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ABSTRACT

In the traditional data exchange setting, source instaa@egestricted to be
completein the sense that every fact is either true or false in thestarices.
Although natural for a typical database translation sdenéris restriction
is gradually becoming an impediment to the development dtla vange of
applications that need to exchange objects that admitalemézrpretations.
In particular, we are motivated by two specific applicatitimst go beyond
the usual data exchange scenario: exchangiogmplete informatiorand
exchangingnowledge bases

In this paper, we propose a general framework for data exgehtivat can
deal with these two applications. More specifically, we addithe problem
of exchanging information given biepresentation systemwhich are es-
sentially finite descriptions of (possibly infinite) setscoinplete instances.
We make use of the classical semantics of mappings specifiegts of
logical sentences to give a meaningful semantics to themati exchang-
ing representatives, from which the standard notions aftewl, space of
solutions, and universal solution naturally arise. We al¢émduce the no-
tion of strong representation system for a class of mappitiga resembles
the concept of strong representation system for a queryitagey We show
the robustness of our proposal by applying it to the two apfibns men-
tioned above: exchanging incomplete information and exgimg knowl-
edge bases, which are both instantiations of the excharngioigem for
representation systems. We study these two applicatiodstail, present-
ing results regarding expressiveness, query answeringcamglexity of
computing solutions, and also algorithms to materializatems.
Categories and Subject Descriptors
H.2.5 [Heterogeneous DatabasgsData translation
General Terms
Algorithms, Theory
Keywords
Data exchange, knowledge exchange, data integratiorgegeptation sys-
tem, metadata management, schema mapping

1. INTRODUCTION

In the typical data exchange setting, one is given a soutwnsa
and a target schema, a schema mappitghat specifies the rela-
tionship between the source and the target, and an insfaofcéhe

source schema. The basic problem then is how to materiatize a
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instance of the target schema that reflects the source datzas
rately as possible [13]. In data exchange terms, the prolsdmow
to materialize thdest solutiorfor I under M.

In this traditional setting, source instances are resilicb be
complete every fact in them is either true or false. While natural
in many scenarios, this restriction cannot capture a widgeaf
applications dealing with objects that admit several tetations.
We are motivated by two such applications: exchangiegmplete
informationand exchangingnowledge bases

Exchanging Incomplete Information. Universal solutions have
been proposed as the preferred solutions for data exch&igen
a source instancé and a schema mappingt, a universal solu-
tion J is a target instance that represents, in a precise sense, all
the possible solutions fof [13]. Even in the scenario in which
mappings are specified by source-to-target tuple-generdépen-
dencies (st-tgds), it has been noted that universal soktieeed
null values to correctly reflect the data in the source [13]. Tthes,
preferred solutions in this scenario aneomplete databasg20].
But what if one needs to exchange data from these instandbs wi
null values? What is the semantics of data exchange in teis?ca
This issue has been raised before by Afrati et al. in the cbiofe
query answering [2] and also by Fagin et al. in the contextetom
data management [16]. But the problem is much wider, as ibtis n
even clear what good translationis for a source instance with
null values, even in the most simplest data exchange ssttihgst
as an example of the questions that need to be answered, given
source instance with null values, is a target instance withval-
ues enough to correctly represent the source information?
Exchanging Knowledge BasesNowadays several applications
use knowledge bases to represent their data. A prototygieah-
ple is the Semantic Web, where repositories store infoonaiti
the form of RDFS graphs [19] or OWL specifications [24]. Inlbot
cases, we have not only data but atatesthat allow one to infer
new data. Thus, in a data exchange application over the Seman
tic Web, one would naturally have as input a schema mappidg an
a source specification consisting of data together with saes,
and then one would like to create a target specification naditer
ing data and creating new rules to correctly represent tlogvkn
edge in the source. But what does it mean for a target knowledg
base to be a valid translation of a source knowledge basef® Or,
data exchange terms, when does a target knowledge base can be
considered a solution for a source knowledge base undereansch
mapping? And more importantly, what constitutegomdsolution
for a source knowledge base? These questions motivate tke de
opment of a generdnowledge exchangeamework.

In this paper, we propose a general framework for data exgghan
that can deal with the above two applications. More spedlificaie
address the problem of exchanging information givemdpyesen-



tation systemswhich are essentially finite descriptions of (possibly
infinite) sets of complete instances. We make use of theielass
cal semantics of mappings specified by sets of logical seateto
give a meaningful semantics to the notion of exchangingesgn-
tatives, thus not altering the usual semantics of schemaimgs
From this, the standard notions of solution, space of smigtiand
universal solution naturally arise. We also introduce tbgam of
strong representation system for a class of mappingsich re-
sembles the concept of strong representation system foeg qu
language [20, 17]. A strong representation system for & claxf
mapping is, intuitively, aclosed systerin the sense that for every
representativg in the system and mappingt in C, the space of
solutions ofZ underM can be represented in the same system.

As our first application, we study the exchange of incomplete
information. One of the main issues when managing incoraplet
information is that most of its associated tasks, in paldicquery
answering, are considerably harder than in the classit@hgef
complete data [20, 17]. Thus, itis challenging to find repreation
systems that are expressive enough to deserve investigatile
admitting efficient procedures for practical data exchgnggoses.

In this paper, we study the representation system givepoly
tive conditional tableswhich are essentially conditional tables [20]
that do not use negation. For positive conditional tableskhav
that, given a mapping specified by st-tgds, it is possible &bem
rialize universal solutions and compute certain answerstons
of conjunctive queries in polynomial time, thus matching dom-
plexity bounds of traditional data exchange. But more irtgnaty,
we show that positive conditional tables are expressiveigmado
form a strong representation system for the class of mapspec-
ified by st-tgds. We prove that this result is optimal in thasse
that the main features of positive conditional tables aedrd to
obtain a strong representation system for this class of mgpp
Moreover, we prove that instances with null values, thathzsen
widely used as a representation system in data exchang2]13,

22, 16], do not form a strong representation system for tagsobf
mappings specified by st-tgds, and thus, cannot corregihgsent
the space of solutions of a source instance with null valbeslly,

we show that positive conditional instances can be usedhiersa
mapping management to solve some fundamental and prolitemat
issues that arise when combining tt@mpositionandinverseop-
erators [7, 8].

We then apply our framework to knowledge bases. A knowl-
edge base is composed of explicit data, in our context aioaklt
database, plus implicit data given in the form of a set ofdabi
sentences.. This setX states how to infer new data from the
explicit data. The semantics of a knowledge base is givertdy i
set ofmodels which are all the instances that contain the explicit
data and satisfi.. In this sense, a knowledge base is also a rep-
resentation system and, thus, can be studied in our gemanaéf
work. In fact, by applying this framework we introduce theion
of knowledge exchangevhich is the problem of materializing a
target knowledge base that correctly represents the sani@e
mation. We then study several issues including the complexi
recognizing knowledge-base solutions, the problem of attar-
izing when a knowledge base can be considergaad solution,
and the problem of computing such knowledge-base solufmms
mappings specified by full st-tgds (which are st-tgds thatataise
existential quantification). Our results are a first stepaas the
development of a general framework for exchanging spetidics
that are more expressive than the usual database instanqes-
ticular, this framework can be used in the exchange of RDBEShy
and OWL specifications, a problem becoming more and more im-
portant in Semantic Web applications.

We have structured the paper into three parts. We preserdg som
terminology and our general exchange framework for reptase
tion systems in Sections 2 and 3. In Sections 4, 5 and 6, wetres
our results regarding the exchange of incomplete informnatki-
nally, in Sections 7 and 8, we introduce and study the proldém
exchanging knowledge bases.

2. PRELIMINARIES

A schemaS is a finite set{R1,..., R} of relation symbols,
with eachR; having a fixed arityn; > 0. Let D be a countably
infinite domain. An instancé of S assigns to each relation symbol
R; of S afinite relationk! C D™:. INST(S) denotes the set of all
instances ofs. We denote bylom(7) the set of all elements that
occur in any of the relation®!. We say thatR; (¢) is a fact of [ if
t € RI. We sometimes denote an instance by its set of facts.

Given schema$S; andS,, aschema mappin{pr justmapping
from S; to Sz is a subset of NST(S1) x INST(S2). We say that
J is asolution forI under M whenever(1, J) € M. The set of
all solutions forl underM is denoted by 8Lq(7). LetS; and
S» be schemas with no relation symbols in common Bralset of
first-order logic (FO) sentences o\v&r U S>. A mappingM from
S1 to S2 is specifiedby X, denoted byM = (S1,S2, ), if for
every(I,J) € INST(S1) x INST(S2), we have thatl, J) € M
if and only if (I, .J) satisfiesX. Notice that mappings are binary
relations, and thus we can define the composition of mapgEBgs
for the composition of binary relations. Leétl:» be a mapping
from schemaS; to schemaS,; and Ms23 a mapping fromS- to
schemaSs. ThenM 2 o Ma3 is a mapping fron8; to Ss given
by the set{(7, J) € INST(S1) x INST(S3) | there existsK such
that(I,K) € Mo and(K, J) € M23} [14].

