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Abstract

Graph data appears in a variety of application domains, and many uses of it, such as query-

ing, matching, and transforming data, naturally result in incompletely specified graph data, i.e.,

graph patterns. Queries need to be posed against such data, but techniques for querying pat-

terns are generally lacking, and even simple properties of graph patterns, such as the languages

needed to specify them, are not well understood.

In this dissertation we present several contributions in the study of graph patterns. We

analyze how to query them and how to use them as queries. We also analyze some of their

applications in two different contexts: schema mapping specification and data exchange for

graph databases, and formal language theory. We first identify key features of patterns, such as

node and label variables and edges specified by regular expressions, and define a classification

of patterns based on them. Next we study how to answer standard graph queries over graph pat-

terns, and give precise characterizations of both data and combined complexity for each class

of patterns. If complexity is high, we do further analysis of features that lead to intractability, as

well as lower-complexity restrictions that guarantee tractability. We then turn to the the study

of schema mappings for graph databases. As for relational and XML databases, our mapping

languages are based on patterns. They subsume all previously considered mapping languages

for graph databases, and are capable of expressing many data exchange scenarios in the graph

database context. We study the problems of materializing solutions and query answering for

data exchange under these mappings, analyze their complexity, and identify relevant classes of

mappings and queries for which these problems can be solved efficiently. We also introduce a

new model of automata that is based on graph patterns, and define two modes of acceptance

for them. We show that this model has applications not only in graph databases but in several

other contexts. We study the basic properties of such automata, and the key computational

tasks associated with them.

iii



Acknowledgements

I want to thank my supervisor Leonid Libkin for his support, collaboration, advice, lunch facts

and old russian jokes. But specially when I had to attend different personal situations, covering

my back when it was needed. Many thanks as well to Pablo Barceló and Jorge Pérez. The
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Chapter 1

Introduction

Querying and mining graph-structured data is currently one of the most active research topics

in the database community, fueled by the adoption of graph models in several new application

domains. To name a few examples, the standard data model for Semantic Web applications

[W3C Consortium, 2013] is a graph model called Resource Description Framework (RDF)

[G. Klyne, 2004], and a similar model is used by several biological databases such as the Ky-

oto Encyclopedia of Genes and Genomes (KEGG) [Kanehisa and Goto, 2000] or parts of the

National Centre for Biotechnology Information [Belleau et al., 2008]. Furthermore, commer-

cial vendors of graph database management systems such as Neo4j [Neo4j, 2013] and Infinite-

Graph [InfiniteGraph, 2013] claim that their products are used for a broad range of applications

that includes social networks, fraud detection, geographical models, telecommunications and

astronomical databases. In all these applications, the underlying data is naturally modeled as

graphs, in which nodes are objects, and edge labels define relationships between those objects

[Angles and Gutierrez, 2008].

Graph patterns. A standard way of querying graph data is to look for reachability pat-

terns. Such patterns specify that paths satisfying certain conditions should exist between

nodes. Initially proposed in a simple form in [Cruz et al., 1987], pattern languages have

been developed over time and used in a variety of applications, such as biology, study-

ing network traffic, crime detection, modeling object-oriented data, querying and searching

RDF data, etc. [Fan et al., 2010b, Fan et al., 2010a, Gutierrez et al., 2011, Gyssens et al., 1994,

Leser, 2005, Milo et al., 2002, Natarajan, 2000, Pérez et al., 2009, Ronen and Shmueli, 2009,

San Martı́n and Gutierrez, 2009, Tong et al., 2007, Weikum et al., 2009]; see also the surveys

[Angles and Gutierrez, 2008, Angles, 2012].

In their simplest form, patterns are just graphs, whose occurrences in large graphs are of

interest. Already in this simple form, they are very important in biological applications. Simple

patterns are used, for example, in [Ogata et al., 2000, Matono et al., 2003] to extract function-

ally related enzyme clusters from the KEGG pathway database [Kanehisa and Goto, 2000], a
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Figure 1.1: A simple graph pattern matching three subgraphs of G. Matching patterns of this

form is common in metabolic pathway databases.

biological database that contains metabolic pathways, which are series of chemical reactions

reactions that occur as part of the cellular processes of microorganisms. Biological networks

are also used to model other processes such as gene transcription or protein interactions. Here

it is also common to search for recurring or statistically significant patterns, which are called

network motifs [Milo et al., 2002].

But many applications of graph databases raise the need for much more complex patterns,

that specify information not only about the data itself, but also about the underlying structure

of the graph database. This is specified by means of the so-called reachability queries, in which

one can look for connection between elements in a network, and regular path queries (RPQs),

a special case of reachability queries in which one can also specify restrictions on the path

between the connected elements. Reachability queries are now a part of every major commer-

cial developments of graph databases [Angles, 2012], and are now included in the standard

specification for querying RDF databases [Harris and Seaborne, 2013].

Querying patterns instead of graphs. The notion of querying graphs with graph patterns has

also evolved with time. In the simplest form, posing pattern queries against graph databases is

nothing more that the traditional NP-complete subgraph isomorphism problem (this is still

used, nonetheless, in practical applications, e.g., in [Cheng et al., 2008, Tong et al., 2007]).

This is depicted in Figure 1.1, that shows a simple pattern on the left side, and how it matches

two subgraphs of a much larger graph G (on the right of the figure). From a relational point

of view, these simple graph patterns can be seen as analogs of (relational) conjunctive queries,

which are the building block for most relational query languages.

But lately this simple notion of querying has evolved from graph isomorphism into notions

based on graph homeomorphisms (i.e., mapping edges to paths) and simulation relations be-

tween patterns and graphs [Fan et al., 2010b, Fan et al., 2010a]. Outputs of matching queries
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Figure 1.2: The output of the query is a pattern itself

are patterns themselves: their nodes are those that are involved in the simulation relation, and

relationships between them are those specified in the pattern.

As an example, consider the structure of a drug crime organization, modeled as a graph

database [Natarajan, 2000]. As figure 1.2 shows, we use a query to extract more detailed infor-

mation about the structure of this network. This query is represented as graph pattern whose

edges can be labelled by regular expressions, describing the structure of the paths connecting

two individuals. Intuitively, the pattern in Figure 1.2 looks for information about the nature of

the communication system of different bands in the network. It is interpreted as follows. The

node B represents the boss of the crime network, and there are two subordinates S1 and S2 of

the boss B. S1 reports to B via a chain of one or more subordinates, represented with the edge la-

belled with the regular expression reports+, and S2 reports to S1 via a similar chain. The pattern

also describes that B uses a single informant I to keep both subordinates in check at the same

time. The information in this pattern might be relevant, for instance, when trying to infiltrate

the network, since one needs to take into account not only the command chain of the organi-

zation, but also the different informants used by the boss. As noted in e.g. [Fan et al., 2010b],

the notion of subgraph isomorphism is meaningless for this pattern; one needs to use instead

notions based on graph homeomorphisms or simulation relations. When using such semantics

to query the crime network, the output is precisely the set of all the groups of individuals whose

information structure coincides with the pattern, together with descriptions of paths specifying

their relationships. In other words, the output of the query is a graph pattern itself

Similar scenarios arise in other applications that rely on graph structured data, and the

need to output incomplete query results has been already pointed out for some of them, such
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as the World Wide Web [Kanza et al., 2002]. When such matching and query results require

extracting additional information from them, one ends up querying patterns rather than graphs.

This shows a double use of graph patterns, since they not only serve as queries, but also as

data, by representing partial information about graph-structured data.

The duality between data and queries is often present when dealing with incomplete in-

formation, where partial databases are typically viewed as patterns. For example, relational

naive tables are tableaux of conjunctive queries [Imielinski and Lipski, 1984], and in XML,

typical query languages are based on tree patterns, i.e., incomplete descriptions of documents

[Barceló et al., 2010b, Björklund et al., 2007]. However, unlike other database scenarios such

as relational databases or XML, that have received considerable attention in the literature, the

research in graph patterns and graph incomplete information is currently lacking.

1.0.1 Main goals

The first and central goal of this dissertation is to study graph patterns, and the basics of query-

ing them. We study them from two different point of views: as a query language for graph

databases, and as a mean of representing partially defined graph data. In other words, we study

how to query graph patterns, and how to use them as queries. We also analyze their applications

in various scenarios, from data exchange to formal language theory.

To begin with, we need to formalize the notion of graph patterns. In order to do this we

identify key features of patterns, such as node and label variables and edges specified by regular

expressions, and define a classification of patterns based on these features.

We then turn to the topic of query answering, or how to query graph patterns. As for

other data models that represent partial information [Arenas et al., 2010, Barceló et al., 2010b,

Fagin et al., 2005a, Imielinski and Lipski, 1984, Lenzerini, 2002], one is looking for answers

that are independent of the way in which the missing parts of patterns are interpreted, i.e.,

certain answers. In this dissertation we provide a thorough analysis of the problem of query

evaluation: we give precise characterizations of both combined and data complexity of the

problem of answering queries over graph patterns. For cases when complexity is high, we

do further analysis of features that lead to intractability, as well as identifying several lower-

complexity restrictions.

The study of the basics of graph patterns, and how to query them, allows us to apply our

research in several database scenarios where the need for querying patterns naturally arises. In

this dissertation we focus on two of these applications: schema mappings and data exchange

for graph databases, and formal language theory.

Applications in schema mappings and data exchange. Querying partial information is

commonly present in integrating and exchanging (or translating) data [Arenas et al., 2010,

Fagin et al., 2005a, Lenzerini, 2002]. In such applications one starts with one or several data
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repositories, which need to be integrated or translated, and a set of rules specifying how one

is to carry these transformations, that are usually denoted as schema mappings. The whole

process normally results in partially specified databases, which then needs to be queried.

After years of persistent research, the foundations have been laid for both relational and

XML database data exchange and integration, and we now understand many algorithmic issues

related to these tasks (see [Kolaitis, 2005, Barceló, 2009, Arenas et al., 2010] for surveys in

the area). But, at the same time, the study of interoperability issues among graph-structured

data sources remain almost unexplored from a theoretical point of view. Some remarkable ex-

ceptions can be found in the work by Calvanese et al. regarding rewriting of views for graph

databases [Calvanese et al., 2000b], and more recently the study of schema mapping simplifi-

cation in the same context [Calvanese et al., 2011a].

One of the lessons learned from the research of relational and XML data exchange and inte-

gration is that patterns have been a key ingredient in the formalization and study of these tasks.

Indeed, patterns are at the core of most of the schema mappings studied in the literature, and

even commercial data exchange tools are based on them [Fagin et al., 2005b, Kolaitis, 2005].

It is thus natural to use our framework based on graph patterns to study tasks such as data ex-

change, data integration and, more generally, schema mapping management in the context of

graph database.

As the second main goal of this dissertation, we embark on the theoretical study of schema

mapping specification and data exchange for graph databases, the latter being currently un-

explored. As we have mentioned, we shall base our mappings on graph patterns, thus adapt-

ing the usual notion of a source-to-target dependency into the graph database context. Af-

terwards, we apply our mappings to study the problem of data exchange, which can be de-

scribed as follows: Given a mapping M from a source schema to a target schema and a

source database D, compute a target database that better reflects the source data in D under

M [Fagin et al., 2005b, Barceló, 2009, Arenas et al., 2010]. Such target database is said to be

a solution for D under M . In relational data exchange one normally computes a universal solu-

tion [Fagin et al., 2005b], which is a database with incomplete information that represents the

entire space of solutions for D under M . In graph data exchange we show that such a solution

always exists for our mappings, and it corresponds to our well studied notion of graph patterns.

Applications in language theory. The connection between formal language theory and graph

databases starts with the observation that graph databases can be seen as non-deterministic

finite state automata (NFAs) without distinguished initial and final states [Cruz et al., 1987,

Consens and Mendelzon, 1990]. In the same sense, a graph pattern representing partial graph

information can be seen as some sort of incomplete automaton, in which the precise relation-

ships defining the transition function, or the structure of the automaton, is missing. The third

main topic of this dissertation is to study graph patterns from a language-theoretic point of
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view or, more precisely, incomplete automata. We show that there are several possibilities of

semantics for incomplete automata; some of this semantics have strong relationships with the

task of querying graph patterns, but others relate to algorithmic tasks of completely different

applications, in areas such as program analysis.

1.1 Contributions of this Dissertation

This dissertation present contributions in the definition, study and application of graph patterns

as a paradigm for specifying partially defined graph structured data. We detail these contribu-

tions below.

1.1.1 Classifying and querying graph patterns

Chapter 3 and 4 form the first part of this dissertation, and are dedicated to study the basics of

incomplete information in graph databases, in the forms of graph patterns.

The first task is to formally define the notion of graph patterns we use in this dissertation.

Chapter 3 begins with a discussion on what types of features should be added to patterns, in

order to represent incomplete information. Based on examples from a wide range of applica-

tions – from social network to crime databases – we settle for objects in which partially defined

information can be defined in the following ways. First, as is usual in relational naive tables

and XML patterns, we model incompleteness with node variables, that may appear in patterns

instead of node id’s. These variables represent the lack of information about the data that is rep-

resented by the pattern. Node variables are usually enough to represent incomplete relational

information, but in semistructured data we also have the need to represent the lack of structural

information i.e., missing information regarding the edges and labels of the graph. To model it

we add two extra features to patterns: label variables, that may replace some of the edge labels

in the pattern, and regular expressions in the edges, representing missing information about the

connection between two nodes.

The foundations of our work are laid in Section 3.2. Here we provide a formal definition of

graph patterns, and we divide them into different classes, depending on which of the key fea-

tures listed above – node variables, label variables, and edges labeled with regular expressions

– they use. Afterwards, in Section 3.3 we provide a complete classification of the expressive-

ness of each of these classes of patterns, showing that adding each new feature to graph patterns

strictly increases their expressiveness.

Graph queries. As we have mentioned before, when dealing with incomplete data one often

encounters a duality between data and queries. For example, relational naive tables are tableaux

of conjunctive queries, and in XML, typical query languages are based on tree patterns, i.e.,

incomplete descriptions of documents.
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We also investigate this duality for the case of graph patterns, and define the general

notion of graph queries as those queries which are represented by a graph pattern. We

compare these queries with some of the most typical query languages for graphs. Usu-

ally these languages specify the existence of paths between nodes, with the restriction that

the labels of such path belong to regular languages [Abiteboul et al., 1999, Cruz et al., 1987,

Consens and Mendelzon, 1990, Gyssens et al., 1994, Calvanese et al., 2002]. The simplest

such queries are known as regular path queries, or RPQs [Cruz et al., 1987]; those select nodes

connected by a path that belongs to a regular language. Conjunctive RPQs, or CRPQs, extend

them by allowing intermediate nodes in paths. We shall see that queries such as RPQs and CR-

PQs arise as special cases of graph patterns, continuing the analogy with relational and XML

cases.

Query answering. Chapter 4 deals with the problem of querying graph patterns. In this

chapter we study the complexity of the problem of finding certain answers to queries over

graph patterns, or just query answering, for short (recall that certain answers are those answers

that are independent of the way in which the missing parts of patterns are interpreted).

In its more general definition, the problem can be specified as follows: Given a graph pat-

tern π, a graph query ξ of arity k and a tuple t̄ of nodes of size k, decide whether t̄ is in the

certain answers of ξ over π. We study this problem in its general definition, and also inves-

tigate what happens when one restricts its inputs. For patterns we range from arbitrary graph

patterns to graph patterns using none of the features mentioned above (in other words, just

graph databases); and for queries we analyze the upper bounds for queries given by arbitrary

graph patterns , and provide a full analysis for CRPQs. We also study the data complexity of

the problem, that is, the problem when the query is considered to be fixed, and only the pattern

comes as input.

Our results shows that the problem is always in EXPSPACE, and in CONP for data com-

plexity. The full analysis for CRPQs shows that data complexity ranges from NLOGSPACE to

CONP, and combined complexity (when both query and pattern are inputs) ranges from EX-

PSPACE to NP. As for the techniques, we will show that most of our results regarding classes of

patterns that only use node variables can be obtained based on previous results in incomplete

databases, but that much more involved techniques are needed for more expressive patterns

using any of the other two features (label variables or regular expressions in the edges). Here

most of our results are based on the relationship between certain answers and implication of

patterns, as noted in [Calvanese et al., 2000b].

Most of the results in Chapters 3 and 4 were published in PODS 11 [Barceló et al., 2011b],

but some of the results in Section 4.2 are presented here for the first time.
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1.1.2 Tractability restrictions and heuristics for querying graph patterns

The results in Chapter 4 point to a rather high complexity of querying graph patterns. If

we focus in the data complexity of the problem, we have a general CONP-hardness lower

bound, which applies to both arbitrary graph queries or CRPQs over any class of patterns

that use label variables or regular expressions in the edges. This contrasts results from re-

lational incomplete information, where answering patterns, or conjunctive queries over typi-

cal relational databases with incomplete information (usually called naive tables) is in PTIME

[Imielinski and Lipski, 1984].

For patterns that do not use any of these features, the complexity of querying CRPQs drops

to NLOGSPACE, which is expected, since patterns without label variables or regular expressions

are precisely those that can be expressed as relational naive tables, and thus for this class we

can reuse all the machinery that was developed in the relational scenario.

But the question of tractability remains for patterns using either label variables or regular

expressions, since relational tools will not work for them. It is therefore natural to ask for

restrictions - or heuristics - to improve the complexity of the problem. This is the subject of

Chapter 5.

Lower bounds. The first thing we need to do is to analyze the CONP lower bound for querying

patterns, and see how the complexity of the problem behaves under various restrictions on both

patterns and queries. We do this in Section 5.1, first for the case when the input to the problem

is a pattern with label variables, and then for patterns with regular expression on the edges.

In both cases, the results show that the CONP bound is quite resilient. To name a few of the

results, we prove that, if the input is a pattern with label variables, then query answering is

CONP-hard even if the underlying graph (i.e., the structure of the pattern) resembles a path and

over very limited queries, and for regular expressions the CONP lower bound remains even if

the structure of the pattern is a directed acyclic graph (DAG), and even if these expressions are

very simple – of form a1|a2 for some letters a1,a2 –.

Tractable restrictions. Our refined lower bounds still allow some room for tractable cases.

Since the lower bound remains for DAGs, it is natural to look for querying patterns whose

structure resemble trees, or, more generally, graphs with bounded treewidth. We show in Sec-

tion 5.2 that indeed an interesting tractable fragment can be found on these lines: the data

complexity of answering CRPQs over patterns is in PTIME if the structure of the input pattern

is a graph of bounded treewidth, as long as the pattern does not make use of arbitrary label

variables.

Another possibility is to look for fragments that involve restricting both patterns and queries

at the same time, or the interaction between them. Indeed, most of the CONP-hardness reduc-

tions we show on Section 5.1 make use of patterns that interact with queries in a rather unnatural
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way. But what if one could restrict the problem to disallow only those patterns that have these

complex interactions with the queries? We answer this question in Section 5.3. More precisely,

we formalize the notion of a complex interaction between patterns and queries, in terms of the

behavior of all the potential witnesses for the query over a given pattern. For some classes of

patterns, this notion can be computed efficiently, and gives rise to a second, novel tractable

fragment for the data complexity of query answering. We also show that our restrictions are,

in a sense, optimal, since lifting any one of them leads to intractability.

Query answering as constraint satisfaction. We finish Chapter 5 with a rather different

approach. Instead of looking for further restrictions, we show that the problem of answer-

ing queries over patterns is tightly related to a well known area of research: the constraint

satisfaction problem. In order to take advantages of all the advances in solving constraint

satisfaction problems, we show how to cast the query answering problem as a constraint sat-

isfaction problem, with a particularly simple translation for patterns in that use both node and

label variables. The consequences of the results of this section are twofold. On one hand

this enables us to use the machinery - and heuristics- that have been developed through many

years in solving constrain satisfaction problems, but on the other hand, it tells us that it will

be probably difficult to obtain a precise characterization of tractability for query answering,

since characterizing the instances of CSP that are in PTIME is a longstanding open problem

[Dechter, 2003, Kolaitis and Vardi, 2007].

The results from this chapter have been previously published in PODS11

[Barceló et al., 2011b] and ICDT 2013 [Barceló et al., 2013a].

1.1.3 Schema Mappings and Data Exchange for graph databases

In Chapter 6 we embark on the theoretical study of schema mapping specification and data

exchange for graph databases, the latter being currently unexplored.

Schema mappings. Schema mappings are high-level specifications that permit to

define relationships between two different schemas [Bernstein, 2003, Lenzerini, 2002,

Arenas et al., 2010]. Schema mappings have received considerable attention in the con-

text of relational databases [Nash et al., 2005, Fagin et al., 2005c, Fagin, 2007], see also

[Arenas et al., 2009]. Regrettably, the possibility of using relational mappings tools for solving

interoperability tasks is not suitable for graph databases. We delve into this issue below.

Relational mappings are typically defined in terms of conjunctive queries, and hence

they lack any form of recursion which is a crucial feature for querying graph databases

[Abiteboul et al., 1999, Wood, 2012]. Therefore, additional features would need to be included

in this class of mappings in order to specify more complex navigational properties. However,

this would imply leaving relational data exchange tools behind, since the study of relational
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data exchange has been carried out mostly in terms of mappings defined by non-recursive

queries [Barceló, 2009]. The problem is that even when navigational properties can some-

times be expressed in SQL or in other extensions of relational calculus, such as DATALOG,

it is not clear how to define schema mappings based on those languages. Moreover, given the

high complexity cost associated with performing simple static analysis tasks for them, such

as equivalence or containment, using mappings based in unrestricted SQL or DATALOG may

leave us without practical algorithms for even the most simple data exchange tasks.

