
Parameterized Regular Expressions and

Their Languages

Pablo Barceló Leonid Libkin Juan Reutter

Univ. de Chile U. of Edinburgh U. of Edinburgh

Parameterized regular expressions (PREs) are regular expressions
with variables.

Parameterized regular expressions (PREs) are regular expressions
with variables.

Given:

◮ Σ: a finite alphabet

◮ V: a countably infinite set of variables x , y , z , . . . ,

a PRE over Σ is a regular expression over alphabet Σ ∪ V.

Parameterized regular expressions (PREs) are regular expressions
with variables.

Given:

◮ Σ: a finite alphabet

◮ V: a countably infinite set of variables x , y , z , . . . ,

a PRE over Σ is a regular expression over alphabet Σ ∪ V.

(0x)∗1(xy)∗ and (0|1)∗xy(0|1)∗ are PREs over {0, 1}.

Language of PREs?

(0x)∗1(xy)∗ (0|1)∗xy(0|1)∗.

Language of PREs?

(0x)∗1(xy)∗ (0|1)∗xy(0|1)∗.

Each PRE defines a regular language over (Σ ∪ V)∗.

Language of PREs?

(0x)∗1(xy)∗ (0|1)∗xy(0|1)∗.

Each PRE defines a regular language over (Σ ∪ V)∗.

We want PREs to define languages over Σ.

How to interpret variables in PREs

For now, variables are interpreted as symbols from Σ.

Given a PRE e over Σ that uses variables W ⊂ V:

◮ A valuation for e is a mapping ν : W → Σ.

How to interpret variables in PREs

For now, variables are interpreted as symbols from Σ.

Given a PRE e over Σ that uses variables W ⊂ V:

◮ A valuation for e is a mapping ν : W → Σ.

Example:
e = (0x)∗1(xy)∗

How to interpret variables in PREs

For now, variables are interpreted as symbols from Σ.

Given a PRE e over Σ that uses variables W ⊂ V:

◮ A valuation for e is a mapping ν : W → Σ.

Example:
e = (0x)∗1(xy)∗ ν : x 7→ 0, y 7→ 1

How to interpret variables in PREs

For now, variables are interpreted as symbols from Σ.

Given a PRE e over Σ that uses variables W ⊂ V:

◮ A valuation for e is a mapping ν : W → Σ.

Example:
e = (0x)∗1(xy)∗ ν : x 7→ 0, y 7→ 1

ν(e) = (00)∗1(01)∗

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

Example:

e = (0x)∗1(xy)∗

L3(e) =

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

Example:

e = (0x)∗1(xy)∗

L3(e) =(00)∗1(00)∗

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

Example:

e = (0x)∗1(xy)∗

L3(e) =(00)∗1(00)∗ ∪ (00)∗1(01)∗

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

Example:

e = (0x)∗1(xy)∗

L3(e) =(00)∗1(00)∗ ∪ (00)∗1(01)∗ ∪ (01)∗1(10)∗

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

Example:

e = (0x)∗1(xy)∗

L3(e) =(00)∗1(00)∗ ∪ (00)∗1(01)∗ ∪ (01)∗1(10)∗ ∪ (01)∗1(11)∗

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

Example:

e = (0x)∗1(xy)∗

L3(e) =(00)∗1(00)∗ ∪ (00)∗1(01)∗ ∪ (01)∗1(10)∗ ∪ (01)∗1(11)∗

◮ 00101 is in L3(e).

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)

Example:

e = (0|1)∗xy(0|1)∗

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)

Example:

e = (0|1)∗xy(0|1)∗

L2(e) = (0|1)∗00(0|1)∗

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)

Example:

e = (0|1)∗xy(0|1)∗

L2(e) = (0|1)∗00(0|1)∗ ∩ (0|1)∗01(0|1)∗

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)

Example:

e = (0|1)∗xy(0|1)∗

L2(e) = (0|1)∗00(0|1)∗ ∩ (0|1)∗01(0|1)∗∩

(0|1)∗10(0|1)∗

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)

Example:

e = (0|1)∗xy(0|1)∗

L2(e) = (0|1)∗00(0|1)∗ ∩ (0|1)∗01(0|1)∗∩

(0|1)∗10(0|1)∗ ∩ (0|1)∗11(0|1)∗

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)

Example:

e = (0|1)∗xy(0|1)∗

L2(e) = (0|1)∗00(0|1)∗ ∩ (0|1)∗01(0|1)∗∩

(0|1)∗10(0|1)∗ ∩ (0|1)∗11(0|1)∗

◮ 10011 is in L2(e).

