
Data Exchange:
Source instance ⇒ Target instance

Problem 1:

I There may be infinitely many valid target instances for a given
source instance

Problem 2. Query Answering

I What does it mean to answer a query over the target schema?

I Can we answer queries using only one target instance?

Fagin, Kolaitis, Miller, Popa, 2003:

I Use a certain answers semantics

I Canonical Solution: “good” target instance that can be
computed in polynomial time

I Union of conjunctive queries: their certain answers can be
computed using only the canonical solution

Data Exchange:
Source instance ⇒ Target instance

Problem 1:

I There may be infinitely many valid target instances for a given
source instance

Problem 2. Query Answering

I What does it mean to answer a query over the target schema?

I Can we answer queries using only one target instance?

Fagin, Kolaitis, Miller, Popa, 2003:

I Use a certain answers semantics

I Canonical Solution: “good” target instance that can be
computed in polynomial time

I Union of conjunctive queries: their certain answers can be
computed using only the canonical solution

Data Exchange:
Source instance ⇒ Target instance

Problem 1:

I There may be infinitely many valid target instances for a given
source instance

Problem 2. Query Answering

I What does it mean to answer a query over the target schema?

I Can we answer queries using only one target instance?

Fagin, Kolaitis, Miller, Popa, 2003:

I Use a certain answers semantics

I Canonical Solution: “good” target instance that can be
computed in polynomial time

I Union of conjunctive queries: their certain answers can be
computed using only the canonical solution

Data Exchange:
Source instance ⇒ Target instance

Problem 1:

I There may be infinitely many valid target instances for a given
source instance

Problem 2. Query Answering

I What does it mean to answer a query over the target schema?

I Can we answer queries using only one target instance?

Fagin, Kolaitis, Miller, Popa, 2003:

I Use a certain answers semantics

I Canonical Solution: “good” target instance that can be
computed in polynomial time

I Union of conjunctive queries: their certain answers can be
computed using only the canonical solution

Data Exchange:
Source instance ⇒ Target instance

Problem 1:

I There may be infinitely many valid target instances for a given
source instance

Problem 2. Query Answering

I What does it mean to answer a query over the target schema?

I Can we answer queries using only one target instance?

Fagin, Kolaitis, Miller, Popa, 2003:

I Use a certain answers semantics

I Canonical Solution: “good” target instance that can be
computed in polynomial time

I Union of conjunctive queries: their certain answers can be
computed using only the canonical solution

We propose a tractable query language
that express negation

For union of conjunctive queries, the certain answers can be
computed in polynomial time.

I Union of conjunctive queries have this good property because
they are preserved under homomorphisms

I Datalog queries can also be computed in polynomial time

I Both Datalog and union of conjunctive queries keep us on
the realm of positive

I Computing certain answers of conjunctive queries with
inequalities is coNP-complete

How can we add negation while keeping good properties for data
exchange?

We propose a tractable query language
that express negation

For union of conjunctive queries, the certain answers can be
computed in polynomial time.

I Union of conjunctive queries have this good property because
they are preserved under homomorphisms

I Datalog queries can also be computed in polynomial time

I Both Datalog and union of conjunctive queries keep us on
the realm of positive

I Computing certain answers of conjunctive queries with
inequalities is coNP-complete

How can we add negation while keeping good properties for data
exchange?

We propose a tractable query language
that express negation

For union of conjunctive queries, the certain answers can be
computed in polynomial time.

I Union of conjunctive queries have this good property because
they are preserved under homomorphisms

I Datalog queries can also be computed in polynomial time

I Both Datalog and union of conjunctive queries keep us on
the realm of positive

I Computing certain answers of conjunctive queries with
inequalities is coNP-complete

How can we add negation while keeping good properties for data
exchange?

We propose a tractable query language
that express negation

For union of conjunctive queries, the certain answers can be
computed in polynomial time.

I Union of conjunctive queries have this good property because
they are preserved under homomorphisms

I Datalog queries can also be computed in polynomial time

I Both Datalog and union of conjunctive queries keep us on
the realm of positive

I Computing certain answers of conjunctive queries with
inequalities is coNP-complete

How can we add negation while keeping good properties for data
exchange?