DependenciesA relational atom oves is a formula of the form
R(z) with R € S andz a tuple of (not necessarily distinct) vari-
ables. A tuple-generating dependency (tgd) over a sclfgmsaa
sentence of the formzVy(p(z, y) — 32 ¢(Z, Z)), wherep(z, 3)
and«(Z, z) are conjunctions of relational atoms o&r The left-
hand side of the implication in a tgd is called the premise, thie
right-hand side the conclusion. féll tgd is a tgd with no existen-
tially quantified variables in its conclusion. We usually ibthe
universal quantifier when writing tgds.

Given disjoint schema$8; and S., a source-to-target tgdst-
tgd) fromS; to S; is a tgd in which the premise is a formula over
S: and the conclusion is a formula ovBk. As for the case of
full tgds, a full st-tgd is an st-tgd with no existentially aptified
variables in its conclusion. In this paper, we assume thaet of
dependencies are finite.

Queries and certain answers:A k-ary queryQ over a schema
S, with & > 0, is a function that maps every instante INST(S)
into ak-relationQ(I) C dom(I)*. In this paper, CQ is the class
of conjunctive queries and UCQ is the class of unions of aoryju
tive queries. If we extend these classes by allowing edeslir
inequalities, then we use superscrigtand#, respectively. Thus,
for example, UC@ is the class of union of conjunctive queries
with inequalities. LetM be a mapping from a schens to a
schemaS,, I an instance ofS; and @ a query overS,. Then
certaina(Q, I) denotes the set afertain answerf @ over I
underM, that is,certain (@, I) = ﬂ(,eSOLM(I) Q).

3. SCHEMA MAPPINGS AND REPRESEN-
TATION SYSTEMS

A (usual) database instanéds said to contain complete informa-
tion as every faciR(t) is either true or false id. In that sense,
there is a single possible interpretation of the infornmatiol. On



the other hand, in a database instance with incompletenveton
some values are unknown (which are usually represented by nu
values) and, hence, one is not certain about its contenthdn t
sense, one has several possible interpretations for theniation

in such instances. In the same spirit, a knowledge basely$izal
several models, which represent different ways to intetheerules

or axioms in the knowledge base. In this section, we prekentad-
tion of representation systeff0, 3], which is a general way to deal
with objects that admit different interpretations, andtie show
how to extend a schema mapping to deal with representat®n sy
tems. This extension is fundamental for our study as it alog/to
extend, in a simple and natural way, the data exchange frarkew
proposed by Fagin et al. [13] to the case of database ingavite
incomplete information as well as to the case of knowledgeba

3.1 Exchanging information given by repre-
sentation systems

A representation systets composed of a s&V of represen-
tativesand a function rep that assigns a set of instances to ev-
ery element inW. We assume that every representation system
(W, rep) is uniform in the sense that for eveyy € W, there ex-
ists a relational schem®, that is called the type ofV, such that
rep(V) C INST(S) [20]. Representation systems are used to de-
scribe sets of possible interpretations in a succinct wagpical
examples of representation systems are Codd tables, radilest
conditional tables [20], and world-set decompositions [3]

Assume thatM is a mapping from a schenfs to a schema
S2. Given a setX of instances ofS;, define ®Ly(X) as
Urex SOLM(I). Thatis, L(X) is the set of possible solu-
tions for the instances i&’. In the following definition, we use
SoL(+) to extend the notion of solution to the case of representa-
tion systems.

Definition 3.1 Let R = (W, rep) be a representation systeni{
a mapping from a schenfa, to a schema, andV, W elements
of W of typesS; and S., respectively. ThehV is anR-solution
for ¥V under M if rep(W) C SoLa(rep(V)).

In other words, given a representation systRm= (W, rep) and
V, W € W, it holds thatVV is anR-solution forV under a map-
ping M if for every J € rep()V), there existd € rep(V) such that
(I,J) e M.

Assume given a representation syst®&n= (W,rep) and a
mapping M. An element of W can have a large number &-
solutions underM, even an infinite number in some cases, and,
thus, it is natural to ask what isgood solution for this element
under M. Next we introduce the notion of universgl-solution,
which is a simple extension of the conceptofsolution introduced
in Definition 3.1.

Definition 3.2 Let R = (W, rep) be a representation systent{
a mapping from a schenfa, to a schema, andV, W elements
of W of typesS; and S», respectively. ThemV is a universal
‘R-solution forV under M if rep(W) = SoL(rep(V)).

This new notion captures the intuition of exactly represgnthe
space of possible solutions of the interpretations of amete of a
representation system.

3.2 Strong representation systems for a class
of mappings
The classical work on incomplete databases [20] definesdhe n
tion of strong representation systefior a class of queries. In fact,
the classical result in [20] about these systems statesctimati-
tional tables are a strong representation system for oelaial-

gebra. In our context, we are interested in defining the nabio
strong representation system for a class of mappings.

Definition 3.3 LetC be a class of mappings aridV, rep) a repre-
sentation system. Th€W, rep) is a strong representation system
for C if for every mappingM € C from a schem&; to a schema
So, and for every/ € W of typeS1, there exist3V € W of type
S, such that rep)V) = SoL(rep(ld)).

In other words, a representation syst@&n= (W, rep) is a strong
representation system for a class of mappifidgsfor every map-
ping M € C from a schem&; to a schema., and for every
U € W of type S;, a universalR-solution fori/ under M can
be represented in the same system (it is an elemeW pfNotice
that if C allows for mappings in which no solution exist for some
of their instances, then any strong representation sysiethrhust
be able to represent tleenptyset of instances.

4. STRONG REPRESENTATION SYS-
TEMS FOR ST-TGDS

As pointed out before, one of the goals of this paper is toystud
the problem of exchanging databases with incomplete irdion.
To this end, we first borrowed from [20, 3] the notion of regres
tation system, which gives us a way to represent databasesnwi
complete information, and then we introduced the notiortrafig
representation system for a class of mappings, which eabgiel|
us that a particular way of representing databases withmiptete
information is appropriate for a class of mappings. In tleisti®n,
we apply these concepts to the widely used class of mappp&gs s
ified by st-tgds and, in particular, we answer the questiowludt
is a good representation system for this class. Notice tvatnap-
pings only contain instances with complete informationudhas
opposed to previous work [13, 21, 16], we make a clear distinc
tion between instances participating in a mapping and ipteta
instances that are used as representatives for spacesitbissl

The starting points for our study are naive tables, which are
widely used in the data exchange context [13, 21, 16], andieon
tional tables, which are known to be an expressive way taessmt
databases with incomplete information [20]. In Section %é de-
fine the representation systems based on these two typesies,ta
together with a representation system basepasitiveconditional
tables, a fragment of conditional tables proposed in thigepaln
Section 4.2, we show that both conditional tables and pesitbn-
ditional tables form strong representation systems forcthss of
mappings given by st-tgds, and we also show that naive talpées
not expressive enough to form such a system. Finally, ini&ect
4.3, we give strong evidence that positive conditional éatdre
the right representation system for the class of mappingsifsgd
by st-tgds, by proving that the main features in these itgsiare
needed to obtain a strong representation system for ttgs.cla

4.1 Naive and conditional instances

Our database instances are constructed by using elemeats of
countably infinite seD. To represent incomplete information we
assume the existence of a countably infinitelSeif labeled nulls
disjoint with D. To differentiate from nulls we cationstant values
the elements iD. Fix a relational schem8 for this section. Then
a naive instanceZ of S assigns to each relation symbBl € S
of arity k, a finitek-ary relationR” C (D U N)*, that is, ak-ary
relation including constants and null valuescénditional instance
extends the notion of naive instance witloeal condition attached
to each fact. More precisely, aglement-conditioris a positive
Boolean combination (only connectivésand vV are allowed) of
formulas of the forme = y andz # y, withz € N andy € (DU



N). Then a conditional instancg of S assigns to each relation
symbol R of arity k, a pair(R%, p%), whereR? C (D UN)* and
p% is a function that associates to each tuple R an element-
conditionp% (t) (the local condition of the fack(t) [20]).

To define the sets of interpretations associated to naiveamd
ditional instances, we need to introduce some terminol@jyen
a naive or conditional instancg, definenulls(Z) as the set of
nulls mentioned inZ (if Z is a conditional instancenulls(Z)
also includes the nulls mentioned in the local conditionsZpf
Moreover, given a null substitution : nulls(Z) — D, define
v(RT) = {v(t) | t € RT}, wherev(t) is obtained by replacing
every nulln in ¢ by its imager(n). Then for every naive instance
7, and slightly abusing notation, define the set of represigatof
Z, denoted by rep,«(Z), as:

{I € INST(S) | there exist : nulls(Z) — D
such that for every® € S, it holds that(R”) C R’}

Moreover, for every conditional instan@e define the set of rep-
resentatives ofZ, denoted by rep, 4(Z), as follows. Given an
element-conditionp and a null substitution : V' — D, where
V is a set of nulls that contains every null value mentioneg,n
notationv |= ¢ is used to indicate that satisfiesy in the usual
sense. Moreover, given a null substitutien nulls(Z) — D and
R € S, definev(R*, p%) as{v(t) | t € RT andv = pk(t)}.
Then rep,.4(Z) is the following set of instances:

{I € INST(S) | there exist® : nulls(Z) — D
such that for every? € S, it holds thatv(R”, p%;) € R'}.