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)

Example:

e = (0|1)∗xy(0|1)∗

L2(e) = (0|1)∗00(0|1)∗ ∩ (0|1)∗01(0|1)∗∩

(0|1)∗10(0|1)∗ ∩ (0|1)∗11(0|1)∗

◮ 10011 is in L2(e).

◮ No word of length ≤ 4 is in L2(e)

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)

Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)

Finite unions or intersections of regular languages:

L3(e) and L2(e) are regular languages

Applications of PREs: Graph databases

Graph DBs:

◮ Applications: RDF, SNs, Scientific data, etc.

◮ Model: Edge-labeled directed graphs (that is: NFAs).

a

c

a

n1 n5

n2

n3 n4

b
b

Applications of PREs: Graph databases

As it is usual, some data in the graph DB may be missing [Barceló.
et al. 2011,Calvanese et al. 2011].

Applications of PREs: Graph databases

As it is usual, some data in the graph DB may be missing [Barceló.
et al. 2011,Calvanese et al. 2011].

Example: Biological DB
◮ Proteins p1, q1, p2, q2

q2p1 q1 p2

Applications of PREs: Graph databases

As it is usual, some data in the graph DB may be missing [Barceló.
et al. 2011,Calvanese et al. 2011].

Example: Biological DB
◮ Proteins p1, q1, p2, q2

◮ we do not know the actual relationship

X
p1 q1

X p2 q2

Applications of PREs: Graph databases

As it is usual, some data in the graph DB may be missing [Barceló.
et al. 2011,Calvanese et al. 2011].

Example: Biological DB
◮ Proteins p1, q1, p2, q2

◮ we do not know the actual relationship

X
p1 q1

X p2 q2

Incomplete graph DBs are graph DBs with edges labeled in V.

◮ They can be represented as NFAs over Σ ∪ V.

◮ Equivalently, as PREs over Σ.

Applications of PREs: Graph Databases

Standard semantics for incomplete DBs: Certain answers.

◮ Answers that hold regardless of the interpretation of the
variables.

Applications of PREs: Graph Databases

Standard semantics for incomplete DBs: Certain answers.

◮ Answers that hold regardless of the interpretation of the
variables.

How to use PREs to compute certain answers over graph DBs?

PRE’s for querying incomplete graph DB’s

b

y

x

n1 n5

n2

n3 n4

b
x

a

y

PRE’s for querying incomplete graph DB’s

b

y

x

n1 n5

n2

n3 n4

b
x

a

y

◮ Paths from n3 to n5.

PRE’s for querying incomplete graph DB’s

b

y

x

n1 n5

n2

n3 n4

b
x

a

y

◮ Paths from n3 to n5.

◮ e = b∗ya| b∗x | b∗xy .

PRE’s for querying incomplete graph DB’s

b

y

x

n1 n5

n2

n3 n4

b
x

a

y

◮ Paths from n3 to n5.

◮ e = b∗ya| b∗x | b∗xy .

◮ We can be certain about a word w ∈ Σ∗ labeling a path from
n3 to n5 in G iff w ∈ L2(e).

PRE’s for querying incomplete graph DB’s

b

y

x

n1 n5

n2

n3 n4

b
x

a

y

The certainty semantics is essential for computing certain answers
over incomplete graph DBs.

Applications of PREs: Program analysis

PREs naturally arise in program analysis [Liu & Stoller 2004, de
Moor at al. 2003].

◮ Alphabet: Operations on variables; e.g. def, use, open, etc.

◮ Variables: Program variables, pointers, files, etc.

PREs are used in this setting to specify undesired behavior.

Example: The undesired property “A variable is used without being
defined” can be expressed as follows:

(¬def(x))∗use(x).

Applications of PREs: Program analysis

PREs naturally arise in program analysis [Liu & Stoller 2004, de
Moor at al. 2003].

◮ Alphabet: Operations on variables; e.g. def, use, open, etc.

◮ Variables: Program variables, pointers, files, etc.

PREs are used in this setting to specify undesired behavior.

Example: The undesired property “A variable is used without being
defined” can be expressed as follows:

(¬def(x))∗use(x).

These expressions are evaluated over graphs that serve as an
abstraction of the program behavior.

Applications of PREs: Program analysis

PREs specify undesired behavior: Assignments of the variables that
“satisfy” the PRE represent bugs of the program.

In the program analysis context the possibility semantics is
essential for finding where the program fails a specification.

We study basic computational problems of PREs

Despite its importance, basic computational problems associated
with PREs have not been addressed.

In this paper: Study standard language-theoretical problems for
PREs divided as follows:

◮ Decision problems: Emptiness, universality, containment and
membership.

◮ Computational problems: Minimal-size NFAs representing
L2(e) and L3(e).