We propose a tractable query language
that express negation

For union of conjunctive queries, the certain answers can be
computed in polynomial time.

I Union of conjunctive queries have this good property because
they are preserved under homomorphisms

I Datalog queries can also be computed in polynomial time

I Both Datalog and union of conjunctive queries keep us on
the realm of positive

I Computing certain answers of conjunctive queries with
inequalities is coNP-complete

How can we add negation while keeping good properties for data
exchange?

Query Languages for Data Exchange:
Beyond Unions of Conjunctive Queries

Marcelo Arenas Pablo Barceló Juan Reutter
PUC Chile Univ. of Chile PUC Chile

Khipu: South Andean Center for Database Research

A bit of notation...

Data exchange settings:

I Source schema S (Source instances with constant values)

I Target schema T (Target instance can contain nulls)

I Set Σst of st-tgds of the form:

φS(x̄)→ ∃ȳψT(x̄ , ȳ)

I C(a) holds if a is a constant value

An instance J is a solution for I if

I (I , J) |= Σst

Homomorphism and Universal Solutions

A homomorphism from J1 to J2 is a function that:

I Preserve the relations

I Is the identity on constants

J is a universal solution if

I There is a homomorphism from J to every other solution

Canonical universal solution can be computed in polynomial time
using a chase procedure (FKMP 03).

Homomorphism and Universal Solutions

A homomorphism from J1 to J2 is a function that:

I Preserve the relations

I Is the identity on constants

J is a universal solution if

I There is a homomorphism from J to every other solution

Canonical universal solution can be computed in polynomial time
using a chase procedure (FKMP 03).

Certain answers for conjunctive queries with negation are
empty/false

Example:

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

J1 :

E (a, b)
E (b, c)
E (a, c)

I Idea: solution where E contains the transitive closure of G

I Q is always false in that solution!

Certain answers for conjunctive queries with negation are
empty/false

Example:

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

J1 :

E (a, b)
E (b, c)

E (a, c)

I Idea: solution where E contains the transitive closure of G

I Q is always false in that solution!

Certain answers for conjunctive queries with negation are
empty/false

Example:

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

J2 :

E (a, b)
E (b, c)
E (a, c)

I Idea: solution where E contains the transitive closure of G

I Q is always false in that solution!

Certain answers for conjunctive queries with negation are
empty/false

Example:

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

J2 :

E (a, b)
E (b, c) J2 is also a solution!
E (a, c)

I Idea: solution where E contains the transitive closure of G

I Q is always false in that solution!

Certain answers for conjunctive queries with negation are
empty/false

Example:

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

J2 :

E (a, b)
E (b, c) J2 is also a solution!
E (a, c)

I Idea: solution where E contains the transitive closure of G

I Q is always false in that solution!

Certain answers for conjunctive queries with negation are
empty/false

Example:

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

J2 :

E (a, b)
E (b, c) J2 is also a solution!
E (a, c)

I Idea: solution where E contains the transitive closure of G

I Q is always false in that solution!

Unions of positive queries and conjunctive queries with
negation are much more interesting

Example:

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y(P(x) ∧ R(y) ∧ E (x , y))∨
∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

I If we try to falsify the second disjunct (computing the
transitive closure of G), we may end up satisfying the first one.

I Q holds if there exist a, b:
I P(a), R(b) hold
I (a, b) is in the transitive closure of G

Unions of positive queries and conjunctive queries with
negation are much more interesting

Example:

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y(P(x) ∧ R(y) ∧ E (x , y))∨
∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

I If we try to falsify the second disjunct (computing the
transitive closure of G), we may end up satisfying the first one.

I Q holds if there exist a, b:
I P(a), R(b) hold
I (a, b) is in the transitive closure of G

Unions of positive queries and conjunctive queries with
negation are much more interesting

Example:

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y(P(x) ∧ R(y) ∧ E (x , y))∨
∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

I If we try to falsify the second disjunct (computing the
transitive closure of G), we may end up satisfying the first one.