We thus require a class of mappings that is specifically tailored for graph databases. As it

has been done in relational and XML settings, our first candidate as a formalism for defining

a mapping language is again graph patterns. As we shall see on Chapter 6, these types of

mappings are capable of expressing a wide variety of interesting exchange properties in the

graph database context. Section 6.2 deals with the formalization of graph schema mappings,

and then in Section 6.3 we explore some properties of our class of mappings. Notably, we

show in this section how these mappings can express not only usual exchange properties based

on exporting tuples of elements, but also complex navigational properties, such as exporting

entire paths satisfying some regular conditions.

Data Exchange. We then apply our mappings to study data exchange in the graph database

context. Recall that the data exchange problem is the following: Given a mapping M from a

source schema to a target schema and a source database D, compute a target database that best

reflects the source data in D under M [Fagin et al., 2005b, Barceló, 2009, Arenas et al., 2010].

Such target database is said to be a solution for D under M . In relational data exchange

one normally computes a universal solution [Fagin et al., 2005b], which is a database with

incomplete information that represents the entire space of solutions for D under M . In graph

data exchange we face the analog problem of computing a universal representative, which is

an incomplete graph database, with missing information both at the data and at the structural

level, with the same good properties.

This suggest, once again, the need for graph patterns. And indeed in Section 6.4 we show

how a universal representative can be obtained, in the form of a graph pattern, for every graph

data exchange setting. We also show that universal representatives enjoy many of the good

properties of universal solutions. In particular, the usual techniques for computing universal

solutions in relational data exchange can be applied to computing universal representatives in

graph data exchange. The procedure works in exponential time in combined complexity (that

is, assuming mappings and databases to be part of the input), and in polynomial time in data

complexity (that is, assuming mappings to be fixed).

Another important problem in data exchange is query answering. As for the case of graph

patterns, here one is interested in computing the certain answers of a query [Lenzerini, 2002,

Barceló, 2009, Arenas et al., 2010], which are defined in this case as those answers that
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hold in all possible solutions. Just as in relational data exchange [Fagin et al., 2005b,

Arenas et al., 2011b], we do this in a two-step fashion: First, we compute a universal repre-

sentative (a graph pattern), and then we evaluate the query over the universal representative.

This two step fashion almost immediately gives us upper bounds for computing the cer-

tain answers of queries in a data exchange setting, as it essentially reduces to the problem of

querying graph patterns. Unfortunately, it also tells us that the problem of computing certain

answers in graph data exchange is inherently difficult in combined complexity, and that even

in data complexity (that is, assuming queries and mappings to be fixed) we easily face in-

tractability. This motivates the search for relevant classes of mappings and queries for which

the problem of computing certain answers is tractable. Since Chapter 5 deals with the issue

from the point of view of data complexity, we devote the rest of Chapter 6 to find tractable

scenarios in combined complexity.

Tractable data exchange settings. Finding classes of data exchange settings in which both

computing representatives and query answering are tractable in combined complexity appears

to be specially relevant for graph databases. Based on the assumption that mappings and queries

are often much smaller than the data (and hence a meaningful complexity analysis should not

locate databases and specifications at the same level), the analysis of traditional data exchange

settings has been mostly carried out in terms of data complexity. However, for the case of

graph databases and their massive data applications (such as, for example, social networks

or scientific databases) this assumption is not longer valid. For instance, the procedure men-

tioned above for constructing universal representatives in graph data exchange works in time

|G|O(|M |), for a source graph database G and a mapping M , which can be considered infeasible

for big graph databases, even for small M . It is thus important for the study of graph data

exchange to identify relevant classes of mappings for which basic computational tasks can be

solved efficiently, not only in data but also in combined complexity.

It follows from the observations above that most pattern-based mappings will be doomed

from a combined complexity point of view, including those based in CRPQs. For this reason,

we turn instead to mappings defined with binary queries, such as the well known language of

RPQs. Defining our mappings using RPQs, however, would limit our expressive power to a

great extent. Instead, we use nested regular expressions [Barceló et al., 2012], to define nested

path queries (NPQs), a class of queries that extends RPQs with the ability to traverse edges

in both directions and to perform branching while navigating the data. Using these mappings,

which we call NPQ-restricted mappings, we show in Sections 6.5 and 6.6 how one can per-

form all the aforementioned data exchange tasks in polynomial time in combined complexity,

without sacrificing too much expressive power (in comparison with mappings defined by arbi-

trary patterns). Interestingly enough, one can even apply query rewriting techniques to obtain

linear-time algorithms for query answering, under some further restrictions on mappings.
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Composition of mappings. Section 6.7 presents a brief discussion about the good metadata

management of NPQ-restricted mappings, in particular, on how to compose them, and whether

the composition of two of them can be expressed in some language. Our results show that,

unlike the relational case, it is very unlikely that even the composition of two NPQ-restricted

mappings may be expressed with any sort of natural graph mappings, but, on the other hand,

we identify a smaller class of mappings that is closed under composition, i.e., the composition

of any two mappings of this class can be expressed in the same class. We believe that this

discussion is the starting point for the research of metadata management of graph mappings, in

the spirit of relational mappings (see [Arenas et al., 2009] for a survey).

Most of the results in Chapters 6 have already appeared in ICDT’13 [Barceló et al., 2013a].

The results from the expressibility of nested regular expressions were published in AMW’12

[Barceló et al., 2012]. Chapter 6 also contains results that are presented here for the first time.

1.1.4 Applications in Formal Language Theory

Just as graph databases can be viewed as finite automata, graph patterns in turn can be viewed

as some form of automata where the precise information of the transition relation is missing.

We denote these as incomplete automata, which formally are nothing more than graph patterns

with distinguished initial and (a set of) final nodes. If we restrict our patterns to contain only

label variables (no regular expression in the edges), then we arrive at the notion of parameter-

ized automata, and its corresponding notion of regular expressions, that we call parameterized

regular expressions, a subclass of incomplete automata that is of independent interest.

As the final main contribution of this dissertation, in Chapters 7 and 8 we study these

automata from a language-theoretic point of view, and show how this research has applications

in a great range of different scenarios.

Semantics and applications. We start in Section 7.1 with the definition of the semantics

of incomplete and parameterized automata. Intuitively, it resembles the semantics of graph

patterns: just as a graph pattern represents a set of graph databases, each incomplete automaton

represents a (possible infinite) set of complete automata (this is, NFA’s).

We can then define two semantics for incomplete automata. Under the certainty semantics,

a word w belongs to the language of an incomplete automaton A if w is in the language of all

the automata represented by A . This semantics is inspired by the idea of certain answers, and it

is therefore natural to ask whether the notion of querying graph patterns is related to the notion

of acceptance of incomplete automata under certainty semantics. The answer is positive: we

show in Section 7.2 that, for RPQs of form ϕ = (u,w,v), it is possible to cast the problem

of answering ϕ over a graph pattern π as a purely language-theoretical problem: whether w

belongs to the language of the incomplete automata generated by π. Interestingly, we also

show that the certainty semantics for incomplete automata provides the correct framework to
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study the problem of computing certain answers over patterns, but for queries that can also

return paths, apart from tuples of nodes, such as the language of ECRPQs that was presented

in [Barceló et al., 2010a].

Our second semantics for incomplete automata is the possibility semantics, which is

built using union instead of intersection: a word w belongs to the language of an in-

complete automaton A if w is in the language of any of the automaton represented

by A . While not directly related to databases, these semantics of incomplete automata

arise in a variety of applications, such as static analysis of programs [Liu et al., 2004,

Liu and Stoller, 2006, de Moor et al., 2003], in phase-sequence prediction for dynamic mem-

ory allocation [Shen et al., 2007], or as a compact way to express a family of legal behaviors in

hardware verification [Bhadra et al., 2005], or as a tool to state regular constraints in constraint

satisfaction problems [Pesant, 2004].

Basic Properties. We have mentioned several applications for both of our semantics of incom-

plete automata. At the same time, however, very little is known about the basic properties of

these languages. Incomplete automata have not been studied before under certainty semantics,

and while there are several papers on the possibility semantics (see e.g. [Grumberg et al., 2010,

Kaminski and Zeitlin, 2010]), these are concentrated in the context of infinite alphabets. The

motivation of [Grumberg et al., 2010] comes from the study of infinite-state systems with fi-

nite control (e.g., software with integer parameters). In contrast, for the applications outlined

before, finite alphabets are more appropriate [Liu et al., 2004, Liu and Stoller, 2006].

Thus, our main goal is to determine the exact complexity of the key problems related to

languages generated by both certainty and possibility semantics of incomplete automata.

Although somewhat surprising at a first glance, we show in Section 7.3 that the language

generated by certainty semantics over incomplete automata are indeed regular. For possibility

semantics, languages need not be regular, but parameterized automata always yield regular

languages under possibility semantics.

Whenever these languages are regular we establish upper bounds on the running time of

algorithms for constructing NFAs, and then prove matching lower bounds for the sizes of NFAs

representing both certainty and possibility semantics. These lower bounds are much stronger:

they even apply for parameterized regular expressions.

Decision problems. In Chapter 8 we discuss several standard language-theoretic decision

problems, such as membership of a word in the language, language nonemptiness, universality,

and containment. We fully determine the complexity of all these decision problems. All of

them end up being complete for various complexity classes, from NLOGSPACE to EXPSPACE.

We also show that some of these problems may be undecidable for the case of possibility se-

mantics. Moreover, we show that, save for a few exceptions, the complexity of these problems

is not dependent on a particular model of automata: usually the upper bounds that we present in
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this section apply to the more general notion of incomplete automata, while the lower bounds

are shown for the restricted parameterized automata, and even for parameterized regular ex-

pressions.

The results from these chapters have been previously published in PODS11

[Barceló et al., 2011b], FSTTCS 2011 [Barceló et al., 2011a] and TCS [Barceló et al., 2013b].

Most of the upper bounds in Sections 8.2 to 8.6 appear for the first time in this dissertation,

since they had to be extended from previously published results for parameterized regular ex-

pressions, in order to manage the case when the input is any arbitrary incomplete automaton.
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Background

In this chapter we present the notation that is used thorough this dissertation, and review some

key results in the areas of graph databases and incomplete information that will be useful for

the presentation of our ideas. We assume familiarity with first order logic and with the basics of

formal language theory, specifically regular languages, finite automata and regular expressions.

Section 2.1 deals with graph databases. Here we present key definitions and introduce the

languages of regular path queries (RPQs) and conjunctive regular path queries (CRPQs) that

will take a prominent role in this dissertation. Continuing with the topic of query answering,

we also review how the connection between graph databases and automata leads us to query

answering algorithms that match those of conjunctive queries in relational databases.

Afterwards, in Section 2.2, we review some of the basics ideas behind the theory of incom-

plete information in relational databases, in particular, the definition of incomplete relational

databases and the algorithms for querying them. These notions are also crucial for our disserta-

tion. For example, even though relational querying algorithms are not directly related to graph

databases, some of the graph based algorithms that we present in this dissertation rely on the

same underlying ideas as those for incomplete information in relational databases.

2.1 Graph Databases and Queries

A graph database [Angles and Gutierrez, 2008, Calvanese et al., 2002, Cruz et al., 1987] is

just a finite edge-labeled graph. Let Σ be a finite alphabet, and V a countably infinite set

of node ids. Then a graph database over Σ is a pair G = (N,E), where N is the set of nodes (a

finite subset of V), and E is the set of edges, i.e., E ⊆ N×Σ×N. That is, we view each edge

as a triple (n,a,n′), whose interpretation, of course, is an a-labeled edge from n to n′. When Σ

is clear from the context, we shall simply speak of a graph database.

A path ρ from n0 to nm in G is a sequence (n0,a0,n1), (n1,a1,n2), · · · ,(nm−1,am−1,nm),

for some m ≥ 0, where each (ni,ai,ni+1), for i < m, is an edge in E . In particular, all the ni’s

15
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are nodes in N and all the a j’s are letters in Σ. The label of ρ, denoted by λ(ρ), is the word

a0 · · ·am−1 ∈ Σ∗. We also define the empty path as (n,ε,n) for each n ∈ N; the label of such

path is the empty word ε.

Note that each graph database G = (N,E) over Σ can be naturally viewed as a nondeter-

ministic finite automaton (NFA) over alphabet Σ without initial and final states. Its states are

the nodes in N, and its transitions are edges in E . This basic idea is key for many results in

graph databases, and we use it for several results in this dissertation.

2.1.1 Regular path queries

The basic querying mechanism for graph databases is provided by means of regular path

queries, or RPQs [Abiteboul et al., 1999, Cruz et al., 1987, Calvanese et al., 2002]. They re-

trieve pairs of nodes in a graph database connected by a path whose label belongs to a given

regular language. Formally, an RPQ Q over Σ is an expression of the form (x,L,y) where

L⊆ Σ∗ is a regular language. We shall assume that syntactically L is given as a regular expres-

sion. Given a graph database G = (N,E) and an RPQ Q, both over Σ, the answer Q(G), is the

set of all pairs (n,n′) ∈ N such that there is path ρ between them whose label λ(ρ) is in L.

It has been argued (see, e.g., [Cruz et al., 1987, Consens and Mendelzon, 1990,

Abiteboul et al., 1999, Calvanese et al., 2000b]) that analogs of conjunctive queries whose

atoms are RPQs are much more useful in practice than simple RPQs. This motivated in

[Florescu et al., 1998] the study of conjunctive regular path queries, or CRPQs. In such

queries, multiple RPQs can be combined, and some variables can be existentially quantified.

Formally, a CRPQ Q over a finite alphabet Σ is an expression of the form:

Q(z̄) =
∧

1≤i≤m

(xi,Li,yi), (2.1)

such that m > 0, each (xi,Li,yi) is an RPQ, and z̄ is a tuple of variables among x̄ and ȳ. The

atom Q(z̄) is the head of the query, the expression on the right of the equality is its body. A

query with the head Q() (i.e., no variables in the output) is called a Boolean query.

Intuitively, such a query selects tuples z̄ for which there exist values of the remaining node

variables from x̄ and ȳ such that each RPQ in the body is satisfied. Formally, given Q of the

form (2.1) and a graph G = (N,E), a valuation is a map σ :
⋃

1≤i≤m{xi,yi} → N. We write

(G,σ) |= Q if (σ(xi),σ(yi)) is in the answer to RPQ (xi.Li,yi) in G, i.e., if there is a path ρi

in G from σ(xi) to σ(yi) with λ(ρi) ∈ Li. Then Q(G) is the set of all tuples σ(z̄) such that

(G,σ) |= Q. If Q is Boolean, we let Q(G) be true if (G,σ) |= Q for some σ (that is, as usual,

the singleton set with the empty tuple models true, and the empty set models false).

There are other extensions of regular paths queries that have been studied in the literature.

Cruz et al. studied in [Cruz et al., 1987] the language G, a query language that resembles the

patterns that we study in this dissertation, albeit with a different semantics, and Consens and
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Mendelzon defined Graphlog in [Consens and Mendelzon, 1990], a query language that aug-

mented patterns with recursion. More recently, 2-way regular path queries, or 2RPQs, and the

corresponding conjunctions of 2RPQs (C2RPQs), as introduced in [Calvanese et al., 2000b],

extend RPQs and CRPQs with the possibility of traversing an edge of the graph backwards,

and ECRPQs [Barceló et al., 2010a] include the possibility of returning paths as outputs, as

well as allowing some synchronization between these paths. We shall briefly discuss 2RPQs

and C2RPQs in Chapter 6 as a possibility of expressing schema mappings, and ECRPQs will be

analyzed in Chapter 7 when studying queries that can return paths. But for the rest of this dis-

sertation we prefer to maintain RPQs and CRPQs as our de-facto language for graph databases,

as they form the backbone of all aforementioned query languages.

2.1.2 Answering regular path queries

We now present the main ideas behind some results on the complexity of answering RPQs and

CRPQs over graph databases [Cruz et al., 1987, Consens and Mendelzon, 1990]. The main

conclusion is that one can obtain algorithms for answering CRPQs that match the complex-

ity of relational conjunctive queries. We do this by exploiting the connection between graph

databases and automata. To be more precise, we want to solve the following problem:

PROBLEM: QUERY ANSWERING

INPUT: A CRPQ Q(x̄) with |x̄|= k, a graph database G over Σ and a tuple v̄ ∈ Nk.

QUESTION: Is v̄ ∈ Q(G) ?

Let us now review how to solve this problem when the input is an RPQ. The idea is the

following. Given a graph database G = (N,E) over Σ, an RPQ of form Q(x,y) = (x,R,y) and a

pair (u,v) of nodes from N, in order to decide wether (u,v) belongs to Q(G) one constructs from

G the automaton AG(u,v) = (N,Σ,u,{v},E) and the automaton AR that accepts the language

given by R. Then one can show that (u,v) belong to Q(G) if and only if the language of the

product automaton AG(u,v)×AR is nonempty.

The algorithm above automatically gives us an NLOGSPACE upper bound for answering

RPQs over graph databases, by performing a standard on-the-fly verification algorithm. For

CRPQs, it also gives us an NLOGSPACE upper bound for data complexity of query answering

(i.e., assuming that the query Q is fixed), but with a little bit of effort one can use this technique

to show that the combined complexity is in NP, and therefore NP-complete, since the problem

is NP-hard already for conjunctive queries.



18 Chapter 2. Background

2.2 Incomplete Information in Relational Databases

Next we briefly recall the basics of incomplete information in relational databases, as studied

in [Imielinski and Lipski, 1984, Abiteboul et al., 1991, Grahne, 1991, Abiteboul et al., 1995].

A relational schema S is a finite set {R1, . . . ,Rk} of relation symbols, with each Ri having

a fixed arity ni ≥ 0. Let D be a countably infinite domain. An instance I of S assigns to each

relation symbol Ri of S a finite relation RI
i ⊆ Dni . Inst(S) denotes the set of all instances of S.

The domain dom(I) of instance I is the set of all elements that occur in any of the relations RI
i .

We say that Ri(t) is a fact of I if t ∈ RI
i . Note that every instance can therefore be denoted by

its set of facts.

2.2.1 Incomplete Information

In relational databases, incomplete information is modeled by means of naive tables. These

are sets of facts over a schema S that use both elements of D as well as variables, the latter to

represent missing information. We always assume that variables come from an infinite set W

that is disjoint with D.

Naive tables represent a set of instances over S, the semantics is usually given in terms of

homomorphisms. Formally, a homomorphism from a table T to an instance I is a mapping

h : dom(T )→ dom(I) such that (1) h is the identity on elements from D and (2) for each fact

R(t1, . . . , tn) in T the interpretation RIof R in I contains tuple h(t1), . . . ,h(tn) (in other words,

the fact R(h(t1), . . . ,h(tn)) is in I). We then say that an instance I of S is represented by a naive

table T if there is a homomorphism from T to I 1. We say that Rep(T ) is the set of all instances

represented by T .

Example 2.2.1 Consider a schema S with binary relations R and S. Then T =

{R(a,x),R(x,y),S(y,b),S(a,b)} is a naive table. We usually adopt the convention that vari-

ables are represented by lowercase letters such as x,y,z,x1, . . . . The following instance belong

to Rep(T ): I1 = {R(a,a),R(a,b),S(a,b),S(b,b)}, which can be shown using the homomor-

phism that maps x to a and y to b (and is the identity on constants a and b). The instance

I2 = {R(a,a),S(a,b)} and I3 = {R(a,a),S(a,b),S(c,c)} also belongs to Rep(T ), via the ho-

momorphism that maps both variables x and y to the constant a.

Note that naive tables are really nothing more than conjunctive queries. This duality be-

tween queries and incomplete databases is common in the area of incomplete information, and

will also take a prominent role in our dissertation.

Other types of tables have been proposed in the literature, apart from naive tables.

For example, Codd tables are naive tables in which all variable occurrences are dis-

tinct; and there are other models which extend naive tables, such as conditional tables

1This semantics is usually described as open world assumption in the literature
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[Imielinski and Lipski, 1984], where one can impose much more complex conditions on the

appearance of tuples.

2.2.2 Query Answering and Naive Evaluation

One of the most important computational problems related to incompleteness is query answer-

ing. Here one is typically interested in computing the certain answers of queries. To define

these, let Q be a query and T a naive table, both over schema S. Then the certain answers of Q

over T corresponds to the set CERTAIN(Q,T ) =
⋂
{Q(R) | R ∈ Rep(T )}.

The problem of deciding wether a tuple t̄ of values belongs to the certain answers

of Q over T has been shown to be undecidable if Q is an arbitrary relational alge-

bra expression[Abiteboul et al., 1991]. However, one of the most important results from

[Imielinski and Lipski, 1984] tells us that query answering over naive tables is tractable if Q is

a union of conjunctive queries. In this case, certain answers are computed by a process called

naive evaluation. Under it, we first compute the set Q(T ) as if T was a relational instance, treat-

ing variables as values, and then obtain CERTAIN(Q,T ) by removing from Q(T ) all tuples that

contain variables (i.e., only variable-free tuples are kept in the output). Thus, computing the

certain answers of conjunctive queries over naive table has the same complexity as the problem

of computing the answers of conjunctive queries over relational instances: it is in LOGSPACE

if the query is assumed to be fixed, and NP-complete in combined complexity.





Chapter 3

Graph Patterns

In this chapter we formally define the notion of graph patterns that is used thorough this

dissertation. As in the case of tree-structured data, e.g. XML, where the ability to find

binding of variables that match a tree pattern is crucial for the basic querying mechanisms

[Lakshmanan et al., 2004], our goal in this chapter is to define a class of graph patterns that

can be considered the core of each query language that provides enough expressive power to

express relevant graph properties [Abiteboul et al., 1999].