◮ Upper bound techniques

◮ Decision problems

◮ Computational problems

◮ Extending the semantics

◮ Future work

◮ Upper bound techniques

◮ Decision problems

◮ Computational problems

◮ Extending the semantics

◮ Future work

NFAs for L3(e) and L2(e)

◮ Exponentially many valuations: |Σ|(# of variables).

◮ Taking the union gives an exponential NFA for L3(e).

◮ Taking the intersection gives a doubly-exponential NFA for
L2(e).

We shall see that these are tight bounds...

◮ Upper bound techniques

◮ Decision problems

◮ Computational problems

◮ Extending the semantics

◮ Future work

In order to do a finer analysis we study two restrictions of PREs:

◮ Simple: No repetition of variables; e.g. e = (0|1)∗xy(0|1)∗.

◮ Star-height 0: No Kleene-star: i.e. finite languages.

Decision problems: Nonemptiness

◮ Nonemptiness3: L3(e) 6= ∅?

◮ Nonemptiness2: L2(e) 6= ∅?

Decision problems: Nonemptiness

◮ Nonemptiness3: L3(e) 6= ∅?

Not different from the case without variables:

(0x)∗1∗(xy)∗

◮ Nonemptiness2: L2(e) 6= ∅?

Decision problems: Nonemptiness

◮ Nonemptiness3: L3(e) 6= ∅?

Not different from the case without variables:

(0x)∗1∗(xy)∗

◮ Nonemptiness2: L2(e) 6= ∅?

Theorem

Nonemptiness2 is Expspace-complete.

Decision problems: Nonemptiness

◮ Nonemptiness3: L3(e) 6= ∅?

Not different from the case without variables:

(0x)∗1∗(xy)∗

◮ Nonemptiness2: L2(e) 6= ∅?

Theorem

Nonemptiness2 is Expspace-complete.

1. Remains Expspace-hard even over the class of simple expressions.

2. For PREs of star-height 0: Nonemptiness2 is ΣP
2 -complete.

PREs and succinct intersection

Main tool for Expspace-hardness:

Given PRE’s e1, . . . , en we can construct in polynomial time
a PRE e′ such that

L2(e′) is empty iff L2(e1) ∩ · · · ∩ L2(en) is empty.

PREs and succinct intersection

Main tool for Expspace-hardness:

Given PRE’s e1, . . . , en we can construct in polynomial time
a PRE e′ such that

L2(e′) is empty iff L2(e1) ∩ · · · ∩ L2(en) is empty.

Gives us Pspace-hardness for Nonemptiness2, since regular
expressions are PRE’s

Minimal size of words in L2(e)

Corollary (Nonemptiness2)

There exists a sequence of parameterized regular expressions

{en}n∈N such that:

1. Each en is of size polynomial in n.

2. Every word in the language L2(en) has size at least 22n
.

Minimal size of words in L2(e): exponential bound

Consider PREs of the form:

(0 | 1)∗ x1 · x2 · · · xn (0 | 1)∗ (n ≥ 1).

Minimal size of words in L2(e): exponential bound

Consider PREs of the form:

(0 | 1)∗ x1 · x2 · · · xn (0 | 1)∗ (n ≥ 1).

◮ If w ∈ L2(e), then it contains as a subword each w ′ ∈ {0, 1}n.

Minimal size of words in L2(e): exponential bound

Consider PREs of the form:

(0 | 1)∗ x1 · x2 · · · xn (0 | 1)∗ (n ≥ 1).

◮ If w ∈ L2(e), then it contains as a subword each w ′ ∈ {0, 1}n.

de Bruijn sequences of order n, which are of size ≥ 2n.

Decision problems: Universality

Universality◦: Is L◦(e) = Σ∗?

As opposed to nonemptiness, universality is more difficult for the
3-semantics than for the 2-semantics:

◮ Universality2 is Pspace-complete.

◮ Universality3 is Expspace-complete.

◮ It remains Expspace-complete even over the class of simple
expressions.

Decision problems: Containment

Containment◦: Is L◦(e1) ⊆ L◦(e2)?

We can reduce from other problems, since:

◮ L is empty iff L ⊆ ∅

Decision problems: Containment

Containment◦: Is L◦(e1) ⊆ L◦(e2)?

We can reduce from other problems, since:

◮ L is empty iff L ⊆ ∅

◮ L is Σ∗ iff Σ∗ ⊆ L.

Thus,

Containment2 and Containment3 are Expspace-complete.

◮ Even if restricted to simple expressions.

Decision problems: Membership

Is w in L3(e) or L2(e)?