I Q holds if there exist a, b:
I P(a), R(b) hold
I (a, b) is in the transitive closure of G

Using Datalog we compute certain answers for queries
with negation in polynomial time

Idea: Encode Q using Datalog programs

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y(P(x) ∧ R(y) ∧ E (x , y))∨
∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

S(x , y) ← E (x , y)

S(x , y) ← S(x , z), S(z , y)

true ← P(x), R(y), S(x , y)

We only evaluate this program in the canonical solution

Using Datalog we compute certain answers for queries
with negation in polynomial time

Idea: Encode Q using Datalog programs

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y(P(x) ∧ R(y) ∧ E (x , y))∨
∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

S(x , y) ← E (x , y)

S(x , y) ← S(x , z), S(z , y)

true ← P(x), R(y), S(x , y)

We only evaluate this program in the canonical solution

Using Datalog we compute certain answers for queries
with negation in polynomial time

Idea: Encode Q using Datalog programs

M : G (x , y) → E (x , y)
S(x) → P(x)
T (x) → R(x)

Q : ∃x∃y(P(x) ∧ R(y) ∧ E (x , y))∨
∃x∃y∃z(E (x , z) ∧ E (z , y) ∧ ¬E (x , y))

S(x , y) ← E (x , y)

S(x , y) ← S(x , z), S(z , y)

true ← P(x), R(y), S(x , y)

We only evaluate this program in the canonical solution

Queries with inequalities
cannot be answered directly in universal solutions

Problem:
We cannot add inequalities directly to Datalog.

I Preservation under homomorphisms is lost

I Language becomes intractable (Abiteboul, Dushka 1998)

Homomorphisms in data exchange are the identity on constants

I Thus, inequalities witnessed by constants are preserved under
homomorphisms

Contributions

Query Language that extends Datalog with negation

I As good as Datalog for data exchange

I Can be used to find new tractable classes of queries

...And further

I Combined complexity of the new language and related query
languages

Outline

Formalization

I DatalogC(6=) programs

Beyond union of conjunctive queries

I Expressive power of DatalogC(6=)

I New tractable classes of queries

Combined Complexity

I DatalogC(6=) and queries with inequalities

I Restricting to Lav settings

Concluding remarks

DatalogC(6=) programs extend Datalog with
inequalities over constants

Definition:
A collection of constant-inequality rules of the form:

S(x̄)← ...

I predicate symbols

I variables under predicate C

I inequalities of the form u 6= v ,
u and v must be under predicate C

Example:

S(x , y) ← E (x , y)

S(x , y) ← S(x , z), S(z , y),C(x),C(z),C(y), x 6= z , y 6= z

true ← P(x),R(y),S(x , y),C(x),C(y), x 6= y

DatalogC(6=) programs extend Datalog with
inequalities over constants

Definition:
A collection of constant-inequality rules of the form:

S(x̄)← ...

I predicate symbols

I variables under predicate C

I inequalities of the form u 6= v ,
u and v must be under predicate C

Example:

S(x , y) ← E (x , y)

S(x , y) ← S(x , z), S(z , y),C(x),C(z),C(y), x 6= z , y 6= z

true ← P(x),R(y), S(x , y),C(x),C(y), x 6= y

DatalogC(6=) programs extend Datalog with
inequalities over constants

Definition:
A collection of constant-inequality rules of the form:

S(x̄)← ...

I predicate symbols

I variables under predicate C

I inequalities of the form u 6= v ,
u and v must be under predicate C

Example:

S(x , y) ← E (x , y)

S(x , y) ← S(x , z), S(z , y),C(x),C(z),C(y), x 6= z , y 6= z

true ← P(x),R(y), S(x , y),C(x),C(y), x 6= y

DatalogC(6=) programs extend Datalog with
inequalities over constants

Definition:
A collection of constant-inequality rules of the form:

S(x̄)← ...

I predicate symbols

I variables under predicate C

I inequalities of the form u 6= v ,
u and v must be under predicate C

Example:

S(x , y) ← E (x , y)

S(x , y) ← S(x , z), S(z , y),C(x),C(z),C(y), x 6= z , y 6= z

true ← P(x),R(y), S(x , y),C(x),C(y), x 6= y

DatalogC(6=) programs extend Datalog with
inequalities over constants

Definition:
A collection of constant-inequality rules of the form:

S(x̄)← ...

