineage



Homomorphic covering as necessary condition

semirings K for which homomorphic covering is a necessary
condition for K-containment?

◮ Bag Semantics N should belong to this class.

◮ We axiomatize this class

◮ By abstracting query evaluation into polynomials.



CQ-admissible polynomials

When annotating each tuple with a different variable:

Evaluation of queries correspond to polynomials

◮ We need to understand the structure of these polynomials



Q1 := ∃u,∃v ,∃w Takes(u, v),Takes(u,w)

I :

Takes Student Course P

J A x

J P y

Q1(I ) = x · y + y · x + x · x + y · y = x2 + 2xy + y2



CQ-admissible polynomials

Obtained from evaluating a CQ over an instance annotated with
(different) variables.



CQ-admissible polynomials

Obtained from evaluating a CQ over an instance annotated with
(different) variables.

◮ Not every polynomial is CQ-admissible

◮ Only homogeneous polynomials are



Only Homogeneous Polynomials

Q1 := ∃u,∃v ,∃w Takes(u, v),Takes(u,w)

I :

Takes Student Course P

J A x

J P y

Q1(I ) = x · y + y · x + x · x + y · y = x2 + 2xy + y2



Only Homogeneous Polynomials

Q1 := ∃u,∃v ,∃w Takes(u, v),Takes(u,w)

I :

Takes Student Course P

J A x

J P y

Q1(I ) = x · y + y · x + x · x + y · y = x2 + 2xy + y2

◮ Only homogeneous polynomials

◮ Precise definition is more technical



CQ-admissible polynomials

Obtained from evaluating a CQ over an instance annotated with
(different) variables.

◮ Not every polynomial is CQ-admissible

◮ Only homogeneous polynomials are

◮ Every polynomial is UCQ-admissible



CQ-admissible polynomials

Obtained from evaluating a CQ over an instance annotated with
(different) variables.

◮ Not every polynomial is CQ-admissible

◮ Only homogeneous polynomials are

◮ Every polynomial is UCQ-admissible

In the paper:

Syntactic characterization of CQ-admissible polynomials.



Homomorphic covering as necessary condition

Using CQ-admissible polynomials
we define a class C of semirings, such that:

Theorem

C captures homomorphic coverings as a necessary condition

Note that C contains Bag Semantics, but not Set Semantics.



And obtain a class where containment is decidable

The following are equivalent:

Theorem

◮ K belongs to C and satisfies a × a = a

◮ Q1 ⊆K Q2 iff homomorphic covering from Q2 to Q1

Gives us a large class of semirings where K-containment is decidable



And obtain a class where containment is decidable

N [X ]

B

Lineage

B

Why[X ]

N [X ]

a × a = a

Class C

iff Q1 ⊆K Q2

Homomorphic covering from Q2 to Q1,
N

Lineage

Why[X ]



Also in the paper

◮ Similar theorems for surjective homomorphism, injective
homomorphisms and bijective homomorphisms

◮ Extension to UCQs

◮ Complete Descriptions of CQs and UCQs

◮ Small model property and new procedures for semirings
satisfying

a + a = a



Future work

◮ Well behaved Semirings:

a + a = a

◮ Containment of CQ-admissible polynomials over various
semirings

◮ Views over annotated databases


