
Data Exchange:
Source instance ⇒ Target instance

Problem 1:

I There may be infinitely many valid target instances for a given
source instance

Problem 2. Query Answering

I What does it mean to answer a query over the target schema?

I Can we answer queries using only one target instance?

Fagin, Kolaitis, Miller, Popa, 2003:

I Use a certain answers semantics

I Canonical Solution: “good” target instance that can be
computed in polynomial time

I Union of conjunctive queries: their certain answers can be
computed using only the canonical solution
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We propose a tractable query language
that express negation

For union of conjunctive queries, the certain answers can be
computed in polynomial time.

I Union of conjunctive queries have this good property because
they are preserved under homomorphisms

I Datalog queries can also be computed in polynomial time

I Both Datalog and union of conjunctive queries keep us on
the realm of positive

I Computing certain answers of conjunctive queries with
inequalities is coNP-complete

How can we add negation while keeping good properties for data
exchange?
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A bit of notation...

Data exchange settings:

I Source schema S (Source instances with constant values)

I Target schema T (Target instance can contain nulls)

I Set Σst of st-tgds of the form:

φS(x̄)→ ∃ȳψT(x̄ , ȳ)

I C(a) holds if a is a constant value

An instance J is a solution for I if

I (I , J) |= Σst



Homomorphism and Universal Solutions

A homomorphism from J1 to J2 is a function that:

I Preserve the relations

I Is the identity on constants

J is a universal solution if

I There is a homomorphism from J to every other solution

Canonical universal solution can be computed in polynomial time
using a chase procedure (FKMP 03).
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Certain answers for conjunctive queries with negation are
empty/false

Example:

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

J1 :

E (a, b)
E (b, c)
E (a, c)

I Idea: solution where E contains the transitive closure of G

I Q is always false in that solution!
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Unions of positive queries and conjunctive queries with
negation are much more interesting

Example:

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y(P(x) ∧ R(y) ∧ E (x , y))∨
∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

I If we try to falsify the second disjunct (computing the
transitive closure of G ), we may end up satisfying the first one.

I Q holds if there exist a, b:
I P(a), R(b) hold
I (a, b) is in the transitive closure of G
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Using Datalog we compute certain answers for queries
with negation in polynomial time

Idea: Encode Q using Datalog programs

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y(P(x) ∧ R(y) ∧ E (x , y))∨
∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

S(x , y) ← E (x , y)

S(x , y) ← S(x , z), S(z , y)

true ← P(x), R(y), S(x , y)

We only evaluate this program in the canonical solution
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Queries with inequalities
cannot be answered directly in universal solutions

Problem:
We cannot add inequalities directly to Datalog.

I Preservation under homomorphisms is lost

I Language becomes intractable (Abiteboul, Dushka 1998)

Homomorphisms in data exchange are the identity on constants

I Thus, inequalities witnessed by constants are preserved under
homomorphisms



Contributions

Query Language that extends Datalog with negation

I As good as Datalog for data exchange

I Can be used to find new tractable classes of queries

...And further

I Combined complexity of the new language and related query
languages



Outline

Formalization

I DatalogC(6=) programs

Beyond union of conjunctive queries

I Expressive power of DatalogC(6=)

I New tractable classes of queries

Combined Complexity

I DatalogC(6=) and queries with inequalities

I Restricting to Lav settings

Concluding remarks



DatalogC( 6=) programs extend Datalog with
inequalities over constants

Definition:
A collection of constant-inequality rules of the form:

S(x̄)← ...

I predicate symbols

I variables under predicate C

I inequalities of the form u 6= v ,
u and v must be under predicate C

Example:

S(x , y) ← E (x , y)

S(x , y) ← S(x , z), S(z , y),C(x),C(z),C(y), x 6= z , y 6= z

true ← P(x),R(y),S(x , y),C(x),C(y), x 6= y
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DatalogC( 6=) programs have the same good properties as
conjunctive queries

I DatalogC(6=) programs are preserved under homomorphisms

I Datalog programs are preserved under homomorphisms
I every inequality must be witnessed by constants
I homomorphisms are the identity on constants

Proposition

Certain answers of DatalogC(6=) programs can be computed by
evaluating the programs over the canonical universal solution.

Theorem

Computing the certain answers of a DatalogC(6=) program takes
polynomial time (data complexity)
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DatalogC( 6=) can express queries with negation

Theorem

Every union of conjunctive query with at most

I One negated atom

I One inequality

per disjunct, can be expressed as a DatalogC(6=) program.

I Certain answers for this class of queries can be computed in
polynomial time

I Result for inequalities had been proved by FKMP03 using
different techniques

I Next example gives a hint on the proof
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Writing DatalogC(6=) programs to answer queries with
negation

Q : ∃x∃y (E (x , y) ∧ x 6= y)∨
∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))
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∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z)

dom(x) ← E (z , x)
- Collect the domain
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Classes of queries

(UCQ)CQ

I (union) of conjunctive queries

(UCQ6=)CQ 6=

I (union) of conjunctive queries with inequalities

k-CQ 6=

I conjunctive queries with at most k inequalities



Certain answers for conjunctive queries with two
inequalities is intractable (data complexity)

[Madry 05]:

I The certain answers problem is coNP-complete for 2-CQ 6=

We find an interesting tractable fragment for this class of queries,
using translation into DatalogC( 6=) programs
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We find an interesting tractable fragment for this class of queries,
using translation into DatalogC( 6=) programs



We need to define two restrictions

I Constant Joins

I Almost constant inequalities



We need to define two restrictions

I Constant Joins

I Almost constant inequalities

Constant Joins:
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I almost constant inequalities

can be expressed as a DatalogC(6=) program in data exchange.

Certain answers to this class of queries can be computed in
polynomial time

I Removing any one of this conditions yields to intractability

I Stronger that Madry’s proof (did not have these restrictions)
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There is no hope for 3-CQ 6=

Theorem

There exists a query Q in 3-CQ 6= with

I constant joins

I almost constant inequalities

such that computing it’s certain answers is coNP-complete.
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Combined Complexity: a natural question

What is the complexity if we consider as inputs

I Database instance ?

I Data exchange setting, query

Kolaitis, Pantajja, Tan 06:

I Combined complexity of existence of solutions

I Lower bounds for query answering: 1-UCQ

We study the combined complexity of query answering

I Tight lower bounds (single conjunctive queries)

I Results for DatalogC(6=) and related query languages
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Combined Complexity for the general setting

Theorem

Input: Data exchange setting M, query Q, instance I and tuple t̄
Problem: Is t̄ in the certain answers of Q for I under M?

Exptime-complete for DatalogC(6=) programs

Exptime-complete for 1-CQ 6=

coNexptime-complete for k-CQ 6=, k ≥ 2

coNexptime-complete for CQ6=

I Same results hold for unions

I It follows from KPT06 that the problem is
Exptime-complete for 1-UCQ6=
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A LAV setting is a data exchange settings where Σst is of the form:

R(x̄)→ ∃ȳψ(x̄ , ȳ)

I Premises are single relational atoms

Very used in practice!

Under Lav settings, canonical universal solutions
are of polynomial size (combined complexity)
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We propose DatalogC(6=) as a query language for data
exchange

Study its properties

I Preserved under homomorphisms

I Certain answers can be computed in polynomial time (data
complexity)

DatalogC(6=), a tractable language that express negation:

I Union of conjunctive queries with one negated atom per
disjunct

I A fragment of 2-UCQ6=

We can use DatalogC( 6=) to find tractable classes of queries
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