I predicate symbols

I variables under predicate C

I inequalities of the form u 6= v ,
u and v must be under predicate C

Example:

S(x , y) ← E (x , y)

S(x , y) ← S(x , z), S(z , y),C(x),C(z),C(y), x 6= z , y 6= z

true ← P(x),R(y), S(x , y),C(x),C(y), x 6= y

DatalogC(6=) programs have the same good properties as
conjunctive queries

I DatalogC(6=) programs are preserved under homomorphisms

I Datalog programs are preserved under homomorphisms
I every inequality must be witnessed by constants
I homomorphisms are the identity on constants

Proposition

Certain answers of DatalogC(6=) programs can be computed by
evaluating the programs over the canonical universal solution.

Theorem

Computing the certain answers of a DatalogC(6=) program takes
polynomial time (data complexity)

DatalogC(6=) programs have the same good properties as
conjunctive queries

I DatalogC(6=) programs are preserved under homomorphisms
I Datalog programs are preserved under homomorphisms
I every inequality must be witnessed by constants
I homomorphisms are the identity on constants

Proposition

Certain answers of DatalogC(6=) programs can be computed by
evaluating the programs over the canonical universal solution.

Theorem

Computing the certain answers of a DatalogC(6=) program takes
polynomial time (data complexity)

DatalogC(6=) programs have the same good properties as
conjunctive queries

I DatalogC(6=) programs are preserved under homomorphisms
I Datalog programs are preserved under homomorphisms
I every inequality must be witnessed by constants
I homomorphisms are the identity on constants

Proposition

Certain answers of DatalogC(6=) programs can be computed by
evaluating the programs over the canonical universal solution.

Theorem

Computing the certain answers of a DatalogC(6=) program takes
polynomial time (data complexity)

DatalogC(6=) programs have the same good properties as
conjunctive queries

I DatalogC(6=) programs are preserved under homomorphisms
I Datalog programs are preserved under homomorphisms
I every inequality must be witnessed by constants
I homomorphisms are the identity on constants

Proposition

Certain answers of DatalogC(6=) programs can be computed by
evaluating the programs over the canonical universal solution.

Theorem

Computing the certain answers of a DatalogC(6=) program takes
polynomial time (data complexity)

DatalogC(6=) can express queries with negation

Theorem

Every union of conjunctive query with at most

I One negated atom

I One inequality

per disjunct, can be expressed as a DatalogC(6=) program.

I Certain answers for this class of queries can be computed in
polynomial time

I Result for inequalities had been proved by FKMP03 using
different techniques

I Next example gives a hint on the proof

DatalogC(6=) can express queries with negation

Theorem

Every union of conjunctive query with at most

I One negated atom

I One inequality

per disjunct, can be expressed as a DatalogC(6=) program.

I Certain answers for this class of queries can be computed in
polynomial time

I Result for inequalities had been proved by FKMP03 using
different techniques

I Next example gives a hint on the proof

DatalogC(6=) can express queries with negation

Theorem

Every union of conjunctive query with at most

I One negated atom

I One inequality

per disjunct, can be expressed as a DatalogC(6=) program.

I Certain answers for this class of queries can be computed in
polynomial time

I Result for inequalities had been proved by FKMP03 using
different techniques

I Next example gives a hint on the proof

Writing DatalogC(6=) programs to answer queries with
negation

Q : ∃x∃y (E (x , y) ∧ x 6= y)∨
∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

Writing DatalogC(6=) programs to answer queries with
negation

Q : ∃x∃y (E (x , y) ∧ x 6= y)∨
∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z)

dom(x) ← E (z , x)
- Collect the domain

Writing DatalogC(6=) programs to answer queries with
negation

Q : ∃x∃y (E (x , y) ∧ x 6= y)∨
∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z)

dom(x) ← E (z , x)

EQ(x , x) ← dom(x)

EQ(x , y) ← EQ(x ,w),EQ(w , y)

- Collect the domain
- Formalize the Equality

Writing DatalogC(6=) programs to answer queries with
negation

Q : ∃x∃y (E (x , y) ∧ x 6= y)∨
∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z)

dom(x) ← E (z , x)