We begin this chapter with an analysis, through various examples, of the key features that

need to be addressed when dealing with partial information in the graph database context.

Once we have identified these features, we proceed to formalize the notion of graph pat-

terns, and define their semantics. In particular, we show that patterns satisfy our desiderata, as

they can be used to define many interesting query languages, and, in particular, RPQs and CR-

PQs. This query language will be the base of our query answering algorithms in the following

chapters, and also of the schema mappings for graph databases that we define in Chapter 6.

We finish this chapter by proving that each feature of patterns strictly increases its expres-

siveness, so that for example adding node variables to patterns always result in a more expres-

sive class of patterns. We conduct this study for general patterns, and also for a restriction

based on the notion of Codd tables from relational databases.

3.1 Forms of Incompleteness in Graph Databases

We now analyze types of features that need to be addressed in the study of graph patterns.

Our account is based on several examples of applications where the need to deal with partial

information arises in a natural way, many of them –from crime detection to extracting and

transforming graph data– where presented in the introduction.

Recall that in the relational case, one has the need to deal with variables in place of missing

data values [Imielinski and Lipski, 1984]. In the case of XML, one may also have missing

21
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structural information [Barceló et al., 2010b]. For graph databases, partiality of specifications

mainly arises in the following three ways.

Node variables Similarly to values missing in relational or XML data, identities of some nodes

can be missing in graph data. For example, in transforming a social network that has different

types of relationship edges, we can split an edge (Name1, father-in-law, Name2) into two edges

(Name1, father, x) and (x, spouse, Name2), with an unknown identity x. This is illustrated by

the following figure:

n1 n2

father-in-law
=⇒

n1 n2

x

father spouse

There are several other scenarios where node variables are important. For example, variables

are key when modeling graph queries as patterns [Consens and Mendelzon, 1990], and they

can also be used to model blank nodes in RDF [Pérez et al., 2009].

Label variables We may also miss the precise relationships between nodes. But even if we do

not know them, we may still know that some of the relationships are the same. Taking an ex-

ample from social networks, consider transforming a network where we have two ‘celebrities’

A and B who have ‘followers’ A1, . . . ,An and B1, . . . ,Bm (like on the Twitter network). Suppose

we know the relationship between A and B (e.g., they like, or dislike each other). We may wish

to record this as a relationship between their followers: for instance, if A hates B and Ai follows

A, we may deduce something about how Ai relates to B. At the time of transforming a network

we may not know the exact nature of such a relationship, but we know there exists one, and it

should be the same for all the followers of A. Likewise, all the followers of B will be in some

relationship with A (but not necessarily the same as the followers of A with B). So we add

edges

(A1,X ,B),. . . ,(An,X ,B), (B1,Y,A),. . . ,(Bm,Y,A)

where X and Y are edge labels: we do not yet know what the relationship will be, but want to

record that it is the same among all the followers. The following figure illustrates the case for

followers B1 and B2 of B.

X

X

Y

Y

B1

B2

A B

B1 B2A1

=⇒

A

Regular languages We can use regular expressions to model scenarios in which one loses in-

formation about the certain relationship between two nodes. Returning to the example with
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crime detection in a network of people, where the result of a matching may contain facts like

“there is a path between x and the boss that goes via a chain of at least one intermediary”,

we showed how to use a regular language to express this relationship, namely the regular ex-

pression report+, where the label report indicates subordinacy in the hierarchy. More complex

relationships may arise that require more complex regular expressions. For example, the prop-

erty “there is a path between x and the boss that goes via at least two intermediaries” will be

expressed by a regular expression Σ∗ · report ·Σ∗ · report ·Σ∗, where Σ is the set of all labels,

which would result in an edge of form:

n boss

Σ∗·report·Σ∗ ·report·Σ∗

In general, the situation where only regular paths between nodes can be deduced from a match-

ing is very common [Fan et al., 2011]. Thus, when we do not have an exact path between two

nodes, we attempt to replace it by an edge (A,R,B), where R is a regular expression.

Combining these features We have analyzed each of these features in isolation, but of course

they can be combined. A typical example of patterns that combine these features are CRPQs,

that intuitively can be represented as a graph with node variables and where the edges between

nodes can be labelled with regular expressions.

Example 3.1.1 Consider the CRPQ Q(x,y) = ∃z (x,a∗,z)∧ (z,b∗,y)∧ (y,ab,x), over alphabet

Σ = {a,b}. Its representation as a graph pattern with variables in the nodes and regular

expressions in the edges is as follows:

a∗

ab

x

y

z

b∗

3.2 Formal Definition

As explained in the previous section, the key new features of graph patterns are the ability to

use the following (in addition to nodes and edge labels of graph databases):

• node variables, i.e., marked nulls for graph nodes;

• label variables, i.e., marked nulls for edge labels;

• regular expressions as labels for edges.
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Thus, we shall define graph patterns as graph databases over constant nodes and node variables,

whose edges will be labeled with regular expressions that may use label variables. To do this,

we shall use the following (countably infinite) sets:

• Vnode of node variables (normally denoted by lower-case letters), and

• Vlab of label variables (normally denoted by upper-case letters).

If Γ is an arbitrary (finite or infinite) set of symbols, we write REG(Γ) to denote the set of

nonempty regular languages over Γ (if Γ is infinite, then each L ∈ REG(Γ) only uses finitely

many symbols from Γ). Recall that a graph database over a (finite) labeling alphabet Σ was

defined as a labeled graph, (N,E), where N ⊆V is the finite set of nodes and E ⊆ N×Σ×N is

the set of labeled edges. We are now in a position to define graph patterns formally.

Definition 3.2.1 (Graph Pattern) A graph pattern over finite alphabet Σ is a pair π = (N,E)

where

• N ⊆ V∪Vnode is the finite set of nodes, and

• E ⊆ N×REG(Σ∪Vlab)×N is the set of edges. ✷

3.2.1 Semantics

In complete analogy with relational naive tables or incomplete XML documents, the semantics

is defined via homomorphisms. To define those, we need extensions of partial functions f :

Γ→ Γ to languages L ∈ REG(Γ) defined as f (L) = { f (w) | w ∈ L}, where f (w) is obtained

by replacing each symbol a of a word w on which f is defined by f (a), and leaving symbols b

on which f is not defined intact.

Since variables can occur at the level of both nodes and edge labels, homomorphisms will

be in fact pairs of mappings. Given a graph database G = (N,E) and a graph pattern π =

(N ′,E ′), a homomorphism h : π→ G is a pair h = (h1,h2) of mappings h1 : N ′→ N and h2 that

maps label variables used in π to labels used in G such that:

1. h1(n) = n for every node id n ∈ V; and

2. for every edge (p,L, p′) ∈ E ′, there is path between h1(p) and h1(p′) in G whose label is

in h2(L).

We now write G |= π if there is a homomorphism h : π→G. The semantics is defined with

respect to a labeling alphabet Σ:

JπKΣ = {G over Σ | G |= π}.

Most often Σ is clear from the context and we write simply JπK then.
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π
n1

n2

X

a∗X

(ab)∗

(a | b)(a | b)

n1

n4

n2y

x

h

h

h

h
b

b

b

n3

a

G

Figure 3.1: A homomorphism h : π→ G

Example 3.2.2 An illustration is given in Fig. 3.1: a homomorphism is defined by mapping

label variable X to label b, and by mapping both node variables x and y into n3. The edge

(n1,(a|b)(a|b),x) is then mapped into the path (n1,a,n4),(n4,b,n3) with label ab. The edge

(n1,(ab)∗,y) can also be mapped into the same path, since ab belongs to regular languages

denoted by both (a|b)(a|b) and (ab)∗. The edge (y,a∗X ,n2) can be mapped into (n3,b,n2),

since b is in the language denoted by a∗b. ✷

Remark. We have defined homomorphisms as pairs (h1,h2), where h2 maps label variables to

labels in the alphabet Σ of a graph. However, we could also have defined h2 so that it maps

label variables to any regular language in Σ∗. Constructs similar to this alternative definition

have been studied in the context of programming languages (see e.g. [Aho, 1990]). We have

chosen our simpler definition for two reasons. First, it is more natural for database applica-

tions, and follows the line of previous work in the area (c.f. [Cruz et al., 1987]). But second,

having this extended definition would undoubtedly make graph patterns more difficult to work

with, as even augmenting RPQs with this functionality leads to several undecidability issues

[Freydenberger, 2013].

3.2.2 Graph patterns as queries

Dealing with incomplete data, we often have duality between data and queries. For example,

relational naive tables are tableaux of conjunctive queries, and in XML, typical query languages

are based on tree patterns, i.e., incomplete descriptions of documents. In our case, we have seen

how to use graph patterns to represent incomplete graph data, but these patterns can of course

be viewed as standard graph database queries, that return tuples of node variables. This is

explained as follows.

We adopt the convention that patterns used in queries are denoted by ξ, and patterns used

as data are denoted by π. A graph query is a pair Q = (ξ, x̄), where ξ = (N,E) is a graph

pattern, and x̄ is a tuple of elements from N. For example, a CRPQ ϕ(z̄) =
∧

i≤m(xi,Li,yi), can
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be viewed as a graph query (ξ, z̄), where ξ simply contains the edges (xi,Li,yi) for i≤m.

We now define the semantics of a graph query on graph databases (later, in Chapter 4, we

shall extend it to graph patterns). Given a graph database G = (N,E) with N ⊂ V, and a graph

query Q = (ξ, x̄) with |x̄|= k, the answer to Q on G is:

Q(G) = {v̄ ∈ Nk | G |= ξ[v̄/x̄]}.

Here ξ[v̄/x̄] is the result of substituting v̄ for x̄ in the pattern ξ.

Example 3.2.3 Consider again the example in Fig. 3.1 and the homomorphism described in

Example 3.2.2. Let ξ be the pattern obtained from π by changing X to b, and replacing n1 and

n2 with variables z1 and z2. The resulting pattern, when viewed as the graph query (ξ,x,y),

corresponds to the CRPQ :

ϕ(x,y) = (z1,(a|b)(a|b),x)∧ (z1 ,(ab)∗,y)∧ (y,a∗b,z2)∧ (z2,b,z1)

If it is evaluated in graph G shown in Fig. 3.1, one tuple in the output will be (n3,n3), since

G |= ξ[n3/x,n3/y], as witnessed by homomorphism h shown in the figure. ✷

3.3 Classification

The three key features of graph patterns – node variables, label variables, and regular expres-

sions – provide a natural classification of patterns. We shall refer to classes of patterns as P σ,

where σ enumerates the present features. We use ‘nv’ for node variables, ‘lv’ for label vari-

ables, and ‘re’ for regular expressions. This gives us 8 classes, from P (none of the features is

present) to P nv,lv,re (all are present).

Of course P is the class of graph databases (N,E) with N ⊆ V and E ⊆ N×Σ×N, and

P nv,lv,re is the class of all graph patterns as in Definition 3.2.1 with N ⊆ V∪Vnode and E ⊆

N×REG(Σ∪Vlab)×N. We now examine some others.

• P nv is the class of graphs where nodes could be either constants, or node variables; all

edges are labeled with alphabet letters, i.e. N ⊆ V∪Vnode and E ⊆ N×Σ×N. These

patterns can be represented by relational naive tables.

• P nv,re is the class of patterns where nodes could be either constants or node variables,

and edges are labeled with regular expressions over Σ. That is, N ⊆ V∪Vnode and E ⊆

N×REG(Σ)×N.

These are essentially CRPQs, which are graph queries (ξ, x̄) where ξ is from P nv,re and

uses only node variables (without this restriction we have the class of CRPQs that can

mention constants).
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P

P nv P lv P re

P nv,lv P nv,re P lv,re

P nv,lv,re

Figure 3.2: Relationships between classes of graph patterns

• P nv,lv is the class of patterns where nodes could be either constants or node variables,

and edges are labeled with letters or variables. That is, N ⊆ V∪Vnode and E ⊆ N× (Σ∪

Vlab)×N. The class P lv is its restriction when N ⊆ V.

Since patterns from P nv can be represented by relational naive tables, one can ask whether

it is possible to reuse all the machinery developed for naive tables to the study of these patterns,

and in particular, whether naive query evaluation should work for them. We will see in Chapter

4 that this is indeed true. However, this will turn out to be the largest class for which such naive

evaluation works, as we shall demonstrate later.

3.3.1 Comparing features of graph patterns

Coming back to our three features of graph patterns, it is natural to ask whether all are neces-

sary, or some are expressible with others. In this section we compare them in terms of their

expressive power, and show that all three are essential.

• We write P σ�P σ′ if P σ′ is at least as expressive as P σ. That is, for every pattern π∈P σ,

there is a pattern π′ ∈ P σ′ so that JπK = Jπ′K (i.e., JπKΣ = Jπ′KΣ for each Σ containing the

labels used in π).

• We write P σ ∼ P σ′ if P σ and P σ′ are equally expressive (i.e., P σ � P σ′ and P σ′ � P σ).

• Finally, P σ ≺ P σ′ means that P σ′ is strictly more expressive than P σ: that is, P σ � P σ′ ,

but they are not equally expressive.

Theorem 3.3.1 Adding each new feature to graph patterns strictly increases their expressive-

ness: in other words, P σ � P σ′ is equivalent to σ⊆ σ′.

The relationships mentioned in Theorem 3.3.1 are summarized in Figure 3.2.
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The proof of this Theorem relies on the following result. It provides examples of patterns

in each of P nv, P lv, P re such that the set of all graphs represented by these patterns cannot be

represented by any pattern using any of the remaining two features.

Lemma 3.3.2 The following holds:

1. There exists a pattern π in P nv over alphabet Σ = {a}, such that JπKΣ 6= Jπ′KΣ for all

patterns π′ in P lv,re over the same alphabet.

2. There exists a pattern π in P re over alphabet Σ = {a}, such that JπKΣ 6= Jπ′KΣ for all

patterns π′ in P nv,lv over the same alphabet.

3. There exists a pattern π in P lv over alphabet Σ = {a,b}, such that JπKΣ 6= Jπ′KΣ for all

patterns π′ in P nv,re over the same alphabet.

Proof: We begin by proving statement 1. Consider a pattern π = (N,E) over alphabet Σ =

{a}, where N consists of the node variables x and y, and E consists of the edge (x,a,y). Clearly,

π belongs to P nv. We now prove that there is no pattern π′ in P lv,re such that JπKΣ = Jπ′KΣ. The

idea is as follows. First, notice that the set
⋂
{NG | G = (NG,EG) and G ∈ JπKΣ} containing

the node id’s that appear in all graphs in JπKΣ is equal to the empty set (this can be easily

proved using the fact that we only enforce homomorphisms to be the identity on constants).

Second, it is easy to see that no pattern without edges over Σ can represent exactly the graphs

in JπKΣ, since all graphs in JπKΣ must have at least one edge. Thus, all that we need to prove

is that no pattern π′ in P lv,re over Σ, with at least one edge, satisfies the following:
⋂
{NG |

G = (NG,EG) and G ∈ Jπ′KΣ}= /0. That is, all the graphs in Jπ′KΣ must have at least one node

in common. But this is quite obvious since every pattern π′ in P lv,re, with at least one edge,

contains at least one constant node, and such a node must belong to every graph G in Jπ′KΣ.

Now we prove statement 2; namely, that there exists a pattern π in P re over alphabet

Σ = {a}, such that there is no pattern π′ in P nv,lv over the same alphabet that satisfies JπKΣ =

Jπ′KΣ. Define π = (N,E) over alphabet {a} as follows: The set N of nodes consists of node ids

{n1,n2}, and E consists of the edge (n1,aa∗,n2).

Assume, for the sake of contradiction, that there is a pattern π′ ∈ P nv,lv over Σ, such that

JπKΣ = Jπ′KΣ. It is clear then that the only node ids that appear in pattern π′ are n1 and n2. We

distinguish two cases, depending on the structure of π′:

• The node n2 is not reachable from node n1 in π′. It is then easy to construct a graph

G ∈ Jπ′KΣ such that n2 is not reachable from n1: It suffices to replace every node variable

in π′ to a fresh node constant, and every label variable with the symbol a. This is a

contradiction, since every graph in JπKΣ must satisfy that nodes n1 and n2 are in the same

connected component.
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• Node n2 is reachable from n1 in π′. Let ρ≥ 0 be the longest simple path between n1 and

n2 in π′. We prove below the following property: for every graph G ∈ Jπ′KΣ, there is a

path in G from n1 to n2, and the length of the shortest such path is at most |ρ|. Note that

this property immediately yields a contradiction, since on the other hand, it is easy to

construct a graph in JπKΣ such that n1 and n2 are not connected by any path of size ρ or

less.

Clearly, every graph G ∈ Jπ′KΣ contains a path from n1 to n2, since these node ids are

in the same connected component of π′. Assume now, for the sake of contradiction,

that there is a graph G ∈ Jπ′KΣ such that G has no path of size ≤ |ρ| from n1 to n2.

Furthermore, assume that ρ in π′ is of form n1,x1, . . . ,x|ρ|−1,n2, where each xi, 1 ≤ i ≤

|ρ|−1, is a node variable. Since G ∈ Jπ′KΣ, there is a homomorphism h = (h1,h2) from

π′ to G. Further, h(n1) and h(x1)) must be connected in G with a path of size 1, and the

same is true for (h(x|ρ|−1 and h(n2)) and for h(xi) and h(xi+1)), for each 1≤ i≤ |ρ|−2.

(Indeed, since π′ ∈ P nv,lv, the regular expressions in the edges of π′ can only be label

variables or letters from the alphabet). We have just constructed a path from n1 to n2 in

G of size at most |ρ|. This proves the claim.

This concludes the proof of the second statement of the Lemma.

For statement 3, we prove that there exists a pattern π in P lv over alphabet Σ = {a,b},

such that JπKΣ 6= Jπ′KΣ for all patterns π′ in P nv,re over Σ. We use the following claim:

Claim 3.3.3 Let π be a pattern in P nv,re over alphabet {a,b} such that the nodes n1,n2,n3,n4

are the only node ids of π, and assume that the graph databases G and G′ belong to JπKΣ,

where G consists of edges e12 = (n1,a,n2) and e34 = (n3,a,n4), and G′ consists of edges e′12 =

(n1,b,n2) and e′34 = (n3,b,n4). Then the graph G′′ that consists of edges e12 and e′34 also

belongs to JπKΣ.

Proof: Let h = (h1,h2) and h′ = (h′1,h
′
2) be homomorphisms from π into G and G′, respec-

tively. Notice that since π belongs to P nv,re, we are only interested in the mappings h1 and h′1

that map nodes of π into nodes of G.

Define, from h1, a mapping h′′1 from the nodes of π into the nodes of G′′ as follows:

• h′′1(n) = n, if n is a node id;

• h′′1(x) = n1, if h1(x) = h′1(x) = n1;

• h′′1(x) = n2, if h1(x) = h′1(x) = n2;

• h1(x) = n3 if h1(x) = n3 or h′1(x) = n3; and

• h1(x) = n4 if h1(x) = n4 or h′1(x) = n4.
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• h1(x) = n1 otherwise.

We now show that h′′1 is a homomorphism from π into G′′. It is clear that h′′1 maps nodes

of π into nodes of G′′ and it is the identity on constants. Thus, we only need to prove that for

every edge of form (p,R,q) in π, there exists a path in G′′ from h′′1(p) into h′′1(q) that is labeled

with a word from R.

Let e= (p,R,q) be an arbitrary edge of π. Notice that, since h1 and h′1 are homomorphisms,

the fact that h1(p) = n1 implies that h1(q) = n2, and h1(p) = n3 implies h1(q) = n4. This is

due to the properties of homomorphisms and the fact that the only edge in G starting from n1

is (n1,a,n2), and the only edge in G starting with n3 is (n3,a,n4). Same argument holds for the

case of h′1, namely that h′1(p) = n1 implies that h′1(q) = n2, and h′1(p) = n3 implies h′1(q) = n4.

We consider all possible cases, depending on the values of h1(p) and h′1(p).

• Suppose first that h1(p) = h′1(p) = n1. Then, as we mentioned above, it must be the case

that h1(q) = h′1(q) = n2, and thus h′′1(p) = n1 and h′′1(q) = n2. Since h1 is a homomor-

phism from π to G, there must be a path from h1(p) to h1(q) in G labeled with a word

in L(R); it follows that a belongs to L(R). Then, it is clear that there is path in G′′ from

h′′1(p) to h′′1(q) that is labeled with a word in L(R) (namely, the word a).

• Suppose that h1(p) = n1, but h′1(p) = n3. Then, we have that h1(q) = n2 and h′1(q) = n4,

and thus h′′1(p) = n3, h′′1(q) = n4. Since h′1 is a homomorphism, there must be a path

from h′1(p) to h′1(q) in G′ labeled with a word in L(R); it follows that b belongs to L(R).

Then, it is clear that there is path in G′′ from h′′1(p) to h′′1(q) that is labeled with a word

in L(R) (namely, the word b).

• Suppose that h1(p) = n3, but h′1(p) = n1. Then, we have that h1(q) = n4 and h′1(q) = n2,

and thus h′′1(p) = n3 and h′′1(q) = n4. Since h′1 is a homomorphism, there must be a path

from h′1(p) to h′1(q) in G′ labeled with a word in L(R); it follows that b belongs to L(R).

Then, it is clear that there is path in G′′ from h′′1(p) to h′′1(q) that is labeled with a word

in L(R) (namely, the word b).