We use rep,,.and rep,,to define two fundamental representation
systems. Assume thaW naive and Weong are the set of all possible
naive instances and conditional instances (over all plesséda-
tional schemas), respectively. Th&have = (W naive, '€Phaie) aNd
Reond = (Weond, rfefL,ng) are representation systems.

We conclude this section by introducing a fragment of the<la
of conditional instances that will be extensively used is thaper.
We say that an element-conditiongssitiveif it does not mention
any formula of the forme # y. Then a conditional instancg of
S is said to be positive if for everyz € S andt € RZ, it holds
thatp%(t) is a positive element-condition. We denoteWpos the
set of all positive conditional instances, by teghe restriction of
function rep,,q to the class of positive conditional instances, and
by Ryos the representation systefWpos, rep,,s). When itis clear
from the context, we just use rep instead of (&0 refong OF MR

4.2 Building a strong representation system
for st-tgds

Fagin et al. showed in [13] that for the class of mappings spec
ified by st-tgds, naive instances are enough to represerspéee
of solutions of any complete database. More precisely,rasgu
that M = (S1,S2, ¥12), whereX, is a set of st-tgds, we have
that for every instancd; of S1, there exists a naive instande
of S, such that reff>) = SoLa(I1). Thus, given that the tar-
get data generated by a mapping can be used as the sourca data
other mappings, it is natural to ask whether the same residsh
when naive instances are considered as source instancasis;Th
it is natural to ask whether for every mapping specified by a
set of st-tgds and for every source naive instahcethere exists
a target naive instancg; such that refifz) = SoLa(rep(Zy)).
Unfortunately, the following example shows that it is na ttase.

Example 4.1.LetS; = {P(-,-)},S2 = {T'(-), R(-,)} andX12 a

set consisting of the following st-tgds:

P(z,y) — R(z,y),
P(z,z) — T(x).

Moreover, letZ be a naive instance &, such thatP” = {(n,a)},
wheren is a null value and is a constant. Itis not difficult to prove
that if 7 is a naive instance @&, then reg.7) # SoLa(rep(Z)).
The reason for this is that a naive instance cannot représefdct
that if n is given valuea in some representative @, thenT'(a)
holds in every solution for that representative[]

From the previous example, we conclude that:

Proposition 4.2 Naive instances do not form a strong representa-
tion system for the class of mappings specified by st-tgds.

What should be added to naive instances to obtain a strong rep
resentation system for the class of mapping given by st2tgés
natural candidate are the local conditions presented itiddet. 1,

as shown in the following example. In this example, and inrds

of the paper, we assume thatis an arbitrary element-condition
that always holds (for example,= n with n € ).

Example 4.3.Let M andZ be as in Example 4.1, and be a con-
ditional instance that contains the following facts andditons in
the relationsk andT":

R(n,a)
T(n)

n=a

Then it can be proved that reff) = SoLy(rep(Z)). O

In the previous example, we use only positive element-
conditions to represent the space of solutions of the soumges
instance. Thus, it is natural to ask whether this is a gensrat
nomenon, or whether one needs to consider non-positiveegliem
conditions of the fornx # y to find a strong representation system
for the class of mappings specified by st-tgds. In the folhgthe-
orem, we prove that positive conditions are indeed enough.

Theorem 4.4 Positive conditional instances form a strong repre-
sentation system for the class of mappings specified bylst-tg

We conclude this section by showing that conditional instaralso
form a strong representation system for the class of mapspec-
ified by st-tgds, thus giving us an alternative system to detd
incomplete information in schema mappings.

Theorem 4.5 Conditional instances form a strong representation
system for the class of mappings specified by st-tgds.

4.3 Positive conditional instances are the

needed fragment

In the previous section, we show that both conditional imsta
and positive conditional instances form strong represiemtays-
tems for the class of mappings specified by st-tgds. Givesethe
alternatives, it is natural to ask whether there exist offssible
strong representation systems for this class of mappingjsvaich
one could be considered as thight system for this class. In this
section, we give strong evidence that positive conditiomstnces
are the right representation system for mappings specifyest-b
'tgds, by proving that the main features in these instaneaseded
to obtain a strong representation system for this class ppings.

In a positive conditional instance, a local condition iselted
to each fact. The distinctive features of these local caomst
are the use of disjunction, equalities of the form = ns, with
ni,ne € N, and equalities of the form = ¢, withn € N and
¢ € D. In this section, we show that if one removes any of these
features and keeps the other two, then the resulting rapezm



system does not form a strong representation system fordke c
of mappings specified by st-tgds. More precisely, given dtipes
conditional instanc& of a relational schem8, we say thafZ is
null-comparison free if no local condition i mentions a formula
of the formn; = ns with n1,n2 € N, and we say thaf is
null-constant-comparison free if no local conditionZirmentions
a formula of the forrn = ¢ with n € N andc € D. Moreover,
we say thafl is disjunction free if for evenk € S and¢ € RZ, it
holds thaip%(¢) does not mention Boolean connective

Theorem 4.6 None of the following form a strong representation
system for the class of mappings specified by st-tgds: (1) nul
comparison free positive conditional instances, (2) malhstant-
comparison free positive conditional instances and (3judistion
free positive conditional instances.

5. DATA EXCHANGE WITH POSITIVE
CONDITIONAL INSTANCES

In the data exchange setting, one is given a mappidrom a
source schema to a target schema and a source instaand the
goal is to materialize a solutias for I underM. This setting has
been widely studied in the literature, where many imporpnb-
lems have been addressed in order to develop data exchanige to
In this section, we focus on three of the most important tasks
data exchange: materializing solutions, computing cedaswers
to target queries, and checking whether a target instanaess
lution for a source instance under a mapping [13], and shaw ho
these tasks are performed in the presence of positive comalit
instances. In particular, we prove that the fundamentablpros
of materializing solutions and computing certain answersatget
queries can be solved efficiently in this extended data exgda
scenario, thus showing that positive conditional instanua only
allow a uniform way of dealing with the exchange of incomelet
information, but also that they can be used in practice.

5.1 Materializing solutions

The most important problem in data exchange is the problem
of materializing agood solution for a given source instance. For
mappings specified with st-tgds, these areuhi&ersal solutions
Polynomial-time algorithms have been developed to cominetse
solutions [13], which have allowed the construction of picat
data exchange tools. In the context of a representatioersyRt,
universalR-solutions are the preferred option as they are able to
exactly represent the spaces of solutions of the source htss,
to show that positive conditional instances can be useddctioe,
one needs to develop an efficient algorithm for computingemi
sal Rpos-solutions. In the following theorem, we show that such an
algorithms exists.

Theorem 5.1 Let M = (Si,S2,312), whereX; is a set of st-
tgds. Then there exists a polynomial-time algorithm thateg a
positive conditional instancg of S;, computes a universa pos-

solution forZ under M.

It is important to notice that in the previous result the seste
tgds defining a schema mapping is assumed to be fixed. This is th
usual assumption when studying the complexity of mateiiai
solutions in data exchange [13].

The algorithm in Theorem 5.1 is based on daseprocedure,
as usual in data exchange [13]. In particular, our proceidurased
on the chase algorithms presented in [17], and is similanémne
recently proposed in [18]. Notice that, as shown in Sectidh 4
the straightforward application of the chase may not detive ex-
pected result, as naive instances do not form a strong N

system for the class of mappings specified by st-tgds. Thes, o
needs to modify the chase procedure to take into considartte
element-conditions in positive conditional instancespéanticular,
one has to consider that some relationships between nuksalan
fire the application of a dependency, and one has to makecéxpli
these relationships in the generated tuples by using naweele
conditions. Due to the lack of space, we do not present thaseh
procedure in detail but show the basic ideas behind our ighgor
in the following example.

Example 5.2. LetS; = {P(,-), R(-,)}, S2 = {S(-,"),T(")}
andXi» a set consisting of the following st-tgds:

P(z,y)
R(z,x)

Moreover, letZ be a positive conditional instance given by:

P(nl,ng) T
R(ni,n2) (n1=a),

wheren; andns are null values and is a constant. To create
a universafRpos-solution 7, the procedure works as follows. For
the first dependency, it works as the classical chase, thatidds
tuple (n1,n2) to S7 with T as local condition. For the second
dependency, the procedure considers that this dependboalds
be fired when condition; = n2 holds. In this case, the procedure
also needs to carry along the element-conditign= a. Thus, it
adds the tuplén, ) to7"7, but this time the local condition consists
of the conjunction ofn; = a) with (n1 = n2). Summing up, the
following instance is constructed:

S(m,ng) T
T(n1) (n1 =a) A (n1 =no2)

It can be shown that this instance is a univef8gds-solution forZ
underM. O

—  S(z,y),
— T(z).