EQ(x , x) ← dom(x)

EQ(x , y) ← EQ(x ,w),EQ(w , y)

U(x , y) ← E (x , y)

- Collect the domain
- Formalize the Equality
- Copy E into U

Writing DatalogC(6=) programs to answer queries with
negation

Q : ∃x∃y (E (x , y) ∧ x 6= y)∨
∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z)

dom(x) ← E (z , x)

EQ(x , x) ← dom(x)

EQ(x , y) ← EQ(x ,w),EQ(w , y)

U(x , y) ← E (x , y)

U(x , y) ← EQ(u, v),

EQ(u, x),EQ(v , y)

- Collect the domain
- Formalize the Equality
- Copy E into U
- Replace equals in U

Writing DatalogC(6=) programs to answer queries with
negation

Q : ∃x∃y (E (x , y) ∧ x 6= y)∨
∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z)

dom(x) ← E (z , x)

EQ(x , x) ← dom(x)

EQ(x , y) ← EQ(x ,w),EQ(w , y)

U(x , y) ← E (x , y)

U(x , y) ← EQ(u, v),

EQ(u, x),EQ(v , y)

U(x , y) ← U(x , z),U(z , y)

- Collect the domain
- Formalize the Equality
- Copy E into U
- Replace equals in U
- Simulate negation

Writing DatalogC(6=) programs to answer queries with
negation

Q : ∃x∃y (E (x , y) ∧ x 6= y)∨
∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z)

dom(x) ← E (z , x)

EQ(x , x) ← dom(x)

EQ(x , y) ← EQ(x ,w),EQ(w , y)

U(x , y) ← E (x , y)

U(x , y) ← EQ(u, v),

EQ(u, x),EQ(v , y)

U(x , y) ← U(x , z),U(z , y)

EQ(x , y) ← U(x , y)

- Collect the domain
- Formalize the Equality
- Copy E into U
- Replace equals in U
- Simulate negation
- Simulate inequality

Writing DatalogC(6=) programs to answer queries with
negation

Q : ∃x∃y (E (x , y) ∧ x 6= y)∨
∃x∃y∃z (E (x , y) ∧ E (y , z) ∧ ¬E (x , z))

dom(x) ← E (x , z)

dom(x) ← E (z , x)

EQ(x , x) ← dom(x)

EQ(x , y) ← EQ(x ,w),EQ(w , y)

U(x , y) ← E (x , y)

U(x , y) ← EQ(u, v),

EQ(u, x),EQ(v , y)

U(x , y) ← U(x , z),U(z , y)

EQ(x , y) ← U(x , y)

TRUE ← EQ(z , y),C(y),C(z), y 6= z

- Collect the domain
- Formalize the Equality
- Copy E into U
- Replace equals in U
- Simulate negation
- Simulate inequality
- Answer

Outline

Formalization

I DatalogC(6=) programs

Beyond union of conjunctive queries

I Expressive power of DatalogC(6=)

I New tractable classes of queries

Combined Complexity

I DatalogC(6=) and queries with inequalities

I Restricting to Lav settings

Concluding remarks

Classes of queries

(UCQ)CQ

I (union) of conjunctive queries

(UCQ6=)CQ 6=

I (union) of conjunctive queries with inequalities

k-CQ 6=

I conjunctive queries with at most k inequalities

Certain answers for conjunctive queries with two
inequalities is intractable (data complexity)

[Madry 05]:

I The certain answers problem is coNP-complete for 2-CQ 6=

We find an interesting tractable fragment for this class of queries,
using translation into DatalogC(6=) programs

Certain answers for conjunctive queries with two
inequalities is intractable (data complexity)

[Madry 05]:

I The certain answers problem is coNP-complete for 2-CQ 6=

We find an interesting tractable fragment for this class of queries,
using translation into DatalogC(6=) programs

We need to define two restrictions

I Constant Joins

I Almost constant inequalities

We need to define two restrictions

I Constant Joins

I Almost constant inequalities

Constant Joins:
No null values can witness a join of a relation

M : P(u, v) → T (u, v)
Q(u, v) → ∃wU(u,w)

