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Parameterized regular expressions (PREs) are regular expressions
with variables.

Given:

◮ Σ: a finite alphabet

◮ V: a countably infinite set of variables x , y , z , . . . ,

a PRE over Σ is a regular expression over alphabet Σ ∪ V.

(0x)∗1(xy)∗ and (0|1)∗xy(0|1)∗ are PREs over {0, 1}.
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(0x)∗1(xy)∗ (0|1)∗xy(0|1)∗.

Each PRE defines a regular language over (Σ ∪ V)∗.

We want PREs to define languages over Σ.
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How to interpret variables in PREs

For now, variables are interpreted as symbols from Σ.

Given a PRE e over Σ that uses variables W ⊂ V:

◮ A valuation for e is a mapping ν : W → Σ.

Example:
e = (0x)∗1(xy)∗ ν : x 7→ 0, y 7→ 1

ν(e) = (00)∗1(01)∗
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◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

Example:

e = (0x)∗1(xy)∗
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Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

Example:

e = (0x)∗1(xy)∗
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Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

Example:

e = (0x)∗1(xy)∗

L3(e) =(00)∗1(00)∗ ∪ (00)∗1(01)∗ ∪ (01)∗1(10)∗ ∪ (01)∗1(11)∗

◮ 00101 is in L3(e).
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(0|1)∗10(0|1)∗
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Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)

Example:

e = (0|1)∗xy(0|1)∗

L2(e) = (0|1)∗00(0|1)∗ ∩ (0|1)∗01(0|1)∗∩

(0|1)∗10(0|1)∗ ∩ (0|1)∗11(0|1)∗

◮ 10011 is in L2(e).

◮ No word of length ≤ 4 is in L2(e)



Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)



Semantics for PREs over Σ: Two alternatives

Let e be a PRE over Σ. Then

◮ L3(e) :=
⋃

{L(ν(e)) | ν is a valuation for e} (possibility)

◮ L2(e) :=
⋂

{L(ν(e)) | ν is a valuation for e} (certainty)

Finite unions or intersections of regular languages:

L3(e) and L2(e) are regular languages



Applications of PREs: Graph databases

Graph DBs:

◮ Applications: RDF, SNs, Scientific data, etc.

◮ Model: Edge-labeled directed graphs (that is: NFAs).

a

c

a

n1 n5

n2

n3 n4

b
b



Applications of PREs: Graph databases

As it is usual, some data in the graph DB may be missing [Barceló.
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Applications of PREs: Graph databases

As it is usual, some data in the graph DB may be missing [Barceló.
et al. 2011,Calvanese et al. 2011].

Example: Biological DB
◮ Proteins p1, q1, p2, q2

◮ we do not know the actual relationship

X
p1 q1

X p2 q2

Incomplete graph DBs are graph DBs with edges labeled in V.

◮ They can be represented as NFAs over Σ ∪ V.

◮ Equivalently, as PREs over Σ.
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Applications of PREs: Graph Databases

Standard semantics for incomplete DBs: Certain answers.

◮ Answers that hold regardless of the interpretation of the
variables.

How to use PREs to compute certain answers over graph DBs?
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◮ Paths from n3 to n5.

◮ e = b∗ya| b∗x | b∗xy .

◮ We can be certain about a word w ∈ Σ∗ labeling a path from
n3 to n5 in G iff w ∈ L2(e).



PRE’s for querying incomplete graph DB’s
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The certainty semantics is essential for computing certain answers
over incomplete graph DBs.
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Moor at al. 2003].

◮ Alphabet: Operations on variables; e.g. def, use, open, etc.

◮ Variables: Program variables, pointers, files, etc.

PREs are used in this setting to specify undesired behavior.

Example: The undesired property “A variable is used without being
defined” can be expressed as follows:

(¬def(x))∗use(x).



Applications of PREs: Program analysis

PREs naturally arise in program analysis [Liu & Stoller 2004, de
Moor at al. 2003].

◮ Alphabet: Operations on variables; e.g. def, use, open, etc.

◮ Variables: Program variables, pointers, files, etc.

PREs are used in this setting to specify undesired behavior.