• Suppose that h1(p) = h′1(p) = n3. Then h1(q) = h′1(q) = n4, and thus h′′1(p) = n3 and

h′′1(q) = n4. Since h′1 is a homomorphism, there must be a path from h′1(p) to h′1(q) in G′

labeled with a word in L(R); it follows that b belongs to L(R). Then, it is clear that there

is path in G′′ from h′′1(p) to h′′1(q) that is labeled with a word in L(R) (namely, the word

b).

• Suppose that h1(p) /∈ {n1,n3}. This is not possible due to the fact that h1 is a homomor-

phism from π to G, and there are no edges in G that start from nodes n2 or n4.

• Suppose finally that h′1(p) /∈ {n1,n3}. This is also not possible due to the fact that h′1 is a

homomorphism from π to G′, and there are no edges in G′ that start from nodes n2 or n4.
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✷

To prove the statement, construct the following pattern π in P lv: It contain nodes

{n1,n2,n3,n4}, and edges (n1,X ,n2) and (n3,X ,n4), where X is a label variable. Clearly, the

graphs G and G′, as defined in the statement of Claim 3.3.3, belong to JπKΣ. On the other hand,

it is straightforward to prove that G′′ /∈ JπKΣ. Notice that if π′ is a pattern in P nv,re that is equiv-

alent to π over Σ, then the set of node ids of π′ must be exactly {n1,n2,n3,n4}. It follows from

Claim 3.3.3 that there is no pattern π′ in P nv,re over Σ, such that JπKΣ = Jπ′KΣ. This finishes the

proof of the Lemma. ✷

Proof of Theorem 3.3.1: Using this lemma, we can now present the proof of the Theorem.

(⇐): From the definition, it is clear that σ⊆ σ′ implies P σ � P σ′ .

(⇒): To prove that P σ � P σ′ implies σ⊆ σ′, assume for the sake of contradiction that for

some σ,σ′ it is the case that P σ � P σ′ , but it is not the case that σ ⊆ σ′. Then there exists an

element of {nv, lv, re} that belongs to σ but not to σ′. It follows from statements (1, 2 and 3) of

Lemma 3.3.2 that there is a pattern π in P σ over some alphabet Σ, such that JπKΣ 6= Jπ′KΣ, for

all patterns π′ ∈ P σ′ over Σ. This shows that P σ 6� P σ′ , which is a contradiction.

3.3.2 Codd Patterns and their classification

In both relational and XML patterns it is common to consider a restriction in which variables

cannot be repeated. In relations, these are Codd tables [Imielinski and Lipski, 1984] that model

SQL’s nulls. We say that a graph pattern is a Codd pattern if every variable – node or label –

occurs at most once in it. In other words, Codd patterns do not allow us to express equality

between unknown entities.

If σ contains nv or lv, we shall write P σ
Codd for the Codd patterns in P σ. We next show

that Codd patterns are strictly weaker than the usual ones, and describe classes of patterns for

which adding variables under Codd interpretation increases expressiveness.

Proposition 3.3.4 • Codd patterns are strictly less expressive: P σ
Codd ≺ P σ when σ con-

tains nv or lv.

• Adding variables under Codd interpretation makes patterns more expressive except

adding label variables to regular expressions. That is, if σ′ ( σ and σ−σ′ contains

either nv or lv, then P σ′ ≺ P σ
Codd except one case: P re ∼ P lv,re

Codd.

Proof: We begin with the last part of the second statement, namely that P re ∼ P lv,re
Codd. Clearly,

every pattern π in P re is also in P lv,re
Codd. Then, we only need to prove that for every pattern π in

P lv,re
Codd over alphabet Σ there exists a pattern π′ in P re over Σ such that JπKΣ = Jπ′KΣ.

Let π = (N,E) be an arbitrary pattern in P lv,re
Codd over alphabet Σ. We define a pattern π′ =

(N ′,E ′) over Σ as follows:
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• N ′ = N;

• E ′ contains all edges in E of the form (p,R,q), where R does not use label variables; and

• For each edge in E of the form (p,R,q) such that R uses label variables X1, . . . ,Xn,

let R[X1 → a1, . . . ,Xn → an], for a1, . . . ,an ∈ Σ, be the regular expression resulting of

replacing each label variable Xi in R with the symbol ai, for 1≤ i≤ n, and define

R′ =
⋃

a1,...,an∈Σ

R[X1→ a1, . . . ,Xn→ an].

Then, E ′ contains the triple (p,R′,q).

We first prove that JπKΣ ⊆ Jπ′KΣ. Assume that the graph database G over Σ belongs to

JπKΣ, and let h = (h1,h2) be a homomorphism from π into G. We claim that h = (h1,h2) is

also a homomorphism from π′ into G. (Notice that π′ does not use label variables, so we may

disregard h2 in order to show that h is a homomorphism from π′ into G). Clearly, h1 sends

nodes of π′ into nodes of G, and is the identity on node ids. Thus, we only need to show that

for every edge (p,R′,q) in π′, there is a path ρ in G from h1(p) to h1(q) such that λ(ρ) belongs

to L(R′). Let (p,R,q) be an arbitrary edge in π′. We have to consider two cases:

• There exists an edge of form (p,R,q) in π, in which case the proof is trivial.

• For some edge (p,R′,q) in π, such that R′ uses label variables X1, . . . ,Xn, it is the case

that R =
⋃

a1,...,an∈Σ R′[X1→ a1, . . . ,Xn→ an]. Then, we know that there is a path ρ from

n1 to n2 in G such that h1(p) = n1, h1(q) = n2 and λ(ρ) belongs to h2(R
′). But, clearly,

h2(R) is of the form R′[X1→ a1, . . . ,Xn→ an], for some a1, . . . ,an ∈ Σ. This implies that

there is a path ρ in G from h1(p) = n1 to h1(q) = n2 in G such that λ(ρ) belongs to L(R).

Next, we show that Jπ′KΣ ⊆ JπKΣ. Assume that G belongs to Jπ′KΣ, and let h = (h1,h2) be

a homomorphism from π′ into G. (Notice that π′ does not use label variables, so we are only

interested in the function h1 that maps nodes of π′ into nodes of G). Let W be the set of label

variables mentioned in π. We construct a mapping h′2 : W → Σ such that h′ = (h1,h
′
2) is a

homomorphism from π into G.

Define h′2 : W → Σ as follows. For each edge e = (p,R,q) in π do the following: Assume

that X1, . . . ,Xn are the label variables mentioned in R. Since h = (h1,h2) is a homomorphism

from π′ into G, there is a path ρe in G from h1(p) to h1(q) such that λ(ρe) belongs to R′ =
⋃

a1,...,an∈Σ R[X1→ a1, . . . ,Xn→ an]. This means that λ(ρe) belongs to R[X1→ ae
1, . . . ,Xn→ ae

n],

for some ae
1, . . . ,a

e
n ∈ Σ. We then define h′2(Xi) to be ae

i , for each 1 ≤ i ≤ n. Notice that h′2

defined in this way is indeed a mapping from W into Σ, as each variable X mentioned in π

appears in exactly one edge of π. (This is because π belongs to P lv,re
Codd).

We now show that h′ = (h1,h
′
2) is a homomorphism from π into G. Clearly, h1 sends nodes

of π into nodes of G, and is the identity on node ids. Thus, we only need to show that for every
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edge (p,R,q) in π, there is a path ρ in G from h1(p) to h1(q) such that λ(ρ) belongs to L(R).

Let e = (p,R,q) be an arbitrary edge in π. Once again, we have to consider two cases:

• Regular expression R does not use label variables, in which case the proof is trivial since

π′ also contains the edge (p,R,q).

• Regular expression R uses label variables X1, . . . ,Xn. But then the path ρe in G goes

from h1(p) to h1(q), and satisfies that λ(ρe) belongs to R[X1→ ae
1, . . . ,Xn→ ae

n]. But,

by definition, we have that R[X1→ ae
1, . . . ,Xn→ ae

n] = h′2(R), and thus ρe is a path from

h1(p) to h1(q) such that λ(ρe) belongs to h′2(R).

We conclude that h′ = (h1,h
′
2) is a homomorphism from π into G, and hence that G belongs to

JπKΣ.

Finally we prove that for all the remaining cases in which σ′ ( σ and σ−σ′ contains either

nv or lv, it is the case that P σ′ ≺ P σ
Codd.

Let σ and σ′ as stated. By definition, P σ′ � P σ
Codd. Thus, we only need to show that P σ′

and P σ
Codd are not equally expressive. This follows easily from the following cases:

1. There exists a pattern π in P nv
Codd over Σ = {a}, such that JπKΣ 6= Jπ′KΣ for all patterns π′

in P lv,re over Σ.

2. There exists a pattern π in P lv
Codd over Σ = {a,b}, such that JπKΣ 6= Jπ′KΣ for all patterns

π′ in P nv over Σ.

In particular, from case (1) we obtain that P σ′ ≺ P σ
Codd, for every σ ⊆ {nv, lv, re} and

σ′ ⊆ {lv, re} such that σ′ ⊆ σ and σ−σ′ contains nv. On the other hand, from case (2) we

obtain that P σ′ ≺ P σ
Codd, for each σ ⊆ {nv, lv} and σ′ ⊆ {nv} such that σ′ ⊆ σ and σ−σ′

contains lv.

Case (1) follows directly from the proof of the first statement of Lemma 3.3.2, as the proof

only uses patterns in P nv
Codd. To prove case (2), we use the following fact: Let π be a pattern

in P nv over an alphabet Σ such that π contains at least one edge. Then there is a symbol a ∈ Σ

such that the certain answer to the Boolean RPQ Q = Ans()← (x,a,y) over π is true. Indeed,

since π belongs to P nv, the edges of π are labeled only by symbols from Σ. Take an arbitrary

edge in π, and assume that it is of the form (p,a,q), for a ∈ Σ. It is now easy to see that every

graph G in JπKΣ will contain an edge labeled with the symbol a. This proves that the certain

answer to Q = Ans()← (x,a,y) over π is true.

We now continue with the proof of case (2). Let π = (N,E) be the following pattern in

P lv
Codd over alphabet Σ = {a,b}: N contains two node ids n1 and n2, and E contains the edge

(n1,X ,n2), where X is a label variable. Notice then that JπKΣ contains the graph database G0

that consists only of the edge (n1,a,n2), as well as the graph database G1 that consists only
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of the edge (n1,b,n2). Thus, it is easy to see that the certain answer to Q0 and Q1 over π is

false, where Q0 = Ans()← (x,a,y) and Q1 = Ans()← (x,b,y). Furthermore, notice that each

graph database in π contain at least one edge, so every pattern π′ over Σ such that JπKΣ = Jπ′KΣ

must also contain at least one edge. The proof then follows, by contradiction, from the fact we

proved above that for every pattern π in P nv over Σ, such that π contains at least one edge, the

certain answer to either the RPQ Q0 or to the RPQ Q1 over π must be true.

We prove next the first statement of the proposition, namely that P σ
Codd ≺ P σ when σ

contains nv or lv. Again, by definition, it is the case that P σ
Codd � P σ. Thus, we only need to

prove that P σ
Codd and P σ are not equally expressive.

Assume first that σ contains lv, but not nv: that is, σ is {lv} or {lv, re}, and assume for the

sake of contradiction that it holds that P σ
Codd ∼ P σ. Using the same construction as in the proof

for the second statement of this proposition, it is possible to show that P σ
Codd � P re (since, in

particular, we have shown that P lv,re
Codd ∼ P re). We then obtain that P σ � P re, and then either

P σ ≺ P re, or P σ ∼ P re. However, any of these two facts contradicts Theorem 3.3.1.

Next, assume that σ contains nv. To prove that P σ
Codd is not equally expressive as P σ we

shall prove a more general statement: There exists a pattern π in P nv over alphabet Σ = {a},

such that JπKΣ 6= Jπ′KΣ for all π′ in P nv,lv,re
Codd over Σ.

Let π be the pattern over alphabet {a} that consists of the single edge (x,a,x), where x

is a node variable. Then notice that all database graphs G ∈ JπKΣ must contain at least one

edge that forms a self-loop with a node of G. Assume now, for the sake of contradiction, that

there is a pattern π′ in P nv,lv,re
Codd over Σ, such that JπKΣ = Jπ′KΣ. Then it is clear that π′ contains

no node ids (since homomorphisms are enforced to be the identity on constants). We now

prove the following fact that implies that JπKΣ 6= Jπ′KΣ, which is the desired contradiction: Let

π = (N,E) be a pattern in P nv,lv,re
Codd over alphabet {a} such that N does not contain node ids.

Then there exists a graph G ∈ JπKΣ that does not contain any self loops.

Indeed, consider the graph database G resulting of replacing each node variable x in π with

a fresh constant nx, and each edge e = (x,L,y) of π with a path ρe of fresh node ids from nx

to ny, such that λ(ρ) satisfies the regular expression L′ that is obtained by replacing each label

variable in L with letter a. (Notice that paths of the form ρe are node and edge disjoint; that is,

only start and end nodes can be shared between them). Clearly, G belongs to JπKΣ and contains

no self-loops.

This finishes the proof of Proposition 3.3.4.

✷



Chapter 4

Answering Queries Over Graph

Patterns

Having studied the basics of Graph Patterns, the next step is to analyze how to query them. The

goal of this chapter is to study the complexity – both data and combined – of query answering

over graph patterns. As for our query language, apart from the usual RPQs and CRPQs we take

the study one step further, and provide complexity bounds for the (more general) language of

queries given by graph patterns. Let us begin with some terminology.

4.1 Key Definitions

Graph patterns generally represent an infinite set of graph databases, and thus we cannot pose

queries directly over them. As for other data models [Arenas et al., 2010, Barceló et al., 2010b,

Fagin et al., 2005a, Imielinski and Lipski, 1984, Lenzerini, 2002], one looks instead for an-

swers that are independent of the way in which the missing parts of patterns are interpreted,

the so-called certain answers.

4.1.1 Certain Answers

To formally define certain answers in our context, consider queries Q that take graph databases

as input and return sets of tuples of their nodes. For example, RPQs and CRPQs are such

queries, and so are queries based on graph patterns. For them, we can define their certain

answers on graph patterns in the standard way:

CERTAINΣ(Q,π) =
⋂
{Q(G) | G ∈ JπKΣ}.

Although somewhat unintuitive at the first glance, the labeling alphabet can make a dif-

ference in finding certain answers. For this reason we have explicitly included the alphabet

35
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in our definition of certain answers. As usual, if Σ is clear from the context, we write simply

CERTAIN(Q,π).

Example 4.1.1 The labeling alphabet can make a difference in finding certain answers. Con-

sider a pattern π with edges (n1,a,n2),(n2,X ,n3),(n3,b,n4), where X is a label variable. Let

Q be the Boolean RPQ ϕ() = (x,ab,y). Then CERTAIN{a,b}(Q,π) = true: whether X is a or

b, there is a path labeled ab. However, CERTAIN{a,b,c}(Q,π) = false (by setting X = c). ✷

4.1.2 Relationship between certain answers and implication of patterns

It is a standard and yet useful observation that the problem of computing certain answers can

be cast as the problem of implication of patterns. Recall that pattern implication is defined as

follows: if π1 and π2 are two patterns, then we say that π1 implies π2, and write π1 |= π2 if

Jπ1K⊆ Jπ2K. In other words, π1 |= π2 if G |= π entails G |= π2 for every graph database G. The

following is now immediate from the definitions.

Lemma 4.1.2 Given a graph pattern π = (N,E) and a graph query Q = (ξ, x̄) with |x̄|= k,

CERTAIN(Q,π) = {v̄ ∈ Nk | π |= ξ[v̄/x̄]}.

Proof: Let Q = (ξ, x̄) be a graph query over Σ, and π a graph pattern. Assume that for some

tuple v̄ we have that π |= ξ[v̄/x̄]. Then JπK⊆ Jξ[v̄/x̄]K. This means that for every graph G such

that there is a homomorphism h : π→G there must also be a homomorphism from ξ[v̄/x̄] to G.

In other words, v̄ belongs to Q(G). Since G was arbitrarily chosen, we have that v̄ belongs to

CERTAIN(Q,π). On the other hand, if a tuple v̄ belongs to CERTAIN(Q,π), then for every graph

G in JπK (i.e., that there is a homomorphism from π to G), it must be the case that v̄ belongs to

Q(G), which by definition means that there must be a homomorphism from ξ[v̄/x̄] to G. This

entails that JπK⊆ Jξ[v̄/x̄]K, which was to be shown. ✷

For Boolean graph queries Q = (ξ,()) with the empty tuple of output variables (i.e.,

true/false queries), Lemma 4.1.2 states that CERTAIN(Q,π) = true if and only if π |= ξ.

This simple connection with the implication problem will let us use known results on con-

tainment of CRPQs [Calvanese et al., 2000b] to obtain some of the bounds for the combined

complexity of query answering for patterns that use regular expressions in their edge labels.

4.1.3 Problem definition

We are now ready to formally state our object of study in this chapter: the combined complexity

of query answering. The problem we deal with is as follows:
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PROBLEM: PATTERN CERTAIN ANSWERS

INPUT: A pattern π = (N,E),

a graph query Q = (ξ, x̄) with |x̄|= k,

a tuple v̄ ∈ Nk.

QUESTION: Is v̄ ∈ CERTAIN(Q,π) ?

We also study the data complexity of certain answers, i.e. the complexity of query answer-

ing when the query is fixed. In what follows, Q refers to a graph query (ξ, x̄) with |x̄|= k.

PROBLEM: PATTERN CERTAIN ANSWERS(Q)

INPUT: a pattern π = (N,E), a tuple v̄ ∈ Nk.

QUESTION: Is v̄ ∈ CERTAIN(Q,π) ?

Notice that this can also be viewed as a pattern-implication problem π |= ξ[v̄/x̄], but for a

fixed pattern ξ.

4.1.4 Organization of this chapter

Since each class of patterns gives rise to a class of graph queries Q = (ξ, x̄), one could poten-

tially ask for the exact bounds on combined and data complexity for all these classes of queries

on all the classes of patterns. Of course we are not going to consider all the resulting 128 cases.

Instead, we do the following.

We begin (Section 4.2) by examining up to what extent can results from relational databases

be used in our context. We shall see that some results can be obtained for query answering in

this fashion, but that relational techniques fall short when providing bounds for the general

problem. We then devote Section 4.3 to show general upper bounds for both combined and

data complexity, for the case when both the query and the input can be arbitrary patterns. Next,

in order to provide a finer analysis on the impact of various features of graph patterns in query

answering, we adopt CRPQs as our benchmark language (recall that CRPQs can be viewed as

graph queries (ξ, x̄) with ξ ∈ P nv,re), and provide exact complexity bounds for CRPQs over all

classes of patterns. This is done in Section 4.4.

4.2 Using Naive Evaluation: The Relational Case

Some classes of patterns can be represented as naive tables, perhaps with constraints. The

schema of these relational representations consists of binary relation symbols Ea, for each

a ∈ Σ. Then, for instance, a pattern π in P nv over Σ can be interpreted as a naive table Iπ of this

schema: The interpretation of symbol Ea in this structure contains all pairs (p,q) of nodes in π

such that there is an edge labeled a from p to q in π.
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Example 4.2.1 Consider the graph pattern π over alphabet Σ = {a,b}, that consist of edges

(n1,a,n2), (n2,b,y), (n2,b,x) and (n1,a,x). The following is the relational representation of π:

Ea

n1 n2

n1 x

Eb

n2 x

n2 y

Note that this is, in fact, a naive table.

Other class of patterns can be represented, in a similar fashion, if we add constraints to the

relational representations. For example, patterns from P nv,lv are represented as relational naive

tables with an additional constraint that the interpretation for label variables must come from

the labeling alphabet Σ, which can easily be coded as an inclusion constraint. The goal of this

section is to see up to what extent it is possible to reuse algorithms and bounds from relational

incomplete databases to compute certain answers over graph patterns.

4.2.1 Patterns in P nv, or naive tables

We have mentioned that patterns in P nv are nothing more than relational naive tables, as-

suming the standard relational representation of graph databases. This representation auto-

matically gives us tractable bounds for data complexity of answering CRPQs over patterns

in P nv, since it is well known that CRPQs can be expressed in datalog, and computing the

certain answers of a datalog program over a naive table is known to be in PTIME (see e.g.

[Abiteboul and Duschka, 1998]). However, with a little bit more of effort, one can show that

in fact all graph patterns, when viewed as queries, can be expressed in datalog, which gives us

the following result.

Proposition 4.2.2 PATTERN CERTAIN ANSWERS(Q) is in PTIME when restricted to patterns

in P nv.

Proof: It is clear that every graph query in P nv,re can be transformed into an equivalent datalog

program over the relational representation that we have previously discussed. Let now (ξ, x̄)

be an arbitrary graph query, and let W be the set of label variables in ξ. note then that (ξ, x̄)

is equivalent to the union of the following set of graph queries: (ν(ξ), x̄), for every valuation

ν : W → Σ. We can then construct a datalog program Pξ that is equivalent to (ξ, x̄) by taking

the union of all datalog programs Pν(ξ) that are equivalent to (ν(ξ), x̄), in a way such that the

answers for Pξ are exactly the union of the answers of each Pν(ξ). ✷

Since even the standard evaluation of datalog programs over complete relational databases

is known to be EXPTIME-complete, the same approach adopted for proving Proposition 4.2.2

gives us an exponential upper bound for the combined complexity of certain answers. This is,
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as expected, not optimal, and in fact much lower bounds have been found already for CRPQs.