Q1 : ∃x∃y∃z(T (x , y) ∧ U(x , z))

Q2 : ∃x∃y∃z(U(x , z) ∧ U(y , z))

We need to define two restrictions

I Constant Joins

I Almost constant inequalities

Constant Joins:
No null values can witness a join of a relation

M : P(u, v) → T (u, v)
Q(u, v) → ∃wU(u,w)

Q1 : ∃x∃y∃z(T (x , y) ∧ U(x , z))

Q2 : ∃x∃y∃z(U(x , z) ∧ U(y , z))

We need to define two restrictions

I Constant Joins

I Almost constant inequalities

Constant Joins:
No null values can witness a join of a relation

M : P(u, v) → T (u, v)
Q(u, v) → ∃wU(u,w)

Q1 : ∃x∃y∃z(T (x , y) ∧ U(x , z)) YES

Q2 : ∃x∃y∃z(U(x , z) ∧ U(y , z))

We need to define two restrictions

I Constant Joins

I Almost constant inequalities

Constant Joins:
No null values can witness a join of a relation

M : P(u, v) → T (u, v)
Q(u, v) → ∃wU(u,w)

Q1 : ∃x∃y∃z(T (x , y) ∧ U(x , z)) YES

Q2 : ∃x∃y∃z(U(x , z) ∧ U(y , z)) NO

We need to define two restrictions

I Constant Joins

I Almost constant inequalities

Almost constant inequalities:
Every inequality can be witnessed by at most 1 null value

M : P(u, v) → T (u, v)
Q(u, v) → ∃wU(u,w)

Q1 : ∃x∃y∃z(U(x , y) ∧ U(x , z) ∧ x 6= z)

Q2 : ∃x∃y∃z(U(x , y) ∧ U(x , z) ∧ y 6= z)

We need to define two restrictions

I Constant Joins

I Almost constant inequalities

Almost constant inequalities:
Every inequality can be witnessed by at most 1 null value

M : P(u, v) → T (u, v)
Q(u, v) → ∃wU(u,w)

Q1 : ∃x∃y∃z(U(x , y) ∧ U(x , z) ∧ x 6= z)

Q2 : ∃x∃y∃z(U(x , y) ∧ U(x , z) ∧ y 6= z)

We need to define two restrictions

I Constant Joins

I Almost constant inequalities

Almost constant inequalities:
Every inequality can be witnessed by at most 1 null value

M : P(u, v) → T (u, v)
Q(u, v) → ∃wU(u,w)

Q1 : ∃x∃y∃z(U(x , y) ∧ U(x , z) ∧ x 6= z) YES

Q2 : ∃x∃y∃z(U(x , y) ∧ U(x , z) ∧ y 6= z)

We need to define two restrictions

I Constant Joins

I Almost constant inequalities

Almost constant inequalities:
Every inequality can be witnessed by at most 1 null value

M : P(u, v) → T (u, v)
Q(u, v) → ∃wU(u,w)

Q1 : ∃x∃y∃z(U(x , y) ∧ U(x , z) ∧ x 6= z) YES

Q2 : ∃x∃y∃z(U(x , y) ∧ U(x , z) ∧ y 6= z) NO

We use DatalogC(6=) to find a tractable fragment for
union of conjunctive queries with at most two inequalities

Theorem

Every 2-UCQ 6= with:

I constant joins

I almost constant inequalities

can be expressed as a DatalogC(6=) program in data exchange.

Certain answers to this class of queries can be computed in
polynomial time

I Removing any one of this conditions yields to intractability

I Stronger that Madry’s proof (did not have these restrictions)

We use DatalogC(6=) to find a tractable fragment for
union of conjunctive queries with at most two inequalities

Theorem

Every 2-UCQ 6= with:

I constant joins

I almost constant inequalities

can be expressed as a DatalogC(6=) program in data exchange.

Certain answers to this class of queries can be computed in
polynomial time

I Removing any one of this conditions yields to intractability

I Stronger that Madry’s proof (did not have these restrictions)

We use DatalogC(6=) to find a tractable fragment for
union of conjunctive queries with at most two inequalities

Theorem

Every 2-UCQ 6= with:

I constant joins

I almost constant inequalities

can be expressed as a DatalogC(6=) program in data exchange.