5.2 Computing certain answers

A second fundamental problem in data exchange is the task of
computing certain answers to target queries. In our conthig
problem is defined as follows. Given a positive conditional i
stanceZ of a schemeS and a queryQ over S, defineQ(Z) as
Mrerepz) @) Moreover, given a mapping from a schema
S; to a schemas,, a positive conditional instancg of S; and a
query(@ overS,, the set of certain answers @foverZ underM,
denoted bycertain g (@, Z), is defined as:

Q(T)-
J : J is anRpossolution forZ underM

It should be noticed that this definition of certain answérshe
presence of an incomplete source instaficeoincides with the
definition in [2] for the case of naive instances (which isttbere-
sentation system used in [2]).

Given a data exchange setting from a schem®; to a schema
So, and ak-ary queryQ over S2, we consider in this section the
following decision problem:

Problem: CERTAINANSWERSM, Q)
Input: A positive conditional instancg& of S; and ak-
tuplet of elements fronD.
Question  Doest belong tocertaina (Q,Z)?

In the previous problem, we assume that the data exchantiyggset
M and the queryy are fixed. Thus, we are interested in the data
complexity of the problem of computing certain answers.



It was proved in [13] that for the class of mappings specified
by st-tgds, each universal solution of an instafi@an be directly
used to compute the certain answers of any unions of coryenct
queries. In the following proposition, we show that thisulesan
be extended to any query if one considers univeRsalk-solutions.

Proposition 5.3 Let M = (S1,S2,X12), whereX;; is a set of
st-tgds,Z a positive conditional instance &f; and @ an arbitrary
query overS,. Then for every universaRyos-solution 7 for 7
under M, it holds thatcertain pm (Q,Z) = Q(J).

In Theorem 5.1, we showed that if a mapping is specified by
a set of st-tgds, then there exists a polynomial time algorithat,
given a source instancg computes a universaos-solution J
for Z under M. Moreover, from the results in [17], it is possible
to conclude that for every unions of conjunctive queligsthere
exists a polynomial time algorithm that, given a positivaditional
instanceZ, computeg)(Z). From these results, we conclude that:

Theorem 5.4 Let M = (S1,S2,X12), whereX;, is a set of st-
tgds, and@ be a union of conjunctive queries ovB,. Then
CERTAINANSWERS.M, Q) can be solved in polynomial time.

This result matches the upper bound in [13] for the problem of
computing certain answers to a union of conjunctive qudries
usual data exchange setting, thus giving more evidencedsétve
conditional instances can be used in practical data exehiuds.

We conclude this section by pointing out that Fagin et ab als
showed in [13] that the above polynomial-time upper bounidsio
if one considers unions of conjunctive queries with at most o
inequality per disjunct. Here we show the correspondingltésr
our framework, which is proved by a nontrivial extension loé t
techniques in [13] for the case of positive conditional anstes.

Theorem 5.5 Let M = (Si,S2,312), whereX; is a set of st-
tgds, and@ be a union of conjunctive queries ov&s with at most
one inequality per disjunct. ThEDERTAINANSWEREM, @Q)) can
be solved in polynomial time.

5.3 Complexity of recognizing solutions

Let M be a mapping fron$; to Sz, andR = (W, rep) a rep-
resentation system. In this section, we study the complefiver-
ifying, given a pair(U4, W) of representatives, whethé is an
R-solution of/ under a mapping\. That is, we consider the
following decision problem:

Problem: CHECKSOLUTION(M,R)
Input: A pair of representatived, YV € W of typesS;
andS., respectively.
Question  Is W anRR-solution fort/ undermM?

In a traditional data exchange setting, deciding whether an
instanceJ is a solution forI under a fixed mapping\t =
(S1,S2,312) can be solved by checking (f, J) = 12, which
gives a straightforward polynomial-time procedure whan is a
set of FO sentences. For the case of naive, positive conditio
and conditional instances, this problem becomes moreeistieg.
Our first result shows that the complexity for positive cdiadial
instances is no more than for naive instances, in both caBes N

Theorem 5.6 Let M (S1,S2,%12), where X2 is a
set of st-tgds. ThenCHECKSOLUTION(M, Rnaive) and
CHECKSOLUTION(M, Rpos) are both NP-complete.

The following theorem shows that the complexity of the peofbl
is higher for conditional instances. This gives evidenc&ior of
using positive conditional instances instead of condéidamstances
as a representation system for st-tgds.

Theorem 5.7 Let M = (Si,S2,312), whereX; is a set of st-
tgds. TherCHECKSOLUTION(M, Reond) is I15'-complete.

It should be noticed that this result cannot be directly inletzh
from [1], since in that paper conditional instances altghabal con-
ditionsthat we do not consider in this paper.

6. METADATA MANAGEMENT WITH
POSITIVE CONDITIONAL INSTANCES

In the previous sections, we have presented a number otsesul
that give evidence that positive conditional instancesaggopri-
ate for data exchange purposes. In this section, we givepdate
ward in this direction, and show that they are also apprgifier
metadata management purposes.

In the data exchange setting proposed by Fagin et al in [13]
two types of schemas are considered: source and target ashem
In the former, only the usual instances with complete infation
are allowed, while in the latter naive instances are alssidened.
This setting has played a key role in the study and developofen
schema mapping operators, which are of fundamental impoeta
in metadata management [7, 8].

Two of the most fundamental operations in metadata manage-
ment are theeompositionandinversionof schema mappings. The
problem of composing schema mappings was solved in [14hfor t
class of mappings specified by st-tgds. More precisely, rFagi
al. proposed in [14] the language of SO tgds (see Sectior64. f
formal definition of this language), and showed that it is tthie-
imal class of mappings capable of expressing the composition of
mappings specified by st-tgds [14]. On the other hand, the defi
nition of an inverse operator has turned out to be a very diffic
problem, and even the definition ofy@odsemantics for this oper-
ator has been the main topic of several papers in the area%18,

16, 5]. Furthermore, people have also realized that the ositipn

and inverse operators have to be used together in many netada
management tasks, such as schema evolution [8]. This hagtiiro
more complexity into the picture, as the combined use of tme-c
position and inverse operators requires that the target giater-
ated by a mapping could be used by other mappings as the source
data. This was recognized by Fagin et al. in [16], where th®no

of inversion proposed in [6] was extended to deal with soneiee
instances. Nevertheless, even though the language of Sthégd
proved to be the right language for composing mappings eéci

by st-tgds, none of the proposed inverse operators has epn p
erly assembled with the language of SO tgds. Indeed, SO tgds d
not always admit an inverse under the notions of inversidimele

in [12, 15, 6, 5], and it is not clear whether the notion of irsien
introduced in [16] is appropriate for the language of SO tgds

Why does the problem of combining the composition and irevers
operators seem to be so difficult? We give strong evidenaethat
the reason is that naive instances are not expressive enoudgial
with the spaces of solutions of SO tgds. But, most signiflgant
we show here that positive conditional instances can be tsed
overcome this limitation, as we prove that they form a stroepm
resentation system for the class of mappings given by SQ &
that SO tgds admit an inverse under the notion proposed jn [6]
if positive conditional instances are allowed in source tardet
schemas. It remains an open problem to show whether thissieve
can always be specified with an SO tgd or not.

6.1 Positive conditional instances form a
strong representation system for SO-tgdS
A fundamental tool in the study of the composition of schema
mappings is the language of second-order st-tgds (SO tgdy [1



that we define next. Given schenfasandS;, an SO tgd fron8
to Sy is a second-order formula of the form:

3fy--3fe (VE(p1 — Y1) A AVEa(on — ¥n)),

where (1) eacly; is a function symbol, (2) each; is a conjunction
of relational atomic formulas d§; and equality atoms of the form
t = t/, wheret andt’ are terms built fronz; and f1, ..., fe, (3)
eachy); is a conjunction of relational atomic formulas 85 men-
tioning terms built fromz; and f1, . . ., f¢, and (4) each variable in
Z; appears in some relational atomic formulagf For example,
the following is an SO tgd:

af (V:v (BE(z) — R(z, f(x))) A

Ve (B(x) Aw = f(z) — T(2)). ()

A mapping M from a schem&; to a schema. is said to be
specified by an SO tge2 from S; to S, *, denoted byM =
(S1,S2,012), if for every pair of instances;, I of S; andSa,
respectively, it holds thdtl1, 1) € M ifand only if (11, I2) satis-

thus, we introduce a new terminology to refer to mappingsdts
contain positive conditional instances. In generadpaitive condi-
tional mapping, or just B-mapping, from a schentsy to a schema
S- is a set of pairgZ1,Z.), whereZ; is a positive conditional in-
stance ofS; andZ, is a positive conditional instance &:. In
this section, we will be mostly dealing withdPmappings that are
generated from a usual mapping by using the notion of saldtio
positive conditional instances. More precisely, givensu@l) map-
ping M from a schem#& to a schem&., define the B-mapping
generatedrom M, denoted by B(M), as:

{(Z1,Z2) | 71, Z» are positive conditional
instances of8; andS., respectively, and
1> is anRpos-solution forZ, underM}.
Thatis, RE(M) is obtained fromM\ by including the pair$Z; , Z2)
of positive conditional instances such thatis a solution forZ;

under M, according to the notion of solution for instances with
incomplete information introduced in this paper.

fieso, in the usual second-order logic sense (see [14] for a precise ~ Given a mapping\t, Pc(M) only includes positive conditional

definition of the semantics of SO tgds).
As our first result, we show that one can efficiently matez@li
positive conditional instances for a mapping given by an &0 t

Theorem 6.1 Let M = (81, S2,012), Whereo2 is an SO tgd.
Then there exists a polynomial-time algorithm, that givgositive
conditional instanceZ of S;, computes a universakpos-solution
for Z under M.