For the case of arbitrary graph queries, it turns out that one can also match the complexity

bounds for querying CRPQs over standard graph databases.

The key idea to show this fact is to disregard using relational representations, but instead

perform naive evaluation directly over the graph pattern. Formally, let Q be a graph query and

π a pattern in P nv over Σ. We show next that the set CERTAINΣ(Q,π) can be computed by

directly evaluating Q over π, treating node variables as if they were ordinary node ids, and then

discarding from the answers all tuples containing node variables.

Lemma 4.2.3 Let Q be a graph query and π a pattern in P nv, both over an alphabet Σ. Then

the naive evaluation of Q over π corresponds to CERTAINΣ(Q,π).

Proof: First, by definition, the relational representation of every graph pattern π in P nv is

homomorphically contained in the relational representation of any graph database in Rep(π).

Second, since datalog queries are preserved under relational homomorphisms, and from Propo-

sition 4.2.2 every graph query can be expressed in datalog, it follows that graph queries are

preserved under relational homomorphisms, and thus naive evaluation works even in the graph

database scenario. ✷

It is not difficult to show that the problem of evaluating a graph query over a graph database

G is in NP (one just chooses a proper graph homomorphism), and hence performing a naı̈ve

evaluation (and, therefore, computing certain answers) of a graph query over a pattern in P nv

is in NP. The problem is clearly also NP-hard, even over patterns in P , as it contains as a

subinstance the problem of conjunctive query evaluation over graphs.

Proposition 4.2.4 PATTERN CERTAIN ANSWERS is NP-complete when restricted to graph

queries over patterns in P nv.

Thus, for the case of patterns in P nv the complexity of querying patterns is, remarkably,

not greater than the complexity of evaluating conjunctive queries over naive tables. As we

have explained, this is due to the fact that naive evaluation works for this classes of patterns.

We shall see in the remainder of this Chapter that as soon as we add regular expressions or

label variables to our patterns, then the possibility of doing naive evaluation appears to be lost.

Consequently, this carries over an increase in combined complexity, and, for the case of data

complexity, we immediately loose tractability.

Other relational representations. Unfortunately, for other classes of patterns, we cannot use

known results to get tight bounds. For example, even evaluating conjunctive queries over naive

tables with inclusion constraints is known to be PSPACE-hard [Johnson and Klug, 1984], and

we shall see better bounds obtained for CRPQs over P nv,lv patterns. Same applies for data

complexity.
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The results in this section will be revisited in Chapter 6 when studying how to perform

query answering in the context of data exchange: indeed, we see that patterns in P nv will

be the natural candidates to materialize when exchanging information under some interesting

classes of data exchange settings, allowing us to reuse the techniques visited here in order to

compute queries in a data exchange context.

4.3 General Upper Bounds

Our next task is to analyze what happens in the general scenario. The main results of this sec-

tion are the general upper bounds for the certain answers problem, for arbitrary graph queries

over arbitrary graph patterns, for both combined and data complexity. We have discussed that

relational representations can only provide meaningful bounds for patterns in P nv, and we

have argued that new techniques are needed in order to solve this problem for more expressive

classes of patterns. Therefore, instead of using relational techniques, we exploit the connection

between certain answers and pattern implication stated in Lemma 4.1.2, and look at the results

of pattern implication by [Calvanese et al., 2000b].

4.3.1 Combined Complexity

We begin with combined complexity. It was shown in [Calvanese et al., 2000b] that the pat-

tern implication problem for CRPQs is EXPSPACE-complete. By Lemma 4.1.2 this gives us

with little effort that answering queries in P nv,re over patterns in P nv,re is EXPSPACE-complete.

Using essentially the same techniques as in [Calvanese et al., 2000b], we can prove that the

previous upper bound extends beyond CRPQs.

Proposition 4.3.1 PATTERN CERTAIN ANSWERS is in EXPSPACE.

Proof: The containment problem for CRPQs is known to be in EXPSPACE

[Calvanese et al., 2000b]. The EXPSPACE algorithm proposed in [Calvanese et al., 2000b]

does the following: Given two CRPQs, Q1 and Q2, the algorithm first constructs in EXPSPACE

an NFA A1, of exponential size, that accepts precisely the “codifications” of the graph databases

that satisfy Q1, and then constructs in EXPSPACE an NFA A2, of double-exponential size, that

accepts precisely the “codifications” of the graph databases that do not satisfy Q2. Then it is

possible to prove that Q1 6⊆Q2 if and only the language accepted by A1∩A2 is nonempty. The

latter can be done in EXPSPACE by using a standard “on-the-fly” verification algorithm. We

use this idea to show that the implication problem (that is, the containment problem) between

arbitrary graph patterns in P nv,lv,re can also be solved in EXPSPACE. Allowing constants in CR-

PQs comes at no cost, and esentially the same construction shows that containment of CRPQs

with constants (and, thus, implication of patterns in P nv,re) can be solved in EXPSPACE.
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Let π be a graph pattern P nv,lv,re, and let Q be a graph query such that its underlying graph

pattern ξ also belongs to P nv,lv,re. Suppose that both patterns are defined over alphabet Σ and

that the set of label variables used in π or ξ is W . We assume without loss of generality that Q

is Boolean. (Indeed, since patterns in P nv,lv,re are allowed to make use of node ids, this is not a

restriction, at least in terms of the complexity analysis). Then clearly, CERTAIN(Q,π) = false

if and only if for some assignment ν : W → Σ it is the case that CERTAIN(Q,πν) = false,

where πν is the pattern in P nv,re that is obtained from π by replacing each occurrence of the

label variable X with ν(X). Notice that πν is a pattern in P nv,re.

First we show that for each valuation ν : W → Σ, the problem of checking whether

CERTAIN(Q,πν) = false can be solved in EXPSPACE. Clearly, CERTAIN(Q,πν) = false

if and only if there is a graph database G ∈ JπνK such that for each mapping ν′ : W → Σ it

is the case that G 6∈ Jξν′K. (Notice that ξν′ belongs to P nv,re, for each mapping ν′ : W → Σ).

First, construct in EXPSPACE an automaton Aν
π , of exponential size, that accepts precisely the

“codifications” of the graph databases that belong to JπνK – as done in [Calvanese et al., 2000b]

and explained at the beginning of the proof. Then, for each valuation ν′ : W → Σ, construct in

EXPSPACE an automaton Aν′

ξ
, of double-exponential size, that accepts precisely the “codifica-

tions” of the graph databases that do not belong to Jξν′K – as done in [Calvanese et al., 2000b]

and explained at the beginning of the proof. Then CERTAIN(Q,πν) = false if and only the

language accepted by the NFA B = Aν
π ∩

⋂
ν′:W→Σ Aν′

ξ
is nonempty. Notice that the size of B

is double-exponential on the size of the input, and, further, that checking whether B accepts

some word can be done in EXPSPACE using a standard “on-the-fly” verification algorithm.

Thus, an EXPSPACE procedure that checks whether CERTAIN(Q,π) = false does the

following: For each ν : W → Σ, the procedure first constructs πν and then checks whether

CERTAIN(Q,πν) = false using the algorithm described in the previous paragraph. If

CERTAIN(Q,πν) = false, for some ν : W → Σ, then we declare CERTAIN(Q,π) = false.

Otherwise, we declare CERTAIN(Q,π) = true. Clearly, the whole procedure can be performed

in exponential space. ✷

4.3.2 Data Complexity

Next we turn to data complexity of certain answers. In contrast to the relational case, where

answering positive queries over naive tables is usually tractable, the data complexity of query

answering jumps to CONP-hard as soon as regular expressions or label variables are involved

in patterns, i.e., as soon as we loose the possibility of performing naive evaluation.

Let us quickly show the proof for the case of patterns in P re. We extend this result to P lv

in the next section. These will also be tightened significantly in Chapter 5

Proposition 4.3.2 There is a CRPQ Q such that PATTERN CERTAIN ANSWERS(Q) is CONP-

hard over patterns in P re.
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Proof: We use reduction from non-3-colorability. Assume we have an arbitrary undirected

graph G; we represent it as a labeled graph where between two nodes n1 and n2 connected by

an edge we have two edges labeled a, i.e., (n1,a,n2) and (n2,a,n1). Now we turn it into a P re

pattern πG over the alphabet {a,r,g,b} by adding edges (n,rr|gg|bb,n) for each node n. That

is, in every graph represented by this pattern, associated with each node n there is a node n′ and

edges (n, ℓ,n′),(n′, ℓ,n) where ℓ is one of r,g,b. It is now easy to see that the certain answer to

the Boolean RPQ Q() = (x,rar|gag|bab,y) over πG is true if and only if G is not 3-colorable.

✷

In order to prove that the upper bound again extends to arbitrary queries, we apply similar

techniques to those used in [Calvanese et al., 2000a] to show that the data complexity of the

problem of answering RPQs using views is in CONP, and essentially the same ideas explored

for answering XML patterns over XML incomplete information [Barceló et al., 2010b]. More

precisely, to show that a particular tuple of nodes does not belong to the certain answers of a

graph query Q over a graph pattern π, one can just guess a graph G in Rep(π), and then evaluate

Q directly over G (which is polynomial in data complexity). All that one really needs to show

is that one can always find a suitable graph G of polynomial size w.r.t Q. This is what we do

next, but first we need some definitions.

4.3.2.1 Canonical graph databases

Let π be a graph pattern, and σ an assignment from the nodes of π into V such that (1) σ is the

identity map on node ids, and (2) σ assigns a fresh node id nx to each node variable x mentioned

in π. (In particular, nx does not appear in π). Then we say that σ is canonical for π.

Let π be a graph pattern over Σ. Assume that π consists of the edges {(pi,Li,qi) | 1 ≤

i ≤ m}, where each pi and qi is either a node variable or a node id and each Li belongs to

REG(Σ∪Vlab) (1 ≤ i ≤ m). Further, let σ be a canonical assignment for π. Then the graph

database G over Σ is σ-canonical for π if and only if there is a mapping ν : Vlab→ Σ such that

the following holds:

• G consists of m simple paths, one for each edge in π, which are node and edge disjoint,

i.e. only the start and end nodes can be shared between different paths; and

• for each 1 ≤ i ≤ m, if ρi is the path associated with the edge (pi,Li,qi) then ρi starts in

the node id σ(pi) and ends in the node id σ(qi), and λ(ρi) ∈ ν(Li).

From now on, whenever G is σ-canonical for π, for some canonical assignment σ, then we

simply say that it is canonical for π. Clearly, if G is canonical for π then G |= π.

Using essentially the same techniques as in [Calvanese et al., 2000b] it is possible to prove

the following semantic characterization:
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Claim 4.3.3 For each graph query Q and tuple n̄ of node ids in π, it is the case that n̄ 6∈

CERTAIN(Q,π) if and only if there is a a graph database G over Σ that is canonical for π and

such that n̄ 6∈Q(G).

4.3.2.2 Proof of CONP upper bound

Finally we have the appropriate tools to prove the upper bound for data complexity.

Proposition 4.3.4 PATTERN CERTAIN ANSWERS(Q) is in CONP for arbitrary graph queries

over arbitrary graph patterns.

Proof: Let Q be a fixed graph query over the fixed alphabet Σ. We assume without loss of

generality that Q is Boolean (indeed, since queries are allowed to make use of node ids this is

not a restriction). We first prove the following small model property: There is a polynomial

p(x) such that for every graph pattern π over Σ, if

1. there is a graph database G ∈ JπK such that Q(G) = false, and

2. every node id that is mentioned in Q is also mentioned in π,

then there is a canonical graph database G′ for π such that (1) Q(G′) = false, and (2) the

length of each path in G′ that is associated with an edge of π is bounded by p(|π|), where |π|

is the size of G. (Notice that this immediately implies that G′ is of size polynomial on |π|). We

prove this by applying usual cutting techniques.

Let π be a graph pattern over Σ. Assume that every node id that is mentioned in Q also

appears in π. Further, assume that there is a graph database G ∈ JπK such that Q(G) = false.

Then we can also assume, without loss of generality, that G is σ-canonical for π via some

mapping ν : Vlab → Σ, for some canonical assignment σ (Claim 4.3.3). The problem is that

some paths in G may be too long, and, thus, not necessarily every path in G that is associated

with some edge of π is of polynomial size. Next we show how to prune the long paths in G

without changing its semantics with respect to π and Q.

Consider the query Q′ defined as
∨
{ν|ν:Vlab→Σ}Qν, where Qν is the graph query obtained

from Q by simultaneously replacing each label variable X mentioned in Q with ν(X). Clearly,

Q′ is a finite disjunction of graph queries whose underlying graph pattern belongs to P nv,re. We

assume the semantics of disjunctions of graph queries to be defined in the standard way from

the semantics of graph queries. Then it is not hard to see that Q(G) = false if and only if

Q′(G) = false.

Further, Q′ is a union of CRPQs with constants, and hence it can be expressed as a sentence

ϕ in monadic second-order logic (MSO) – which is the extension of first-order logic with

quantification over sets, see [Libkin, 2004] a precise definition – with the help of constants for
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the node ids that appear in Q. The vocabulary of ϕ consists of binary relation symbols Ea, for

each a ∈ Σ. A graph database G over Σ can be interpreted in the standard way (as presented

in Section 4.2) as a first-order structure SG over this vocabulary: The interpretation of symbol

Ea in this structure contains all pairs (n,n′) of node ids in G such that there is an edge labeled

a from n to n′ in G. Then one can construct ϕ in such a way that G |= Q′⇔ SG |= ϕ, for each

graph database G.

Assume that the quantifier depth of ϕ is k ≥ 0. Notice that k depends only on ϕ. It is

well-known that there is a finite number of different rank-k MSO types (c.f., [Libkin, 2004]) of

words over vocabulary Σ with one distinguished element. Assume that such a number is K ≥ 0.

Again, K only depends on k, and thus, on ϕ.

Also, with each regular language of the form ν(L), where L is a regular language in

REG(Σ∪Vlab) that appears in π, we associate an NFA Aν(L) that recognizes L. Since each

regular language can be converted into an equivalent NFA of polynomial size, we can assume

that there is a polynomial p′(x) such that the number of states of each NFA of the form Aν(L)

is bounded by p′(|L|), and hence by p′(|π|).

Let ρ = n0a0n1 · · ·aℓ−1nℓaℓnℓ+1 be an arbitrary path in G, such that both n0 and nℓ+1 are

mentioned in π, but none of the node ids n1, . . . ,nℓ is mentioned in π. Recall that G is σ-

canonical for π, and, thus, ρ is associated with some edge (p,L,q) in π. That is, σ(p) = n0,

σ(q) = nℓ+1 and a0a1 · · ·aℓ belongs to ν(L). With each node ni, 1 ≤ i ≤ ℓ, we associate a pair

(αi
1,α

i
2) such that:

• αi
1 is the rank-k type of the word λ(ρi

→), where ρi
→ = niaini+1 · · ·aℓnℓ+1; and

• αi
2 is the rank-k type of the word λ(ρi

←), where ρi
← = n0a0 · · ·ai−2ni−1ai−1.

Then it is clear that if ℓ ≥ p′(|π|) ·K + 3 there must be two nodes ni and n j (2 ≤ i <

j ≤ ℓ) such that (1) αi
1 = α

j
1 and αi

2 = α
j
2, and (2) there is an accepting run of Aν(L) over

a0a1 · · ·aℓ such that the state assigned by this run to position i−1 is the same than the

one assigned to position j− 1. Thus, the word a0a1 · · ·ai−1a j · · ·aℓ belongs to ν(L), and

further, if G′ is the graph database that is obtained from G by replacing path ρ by path

ρ′ = n0a0n1 · · ·ai−1nia jn j+1 . . .nℓaℓnℓ+1, then G′ |= π.

We need to show now that the semantics of Q is invariant with respect to G and G′. First,

assume that n̄ is the tuple of all distinct node ids mentioned in π. Then G contains each node

id n mentioned in n̄, and so does G′ (because we only cut internal node ids of paths in G that

are associated to edges in π, and those nodes – since G is canonical for π – do not appear in π).

Further, let (G, n̄) and (G′, n̄) be the first-order structures that extend the standard first-order

interpretations of G and G′ over vocabulary {Ea | a ∈ Σ} with distinguished tuple n̄. By using

a standard Ehrenfeucht-Fraı̈ssè game argument for MSO, it is possible to prove that (G, n̄) and

(G′, n̄) are indistinguishable by MSO sentences of quantifier rank ≤ k. (This is due to the facts
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that (1) αi
1 = α

j
1 and αi

2 = α
j
2 implies that the rank-k types of λ(ρ) and λ(ρ′) are the same, and

(2) there are no two different paths in G that share internal nodes from ρ). We conclude that

(G, n̄) |= ϕ if and only if (G′, n̄) |= ϕ (since every node id that is mentioned in ϕ is among those

in n̄), and, thus, Q′(G) = false iff Q′(G′) = false. Therefore, Q(G) = false iff Q(G′) =

false.

By recursively applying the cutting technique one can show that if there is a graph database

G ∈ JπK such that n̄ 6∈ Q(G), then there is a graph database G′ that is canonical for π, Q(G′) =

false, and the length of each path in G′ that is associated with an edge of π is bounded by

the polynomial p′(|π|) ·K + 4. This finishes the proof of our small model property. Next we

continue with the proof of the Proposition.

In order to do this, we design an NP algorithm that verifies CERTAIN(Q,π) = false. Let

π be a graph pattern over Σ. If Q contains some node id that does not appear in π then clearly

CERTAIN(Q,π) = false. If this is not the case then we can use our small model property.

The algorithm first guesses an assignment ν from the label variables mentioned in π into

alphabet Σ. Then it guesses a canonical graph G for π via assignment ν, such that the length

of each path in G that is associated to some edge in π is bounded by p′(|π|) ·K + 4. Clearly,

both ν and G are polynomial size witnesses. Finally, the algorithm checks that Q′(G) = false,

which can be done in polynomial time [Consens and Mendelzon, 1990]. ✷

4.4 Full Complexity Analysis

So far we have provided upper bounds for the general problem of query answering, looking at

both combined and data complexity; and we have also provided bounds for querying patterns

in P nv, since in this case most of these result follow rather swiftly from previous work on

incomplete information over relational databases.

For combined complexity, the picture shows that the problem is EXPSPACE-complete as

soon as regular expressions are allowed in the patterns that are to be queried, but the question

of the impact of label variables is still open. On the other hand, for data complexity we have

argued that the problem becomes CONP-hard on data complexity as soon as any of regular

expressions or label variables are allowed in the input patterns.

In this section we set up to complete the picture in full detail, showing upper and lower

bounds for querying all of the 8 classes of graph patterns. We use CRPQs, instead of graph

queries, as our benchmark query language. This will allow us to compare with most of the

previous results in the literature, and at the same time it helps to maintain the readability of the

dissertation.
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4.4.1 Combined Complexity

The general EXPSPACE upper bound from Proposition 4.3.1 obviously translate into a general

EXPSPACE upper bound for CRPQs. A matching lower bound was given by Calvanese et al. for

patterns in P nv,re (see Theorem 6 in [Calvanese et al., 2000b], which proves that containment

of CRPQs is EXPSPACE-complete). By slightly adapting the reduction in that paper one can

also show that the problem remains EXPSPACE-hard over the class of patterns in P re.

On the other hand, in Section 4.2 we established NP upper bounds for the combined com-

plexity of query answering. The problem is clearly also NP-hard, even over P , as it contains

as a subinstance the problem of conjunctive query evaluation over graphs.

To complete the picture it remains to see what happens when one restricts from using

regular expressions, but add label variables, i.e. the cases when our data is a pattern in P lv or

P nv,lv.

Lemma 4.4.1 PATTERN CERTAIN ANSWERS is Π
p
2-complete, when restricted to patterns in

P lv or P nv,lv

Proof: First we show that Π
p
2 is an upper bound for the problem over patterns in P nv,lv. Let

π be a graph pattern in P nv,lv and Q a CRPQ, both over alphabet Σ. Assume, without loss of

generality, that Q is Boolean and that W is the set of label variables mentioned in π. Then

clearly CERTAIN(Q,π) = false if and only for some mapping ν : W → Σ it is the case that

CERTAIN(Q,πν) = false, where πν is the graph pattern in P nv that is obtained from π by

simultaneously replacing each label variable X ∈W with ν(X). Then a Σ
p
2 algorithm that

checks whether CERTAIN(Q,π) = false does the following: It first guesses a polynomial size

mapping ν : W → Σ, where W is the set of label variables mentioned in π. Then it constructs

in polynomial time the pattern πν in P nv, and checks that CERTAIN(Q,πν) = false. As we

mentioned above, the latter can be solved in CONP.

For the proof of Π
p
2-hardness for the class P lv we reduce from the problem of ∀∃ POSITIVE

1-3 3-SAT, which is known to be Π
p
2 -hard [Björklund et al., 2007]. This problem is defined

as follows: A set of clauses {C1, . . . ,Cp} is given, each of which has exactly 3 distinct Boolean

variables from the disjoint union of {x1, . . . ,xm} and {y1, . . . ,yt}. No variable is negated. The

problem asks whether for each assignment for {x1, . . . ,xm}, there exists an assignment for

{y1, . . . ,yt} such that each clause Ci contains exactly one true variable.

Let ϕ := ∀x1 · · ·∀xm∃y1 . . .∃yt{C1, . . . ,Cp} be an instance of ∀∃ positive 1-3 3-SAT. From ϕ

we construct in polynomial time an alphabet Σ, a pattern πϕ ∈ P lv and a CRPQ Qϕ, both over Σ,

such that for each assignment for {x1, . . . ,xm}, there exists an assignment for {y1, . . . ,yt} such

that each clause Ci contains exactly one true variable if and only if CERTAIN(Qϕ,πϕ) = true.