Guess a valuation ν:

◮ w ∈ L(ν(e)) (possibility)

◮ w /∈ L(ν(e)) (certainty)

Gives us NP and coNP bounds

Decision problems: Membership

Is w in L3(e) or L2(e)?

Guess a valuation ν:

◮ w ∈ L(ν(e)) (possibility)

◮ w /∈ L(ν(e)) (certainty)

Gives us NP and coNP bounds (tight).

Theorem
◮ Membership3 is NP-complete.

◮ Membership2 is coNP-complete.

Decision problems: Membership

We can do a finer analysis:

Proposition

◮ The complexity of Membership3 is as follows:

1. Simple expressions: NP-complete.
2. Star-height 0 expressions: NP-complete.
3. Simple and star-height 0 expressions: Ptime.

◮ The complexity of Membership2 is as follows:

1. Simple expressions: coNP-complete.
2. Star-height 0 expressions: coNP-complete.
3. Simple and star-height 0 expressions: Ptime.

Also in the paper:

◮ Containment when one expression is fixed.

Also in the paper:

◮ Containment when one expression is fixed.

◮ Membership when the word is fixed.

Also in the paper:

◮ Containment when one expression is fixed.

◮ Membership when the word is fixed.

◮ Emptiness of the intersection with a regular language

Also in the paper:

◮ Containment when one expression is fixed.

◮ Membership when the word is fixed.

◮ Emptiness of the intersection with a regular language

These problems are motivated by the application of PREs

◮ Upper bound techniques

◮ Decision problems

◮ Computational problems

◮ Extending the semantics

◮ Future work

Computational problems

What is the size of the minimal NFA A such that L(A) = L3(e)
or L(A) = L2(e)?

Computational problems

What is the size of the minimal NFA A such that L(A) = L3(e)
or L(A) = L2(e)?

Theorem

The sizes of minimal NFAs are:

◮ necessarily double-exponential for L2

◮ necessarily exponential for L3.

Proof skecth of minimal size NFA for L2

We use the following result by Glaister and Shallit:

If L is a regular language, and there exists a set of pairs

P = {(ui , vi) | 1 ≤ i ≤ m} ⊆ Σ∗ × Σ∗, such that

1. uivi ∈ L,

2. ujvi /∈ L for i 6= j ,

then every NFA accepting L has at least m states.

Proof skecth of minimal size NFA for L2

Consider the following family of PREs:

en = ((0 | 1)n+1)∗ · x1 · · · xn · xn+1 · ((0 | 1)n+1)∗ (n ≥ 1)

◮ Each en is of linear size on n.

We shall construct a Fooling Set for L2(en).

Proof skecth of minimal size NFA for L2

Given a set S ⊂ {0, 1}n+1 of size 2n:

◮ wS is the concatenation in lexicographical order of all words in
S ; and

◮ wS̄,n is the concatenation in lexicographical order of all words

in {0, 1}n+1 that are not in S .

Proof skecth of minimal size NFA for L2

We define:

Pn := {(wS ,wS̄,n) | S ⊂ {0, 1}n+1 and |S | = 2n},

Proof skecth of minimal size NFA for L2

We define:

Pn := {(wS ,wS̄,n) | S ⊂ {0, 1}n+1 and |S | = 2n},

1. There are
(2n+1

2n

)

≥ 22n
different subsets of {0, 1}n+1 of size

2n, and thus |Pn| ≥ 22n
.

2. (wS ,wS̄,n) belongs to L2(en), but

3. (wS1
,wS̄2,n

) are not in L2(en), for distinct S1 and S2.

◮ Upper bound techniques

◮ Decision problems

◮ Computational problems

◮ Extending the semantics

◮ Future work

Extending Semantics

We can extend semantics and allow replacement of variables by
words that belong to some regular language.

◮ 3-semantics: Easily becomes non-regular (e.g. xx = squared
words). Regular for finite languages.

Extending Semantics

We can extend semantics and allow replacement of variables by
words that belong to some regular language.

◮ 3-semantics: Easily becomes non-regular (e.g. xx = squared
words). Regular for finite languages.

◮ 2-semantics: Keeps being regular. Same complexity bounds
apply.

◮ Upper bound techniques

◮ Decision problems

◮ Computational problems

◮ Extending the semantics

◮ Future work

Future work

Closure properties:

◮ The minimal NFA A that accepts L2(e1) ∩ L2(e2) is
necessarily of double-exponential size.

Future work

Closure properties:

◮ The minimal NFA A that accepts L2(e1) ∩ L2(e2) is
necessarily of double-exponential size.

◮ Perhaps it is possible to construct in polynomial time a PRE e

such that L2(e) = L2(e1) ∩ L2(e2).