As a corollary, we obtain that positive conditional instes@re
appropriate for representing the spaces of solutions ofg8€ t

Corollary 6.2 Positive conditional instances form a strong repre-
sentation system for the class of mappings specified by SO tgd

An important remark about the previous results is that ttady f
low directly from the fact that positive conditional instas form a
strong representation system for the class of mappingsfigutoy
st-tgds (see Theorems 4.4 and 5.1), and the fact that foy avep-
ping M = (S1,S2,012), whereo2 is an SO tgd, there exists a
finite sequence of mappingst., .. ., My, each specified by a set
of st-tgds, such thatt = M o--- o M, [14]. Indeed, in order to
obtain a universaR pos-solution for a positive conditional instance

7 under M, one can use the techniques described in Section 5 to

construct a sequench, ..., Z; of positive conditional instances
such that: (1)Z; is a universalRpos-solution forZ underM; and
(2) Z; is a universalRpos-solution forZ;_; under.M;, for every

i € {2,...,k}. In this case one concludes tHAt is a universal
Rpos-solution forZ underM sinceM = M, o - - - o M. Notice
that this approach cannot be used to prove similar resuttsirwi
the data exchange setting proposed by Fagin et al. [13], ig8 na
instances do not form a strong representation system forléss
of mappings specified by st-tgds.

6.2 Positive conditional instances as first class
citizens

In the next sections, we study the composition and inversfon
schema mappings in the presence of positive conditiontdrigss.
But for doing this, we have to show first how positive conditib
instances are included as first class citizens in schemainggpp

We have defined mappings as sets of pairs of instances with com
plete information. Here we do not deviate from this defimitamd,

*We consider a single SO tgd in this definition as this classptddencies
is closed under conjunction (thus, a finite set of SO tgds isvatent to a
single SO tgd).

instances in the source and target schemas. We have decierd t
clude the usual instances with complete information froo(./®1),

as if M is specified by a set of st-tgds (and, more generally, by an
SO tgd), then the relationship between the usual instarmes

ing to M is captured by B(M). More precisely, an instance

of a schemd can be considered as a positive conditional instance
without null values and with the element-conditidrassociated to
every fact. Then it is possible to prove the following.

Proposition 6.3 Let M be a mapping from a schenféy to a
schemaS; that is closed-down on the left and closed-up on the
right. Then for every pair of instancds, I, of S; and S, respec-
tively, it holds that(1:, I.) € M iff (I, I2) € PC(M).

In this proposition, a mapping/ is said to be closed-down on the
left if for every (I,.J) € M and instancd’ such thatl’ C I,

it holds that(I’,J) € M, and it is said to be closed-up on the
right if for every (1, J) € M and instance/’ such that/ C J', it
holds that(7, J') € M. For example, every mapping specified by
a set of st-tgds satisfies these conditions, as well as evappimg
specified by an SO tgd.

6.3 Composition in the presence of positive
conditional instances

In [14], SO tgds were introduced to deal with the problem of
composing schema mappings. In fact, it was proved in [14](tha
the composition of a finite number of mappings specified hgds-
can always be specified by an SO tgd, (2) that SO tgds are closed
under composition, and (3) that every SO tgd specifies thgpoem
sition of a finite number of mappings specified by st-tgds. sThu
SO tgds are a natural candidate to study the compositiorhehsa
mappings including positive conditional instances. Weficonthis
intuition by showing that SO tgds satisfy the conditions (2) and
(3) for the case of B-mappings. Notice that for mapping$t2
and Mas, PC(M12) and Re(Mas) are binary relations and, thus,
the composition B(M12) o PC(M23) is defined as the usual com-
position of binary relations. More preciselycP\12) o PC(Ma3)
is the set of all pairs of positive conditional instandés,Zs)
for which there exists a positive conditional instarfeesuch that
(Z1,Z2) € Pc(M2) and(Z2,Zs) € Pc(Mas). In this study, the
following lemma is the key ingredient.

Lemma 6.4 Let Mi2 = (S1,S2,012) and Ma3 = (Sq,Ss,
023), Whereo12 andogs are SO tgds. TheRC(M 12 0 Mo3) =
PC(M12) o PC(MQS).



From the results in [14] and Lemma 6.4, it is straightforw&rd rulesspecified in some logical formalism. Examples of knowledge
prove the desired results. bases are Datalog programs (where the explicit data isdcake
tensional databasand the implicit datantentional databasg and
Description Logics specifications (where the explicit datealled
(1) Foreveryi € {1,...,k — 1}, let M;it1 = (Si,Si+1, ABoxand the implicit datd Boy. Let us motivate this section with
Yii+1) With 3,41 a set of st-tgds. Then there exists a map- a simple example.
ping Mux = (S1, Sk, 01x), whereoy, is an SO tgd, such  Example 7.1.Consider a schen®, consisting of relationg'(-, -),
thatPc(Mai2) o - - 0 PC(My—1%) = PC(My). M(-,-), P(-,-) andGP(,-), which are used to store genealogical
(2) LetM s = (S1,S2,012) and Mas = (Sa, S, 023), Where data (¢ stands forfather, M for mother P for parent andGP for
012 and oo3 are So tgds Then there exists a mappn’]g grandparen}. ConSider the f0||0Wing SeE1 Of I’u|eS that states
Mis = (S1,S3,013), whereos is an SO tgd, such that ~ Some natural implicit knowledge ové:

Corollary 6.5

PC(MlQ) o PC(Mzg) = PC(M13). F(x,y) N P(l’, y)
3) Let M = (S1,S2,012), whereo;2 is an SO tgd. _Then M(z,y) — P(z,y)
there eX|st_s_a sequenckt,, My, ..., Mj of mappings, p p GP
each specified by a set of st-tgds, such tRa{ M) = (@y) AP(y,2) — (x, 2)
Pc(M1) o Pc(M3z) o --- o PC(My). Thus, ifI = {F(a,b), M(c,b), F(b,d)}, then from/ and>; one

caninfer thata andc areparentsof b, and thatu andc aregrand-
parentsof d. That is, one can infer the atonf3(a, b), P(c,b),
GP(a,d), andGP(c, d). Now assume that one needs to exchange
data fromS; to a new schem8&, = {F’(-,-),GP/(-, )} by using

the following set:, of st-tgds:

F(z,y) — F'(z,y),
GP(z,y) — GP/(z,y)

In this case, one would like to create a knowledge base®yénat
represents both the explicit datafirand the implicit data given by
1. Thus, one could try first to represent overS; according to
the relationship established hyi>. Given that one is copying’
andGP throughX 12, the following rule oveiS; is a natural way of
representing the implicit knowledge ¥y that is transferred t8,

We have shown that SO tgds are the right language to deal with
the composition of schema mappings including positive il
instances. Interestingly, we show in the following sectioat the
inclusion of this type of instances also allow mappings Biget
with SO tgds to becomiavertible

6.4 Inversion in the presence of positive con-
ditional instances

We consider in this section the notion of mapping inversion i
troduced in [6]. In that paper, the authors give a formal digdim
for what it means for a mappingt’ to recoversound information
with respect to a mapping1. Such a mapping\t’ is called a re-
covery of M in [6]. Given that, in general, there may exist many
possible recoveries for a given mapping, an order relatiomes

coveries is introduced in [6] that naturally gives rise te tiotion through:2:
of maximum recovery, which is a mapping that brings back the Fl(z,y) NF'(y,z) — GF(x,2),
maximum amount of sound information. ) . .