We assume, without loss of generality, that ϕ contains clauses neither of the form (x j∨xk∨

xℓ), for 1≤ j < k <ℓ≤m, nor of the form (x j∨xk∨yℓ), for 1≤ j < k≤m and 1≤ ℓ≤ t. Indeed,
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it is clear that if ϕ contains a clause of any of these forms, then there exists an assignment

for {x1, . . . ,xm} such that for no assignment for {y1, . . . ,yt} it is the case that each clause Ci

contains exactly one true variable (this is the case, in particular, for the assignment that makes

true each variable in {x1, . . . ,xm}). This means that if ϕ contains clauses of any if these forms,

then it does not belong to ∀∃ positive 1-3 3-SAT. Further, it is easy to verify in polynomial time

whether ϕ contains clauses of these forms.

The alphabet Σ over which πϕ is defined is:

{C1, . . . ,Cp, (++), (+−), (−+), (−−), P, N,V, S, 0, 1}.

The pattern πϕ uses label variables in the set {X1, . . . ,Xm}, and it is defined as follows.

First, πϕ contains node ids n⊥ and n⊤ that represent, respectively, the Boolean values true

and false. Intuitively, the fact that the node variable yi (1≤ i≤ t) of Qϕ, as defined below, is

assigned to node n⊥ (resp., n⊤) in a graph database G ∈ JπϕK, represents a valuation of ϕ that

assigns value false (resp., true) to yi.

In order to identify n⊥ and n⊤ in πϕ, we mark the first node id with a self-loop labeled N

(for Negative value) and the second one with a self-loop labeled P (for Positive value).

Second, for each clause Ci, 1≤ i≤ p, the pattern πϕ contains a subpattern πCi
that is defined

by cases.

1. Assume first that Ci = (y j ∨ yℓ ∨ xk), where 1 ≤ j < ℓ ≤ t and 1 ≤ k ≤ m. Then πCi

consists of pairwise distinct node ids

ni
⊥, ni

⊤, m
i,1
⊥ , m

i,2
⊥ , m

i,1
⊤ , m

i,2
⊤ , ti.

Intuitively, the fact that the variable z1
i of Qϕ, as defined below, is mapped into node id

ni
⊥ (resp., ni

⊤) in some graph database G ∈ JπϕK, represents a valuation for ϕ that assigns

value false (resp., true) to the first variable of clause Ci (that is, to y j).

In the same way, the fact that the variable z2
i of Qϕ, as defined below, is mapped into

node id m
i,1
⊥ (resp., m

i,2
⊤ ) in some graph database G ∈ JπϕK, represents a valuation for

ϕ that assigns value false (resp., true) to both the first and the second variable of

clause Ci (that is, to y j and yℓ). And, analogously, the fact that the variable z2
i of Qϕ, as

defined below, is mapped into node id m
i,2
⊥ (resp., m

i,1
⊤ ) in some graph database G ∈ JπϕK,

represents a valuation for ϕ that assigns value true to the first variable, y j, of clause Ci,

and value false to the second one, yℓ (resp., value false to the first variable of clause

Ci and value true to the second one).

The following edges are the only edges that exist in between the node ids of πCi
plus

{n⊥,n⊤}:
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• Both ni
⊥, ni

⊤ and ti have a self-loop labeled Ci. This self-loop permits identifying

these nodes as part of the pattern πCi
.

• There are edges labeled V from ni
⊥ into both m

i,1
⊥ and m

i,1
⊤ . These edges represent

the fact that ni
⊥, m

i,1
⊥ , m

i,1
⊤ are node ids that encode valuations for ϕ that assign value

false to the first variable, y j, of clause Ci.

• There are edges labeled V from ni
⊤ into both m

i,2
⊥ and m

i,2
⊤ . These edges represent

the fact that ni
⊤, m

i,2
⊥ , m

i,2
⊤ are node ids that encode valuations for ϕ that assign value

true to the first variable, y j, of clause Ci.

• There are edges labeled S from ni
⊥,m

i,1
⊥ and m

i,2
⊥ into n⊥. These edges represent

the fact that ni
⊥ (resp., m

i,1
⊥ and m

i,2
⊥ ) are node ids that encode valuations for ϕ that

assign value false to the first (resp., second) variable of clause Ci.

• There are edges labeled S from ni
⊤,m

i,1
⊤ and m

i,2
⊤ into n⊤. These edges represent

the fact that ni
⊤ (resp., m

i,1
⊤ and m

i,2
⊤ ) are node ids that encode valuations for ϕ that

assign value true to the first (resp., second) variable of clause Ci.

• The node id m
i,1
⊥ has a self-loop labeled (−−), that represents that m

i,1
⊥ encodes

valuations for ϕ that assign the value false to the first two variables of Ci (that is,

to y j and yℓ).

• The node id m
i,2
⊥ has a self-loop labeled (+−), that represents that m

i,2
⊥ encodes

valuations for ϕ that assign value true to the first variable, y j, of Ci and value

false to the second one, yℓ.

• The node id m
i,1
⊤ has a self-loop labeled (−+), that represents that m

i,1
⊤ encodes

valuations for ϕ that assign value false to the first variable, y j, of Ci and value

true to the second one, yℓ.

• The node id m
i,2
⊤ has a self-loop labeled (++), that represents that m

i,2
⊤ encodes

valuations for ϕ that assign the value true to the first two variables of Ci (that is,

to y j and yℓ).

• There are edges labeled Xk from each one of m
i,1
⊥ ,mi,2

⊥ ,mi,1
⊤ and m

i,2
⊤ into ti. These

edges represent the fact that the last variable of Ci is xk.

Figure 4.1 shows how this pattern (together with all the edges that link this pattern to n⊥

and n⊤) looks.

2. Assume now that Ci = (y j∨yℓ∨yk), where 1≤ j < k < ℓ≤ t. Then πCi
is defined exactly

as in the previous case, except that now the node id ti is removed, together with all the

edges that point to it, and the 2 new node ids pi
⊥, pi

⊤ are added, together with the edges

that link them to the rest of πCi
and the nodes n⊥ and n⊤ that we mention below.
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Figure 4.1: Pattern πCi
for a clause Ci of the form (y j ∨ yℓ∨ xk).

In this case, the fact that the variable z3
i of Qϕ, as defined below, is mapped into node id

pi
⊥ (resp., pi

⊤) in some graph database G∈ JπϕK, represents a valuation for ϕ that assigns

value false (resp., true) to the third variable of clause Ci (that is, to yk).

The pattern πCi
contains the following edges linking the node ids in {pi

⊥, pi
⊤} to the rest

of πCi
and to the node ids n⊥ and n⊤:

• The node ida pi
⊥ and pi

⊤ and have a self-loop labeled Ci. This self-loop permits

identifying these nodes as part of the pattern πCi
.

• There is an edge labeled S from pi
⊥ into n⊥. This edge represents the fact that pi

⊥

is the node id that encodes valuations for ϕ that assign value false to the third

variable, yk, of clause Ci.

• There is an edge labeled S from pi
⊤ into n⊤. This edge represents the fact that

pi
⊤ is the node id that encodes valuations for ϕ that assign value true to the third

variable, yk, of clause Ci.

• There are edges labeled N from m
i,1
⊥ , m

i,2
⊥ , m

i,1
⊤ and m

i,2
⊤ into pi

⊥. This edge also

represents the fact that pi
⊥ is the node id that encodes valuations for ϕ that assign

value false to the third variable, yk, of clause Ci.

• There are edges labeled P from m
i,1
⊥ , m

i,2
⊥ , m

i,1
⊤ and m

i,2
⊤ into pi

⊤. This edge also

represents the fact that pi
⊤ is the node id that encodes valuations for ϕ that assign

value true to the third variable, yk, of clause Ci.

Figure 4.2 shows how this pattern (together with all the edges that link this pattern to n⊥

and n⊤) looks.

Clearly, πϕ belongs to P lv and can be constructed in polynomial time from ϕ.
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Figure 4.2: Pattern πCi
for a clause Ci of the form (y j ∨ yℓ∨ xk).

Now we construct, from ϕ, a CRPQ Qϕ over alphabet Σ that is defined as the existential

closure of the following conjuncts: First, for each 1 ≤ i ≤ t a conjunct (yi,(P∪N),yi) that

states that the node variable yi is mapped into either n⊥ or n⊤. Second, for each 1 ≤ i ≤ p, a

conjunction θCi
that is again defined by cases:

1. Assume first that Ci = (y j ∨ yℓ∨ xk), where 1≤ j < ℓ≤ t and 1≤ k ≤m. Then θCi
is

(z1
i ,S,y j) ,(z

2
i ,S,yℓ) ,(z

1
i ,Ci ·V,z

2
i ) ,(z

2
i ,R ,z3

i ),

where the regular language R is defined as follows:

R := (
⋃

a∈Σ\{0,1}

a) ·Ci ∪
(
(−−) ·1∪ (−+) ·0∪ (+−) ·0

)
·Ci.

2. Assume second that Ci = (y j ∨ yℓ∨ yk), where 1≤ j < ℓ < k ≤ t. Then θCi
is

(z1
i ,S,y j) ,(z

2
i ,S,yℓ) ,(z

3
i ,S,yk) ,(z

1
i ,Ci ·V,z

2
i ) ,(z

2
i ,R ,z3

i ),

where the regular language R is defined as follows:

R :=
(
(−−) ·P∪ (−+) ·N∪ (+−) ·N

)
·Ci.

Clearly, Qϕ can be constructed in polynomial time from ϕ.

We prove next that ϕ belongs to ∀∃ POSITIVE 1-3 3SAT if and only if CERTAIN(Qϕ,πϕ) =

true. Assume first that ϕ = ∀x1 · · ·∀xm∃y1 . . .∃yt{C1, . . . ,Cp} belongs to ∀∃ POSITIVE 1-3

3SAT. Consider an arbitrary graph database G ∈ JπϕK. Then there exists a homomorphism

h : πϕ → G. Since πϕ does not contain node variables, we assume without loss of generality

that h is a mapping from the label variables of πϕ, that is, {X1, . . . ,Xm}, into Σ. We prove
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next that Qϕ holds in G, which shows, in turn, that CERTAIN(Qϕ,πϕ) = true (since G was

arbitrarily chosen).

Let X be the set of label variables in {X1, . . . ,Xm} such that h(X) = 1⇔ X ∈ X . (Notice

that X can be empty). Consider the assignment κ for the propositional variables {x1, . . . ,xm} of

ϕ into Boolean values true and false, such that κ assigns value true to variable xi if and only if

Xi ∈ X (1≤ i≤ m). Since ϕ belongs to ∀∃ POSITIVE 1-3 3SAT, there is an assignment κ′ for

the propositional variables {x1, . . . ,xm,y1, . . . ,yt} of ϕ into Boolean values true and false, such

that κ′ coincides with κ on {x1, . . . ,xm} and κ′ assigns value true to exactly one propositional

variable in each clause Ci, 1≤ i≤ p.

Recall that the set of node variables of Qϕ is {y1, . . . ,yt ,z
1
1,z

2
1,z

3
1, . . . ,z

1
p,z

2
p,z

3
p}. We define

σ to be any mapping from {y1, . . . ,yt ,z
1
1,z

2
1,z

3
1, . . . ,z

1
p,z

2
p,z

3
p} into the node ids of G that satisfies

the following:

• For each 1≤ i≤ t, σ(yi) = n⊥ if κ′(yi) is false, and σ(yi) = n⊤ otherwise.

• If Ci is of the form (y j ∨ yℓ∨ xk), for 1≤ j < ℓ≤ t and 1≤ k ≤ m, then:

1. σ(z1
i ) = ni

⊥ if σ(y j) = n⊥, and σ(z1
i ) = ni

⊤ otherwise;

2. σ(z2
i ) = m

i,1
⊥ if σ(y j) = σ(yℓ) = n⊥, σ(z2

i ) = m
i,2
⊥ if σ(y j) = n⊤ and σ(yℓ) = n⊥,

σ(z2
i ) = m

i,1
⊤ if σ(y j) = n⊥ and σ(yℓ) = n⊤, and σ(z2

i ) = m
i,2
⊤ otherwise;

3. σ(z3
i ) = ti.

• If Ci is of the form (y j ∨ yℓ∨ yk), for 1≤ j < ℓ < k ≤ t, then:

1. σ(z1
i ) = ni

⊥ if σ(y j) = n⊥, and σ(z1
i ) = ni

⊤ otherwise;

2. σ(z2
i ) = m

i,1
⊥ if σ(y j) = σ(yℓ) = n⊥, σ(z2

i ) = m
i,2
⊥ if σ(y j) = n⊤ and σ(yℓ) = n⊥,

σ(z2
i ) = m

i,1
⊤ if σ(y j) = n⊥ and σ(yℓ) = n⊤, and σ(z2

i ) = m
i,2
⊤ otherwise;

3. σ(z3
i ) = pi

⊥ if σ(yk) = n⊥, and σ(z3
i ) = pi

⊤ otherwise.

It is easy to see that assignment σ is well-defined. We prove next that (G,σ) |= Qϕ, and hence

that Qϕ holds in G.

Recall that Qϕ consists of conjuncts (yi,(P∪N),yi), for each 1 ≤ i ≤ t, and conjunctions

θCi
, for each 1 ≤ i ≤ p. Clearly, (G,σ) |= (yi,(P∪N),yi), for each 1 ≤ i ≤ t. This is because

σ(yi) is either n⊥ and n⊤, which have self-loops labeled N and P, respectively. We prove next

that (G,σ) |= θCi
, for each 1≤ i≤ p.

Assume first that Ci is of the form (y j ∨ yℓ ∨ xk), for 1 ≤ j < ℓ≤ t and 1 ≤ k ≤ m. Recall

that in this case θCi
is defined as:

(z1
i ,S,y j) ,(z

2
i ,S,yℓ) ,(z

1
i ,Ci ·V,z

2
i ) ,(z

2
i ,R ,z3

i ),
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where the regular language R is defined as follows:

R := (
⋃

a∈Σ\{0,1}

a) ·Ci ∪
(
(−−) ·1∪ (−+) ·0∪ (+−) ·0

)
·Ci.

It is easy to see that, by definition, (G,σ) |= (z1
i ,S,y j),(z

2
i ,S,yℓ). This is because, in every

possible case, σ(z1
i ) (resp., σ(z2

i )) corresponds to a node id that can access σ(y j) (resp., σ(yℓ))

through an S-labeled edge. Further, clearly (G,σ) |= (z1
i ,Ci ·V,z

2
i ). This is because σ(z1

i ) is

either ni
⊥ or ni

⊤, which have Ci-labeled self-loops, and in every possible case σ(z1
i ) corresponds

to a node id that can access σ(z2
i ) through a V -labeled edge. We prove next by cases that

(G,σ) |= (z2
i ,R ,z3

i ):

1. Assume first that h(Xi) 6∈ {0,1}. Then clearly (G,σ) |= (z2
i ,(

⋃
a∈Σ\{0,1} a) ·Ci,z

3
i ). This

is because σ(z3
i ) = ti, ti has a self-loop labeled Ci, and in every possible case there is an

edge from σ(z2
i ) into σ(z3

i ) = ti labeled with h(Xi) ∈
⋃

a∈Σ\{0,1} a.

2. Assume second that h(Xi) = 1. Then κ′(xi) is true, and hence since κ′ makes true exactly

one propositional variable in Ci, it must be the case that κ′(y j) = κ′(yℓ) = false, which

implies that σ(y j) = σ(yℓ) = n⊥. This implies that σ(z2
i ) = m

i,1
⊥ , and hence that (G,σ) |=

(z2
i ,(−−) ·1 ·Ci,z

3
i ). This is because σ(z2

i ) = m
i,1
⊥ has a self-loop labeled (−−), there is

an edge from σ(z2
i ) into σ(z3

i ) = ti labeled with h(Xi) = 1, and ti has a self-loop labeled

Ci.

3. The case when h(Xi) = 0 is similar and left to the reader.

In any case we conclude that (G,σ) |= (z2
i ,R ,z3

i ).

Assume second that Ci is of the form (y j∨yℓ∨yk), for 1≤ j < ℓ< k≤ t. Recall that in this

case θCi
is defined as:

(z1
i ,S,y j) ,(z

2
i ,S,yℓ) ,(z

3
i ,S,yk) ,(z

1
i ,Ci ·V,z

2
i ) ,(z

2
i ,R ,z3

i ),

where the regular language R is defined as follows:

R :=
(
(−−) ·P∪ (−+) ·N∪ (+−) ·N

)
·Ci.

As in the previous case, it is easy to see that, by definition, (G,σ) |=

(z1
i ,S,y j),(z

2
i ,S,yℓ),(z

3
i ,S,yk). This is because, in every possible case, σ(z1

i ) (resp., σ(z2
i ) and

σ(z3
i )) corresponds to a node id that can access σ(y j) (resp., σ(yℓ) and σ(yk)) through an S-

labeled edge. Further, clearly (G,σ) |= (z1
i ,Ci ·V,z

2
i ). This is because σ(z1

i ) is either ni
⊥ or ni

⊤,

which have Ci-labeled self-loops, and in every possible case σ(z1
i ) corresponds to a node id that

can access σ(z2
i ) through a V -labeled edge. We prove next by cases that (G,σ) |= (z2

i ,R ,z3
i ):
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1. Assume first that κ′(xk) = true. This implies that σ(xk) = pi
⊤, and hence that (G,σ) |=

(z2
i ,(−−) ·P ·Ci,z

3
i ). Indeed, since κ′ makes true exactly one variable in Ci it must be

the case that κ′(y j) = κ′(yℓ) = false, and hence σ(y j) = σ(yℓ) = n⊥. This implies that

σ(z2
i ) = m

i,1
⊥ , and hence that (G,σ) |= (z2

i ,(−−) ·P ·Ci,z
3
i ). This is because σ(z2

i ) = m
i,1
⊥

has a self-loop labeled (−−), there is an edge labeled P from σ(z2
i ) into σ(z3

i ) = pi
⊤, and

pi
⊤ has a self-loop labeled Ci.

2. The case when κ′(xk) = false is similar and left to the reader.

In any case we conclude that (G,σ) |= (z2
i ,R ,z3

i ).

Assume now, on the other hand, that CERTAIN(Qϕ,πϕ) = true. Take an arbitrary valuation

κ from the propositional variables {x1, . . . ,xk} into Boolean values true and false. We prove

next that there there is an assignment κ′ for the propositional variables {x1, . . . ,xm,y1, . . . ,yt}

of ϕ into Boolean values true and false, such that κ′ coincides with κ on {x1, . . . ,xm} and κ′

assigns value true to exactly one propositional variable in each clause Ci, 1 ≤ i ≤ p. This is

sufficient to prove that ϕ belongs to ∀∃ POSITIVE 1-3 3SAT since κ is arbitrarily chosen.

Consider the graph database G over Σ that is obtained from πϕ by replacing, for each

1 ≤ i ≤ p, the label variable Xi with 1, if κ(Xi) = true, and with 0 otherwise. Clearly, G ∈

JπϕK and hence Qϕ holds in G. Assume then that σ is an assignment for the node variables

{y1, . . . ,yt ,z
1
1,z

2
1,z

3
1, . . . ,z

1
p,z

2
p,z

3
p} of Qϕ such that (G,σ) |= Qϕ. Let us define κ′ to be the

following assignment for the propositional variables {x1, . . . ,xm,y1, . . . ,yt} of ϕ: κ′(xi) = κ(xi),

for each 1≤ i≤m, and for each 1≤ j≤ t it is the case κ′(y j) = true if σ(y j) = n⊤, and κ′(y j) =

false otherwise. We prove next that κ′ makes true exactly one propositional variable in each

clause Ci, for 1≤ i≤ p.

Assume first that Ci is of the form (y j ∨ yℓ∨ xk), for 1≤ j < ℓ≤ t and 1≤ k ≤ m. Suppose

initially that κ(xk) = true. Then every edge that leads from σ(z2
i ) into σ(z3

i ) in G is labeled

with 1 (since it was labeled with Xk in πϕ). Since (G,σ) |= Qϕ, it is the case that (G,σ) |=

(z2
i ,R ,z3

i ), where R = (
⋃

a∈Σ\{0,1} a) ·Ci ∪
(
(−−) · 1∪ (−+) · 0∪ (+−) · 0

)
·Ci. But the only

possibility for this to happen in this case is that (G,σ) |= (z2
i ,(−−) ·1 ·Ci,z

3
i ). Notice that this

immediately implies that σ(z2
i ) = m

i,1
⊥ , and hence that σ(y j) = σ(yℓ) = n⊥. We conclude that

κ′(y j) = κ′(yℓ) = false, and, therefore, κ′ only makes true one propositional variable in Ci. The

case when κ(xk) = false can be handled analogously.

The case when Ci is of the form (y j∨yℓ∨xk), for 1≤ j < ℓ≤ t and 1≤ k≤m is analogous

and left to the reader.

This finishes the proof of the lemma. It is interesting to notice that although the proof just

presented uses a non-fixed alphabet (in particular, dependent on the number of clauses in the

propositional formula ϕ), one can quite easily come out with a refinement of this reduction

that uses a fixed alphabet. We decided to show here the simpler reduction, with a non-fixed
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P : NP-c.

P nv: NP-c. P lv: Π
p
2 -c. P re: EXPSPACE-c.