Example: The undesired property “A variable is used without being
defined” can be expressed as follows:

(¬def(x))∗use(x).

These expressions are evaluated over graphs that serve as an
abstraction of the program behavior.



Applications of PREs: Program analysis

PREs specify undesired behavior: Assignments of the variables that
“satisfy” the PRE represent bugs of the program.

In the program analysis context the possibility semantics is
essential for finding where the program fails a specification.



We study basic computational problems of PREs

Despite its importance, basic computational problems associated
with PREs have not been addressed.

In this paper: Study standard language-theoretical problems for
PREs divided as follows:

◮ Decision problems: Emptiness, universality, containment and
membership.

◮ Computational problems: Minimal-size NFAs representing
L2(e) and L3(e).
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NFAs for L3(e) and L2(e)

◮ Exponentially many valuations: |Σ|(# of variables).

◮ Taking the union gives an exponential NFA for L3(e).

◮ Taking the intersection gives a doubly-exponential NFA for
L2(e).

We shall see that these are tight bounds...



◮ Upper bound techniques

◮ Decision problems

◮ Computational problems

◮ Extending the semantics

◮ Future work



In order to do a finer analysis we study two restrictions of PREs:

◮ Simple: No repetition of variables; e.g. e = (0|1)∗xy(0|1)∗.

◮ Star-height 0: No Kleene-star: i.e. finite languages.
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Decision problems: Nonemptiness

◮ Nonemptiness3: L3(e) 6= ∅?

Not different from the case without variables:

(0x)∗1∗(xy)∗

◮ Nonemptiness2: L2(e) 6= ∅?

Theorem

Nonemptiness2 is Expspace-complete.

1. Remains Expspace-hard even over the class of simple expressions.

2. For PREs of star-height 0: Nonemptiness2 is ΣP
2 -complete.



PREs and succinct intersection

Main tool for Expspace-hardness:

Given PRE’s e1, . . . , en we can construct in polynomial time
a PRE e′ such that

L2(e′) is empty iff L2(e1) ∩ · · · ∩ L2(en) is empty.



PREs and succinct intersection

Main tool for Expspace-hardness:

Given PRE’s e1, . . . , en we can construct in polynomial time
a PRE e′ such that

L2(e′) is empty iff L2(e1) ∩ · · · ∩ L2(en) is empty.

Gives us Pspace-hardness for Nonemptiness2, since regular
expressions are PRE’s



Minimal size of words in L2(e)

Corollary (Nonemptiness2)

There exists a sequence of parameterized regular expressions

{en}n∈N such that:

1. Each en is of size polynomial in n.

2. Every word in the language L2(en) has size at least 22n
.
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Minimal size of words in L2(e): exponential bound

Consider PREs of the form:

(0 | 1)∗ x1 · x2 · · · xn (0 | 1)∗ (n ≥ 1).

◮ If w ∈ L2(e), then it contains as a subword each w ′ ∈ {0, 1}n.

de Bruijn sequences of order n, which are of size ≥ 2n.



Decision problems: Universality

Universality◦: Is L◦(e) = Σ∗?

As opposed to nonemptiness, universality is more difficult for the
3-semantics than for the 2-semantics:

◮ Universality2 is Pspace-complete.

◮ Universality3 is Expspace-complete.

◮ It remains Expspace-complete even over the class of simple
expressions.
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Containment◦: Is L◦(e1) ⊆ L◦(e2)?
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◮ L is empty iff L ⊆ ∅



Decision problems: Containment

Containment◦: Is L◦(e1) ⊆ L◦(e2)?

We can reduce from other problems, since:

◮ L is empty iff L ⊆ ∅

◮ L is Σ∗ iff Σ∗ ⊆ L.

Thus,

Containment2 and Containment3 are Expspace-complete.

◮ Even if restricted to simple expressions.



Decision problems: Membership

Is w in L3(e) or L2(e)?

Guess a valuation ν:

◮ w ∈ L(ν(e)) (possibility)

◮ w /∈ L(ν(e)) (certainty)

Gives us NP and coNP bounds



Decision problems: Membership

Is w in L3(e) or L2(e)?