Let S1, S» be relational schema$» a Pc-mapping fromS; This dependency states that if in schefawe have that: is the
to S2 andP21 a Pc-mapping fromSs to S1. ThenPs is said to father ofy and thaty is the father of ok, thenz should be a grand
be arecoveryof P1. if for every positive conditional instancg, parent ofz._ Let_Zl_g be consisting of the above rule. If one_co_nsiders
of Sy, it holds that(Z;,7,) € P12 o Pa1. Moreover,Ps; is said 22 as the implicit knowledge ove3, then one can mgterlallze the
to be amaximum recovergf P1 if P21 is a recovery ofP;» and instance. = {F"(a,b), F'(b,d), GP'(c,d)} to obtain a natural

for every Re-mappingP4, that is a recovery oPs., it holds that knowledge base ove3, .that represents the initial knowledge base
P1a 0 Pay C Pia o Phy. Thatis, the smaller the space of solutions  9IVen by and>;. Notice that the facGP(c, d) needs to be ex-

generated byPi2 o Po1, the more informativePs; is about the plicitly included in J, since it comes from an atom that is inferred
initial source instances. from predicateM in S;, and one does not have any information

It was shown in [5] that there exist mappings specified by SO aPoutM in S». On the other hand, one does not need to include in

tgds that admit neither a Fagin-inverse [12] nor a quasi+ise [15] J the factGP'(a, d), as it can be inferred fronf and¥,. [
nor a maximum recovery [6]. The same has been shown for the no- This example shows that for the case of knowledge bases, one
tion of CQ-maximum recovery studied in [5], and it is not clea  might be interested in exchanging not only explicit data dab
whether the notion of inversion introduced in [16] is appia the implicit information in the source knowledge base. Aswik
for the language of SO tgds. Thus, up to this point, no invarse see, in general one would have many possibilities when derid
tion has shown to be appropriate for the fundamental langadg  what to make explicit and what to keep implicit when exchaggi
SO tgds. As our most important result regarding metadatagean  knowledge bases.
ment, we show that the situation is completely differentasitive Next we formalize the notion of knowledge base used in this pa
conditional instances are allowed in source and targeinsake per, and introduce the notion of knowledge-base solutioa foap-
. ping. A knowledge basever a schem® is a pair(/,X), where
ng{:vecn(q/\?i?;grtnﬁ: a:mg?(il&i%ié?c;v\:avg/eremz is an SO tgd. I € INsT(S) andX is a set of logical sentences ov@r Given a
' knowledge basé!, X), we denote by MD(I, X) the set of possi-
ble modelsof this base, which are all the instances that contain the
7. KNOWLEDGE BASES explicit data inl and satisfy2:
In this section, we apply our framework for representatips s -
tems toknowledge basedn particular, we introduce the novel no- Mop(l,%) = {K €INST(S)|IC K andK =X}
tion of exchanging implicit knowledgeia a schema mapping. A Let K be the class of all knowledge bases (over all possible re-
knowledge base is composedexplicit datag in our context given lational schemas). Then the p&ir = (K, MoD) is a represen-
by a database instance, aingplicit datausually given by a set of tation system, and thus, we can apply Definition 3.1 to ob#ain



notion of solution for knowledge bases. More preciselyegia
mappingM from S; to S, and knowledge bas€g, 1), (J, X2)
overS; andS;, respectively, we have thay, 32) is a K-solution
for (1, %) underM if for every L € MoD(J, X2) there exists an
instance/ € MoD(I, 1) such tha( K, L) € M, or equivalently
MobD(J,X2) C SoLam(MoD(Z,X1)). In this case, we also call
call (J, X2) aknowledge-base solutiaf (I, 3;) underM.

Example 7.2. Let ([,21), (J, 22) and M = (S17 SQ, 212) be
defined as in Example 7.1. Then it can be shown {HakE;) is a
knowledge-base solution ¢f, ;) under the mappingt. [

Many algorithmic problems arise in the context of knowledge

a knowledge-base solution fof, 1) underM. The latter case is
defined analogously.

Theorem 7.4 Let M = (Si,S2,X12), whereX; is a set of st-
tgds. Then the problef@HECKSOLUTION(M, Krutga) is: (1) in
PTIME if both source implicit knowledge and target impliaiowl-
edge are fixed, (2) NP-complete if source implicit knowletdge
fixed, (3) coNP-complete if target implicit knowledge isdixe

In the general case, where the implicit knowledge is notrassiio
be fixed, we obtain that the problem is completeAdr [O(log n)],
which is the class of all problems that can be decided in mtyial
time by a deterministic Turing machine that is allowed to mak

bases and schema mappings. In Section 7.1, we study the funqogarithmic number of calls to an NP oracle [25].

damental problem of checking, given a schema mapputcand
knowledge baseK; and K>, whetherK; is a knowledge-base so-
lution for K underM. In Section 8, we study the novel notion of
exchanging knowledgghat is, the problem of materializing (good)
target knowledge bases. But before considering theseqrahiwe
introduce some notation that will be extensively used inréss of
the paper. We use the standard notiomlidiseof an instance with
a set of full tgds (see [23] for a formalization of the chaskt
S; andS; be disjoint schemas, and |Ebe an instance d§;. For

a set of full tgdsX; over a schem&:, we denote byhases;, (1)
the result of chasing with 3. Moreover, letX;, be a set of full
st-tgds fromS; to S», and J; the empty instance d8,. Notice
that the result of chasingl, Jy) with ¥, is an instancel, J*)

of S; U S2. We denote byhases,, (I) the resulting instancg™
(which is the standard notation in the data exchange cofit8Rt
Thus, chases, (I) is an instance 081, while chasex,, () is an
instance ofS,.

7.1 Complexity of recognizing solutions

Given a mappingM from S; to S», and a representation sys-
temR = (W,rep), the problem GECKSOLUTION(M, R) was
defined in Section 5.3 as the problem of verifying, givére W
of type S; andV € W of type S, whetherV is anR-solution
of & under M. In this section, we study the complexity of this
problem for the class of mappings specified by st-tgds anthfor
representation systef@ of knowledge bases.

Two representation systems that are of particular inténestir
study are the systems tgfds knowledge basemdfull-tgds knowl-
edge basesdenoted byKia = (Kigd, MOD), and Krigs =
(Kiui-gd, MOD), respectively. More specifically{yq is the sys-
tem obtained by restricting to the class of all knowledge bases
(I,%) with X a set of tgds, anéCiga the representation system
obtained by restrictingC to the class of knowledge basés, X)
with 3 a set of full tgds.

Ouir first theorem is an undecidability result for knowledgsds
that are specified by general tgds. The undecidability tdsitls
even for a fixed schema mapping specified by full st-tgds.

Theorem 7.3 There exists a mapping! = (S1, S2,X12), with
312 a set of full st-tgds, for whicCHECKSOLUTION(M, Kiga) iS
undecidable.

Theorem 7.3 tells us that to obtain decidability results, we
have to focus on some fragments /Gfya. In what follows, we
study the complexity of the problem for the class of knowkedg
bases given by full tgds. We start by stating the complexity o
CHECKSOLUTION(M, Ktugd) When the source implicit knowl-
edge or the target implicit knowledge is assumed to be fixethé
former case, we assume that we are given a fixell sef full tgds
over the source schema and the problem is to check, giverreesou
instancel and a target knowledge ba&é >»), whether(J, 32) is

Theorem 7.5 Let M = (S1,8S2,%12), WhereX;, is a set of
st-tgds. TherCHECKSOLUTION(M, Kgd) is AL [O(logn)]-
complete. The problem &% [O(log n)]-hard even ifM is speci-
fied by a set of full st-tgds.

There are only a few natural problems that are complete for
A¥[O(logn)]. It is interesting that a complete problem for this
class arises in the simple framework of data exchange. Stimee o
problems in the context of databases and logic programntiag t
are complete for this class can be found in [11, 9].

A natural question at this point is whether one can obtaiinddec
ability for a representation system that is in betwé&ni.gq and
Kigd- An obvious candidate would be the class of knowledge bases
defined byweakly acyclic sets of tgd$0, 13]. We leave for future
research the study of the complexity in this case.

8. KNOWLEDGE EXCHANGE

The most important problem in data exchange is the problem
of materializing a target solution for a given source inst@anin
the previous section, we have extended the notion of soldto
knowledge bases and, thus, it is natural to consider thdgmobf
knowledge exchangéhat is, the problem of materializing a target
knowledge base that correctly represents a source knowlease
according to a given mapping. To this end, the first questicamt
swer is what is ggoodknowledge base to materialize. In Section
8.1, we consider the notion ahiversalC-solutionthat is obtained
by applying Definition 3.2 to the representation syst€mmf knowl-
edge bases. In Section 8.2, we show that there are othemhatur
K-solutions that extend univers&l-solutions and that can also be
considered good alternatives to materialize. We presgotighms
for computing such solutions in Section 8.3.

Given the undecidability results about knowledge basesifspe
by (non-full) tgds, proved in Section 7.1, we focus our irtigegion
on full tgds. It is important to notice that this case inclsd®me
of the motivating scenarios for our investigation, such &FR
graphs [19].

8.1 Universalx-solutions

Let £ = (K, MoD) be the representation system of knowledge
bases. We can directly apply the notion of universasolution to
define a class of good solutions. More precisely, we obtamfr
Definition 3.2 that(J, 32) is a universalC-solution of (I, 1) un-
der a mapping\ if

MobD(J,32) = SoLm(MoD(I,X1)). )

Itis easy to show that faM = (S1, Sz, X12), whereX» is a set
of full st-tgds, and for every set; of full tgds overS;, the knowl-
edge baséchases,, (chasex, (1)), X2) with X = 0, is always a
universalfC-solution of(Z, 31 ). Notice that this induces a straight-



forward procedure to compute a good solution: we just cliase
with 31 and then with;,. Thus we obtain the following result.