P nv,lv: Π
p
2-c. P nv,re:EXPSPACE-c. P lv,re: EXPSPACE-c.

P nv,lv,re: EXPSPACE-c.

Figure 4.3: Combined complexity for CRPQs over graph patterns

alphabet, for the sake of presentation and readability. ✷

With the above lemma we finish the study of the combined complexity of the query an-

swering problem. The following theorem summarizes our findings:

Theorem 4.4.2 The combined complexity of answering CRPQs over classes of graph patterns

is as shown in Figure 4.3 (The abbreviation ‘-c.’ in the figure means, of course, complete for

the class).

Theorem 4.4.2 tells us that the combined complexity of CRPQs on usual graph databases

is the same as the combined complexity of conjunctive queries over usual relational databases,

i.e., NP-complete. Thus, adding node variables comes with no cost, while adding both node

and label variables carries a small cost in terms of combined complexity (jumping up one level

in the polynomial hierarchy). Adding regular expressions comes at a significant cost (jumping

up an exponential).

4.4.1.1 Restrictions to reduce the complexity

The next question is whether we can lower the EXPSPACE bound for patterns in P re. There are

two natural ways of looking for better behaved subclasses: by restricting queries, or restrict-

ing patterns. Restrictions on queries by means of simplifying regular languages were studied

in [Deutsch and Tannen, 2001]. For example, it showed that for regular languages built with

concatenation and the Kleene star, the combined complexity drops to Π
p
2-complete. Another

possibility is to restrict to RPQs; then, using techniques similar to [Calvanese et al., 2000b],

we can prove a PSPACE bound, matching the combined complexity of relational calculus. It

also follows from [Calvanese et al., 2000b] that restricting the class of patterns does not help

lower the combined complexity.

Proposition 4.4.3
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• The combined complexity of answering CRPQs on patterns π ∈ P re is EXPSPACE-hard

even for patterns π that contain a single edge.

• The combined complexity of answering RPQs on graph patterns from P nv,lv,re is PSPACE-

complete. The problem remains PSPACE-hard even for answering RPQs on patterns

π ∈ P re that contain a single edge.

Proof: The first part follows directly from the proof of Theorem 6 in [Calvanese et al., 2000b].

Next we prove the second part.

It follows from the proof of Theorem 5 in [Calvanese et al., 2000b], that the problem of

checking whether a CRPQ Q1 is contained in CRPQ Q2 can be solved in PSPACE, if we assume

the number of variables used in Q2 to be fixed. It immediately follows that checking whether a

CRPQ is contained in an RPQ is in PSPACE. Again, allowing constants in CRPQs comes at no

cost, and esentially the same construction shows that containment of a CRPQ with constants

into an RPQ (and, thus, combined complexity of answering RPQs on patterns in P nv,re) can be

solved in EXPSPACE. Next we use this fact to construct a PSPACE procedure that checks, for a

given pattern π ∈ P nv,lv,re and a RPQ Q, whether CERTAIN(Q,π) = true.

Let π be an arbitrary graph pattern in P nv,lv,re and Q an arbitrary RPQ. Again, we can

assume without loss of generality, that Q is Boolean. Assume that both π and Q are de-

fined over alphabet Σ and that W is the set of label variables used in π. Then it is clear

that CERTAIN(Q,π) = false if and only if for some mapping ν : W → Σ it is the case that

CERTAIN(Q,πν) = false, where πν is the pattern in P nv,re that is obtained from π by replacing

each label variable X ∈W with ν(X). Notice that each pattern of the form πν, for ν a mapping

from W to Σ, is a CRPQ.

It is clear that checking whether CERTAIN(Q,πν) = false can be done in PSPACE. Indeed,

this is equivalent to checking whether the pattern πν in P nv,re is contained in the RPQ Q,

which by the observations provided above can be solved in polynomial space. Now, define a

procedure that does the following: For each mapping ν : W → Σ, first construct πν and then

compute CERTAIN(Q,πν). If CERTAIN(Q,πν) = false, for some ν : W → Σ, then we declare

CERTAIN(Q,π) = false. Otherwise, we declare CERTAIN(Q,π) = true. Clearly, the whole

procedure can be performed in polynomial space.

The PSPACE-hardness for RPQs over patterns in P re that contain a single edge follows

from the following reduction from the problem of containment of regular expressions, which

is known to be PSPACE-hard. Assume that L and L′ are two regular expressions over alphabet

Σ. Let a and a′ be two distinct symbols that do not belong to Σ. Define πL to be the following

graph pattern in P re: (n,aLa′,n′). Notice that πL is defined over alphabet Σ∪{a,a′} and has a

single edge. Further, define RPQ QL′ to be QL′() = (x,aL′a′,y). Then it can be easily proved

that CERTAIN(QL′ ,πL) = true if and only if L⊆ L′. Further, πL and QL′ can be constructed in

polynomial time from L and L′. ✷
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P :NLOGSPACE-c.

P nv:NLOGSPACE-c. P lv: CONP-c. P re:CONP-c.

P nv,lv: CONP-c. P nv,re:CONP-c. P lv,re:CONP-c.

P nv,lv,re:CONP-c.

Figure 4.4: Data complexity for CRPQs over graph patterns

4.4.2 Data Complexity

We now turn to data complexity. As already mentioned, patterns in P are graphs and patterns

in P nv are naive tables, and thus naive evaluation works for them. This enabled us to show a

PTIME upper bound for the case of arbitrary queries, and for CRPQs it gives us NLOGSPACE

upper and lower bounds (the same bounds as the standard query evaluation problem for CRPQs

[Cruz et al., 1987]). We have already proved a general CONP upper bound, showed that CONP-

hardness exists for answering CRPQs over patterns in P nv,re, and promised to show the same

bounds for P lv. Summing up, we have:

Theorem 4.4.4 The data complexity of answering CRPQs over classes of graph patterns is as

shown in Figure 4.4.

Proof: All we need to show is CONP-hardness for patterns in P lv. We use again a reduction

from 3-colorability, and one which is very similar to the reduction presented in the proof of

Proposition 4.3.2. Assume we have an arbitrary undirected graph G; we represent it as a labeled

graph where between two nodes n1 and n2 connected by an edge we have two edges labeled a,

i.e., (n1,a,n2) and (n2,a,n1). Now we turn it into a P lv pattern πG over alphabet Σ = {r,b,g}

by replacing the label of its edges, in the following fashion. For each node n, let Xn be a fresh

label variable, and replace the label of all outgoing edges from n by Xn . It is now easy to see

that the certain answers (with respect to Σ) to the Boolean RPQ Q() = (x,rr|gg|bb,y) over πG

is true if and only if G is not 3-colorable. ✷

Just as we did for the case of combined complexity, a natural question at this point is how

can the CONP lower bounds be lowered for patterns with regular expressions or label variables,

perhaps by imposing additional restrictions on queries, or patterns, or perhaps both. This turns

out to be an interesting, non-trivial question. The next chapter is completely dedicated towards

answering it.



Chapter 5

Tractable Query Answering

While many results of Chapter 4 point to a rather high complexity of query answering, they

still leave a few routes for finding tractable classes, or providing heuristics that – at least based

on the experience of other areas – may be useful.

The main goal of this chapter is to identify meaningful tractable fragments for the data

complexity of query answering, which is CONP-hard as soon as patterns start using regular

expressions or label variables. Recall that this problem asks, for a fixed graph query Q = (ξ, x̄),

and given a pattern π and a tuple v̄ of nodes of size |x̄|, whether v̄ belongs to the certain answers

of Q over π.

The first thing that we need to do in order to identify these restrictions is to study up to

what extent the CONP-hardness persists when considering different restrictions of inputs to the

certain answers problem. We do this in Section 5.1; the conclusion is that, in general, the lower

bounds are very resilient, but that some advance can be made for some classes of patterns with

particularly nice underlying graphs. In Sections 5.2 and 5.3 we present two disjoint sets of

structural restrictions that guarantee the tractability of the PATTERN CERTAIN ANSWERS(Q)

problem. The first one is an adaptation of the notion of bounded treewidth for graph patterns,

and the second one is roughly based on the notion of graphs with bounded out-degree.

Perhaps a different approach to reduce the CONP data complexity of computing certain

answers is to rely on heuristics to solve this problem, at least in the majority of cases. The

specific features of the certain answers problem suggests using techniques from a field that has

achieved great success in solving problems of this complexity, namely constraint satisfaction

[Dechter, 2003, Kolaitis and Vardi, 2007]. The field has identified many tractable restrictions

and, what is equally important, provided many practical heuristics that help solve intractable

problems. As a second contribution of this chapter, we show how to cast the query answering

problem for RPQs over graph patterns as a constraint satisfaction problem, with a particularly

simple translation for several classes of patterns.

57
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5.1 How Regular Expressions and Label Variables are Problematic

for Query Answering

Looking at Figure 4.4 in Section 4.4.2, we see that the features that cause CONP-hardness

are label variables and regular expressions. We now analyze their role in causing the high

complexity of query answering. In both cases, we need to investigate two ways of lowering the

complexity: by restricting queries, and by restricting their inputs.

To define restrictions on inputs we use the notion of the underlying graph Gπ of a pat-

tern π = (N,E): this is simply the graph obtained by erasing labels on edges, i.e. Gπ =

(N,{(v1,v2) | (v1,L,v2) ∈ E).

5.1.1 The role of label variables

Our first result shows that the CONP-hardness result for query answering over patterns with

label variables is very robust. Recall that P σ
Codd stands for class of Codd patterns in P σ, i.e.,

patterns that use each variable once.

Theorem 5.1.1

• There is a Boolean RPQ Q such that PATTERN CERTAIN ANSWERS(Q) is CONP-hard

even over input patterns in P lv whose underlying graph is a path. Moreover, the regular

language in Q is built using only concatenation and the Kleene star.

• There is a Boolean RPQ Q of the form ϕ() = (x,w,y), where w is a word in {0,1}∗, such

that PATTERN CERTAIN ANSWERS(Q) is CONP-hard even over P lv
Codd patterns whose

underlying graph is a DAG.

Proof: We begin with Part 1. We prove that there exists a Boolean RPQ Q of the form

Ans()← (x,L,y), where L is a regular expression built using only concatenation and Kleene

star, and PATTERN CERTAIN ANSWERS(Q) is CONP-hard even over input patterns in P lv

whose underlying graph is a path.

We establish a reduction from monotone 1-in-3 3SAT, which is known to be NP-hard

[Schaefer, 1978], to the complement of PATTERN CERTAIN ANSWERS(Q). The input to

monotone 1-in-3 3SAT is a conjunction ϕ of clauses, with exactly three literals each, in which

no negated variable occurs. The problem is determining whether there is a truth assignment to

the variables so that each clause has exactly one true variable.

Let Σ = {#,0,1, in,out}. The query Q over Σ is the boolean RPQ that consists of the

atom Ans()← (x,L,y), where L is the regular language in ·L∗1 ·L
∗
2 · · ·L

∗
10 · out, and languages

Li, 1 ≤ i ≤ 10, are defined as follows (we assume that Σ∗ corresponds to the expression

(in∗0∗1∗#∗out∗)∗):
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L1 := Σ∗inΣ∗; L2 := Σ∗outΣ∗; L3 := Σ∗##Σ∗

L4 := Σ∗#0#Σ∗; L5 := Σ∗#1#Σ∗; L6 := Σ∗#111Σ∗;

L7 := Σ∗#011Σ∗; L8 := Σ∗#101Σ∗; L9 := Σ∗#110Σ∗; L10 := Σ∗#000Σ∗.

Clearly, L is a regular expression that uses concatenation and Kleene-star only.

The reduction is as follows. Let ϕ = C1 ∧ ·· · ∧Cm be a formula in 3CNF using variables

{x1, . . . ,xk}, and assume that for each 1≤ i≤ m clause Ci is of form Ci = xi1 ∨ xi2 ∨ xi3 , where

1 ≤ i j ≤ k for j = 1,2,3. With each variable xℓ (1 ≤ ℓ ≤ k) we associate a different label

variable Xℓ. We construct a pattern π over Σ that uses variables {X1, . . . ,Xℓ} and node ids

{nin1
,nin2

,nout,{n
j
i | 1≤ i≤ m, 0≤ j ≤ 3}}.

Moreover, π contains the following edges:

• it contains the edges (n0
i ,Xi1 ,n

1
i ), (n

1
i ,Xi2 ,n

2
i ) and (n2

i ,Xi3 ,n
3
i ), for each 1≤ i≤ m;

• for each 1 < i≤ m, π contains as well the edge (n3
i−1,#,n

0
i ); and

• finally, π contains the edges (nin1
, in,nin2

), (nin2
,#,n0

1), and (n3
m,out,nout).

Graphically, this pattern looks as follows:

out

nin1
nin2

in # X11
X12

X13

n0
1 n1

1 n2
1 n3

1

. . .
n3

i−1 n0
i n1

i n2
i

# Xi1 Xi2

n3
i

Xi3
. . .

n2
m n3

m nout

Xm3

Clearly, π belongs to P lv and can be constructed in polynomial time from ϕ. Also, notice

that the underlying graph of π is a path. Next we prove that there is a truth assignment to the

variables of ϕ so that each clause has exactly one true variable if and only if CERTAIN(Q,π) =

false.

(⇒) Let γ : {x1 . . . ,xk}→{0,1} be a truth assignment for the variables of ϕ so that γ assigns

the value 1 to exactly one variable in each clause of ϕ. In order to prove that CERTAIN(Q,π) =

false, we show the existence of a graph G ∈ JπK such that Q(G) = false.

To define G, we construct a mapping ν : {X1, . . . ,Xk} → {#,0,1, in,out} as follows. For

each 1 ≤ ℓ ≤ k, we set ν(Xℓ) = γ(xℓ). Then we define G as the graph resulting of replacing

each variable Xi in {X1, . . . ,Xℓ} with ν(Xi).

We now prove that Q(G) = false. Assume for the sake of contradiction that this is not the

case. That is, assume that there is a path ρ in G such that λ(ρ) belongs to the language defined

by L. Simply by construction of G, it is easy to check then that if Q′ := Ans()← (nin2
,L∗1 ·

L∗2 · · ·L
∗
10,n

3
m) then it must be the case that G |= Q′. Let ρ be the unique path from nin2

into n3
m
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in G. Clearly, ρ is nonempty and, further, does not satisfy L j, for each 1≤ j≤ 5. Thus, it must

be the case that λ(ρ) contains at least one subword in the set {#111,#011,#101,#110,#000},

thus matching one of {L6, . . . ,L10}. We only derive a contradiction in the case when λ(ρ)

contains the subword #111, all other cases are completely symmetrical.

Assume then that #111 is a subword of λ(ρ). In other words, we have that G contains a

path ρ′ such that λ(ρ′) = #111 (and, of course, that is a subpath of ρ).

Notice that, from the construction of π and ν, the only edges labeled with # are those of the

form (n3
i−1,#,n

0
i ), for 1 < i≤ m, and the edge (nin2

,#,n0
1).

Then, it must be the case that ρ′ start in some node n3
i−1 (1 < i ≤ m), or in node nin2

, and

therefore (by the construction of G), ρ′ uses edges (n3
i−1,#,n

0
i ), (n

0
i ,ν(Xi1),n

1
i ) , (n1

i ,ν(Xi2),n
2
i )

and (n2
i ,ν(Xi3),n

3
i ) (or starting with (nin2

,#,n0
1) if i = 1). Given that λ(ρ′) is #111, we have

that ν(Xi1) = ν(Xi2) = ν(Xi3) = 1; by the construction of π, this means that there is a clause

Ci = xi1 ∨ xi2 ∨ xi3 , 1≤ i ≤ m, such that γ(xi1) = γ(xi2) = γ(xi3) = 1, which contradicts the fact

that γ assigns the value 1 to exactly one variable in each clause.

(⇐): Assume now that CERTAIN(Q,π) = false. Then there must be a graph G ∈ JπK such

that Q(G) = false. Since G∈ JπK there is a homomorphism h = (h1,h2) from π into G, where

h1 maps nodes of π into nodes of G and h2 maps the label variables of π into the alphabet

{#,0,1, in,out}.

Consider the path ρ in G defined as

nin1
innin2

#n0
1 h2(X11

)n1
1 h2(X12

)n2
1 h2(X13

)n3
1 #n0

2 · · ·n
0
m h2(Xm1

)n1
m h2(Xm2

)n2
m h2(Xm3

)n3
m outnout.

Then λ(ρ) does not belong to L, which implies that if ρ′ is the subpath of ρ that starts in nin2

and finishes in n3
m, then λ(ρ′) does not belong to the language given by L∗1 · · ·L

∗
10. In particular,

there is no subword of λ(ρ′) that satisfies L j, for 1 ≤ j ≤ 5. It can be easily checked that this

implies that h2(Xℓ) ∈ {0,1}, for each 1≤ ℓ≤ k.

Thus, from h2 we define a valuation γ : {x1, . . . ,xk} → {0,1} for the variables of ϕ as

follows: For every 1≤ ℓ≤ k, we let γ(xℓ) = h2(Xℓ). We prove next that γ assigns the value 1 to

exactly one variable in each clause of ϕ.

Assume for the sake of contradiction that γ does not satisfy this property. Then there is a

clause Ci = xi1 ∨ xi2 ∨ xi3 , 1 ≤ i ≤ m, such that γ does not assign the value 1 to exactly one of

{xi1 ,xi2 ,xi3}. There are five symmetric cases, for each one of the possible valuations that do

not satisfy this property. It is easy to derive a contradiction for each one of these cases, and we

only show how to do it for the case when γ is such that γ(xi1) = γ(xi2) = γ(xi3) = 1. But then it

is clear that λ(ρ′) ∈ L6, and, thus, λ(ρ) belongs to L. This contradicts the fact that Q does not

hold in G.
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We now continue with Part 2. We prove that there exists a Boolean RPQ Q of the form

Ans()← (x,w,y), where w is a single word, such that PATTERN CERTAIN ANSWERS(Q) is

CONP-hard even over input patterns in P lv
Codd whose underlying graph is a DAG. We work

with the word w = 1011011101111.

The proof is by a reduction from 3SAT to the complement of

PATTERN CERTAIN ANSWERS(Q). For the sake of readability, we first construct in

polynomial time from each propositional formula ϕ in 3CNF a pattern π∈ P lv,re
Codd over alphabet

{0,1}, and show that ϕ is satisfiable if and only CERTAIN(Q,π) = false. Afterwards, we

show how to construct in polynomial time from π a pattern π′ ∈ P lv
Codd over alphabet {0,1},

such that CERTAIN(Q,π) = false iff CERTAIN(Q,π′) = false.

Let ϕ =
∧

1≤ j≤m(c
1
j ∨ c2

j ∨ c3
j) be a propositional formula in 3CNF that uses propositional

variables from the set {x1, . . . ,xk}; that is, each ci
j, for 1 ≤ j ≤ m and 1 ≤ i ≤ 3, is either

a variable xℓ, 1 ≤ ℓ ≤ k, or its negation. We associate with each propositional variable xℓ,

1 ≤ ℓ ≤ k, a fresh label variable Xℓ. Also, with each clause (c1
j ∨ c2

j ∨ c3
j), 1 ≤ j ≤ m we

associate three fresh label variables C1
j , C2

j and C3
j .

The pattern π over alphabet {0,1} contains the following edges:

• For each 1≤ j≤m, π contains the edges (n1
j ,1,n

2
j), (n

2
j ,C

1
j ,n

3
j), (n

3
j ,11,n4

j ), (n
4
j ,C

2
j ,n

5
j),

(n5
j ,111,n6

j ), (n
6
j ,C

3
j ,n

7
j), (n

7
j ,1111,n8

j ), where n1
j , . . . ,n

1
j are fresh node ids.

• For each 1≤ ℓ≤ k, π contains the edges (p1
ℓ ,X1, p2

ℓ) and (p2
ℓ ,1111, p3

ℓ ), where p1
ℓ , p2

ℓ , p3
ℓ

are fresh node ids.

• If ci
j = xℓ, for 1 ≤ j ≤ m, 1 ≤ i ≤ 3 and 1 ≤ ℓ ≤ k, the pattern π contains the edges

(n
(2i+1)
j ,1101110, p1

ℓ ) and (n
(2i+1)
j ,0110111, p1

ℓ ).

• If ci
j = ¬xℓ, for 1 ≤ j ≤ m, 1 ≤ i ≤ 3 and 1 ≤ ℓ ≤ k, the pattern π contains the edges

(n
(2i+1)
j ,110111, p1

ℓ ) and (n
(2i+1)
j ,01101110, p1

ℓ ).

Clearly, π belongs to P lv,re
Codd and can be constructed in polynomial time from ϕ. Furthermore, it

is easy to see that the underlying graph of π is a DAG. Figure 5.1 shows how this pattern looks

for the case when ϕ = (x1∨x2∨¬x3)∧ (x2∨x3∨¬x4). We have skipped the names of node ids

since they are all different and can be easily inferred from the context.

We prove next that ϕ is satisfiable if and only if CERTAIN(Q,π) = false.

(⇒) Assume first that ϕ is satisfiable via assignment γ : {x1 . . . ,xk} → {0,1}. In order to

prove that CERTAIN(Q,π) = false, we show the existence of a graph database G over alphabet

{0,1} such that G 6|= Q but G |= π. To define G, we use again the notion of canonical graph

database for π that we developed in the proof of Proposition 4.3.4.