Certain answers to this class of queries can be computed in
polynomial time

I Removing any one of this conditions yields to intractability

I Stronger that Madry’s proof (did not have these restrictions)

We use DatalogC(6=) to find a tractable fragment for
union of conjunctive queries with at most two inequalities

Theorem

Every 2-UCQ 6= with:

I constant joins

I almost constant inequalities

can be expressed as a DatalogC(6=) program in data exchange.

Certain answers to this class of queries can be computed in
polynomial time

I Removing any one of this conditions yields to intractability

I Stronger that Madry’s proof (did not have these restrictions)

There is no hope for 3-CQ 6=

Theorem

There exists a query Q in 3-CQ 6= with

I constant joins

I almost constant inequalities

such that computing it’s certain answers is coNP-complete.

Outline

Formalization

I DatalogC(6=) programs

Beyond union of conjunctive queries

I Expressive power of DatalogC(6=)

I New tractable classes of queries

Combined Complexity

I DatalogC(6=) and queries with inequalities

I Restricting to Lav settings

Concluding remarks

Combined Complexity: a natural question

What is the complexity if we consider as inputs

I Database instance ?

I Data exchange setting, query

Kolaitis, Pantajja, Tan 06:

I Combined complexity of existence of solutions

I Lower bounds for query answering: 1-UCQ

We study the combined complexity of query answering

I Tight lower bounds (single conjunctive queries)

I Results for DatalogC(6=) and related query languages

Combined Complexity: a natural question

What is the complexity if we consider as inputs

I Database instance

I Data exchange setting, query ?

Kolaitis, Pantajja, Tan 06:

I Combined complexity of existence of solutions

I Lower bounds for query answering: 1-UCQ

We study the combined complexity of query answering

I Tight lower bounds (single conjunctive queries)

I Results for DatalogC(6=) and related query languages

Combined Complexity: a natural question

What is the complexity if we consider as inputs

I Database instance

I Data exchange setting, query ?

Kolaitis, Pantajja, Tan 06:

I Combined complexity of existence of solutions

I Lower bounds for query answering: 1-UCQ

We study the combined complexity of query answering

I Tight lower bounds (single conjunctive queries)

I Results for DatalogC(6=) and related query languages

Combined Complexity: a natural question

What is the complexity if we consider as inputs

I Database instance

I Data exchange setting, query ?

Kolaitis, Pantajja, Tan 06:

I Combined complexity of existence of solutions

I Lower bounds for query answering: 1-UCQ

We study the combined complexity of query answering

I Tight lower bounds (single conjunctive queries)

I Results for DatalogC(6=) and related query languages

Combined Complexity for the general setting

Theorem

Input: Data exchange setting M, query Q, instance I and tuple t̄
Problem: Is t̄ in the certain answers of Q for I under M?

Exptime-complete for DatalogC(6=) programs

Exptime-complete for 1-CQ 6=

coNexptime-complete for k-CQ 6=, k ≥ 2

coNexptime-complete for CQ6=

I Same results hold for unions

I It follows from KPT06 that the problem is
Exptime-complete for 1-UCQ6=

Combined Complexity for the general setting

Theorem

Input: Data exchange setting M, query Q, instance I and tuple t̄
Problem: Is t̄ in the certain answers of Q for I under M?

Exptime-complete for DatalogC(6=) programs

Exptime-complete for 1-CQ 6=

coNexptime-complete for k-CQ 6=, k ≥ 2

coNexptime-complete for CQ6=

I Same results hold for unions

I It follows from KPT06 that the problem is
Exptime-complete for 1-UCQ6=

Combined Complexity for the general setting

Theorem

Input: Data exchange setting M, query Q, instance I and tuple t̄
Problem: Is t̄ in the certain answers of Q for I under M?