Proposition 8.1 Let M = (S1,S2, X12), with £12 a set of full
st-tgds. There exists an exponential-time algorithm thaten a
knowledge basél, ;) over Si, with ¥; a set of full tgds, pro-
duces a polynomial-size univerdétsolution of(1, ;) underM.

Moreover, it immediately follows from equation (2) that ueisal
K-solutions can be used to compute the certain answers oban ar
trary query@ over (1, 3;) under a mapping\1.

8.2 Minimal knowledge-base solutions

The universalC-solutions generated in the previous section use
the empty set as the implicit knowledge in the target. We eigu
this section that there could be other natucasolutions that may
not be universal but still desirable to materialize, mosicause
they make good use of the implicit knowledge in the targe¢sw

Example 8.2. In Example 7.1, we give &-solution(J, X2) that
can be considered as a good solution.
MobD(J,X2) & SoLam(MoD(I,%1)) and, thus,(J, X2) is not a
universaliC-solution for (1,%;). The reason is that mappingt

is closed-up on the rightind, hence, if € SoLa(MoD(1,%4))
andK C K’,thenK’ € SoLax(MoD(I,31)). Onthe other hand,
MobD(J, X2) does not satisfy this property. To see why this is the
case, consider the instan&e= J U {GP'(a,d)}. Itis easy to see
that K € MoD(J, 32). But if we now consider the instandé’ =
KU{F'(b,e)}, then we have thak C K’ butK' ¢ MobD(J, 22)
since K’ does not satisfy ruld”’' (z,y) A F'(y,z) — GP(x,z)
(given thatF” (a,b), F'(b,e) € K" butGP (a,e) ¢ K'). O

In what follows, we introduce a new class of gokidsolutions
that captures the intuition in Example 7.1. But before wedniee
introduce some terminology. Let be a set of instances over a
schemaS. We say thatY is closed-upif wheneverK € X and
K' is an instance o8 such that’ C K’, we have thatx’ € X.
Moreover, we define the set ofinimal instancesf X" as:

Min(X) = {K € X | thereis noK’ € X suchthatk’ ¢ K}.

A closed-up set of instances is characterized by its set ninnail
instances, as it and)’ are closed-up, theA” = ) if and only if
Min(X) = Min(Y).

For every mapping\ specified by a set of st-tgds, and more
generally for every mapping that is closed-up on the righdl for
every knowledge bas@, X1 ), it holds that ®LA(MoD(1,%4))
is a closed-up set. Thus, since®Sy(MoD(I,X;)) is essen-
tially characterized by its minimal instances, we can radlyire-
lax equation (2) by not requiring that &(.J,32) is equal to
SoLm(MoD(1,34)), but instead that both sets coincide in their
sets of minimal instances. Notice that by doing this we retaé
same query answering properties as univeiSaolutions when
considering monotone queries. All the above discussiogestg
the following definition ofminimal knowledge-base solutiolm the
definition, we useX =win )Y to denote thaMin(X') = Min(Y).

Definition 8.3 Let M be a mapping from a schen$a to a schema
So, and (1,%1), (J,X2) knowledge bases ové&; and S;, re-
spectively. The(J, X2) is aminimal knowledge-base solutidar
(I,%1) under M if:

MoD(J,¥2) =wmin  SOLM(MOD(I, %1)).
The following result is a simple yet useful characterizaitd mini-
mal knowledge-base solutions for the case of full tgds.si glives

evidence of the naturalness of our definition of good sotutio

However, we have that

Proposition 8.4 Let M = (S1, Sz, X12), and (1, X1), (J, 32) be
knowledge bases ov&; andS., respectively. 182, 31 and X,
are sets of full tgds, then the following are equivalent:

(1) (J,%2) is a minimal knowledge-base solution(df 31).
(2) chases,, (chases, (I)) = chases, (J).

Notice that every universaC-solution is a minimal knowledge-
base solution, but, as the following example shows, the sippo
does not hold in general.

Example 8.5.Let M = (S1, Sz, X12), (I, X1), and(J, X2) be as
in Example 7.1. We have thahases, (I) is the instance:

I' = { F(a,b), M(c,b), F(b,d), P(a,b),
P(c,b), P(b,d),GP(a,d),GP(c,d) }.

If we computechases,,(I’), we obtain the instanc¢F’(a,b),
F'(b,d),GP (a,d),GP'(c,d)}. If we now computechases, (J),
we obtain the instancéF’(a, b), F'(b,d),GP (a,d), GP (¢, d)}.
Thus, given thathases,, (chases, (I)) = chases, (J), we con-
clude from Proposition 8.4 thdt/, X) is a minimal knowledge-
base solution fo(/, ;). O

8.3 Computing minimal knowledge-base
solutions

As we pointed out in the previous section, when doing knowl-
edge exchange, it is desirable to materialize target kriyeddases
with as much implicit knowledge as possibiéet there is another
requirement that one would like to impose to this processisitier
a mappingM and a source knowledge bade X1). In the compu-
tation of a solution(.J, 32) for (I, X1), it would be desirable that
the resulting set; depends only oix;; and M, that is, one would
like that the implicit knowledge in the target depends onytioe
mapping and the implicit knowledge in the source. This naits
the following definition of asafeset of dependencies.

Definition 8.6 Let M = (S1,S2,X12), whereX;, is a set of full
st-tgds, andX; be a set of full tgds oveB;. Then a sef, of

dependencies oves, is safefor 3; and M if for every instance
I of Sy, there exists an instancé of S, such that(J,X2) is a

minimal knowledge-base solution @f, ¥1) under M.

There are many safe sets. In particulds, = () is safe for every
31 and M, but it is obviously useless as implicit knowledge. In
general, one would like to materialize a safe Setthat is as in-
formative as possible. In this section, we show how to comput
such safe sets and how to use them to materialize knowleafgge-b
solutions. More specifically, we show in Section 8.3.1 tlinetre
exists an algorithm that computeptimal safe sets; with input;
and M, the algorithm computes a sEt such thats; is safe for
¥; and M, and for every other safe sEf, for ¥; andM, it holds
that X» logically impliesX5. The output of the algorithm is a set
of second-order logic sentences, which motivate us to densn
Section 8.3.1 the problem of generating nontrivial safe 8&tt, al-
though not optimal, can be expressed in a much simpler lagua
Finally, we propose in Section 8.3.2 a strategy that usesss$ to
compute minimal knowledge-base solutions.

8.3.1 Computing safe implicit knowledge

Let M be a mapping fron$8; to S», X; a set of full tgds oveB;
andX, an arbitrary set of dependencies oer From now on, we
say that®, is optimal-safe fos; and M if: (1) X» is safe for3;
and M, and (2) for event, that is safe for; and M, it holds
thatX, impliesX5. In our first result, we show that there exists an
algorithm for computing optimal-safe sets.



Theorem 8.7 There exists a polynomial-time algorith®pTI-

MAL SAFE that, givenM = (S1, Sz, X12), whereX;; is a set of
full st-tgds, and a set; of full tgds overS;, computes a sef, of

second-order logic sentences that is optimal-saféfpand M.

A natural question at this point is whether one could modify
OPTIMAL SAFE to return a set of FO-sentences. Unfortunately, the
following theorem gives a negative answer to this question.

Theorem 8.8 There existM = (Si, Sz, X12), whereX, is a set
of full st-tgds, and a set; of full tgds overS; such that there is
no set>, of FO-sentences that is optimal-safe ¥or and M.

Theorem 8.8 shows that FO is not enough, in general, to specif
an optimal-safe set of dependencies. Nevertheless, itiggame
might be more interested in generating nontrivial safe thets al-
though not optimal, can be expressed in a simple language. Th
ideal would be to have nontrivial safe sets specified by §dktor

a mild extension of full tgds. In what follows, we present #goa
rithm that, given a mapping specified by a set of full st-tgds and
anacyclicsetX; of full tgds over the source schema, generates a
set>l, that is safe fob2; and. M, and which is specified by a set of
full tgds with inequalities in their premises.

A setX of full tgds is acyclic if there exists a function that assign
a natural number to each predicate symbalim such a way that
foreveryo € %, if P is arelation symbol in the premise @fand R
is the relation symbol in the conclusion ef then f(P) < f(R).

A well-know property of an acyclic set of full tgds is that it has
afinite unfolding for every relational atoni(z) in the conclusion
of a dependency of, there exists a formula(z) in UCQ~ such
that for every instancé, it holds thatR(a) is in chases (1) if and
only if a(a) holds inI. Theunfoldingof 3, that we denote by
7, is constructed by first computing(z) for every R(z) in the
conclusion of a tgd ir%, then adding3(z) — R(z) to X for
every3(z) in CQ~ that is a disjunct inx(Z), and then eliminating
equalities by using variable substitutions.