Guess a valuation ν:

◮ w ∈ L(ν(e)) (possibility)

◮ w /∈ L(ν(e)) (certainty)

Gives us NP and coNP bounds (tight).

Theorem
◮ Membership3 is NP-complete.

◮ Membership2 is coNP-complete.



Decision problems: Membership

We can do a finer analysis:

Proposition

◮ The complexity of Membership3 is as follows:

1. Simple expressions: NP-complete.
2. Star-height 0 expressions: NP-complete.
3. Simple and star-height 0 expressions: Ptime.

◮ The complexity of Membership2 is as follows:

1. Simple expressions: coNP-complete.
2. Star-height 0 expressions: coNP-complete.
3. Simple and star-height 0 expressions: Ptime.
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◮ Containment when one expression is fixed.
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Also in the paper:

◮ Containment when one expression is fixed.

◮ Membership when the word is fixed.

◮ Emptiness of the intersection with a regular language

These problems are motivated by the application of PREs



◮ Upper bound techniques

◮ Decision problems

◮ Computational problems

◮ Extending the semantics

◮ Future work



Computational problems

What is the size of the minimal NFA A such that L(A) = L3(e)
or L(A) = L2(e)?



Computational problems

What is the size of the minimal NFA A such that L(A) = L3(e)
or L(A) = L2(e)?

Theorem

The sizes of minimal NFAs are:

◮ necessarily double-exponential for L2

◮ necessarily exponential for L3.



Proof skecth of minimal size NFA for L2

We use the following result by Glaister and Shallit:

If L is a regular language, and there exists a set of pairs

P = {(ui , vi ) | 1 ≤ i ≤ m} ⊆ Σ∗ × Σ∗, such that

1. uivi ∈ L,

2. ujvi /∈ L for i 6= j ,

then every NFA accepting L has at least m states.



Proof skecth of minimal size NFA for L2

Consider the following family of PREs:

en = ((0 | 1)n+1)∗ · x1 · · · xn · xn+1 · ((0 | 1)n+1)∗ (n ≥ 1)

◮ Each en is of linear size on n.

We shall construct a Fooling Set for L2(en).



Proof skecth of minimal size NFA for L2

Given a set S ⊂ {0, 1}n+1 of size 2n:

◮ wS is the concatenation in lexicographical order of all words in
S ; and

◮ wS̄,n is the concatenation in lexicographical order of all words

in {0, 1}n+1 that are not in S .



Proof skecth of minimal size NFA for L2

We define:

Pn := {(wS ,wS̄,n) | S ⊂ {0, 1}n+1 and |S | = 2n},



Proof skecth of minimal size NFA for L2

We define:

Pn := {(wS ,wS̄,n) | S ⊂ {0, 1}n+1 and |S | = 2n},

1. There are
(2n+1

2n

)

≥ 22n
different subsets of {0, 1}n+1 of size

2n, and thus |Pn| ≥ 22n
.

2. (wS ,wS̄,n) belongs to L2(en), but

3. (wS1
,wS̄2,n

) are not in L2(en), for distinct S1 and S2.



◮ Upper bound techniques

◮ Decision problems

◮ Computational problems

◮ Extending the semantics

◮ Future work



Extending Semantics

We can extend semantics and allow replacement of variables by
words that belong to some regular language.

◮ 3-semantics: Easily becomes non-regular (e.g. xx = squared
words). Regular for finite languages.



Extending Semantics

We can extend semantics and allow replacement of variables by
words that belong to some regular language.

◮ 3-semantics: Easily becomes non-regular (e.g. xx = squared
words). Regular for finite languages.

◮ 2-semantics: Keeps being regular. Same complexity bounds
apply.



◮ Upper bound techniques

◮ Decision problems

◮ Computational problems

◮ Extending the semantics

◮ Future work



Future work

Closure properties:

◮ The minimal NFA A that accepts L2(e1) ∩ L2(e2) is
necessarily of double-exponential size.



Future work

Closure properties:

◮ The minimal NFA A that accepts L2(e1) ∩ L2(e2) is
necessarily of double-exponential size.

◮ Perhaps it is possible to construct in polynomial time a PRE e

such that L2(e) = L2(e1) ∩ L2(e2).