Exptime-complete for DatalogC(6=) programs

Exptime-complete for 1-CQ 6=

coNexptime-complete for k-CQ 6=, k ≥ 2

coNexptime-complete for CQ6=

I Same results hold for unions

I It follows from KPT06 that the problem is
Exptime-complete for 1-UCQ6=

Combined Complexity for the general setting

Theorem

Input: Data exchange setting M, query Q, instance I and tuple t̄
Problem: Is t̄ in the certain answers of Q for I under M?

Exptime-complete for DatalogC(6=) programs

Exptime-complete for 1-CQ 6=

coNexptime-complete for k-CQ 6=, k ≥ 2

coNexptime-complete for CQ6=

I Same results hold for unions

I It follows from KPT06 that the problem is
Exptime-complete for 1-UCQ6=

Lower combined complexity if we restrict to Lav settings

A LAV setting is a data exchange settings where Σst is of the form:

R(x̄)→ ∃ȳψ(x̄ , ȳ)

I Premises are single relational atoms

Very used in practice!

Under Lav settings, canonical universal solutions
are of polynomial size (combined complexity)

Lower combined complexity if we restrict to Lav settings

A LAV setting is a data exchange settings where Σst is of the form:

R(x̄)→ ∃ȳψ(x̄ , ȳ)

I Premises are single relational atoms

Very used in practice!

Under Lav settings, canonical universal solutions
are of polynomial size (combined complexity)

Lower combined complexity if we restrict to Lav settings

A LAV setting is a data exchange settings where Σst is of the form:

R(x̄)→ ∃ȳψ(x̄ , ȳ)

I Premises are single relational atoms

Very used in practice!

Under Lav settings, canonical universal solutions
are of polynomial size (combined complexity)

Lower combined complexity if we restrict to Lav settings

Theorem

Input: Lav setting M, query Q, instance I and tuple t̄
Problem: Is t̄ in the certain answers of Q for I under M?

Exptime-complete for DatalogC(6=) programs

NP-complete for 1-CQ 6=

Πp
2-complete for k-CQ 6=, k ≥ 2

Πp
2-complete for CQ 6=

I Same results hold for unions

Lower combined complexity if we restrict to Lav settings

Theorem

Input: Lav setting M, query Q, instance I and tuple t̄
Problem: Is t̄ in the certain answers of Q for I under M?

Exptime-complete for DatalogC(6=) programs

NP-complete for 1-CQ 6=

Πp
2-complete for k-CQ 6=, k ≥ 2

Πp
2-complete for CQ 6=

I Same results hold for unions

Lower combined complexity if we restrict to Lav settings

Theorem

Input: Lav setting M, query Q, instance I and tuple t̄
Problem: Is t̄ in the certain answers of Q for I under M?

Exptime-complete for DatalogC(6=) programs

NP-complete for 1-CQ 6=

Πp
2-complete for k-CQ 6=, k ≥ 2

Πp
2-complete for CQ 6=

I Same results hold for unions

Lower combined complexity if we restrict to Lav settings

Theorem

Input: Lav setting M, query Q, instance I and tuple t̄
Problem: Is t̄ in the certain answers of Q for I under M?

Exptime-complete for DatalogC(6=) programs

NP-complete for 1-CQ 6=

Πp
2-complete for k-CQ 6=, k ≥ 2

Πp
2-complete for CQ 6=

I Same results hold for unions

Outline

Formalization

I DatalogC(6=) programs

Beyond union of conjunctive queries

I Expressive power of DatalogC(6=)

I New tractable classes of queries

Combined Complexity

I DatalogC(6=) and queries with inequalities

I Restricting to Lav settings

Concluding remarks

We propose DatalogC(6=) as a query language for data
exchange

Study its properties

I Preserved under homomorphisms

I Certain answers can be computed in polynomial time (data
complexity)

DatalogC(6=), a tractable language that express negation:

I Union of conjunctive queries with one negated atom per
disjunct

I A fragment of 2-UCQ6=

We can use DatalogC(6=) to find tractable classes of queries

Outline

Formalization

I DatalogC(6=) programs

Beyond union of conjunctive queries

I Expressive power of DatalogC(6=)

I New tractable classes of queries

Combined Complexity

I DatalogC(6=) and queries with inequalities

I Restricting to Lav settings

Concluding remarks