To present our algorithm, we need to introduce some terminol
ogy. Given a mappingUt = (S1,S2,X12) and a queryQ over
S;, we say that) is target rewritableunder M if there exists a
queryQ’ overS: such that for every instandeof S1, it holds that
Q(I) = certainp (Q', I). Itis implicitin [4] that if 312 is a set of
full tgds andQ is a conjunctive query, then it is decidable in coN-
EXPTIME whether(@ is target rewritable (see Theorems 4.1 and
4.3in[4]). Moreover, from the results in [4], we know thaeth ex-
ists a procedure TRW(M, Q) that computes a query in UCTY”
that is a target rewriting af) underM (if such a rewriting exists).
Besides, we also need a procedure to compose full st-tgd&4]In
the authors show that there exists a proceduw& ose-ULL that
given sets2,5 andXe3 of full st-tgds from a schemd, to a schema
So and fromS to a schem&s, respectively, computes a 613
of full st-tgds fromS; to S such that(Z, J) |= X13 if and only if
there existd( such that(/, K) = X2 and (K, J) = 3. It can
be easily shown that ¥ is a set of full st-tgds with inequalities in
the premises, then@PoSE-ULL returns a set of full st-tgds with
inequalities in the premises that defines the compositidy efand
Yo3. With procedures TRw and GOMPOSHE-ULL, we have all the
necessary ingredients for our algorithm.

Algorithm : FULLSAFE(M,X1)

Input: M = (S1,S2,%12), whereX» is a set of full st-tgds, and
an acyclic set2; of full tgds overS;.
Output: A setX, of full tgds with inequalities ove8, that is safe for

Y1 and M.

1. Construct a set of formul%fr by unfoldingX; .
2. Construct a seb’ of full st-tgds with inequalities fron8, to S; as

follows. Begin with:’ = §. For every tgdw(z) — R(z) in 7 do
the following:

2.1. Ifo(z) is target rewritable undet, then let3(z) be the query in
UCQ™# overSa, that is the output of TRW(M, a(Z)). For every
disjuncty(z) in 8(z) add toX’ the dependency(z) — R(z) (and
eliminate equalities by using variable substitutions). .

3. LetS> be a copy 082, andX’, the set of full st-tgds fron8; to S

obtained from> 15 by replacing eveng € S» by R.
4. LetX' be the set of full st-tgds with |nequalltles frofy to Sy that is

obtained as the output OfC@/IPOSEFULLgE/ P34
5. LetX, be the set of formulas ov&, obtained ?romE” by replacing

everyR € S, by R. ReturnX. |

Theorem 8.9 FuLL SAFE(M, 3;) computes a sef, of full tgds
with inequalities in the premises which is safe ¥orand M.

Example 8.10.Let M = (S1,S2,X12) andX; be as defined in
Example 7.1. Itis not difficult to see that dependerayiven by

Jy(F(z,y) ANF(y,z)) — GP(z,z)

is in X1, Now the query given by (F(z,y) A F(y, 2)) is target
rewritable underM, and its rewriting i3y (F'(x,y) A F'(y, 2)).
Thus, in Step 2 of BLL SAFE, we add dependency:

y(F'(z,y) NF'(y,2)) — GP(z,2)
toX'. In the set}, created in Step 3, we have the dependency:
GP(z,z) — @(x 2).

Thus, the output of GMPOSHE-ULL (Y, ¥%,) contains the depen-
dency3y(F'(z,y) A F'(y, 2)) — GP/(z, z), which implies that:

y(F(z,y) ANF'(y,2) — GP(x,2) ®3)

is in the output of BLLSAFE(M,X1). In fact, it can be proved
that the seb; returned by BLL SAFE(M, X1) is logically equiv-
alent to the set consisting of dependency (311

8.3.2 Using safe implicit knowledge to compute min-
imal knowledge-base solutions

For a mappingM and a source knowledge bade X1 ), a minimal
knowledge-base solution ¢f, 3,) consists of an instancé and
a setX, of dependencies. Up to this point, we have described two
alternative algorithms that compute the Sgtfrom 3; and M. In
this section, we propose a strategy to compute instdnce
Let M = (S1,S2,X12), whereX is a set of full st-tgds, and
(I,%1) a knowledge base ové;, whereX; is a set of full tgds.
As we pointed out before] = chases, (chases, (I)) can always
be used as the explicit data in a minimal knowledge-baseisnlu
of (I,%1). However, such an instance does not need to make use
of any implicit knowledge and, thus, it does not take advgataf
any of the algorithms proposed in the previous section fon-co
puting safe sets. In fact, given these algorithms, one wexzkct
that some parts of the instandeases:, (1) are not necessary given
the target implicit knowledge. In what follows, we proposeasp-
proach that giver{/,X:), M and a safe set, for ¥; and M,
computes an instancé that makes use of the implicit knowledge
in 5. More precisely, the approach first constructs a minimal set
4 of full tgds such that for every instande of S, it holds that:

(C1) chasesy (I1) is contained irthasex, (1), and

(C2) (chases,, (chasesy (1)), X2) is @ minimal knowledge-base
solution of (11, 31).

Then for the input knowledge ba$é, 1), it materializes knowl-

edge baséchasex,, (chases; (1)), ¥2). Notice that in the previ-

ous approach, the minimal séf can be used for any source knowl-
edge basél,X;). This is an important feature of our proposal, as



the computation ok} only depends o1, M andX., which are
usually much smaller than the source explicit data. Besitiésis

the most typical scenario in practice [19, 24], where for ecffic
domain the rules in a knowledge base remains unchangede whil
the explicit data changes from one repository to another.

We now present the algorithm that givew(, ¥; and ¥ as
above, returns a sét} of full tgds satisfying conditions (C1) and
(C2). In the algorithm, we assume that is an acyclic set of full
tgds, as in this case the problem of verifying whether caoft
(C1) and (C2) hold for every instande of S; is decidable in ex-
ponential time.

Algorithm : MINIMIZE (M, X1, X2)

Input: M = (S1,S2,X12), WhereXi2 is a set of full st-tgds, an
acyclic set¥; of full tgds, and a sek, of full tgds with
inequalities that is safe faf; and M.

Output: A minimal setX] that satisfies conditions (C1) and (C2) for

every instancd of Sy.

1. LetS] be the set obtained by unfoldirigy, andl’ = %7 B

2. Ifthere exister € I' suchthat the séf] = I'\{o} satisties conditions
(C1) and (C2) for every instanch of Sy, then remover from I and
repeat Step 2.

3. Let¥) =T, and returr:]. O

Notice that algorithm NMNIMIZE can compute different outputs de-

pending on the order in which the dependencieB are chosen in

Step 2. Also notice that we are searching for a minimal setdero

to minimize the explicit data materialized in the targetttig to-

gether proceduresuUt L SAFE and MINIMIZE , we can give a com-

plete strategy to compute minimal knowledge-base solation

Theorem 8.11Let M = (Si,S2,X12), whereX, is a set of
full st-tgds, andx; an acyclic set of full tgds ove$,. Moreover,
let 32 be the output oFuLL SAFE(M, 31), and 3] the output of
MINIMIZE (M, 31, 32). Then for every instancé of S; it holds
that ( chases,, (chases; (1)), ¥2) is a minimal knowledge-base
solution of(7, 1) under M.

Example 8.12. Let M (S1,S2,%12) and X; be as in
Example 7.1. From Example 8.10, we know that the output
of FULLSAFE(M,X) is the setX, consisting of dependency
F'(z,y) A F'(y,z) — GP/(x,2). It can be proved that there ex-
ists an order over the dependenciestifi such that the output of
MINIMIZE (M, X1, X2) is the following sef=] of dependencies:

M(z,y) — P(z,y)
P(z,y) AN P(y,z) — GP(z,2)
F(z,y) AN P(y,z) — GP(z,2)
P(z,y) NF(y,z) — GP(z,2)

Consider now the source instandeof Example 7.1, that is,
I = {F(a,b), M(c,b), F(b,d)}. If we chasel with 37, we ob-
tain instancel’ = {F(a,b), M(c,b), F(b,d), P(c,b),GP(c,d)}.

If we now chasel’ with X2, we obtain the instancg =
{F'(a,b), F'(b,d),GP (c,d)}. Thus, we conclude from Theo-
rem 8.11 that(J, ¥2) is a minimal knowledge-base solution for
(I,%1) under M. Notice that this is exactly the solution that we
considered as a good solution in Example 7.1.]

9. CONCLUDING REMARKS

We have presented a framework to exchange data beyond thke usu
setting in which instances are considered to have comphiébe- i

of materializing solutions. In particular, we made the das¢posi-
tive conditional instances are the right representatistesy to deal
with the inherent incompleteness that emerges when exaigng
data by using st-tgds. We also applied our framework to defiee
novel notion of knowledge exchange. This can be considesed a
a starting point for formalizing and studying the exchanfdaia

in the Semantic Web, in particular, the exchange of RDFShgap
and OWL specifications. Many problems remain open. In partic
ular, we would like to study knowledge exchange under mayspin
defined by non full st-tgds, which will probably require camihg

the results for knowledge bases and positive conditiorsthirces.
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