Let σ be a canonical assignment for π, and define the following mapping ν from the label

variables of π to {0,1}:
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110111

X1

1111

X2

1111

1111

X3

X4

1111

1111

1

11

111

1111

1

11

111

C2
1

C3
1

C1
1

C1
2

C2
2

C3
2

1101110

1101110

1101110

1101110

0110111

0110111

0110111

011011101101110

01101110

110111

Figure 5.1: Pattern π for the case when ϕ = (x1∨ x2∨¬x3)∧ (x2∨ x3∨¬x4)..

• For each 1≤ ℓ≤ k, define ν(Xℓ) = 1 if and only if γ(xℓ) = 1.

• For each 1 ≤ j ≤ m and 1 ≤ i ≤ 3 define ν(Ci
j) = 1 if and only if γ(xℓ) = 1, if the i-th

literal of the j-th clause of ϕ corresponds to xℓ for some 1 ≤ ℓ ≤ k, or ν(Ci
j) = 1 if and

only if γ(xℓ) = 0, if the i-th literal of the j-th clause of ϕ corresponds to ¬xℓ for some

1≤ ℓ≤ k.

We then define G as the σ-canonical graph for π that is witnessed by ν (it is trivial to show

that such graph always exists). Given that G is canonical for π, we obtain that G |= π.

Next we prove that G 6|= Q. We first claim that there is no path in G labeled w (recall that

w = 1011011101111) that contains some vertex p1
ℓ , for 1 ≤ ℓ ≤ k. Assume for the sake of

contradiction that there exists a path ρ such that λ(ρ) = 1011011101111 and ρ contains the

node id p1
ℓ , for some 1≤ ℓ≤ k. Notice that |ρ|= 14, since |w|= 13. It is not hard to see that G

is a DAG, and, thus, the fourteen node ids in ρ need to be distinct. We consider several cases:

• The path does not use node ids in the set {n1
j , . . . ,n

8
j | 1≤ j≤m}. But from the properties

of G, we know that this case is simply not possible. Indeed, the path in G from any node

in the set {n1
j , . . . ,n

8
j | 1≤ j≤m} to node p1

ℓ contains at most seven nodes from N (since

each of these paths can only be labeled with a word of at most seven letters). Further,

any path starting in p1
ℓ can have at most six nodes (going to p2

ℓ and then to p3
ℓ ). Thus, a
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path in G that uses no node in the set {n1
j , . . . ,n

8
j | 1 ≤ j ≤ m} but goes through p1

ℓ uses

at most thirteen distinct node ids.

• The path does not contains a vertex n
(2i+1)
j , for some 1≤ j ≤ m and 1≤ i≤ 3, such that

ci
j is either xℓ or ¬xℓ. This case is also not possible, given that the only edges that lead

into node p1
ℓ are from nodes of the form n

(2i+1)
j , for some 1≤ j ≤ m and 1≤ i≤ 3, such

that ci
j is either xℓ or ¬xℓ.

• The path contains a vertex n
(2i+1)
j , for some 1 ≤ j ≤ m and 1≤ i≤ 3, such that ci

j = xℓ.

Then, from the definition of ν, we can check that ν(Ci
j) = ν(Xℓ). From the properties of

G, there are only two paths from n
(2i+1)
j to p1

ℓ : The first one is labeled with 1101110, and

the second one is labeled with 0110111. Thus, either ν(Ci
j) ·1101110 ·ν(Xℓ) is a subword

of w = 1011011101111, or ν(Ci
j) ·0110111 ·ν(Xℓ) is a subword of w = 1011011101111.

But it is not hard to see that this cannot be the case since ν(Ci
j) = ν(Xℓ).

• The path contains a vertex n
(2i+1)
j , for some 1≤ j≤m and 1≤ i≤ 3, such that ci

j = ¬xℓ.

By using the same arguments as the previous case, one can show that in this case it must

hold that ν(Ci
j) ·110111 ·ν(Xℓ) is a subword of w= 1011011101111 or ν(Ci

j) ·01101110 ·

ν(Xℓ) is a subword of w = 1011011101111. It is not hard to see that this cannot be the

case, since ν is defined in such a way that ν(Ci
j) = 1 if and only if ν(Xℓ) = 0

We have proved that ρ does not contain any vertex of the form p1
ℓ , for 1 ≤ ℓ ≤ k. We

prove next that if we assume, for the sake of contradiction, that there is a path ρ in G such

that λ(ρ) = 1011011101111, then it must be the case that ρ contains all nodes n1
j , . . . ,n

8
j , for

some 1≤ j ≤ m. First, by a simple counting argument, it is easy to see that ρ cannot end in a

node of the form ns
j, for 1 ≤ s ≤ 7 (because ρ uses at least fourteen distinct node ids). Thus,

since ρ cannot contain any node of the form p1
ℓ , 1 ≤ ℓ ≤ k, the only remaining option is that

ρ ends in a node from G that is in a path that connects a node of the form n
(2i+1)
j , 1 ≤ j ≤ m

and 1 ≤ i ≤ 3, to a node of the form p1
ℓ , for 1 ≤ ℓ ≤ k. But since w ends with 4 consecutive

1’s, the only possibility is that ρ ends in the first two nodes of a path ρ′ that connects a node of

the form n
(2i+1)
j , 1≤ j ≤ m and 1≤ i≤ 3, to a node of the form p1

ℓ , and such that ρ′ is labeled

either by 1101110 or 110111. But then this means that there is a path labeled 01 that leads in

G to n2i
j , which clearly cannot happen.

Thus, ρ is a path that goes from node id n1
j to node id n8

j , for some 1 ≤ j ≤ m. From the

construction of G, this implies that ν(C1
j ) = ν(C2

j ) = ν(C3
j ) = 0, which in turn implies that ϕ is

not satisfied by valuation γ. This is the desired contradiction.

(⇐) Assume, on the other hand, that CERTAIN(Q,π) = false. Then there is a graph G

such that G |= π but G 6|= Q. Since G |= π, there is a homomorphism h = (h1,h2) from π

to G, such that h1 is the identity map on the node ids of π, and h2 is a mapping from the
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label variables used in π to the alphabet {0,1}. From h2 we construct a valuation γ for the

propositional variables of ϕ as follows: γ(xi) = 1 if and only if h2(Xi) = 1, for each 1≤ i ≤ k.

We show next that ϕ is satisfied by assignment γ. In order to prove this we use the following

claim (for simplicity, we say that γ(ci
j) is the valuation of the i-th literal of the j-th clause of

ϕ):

Claim 5.1.2 For each 1 ≤ j ≤ m and 1 ≤ i ≤ 3 it is the case that γ(ci
j) = 1 if and only if

h2(C
i
j) = 1.

Before proving the claim, we show how it follows from it that valuation γ satisfies the

propositional formula ϕ. Indeed, assume on the contrary that γ does not satisfy ϕ, that is, for

some 1≤ j≤m it is the case that γ(c1
j) = γ(c2

j) = γ(c3
j) = 0. Then, from Claim 5.1.2 it follows

that h2(C
1
j ) = h2(C

2
j ) = h2(C

3
j ) = 0, and, thus, it is easy to see that there is a path ρ from n1

j to

n8
j in G that satisfies that λ(ρ) = w = 1011011101111. But this contradicts the fact that G 6|= Q.

Proof of Claim 5.1.2: Assume, for the sake of contradiction, that for some 1 ≤ j ≤ m and

1 ≤ i ≤ 3 it is the case that γ(ci
j) 6= h2(C

i
j). We consider four cases depending on h2 and the

choices of i and j:

• It holds that h2(C
i
j) = 0 and ci

j = xℓ for some 1 ≤ ℓ≤ k. Then γ(ci
j) = 1, γ(xℓ) = 1 and,

from the definition of γ, h2(Xℓ) = 1. Further, since G |= π, we know that the following

hold: (1) There is a path in G that goes from n
(2i−1)
j to n2i

j that is labeled with a word

with i consecutive 1’s. (2) There is a path in G that goes from n2i
j to n

(2i+1)
j that is labeled

with h2(C
i
j) = 0. (3) There is a path in G from n

(2i+1)
j to p1

ℓ that is labeled with 1101110.

(4) There is a path in G from p1
ℓ to p2

ℓ that is labeled h2(Xℓ) = 1. (5) There is a path in G

from p2
ℓ to p3

ℓ that is labeled with 1111. Combining all these paths, it is easy to see that

there is a path in G that is labeled with w = 1011011101111. This is a contradiction, as

we have assumed that G 6|= Q.

• It holds that h2(C
i
j) = 1, and ci

j = xℓ for some 1 ≤ ℓ ≤ k. This case is analogous to the

previous one, but this time we use the fact that there is a path in G from n
(2i+1)
j to p1

ℓ that

is labeled with 0110111.

• We have that h2(C
i
j) = 0 and ci

j =¬xℓ for some 1≤ ℓ≤ k. Then γ(ci
j) = 1, γ(xℓ) = 0, and

from the definition of γ, h2(Xℓ) = 0. Further, since G |= π, we know that the following

hold: (1) There is a path in G that goes from n
(2i−1)
j to n2i

j that is labeled with a word

with i consecutive 1’s. (2) There is a path in G that goes from n2i
j to n

(2i+1)
j that is labeled

with h2(C
i
j) = 0. (3) There is a path in G from n

(2i+1)
j to p1

ℓ that is labeled with 110111.

(4) There is a path in G from p1
ℓ to p2

ℓ that is labeled h2(Xℓ) = 0. (5) There is a path in G

from p2
ℓ to p3

ℓ that is labeled with 1111. Combining all these paths, it is easy to see that
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there is a path in G that is labeled with w = 1011011101111. This is a contradiction, as

we have assumed that G 6|= Q.

• It holds that h2(C
i
j) = 1, and ci

j = ¬xℓ for some 1≤ ℓ≤ k. This case is analogous to the

previous one, but this time we use the fact that there is a path in G from n
(2i+1)
j to p1

ℓ that

is labeled with 01101110. ✷

This finishes the proof that ϕ is satisfiable if and only if CERTAIN(Q,π) = false.

To complete the proof, we need to show that there is a polynomial time procedure that, from

π, constructs a pattern π′ in P lv
Codd such that CERTAIN(Q,π) = false iff CERTAIN(Q,π′) =

false. But this is quite straightforward, since each regular language that is used to label

an edge in π consists of a single word, and, thus, we can obtain an equivalent pattern π′ by

replacing each edge labeled with the word w with a path ρ of fresh node ids such that λ(ρ) = w.

This finishes the proof of the theorem. ✷

The only possibility for a polynomial-time query answering algorithm left open by this

result appears to be Codd patterns in P lv with very nice underlying graphs. We shall see in

the remainder of this chapter that there are indeed tractable classes that can be obtained along

these lines.

5.1.2 The role of regular expressions

In the case of patterns from P re we have an additional parameter to vary: the regular expressions

used in patterns. Nevertheless, we shall see that CONP-hardness is already witnessed by very

simple regular expressions.

Theorem 5.1.3

• There exists a Boolean RPQ Q of the form ϕ() = (x,w,y), where w is a single word over

Σ = {0,1}, such that PATTERN CERTAIN ANSWERS(Q) is CONP-hard even over input

patterns in P re over Σ whose underlying graph is a DAG. It remains CONP-hard even if

each regular expression used in input patterns is 0|1.

• There exists a Boolean RPQ Q such that PATTERN CERTAIN ANSWERS(Q) is CONP-

hard even over input patterns in P re that only use regular expressions of the form a, for

a ∈ Σ, or a∗1 . . .a
∗
n, where the ai’s are distinct letters in Σ.

Proof: The first part of the theorem follows directly from the second part of Theorem 5.1.1.

This is because each pattern π ∈ P lv
Codd over Σ = {0,1} is equivalent to the pattern π′ ∈ P re

over Σ that is obtained from π by replacing each label variable X mentioned in π by the regular

expression (0|1) (that is, JπK = Jπ′K). Clearly, the underlying graphs of π and π′ are the same.
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For the second part, we use a reduction from non-3-colorability. Assume we have an ar-

bitrary undirected graph G; we represent it as a labeled graph where between two nodes n1

and n2 connected by an edge we have two edges labeled a, i.e., (n1,a,n2) and (n2,a,n1). Now

we turn it into a P re pattern πG over the alphabet {a,r,g,b,d} as follows. For each node n do

the following: First, create a self-loop labeled on n labeled d. Second add a new node n′ and

add edges (n′,(r∗g∗b∗),n) and (n,(r∗g∗b∗),n′), It can be shown that the certain answer to the

Boolean RPQ Ans()← (x,L,y) over πG is true if and only if G is not 3-colorable, where L is

the language (rdb|rdg|gdb|gdr|bdg|bdr|gag|rar|bab). ✷

Like the case of patterns with label variables, this leaves open the possibility that more

restrictive underlying graphs may lead to tractability. Indeed, we shall prove such results in the

following sections.

5.2 Tractability Restrictions Based on Bounded Treewidth

Results of Section 5.1 show that one possibility of getting tractable cases is to impose further

restrictions on underlying graphs of patterns. Being DAGs, as we saw, is not enough, which

suggests trees. We shall in fact get a more general result, replacing trees with graphs of bounded

treewidth.

Recall the standard definition of tree decompositions and treewidth of a graph G = (N,E),

with E ⊆ N×N (see, e.g., [Diestel, 2005]). A tree decomposition is a pair (T, f ) where T is a

tree and f : T → 2N assigns to each node t in T a set of nodes f (t) of G such that every edge

of G is contained in one of the sets f (t), and each set {t | n ∈ f (t)} is a connected subset of T

for all n ∈ N. The width of such a decomposition is maxt | f (t)|−1. The treewidth of G is the

minimum width of a tree decomposition of G. The treewidth of a connected graph G equals 1

if and only if G is a tree.

A class of graph patterns is of bounded treewidth if there is a fixed k ∈ N so that for every

pattern π in the class, the treewidth of its underlying graph Gπ is at most k.

We saw that label variables and regular expressions lead to intractable data complexity of

query answering. We now show that bounded treewidth guarantees tractability for large classes

of patterns with these features.

Theorem 5.2.1 The data complexity of finding certain answers to CRPQs over classes of graph

patterns of bounded treewidth in P nv,re and P nv,lv
Codd is in PTIME.

Proof: It is sufficient to prove the theorem for the case of patterns in P nv,re. This follows

from the proof of Proposition 3.3.4 because each pattern π ∈ P nv,lv that does not repeat label

variables is equivalent to a pattern π′ ∈ P nv,re with the same underlying graph as π.
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We start by proving some auxiliary but necessary results. Let A1 and A2 be two NFAs over

the same alphabet Σ. Assume that the set of states of A1 is S, its transition function is given by

δ : S×Σ→ 2S, s0 is the initial state, and F ⊆ S is the set of final states. Let f be a function

from S into 2S, S′ be a subset of S, and S be a subset of 2S. We say that the tuple ( f ,S′,S) is

realized in A2 whenever A2 accepts a word w such that (1) δ({s},w) = f (s), for each s ∈ S, (2)

S′ ⊆ S consists of exactly those states s such that for some prefix w′ of w, δ({s},w′) contains

at least one final state, and (3) S consists of exactly those S′′ ⊆ S such that for some suffix w′′

of w it is the case that δ({s0},w
′′) = S′′. The following claim will be useful for the rest of the

proof. The proof can be found in the appendix.

Claim 5.2.2 Assume that the size of A1 is considered to be fixed. Then the set of tuples of the

form ( f ,S′,S) that are realized in A2 can be computed in polynomial time.

Now we prove the proposition. In order to do this we use the following idea. Given a

pattern π in P nv,re, whose underlying undirected graph is of fixed treewidth, and a fixed CRPQ

Q (that we assume without loss of generality to be Boolean), we do the following:

• First, from π and Q we construct in polynomial time a first-order structure Bπ,Q over

vocabulary σ (as defined below) such that the tree-width of Bπ,Q is fixed.

• Second, from Q we construct in constant time a sentence ϕQ in monadic second-order

logic (MSO) over vocabulary σ such that CERTAIN(Q,π)= false if and only if ϕQ holds

in Bπ,Q.

It follows from Courcelle’s theorem that the fixed MSO sentence ϕQ can be evaluated in poly-

nomial time over Bπ,Q (since Bπ,Q is of fixed tree-width). Since ϕQ can be constructed in

constant time from Q, and Bπ,Q can be constructed in polynomial time from π and Q, we con-

clude that there is a polynomial time algorithm that evaluates fixed CRPQs over the class of

patterns in P nv,re such that its underlying undirected graph is of fixed treewidth.

Let π be a pattern in P nv,re over Σ, such that its underlying undirected graph is of fixed

treewidth k > 0, and let Q be a Boolean CRPQ. We assume that Q is an RPQ of the form

(x,R,y), where R is a regular expression over Σ. We later explain how to extend the argument to

arbitrary CRPQs with constants. This case, although much more cumbersome, uses essentially

the same ideas that we use to solve the problem for RPQs.

We start by constructing an NFA A that is equivalent to R. Clearly, this can be done in

constant time since Q itself is constant. Assume that the set of states of A is S, that its transition

function is δ : S×Σ→ 2S, the initial state is s0 ∈ S, and F ⊆ S contains the final states. Let

s1, . . . ,sp be an arbitrary enumeration of the states in S. Further, let F be the set of all functions

f : S→ 2S, let W1, . . . ,Wt an arbitrary enumeration of the elements in F × 2S× 22S

(that is,

t = |F | × 2p× 22p

), and Z1, . . . ,Z2t an arbitrary enumeration of the subsets of F × 2S× 22S

.
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Then we construct, for each e of the form (p,L,q) in π, the set Ce ⊆ F ×2S×22S

that contains

exactly those tuples of the form ( f ,S′,S), where f : S → 2S, S′ ⊆ S, and S ⊆ 2S, that are

realized by the NFA that is equivalent to L. Using Claim 5.2.2, and the fact that for each

regular expression an equivalent NFA can be constructed in polynomial time, one can easily

prove that the set Ce can be constructed in polynomial time, for each edge e in π.

Construction of Bπ,Q: Now we show how to construct Bπ,Q from π and Q. First we define the

vocabulary σ. This consists of a ternary relation Edges and unary predicates U1, . . . ,U2t . Next

we define the domain of Bπ,Q. In order to do that we associate, with each edge e in π a constant

ce that works as an identifier for e. (That is, if e and e′ are distinct edges in π, then ce and ce′

are also distinct constants). Then the domain of Bπ,Q consists of each node p mentioned in π

plus all constants of the form ce such that e is an edge in π.

The interpretation of Edges in Bπ,Q contains all tuples of the form (p,ce,q) such that e is

an edge from p to q in π. The interpretation of predicate Ui, 1≤ i≤ 2t , contains exactly those

constants of the form ce such that Ce = Zi. (Thus, the interpretations of U1, . . . ,U2t define a

partition of the set of elements of the form ce in Bπ,Q). It easily follows from previous remarks

that Bπ,Q can be constructed in polynomial time from π and Q (recall that Q is fixed). Next

claim proves that the treewidth of Bπ,Q is fixed.

Claim 5.2.3 The treewidth of Bπ,Q is at most 6k2.

Proof: Since Bπ,Q consists of several unary predicates and one ternary relation symbol, it is

sufficient to prove that the restriction B ′π,Q of Bπ,Q to the relation symbol Edges has treewidth

bounded by 6k2. Take an arbitrary tree decomposition (T,(Bt)t∈T ), of the underlying undi-

rected graph G of π, that witnesses that the treewidth of G is at most k. Recall that (T,(Bt)t∈T )

satisfies the following: (1) T is a tree. (2) Each Bt , t ∈ T , is a subset of the nodes in G, and

every node of G belongs to at least some Bt , t ∈ T . (3) For every node p in G the set {t | p∈ Bt}

is connected. (4) If (p,q) is an edge of G then for some t ∈ T it is the case that {p,q} ⊆ Bt . (5)

|Bt | ≤ k+1, for each t ∈ T . From (T,(Bt)t∈T ) we construct the following tree decomposition

of B ′π,Q: For each edge (p,q) in G we choose an arbitrary Bt , t ∈ T , that contains both p and

q. Assume that there are exactly m edges e1, . . . ,em that go from p to q in π. Then we replace t

in T with a path of m new nodes t1, . . . , tm, and define Bti := Bt ∪{ce1
}, for each 1 ≤ i ≤ m. It

is not hard to see that the resulting tuple (T ′,(B′t)t∈T ′) is a tree decomposition of B ′π,Q, and that

|B′t | ≤ (k+ 1)+ (k + 1)2 ≤ 6k2, for each t ∈ T ′. We conclude that the treewidth of Bπ,Q is at

most 6k2. ✷

Construction of ϕQ: The MSO formula ϕQ is defined as follows:

ϕQ := ∃Y1 · · ·∃Yt

(
α(Y1, . . . ,Yt) ∧ β(Y1, . . . ,Yt) ∧ ¬∃x∃yγ(x,y,Y1, . . . ,Yt)

)
,
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where x and y are first-order variables and each Yj (1≤ j ≤ t) is a monadic second-order order

variable. Intuitively, with ϕQ we try to “guess” a graph database in JπK that does not satisfy Q.

This is done as explained below.

In the Yj’s we try to guess an assignment (that is, a graph database) that replaces each

element of the form ce in Bπ,Q (that is, each edge e in π) with a word w in the regular language

L, assuming that the edge e is labeled with L in π. Notice, however, that it is impossible with

the power of MSO to guess an entire word for an edge. Nevertheless, we do not need to guess

all the information contained in w, and, indeed, for the sake of query answering with respect to

Q it is enough to guess only the tuple in F ×2S×22S

that is witnessed by w. This is precisely

what formulas α and β do. Formula α guesses in the Yj’s the tuples in F × 2S× 22S

that are

witnessed by the words that replace edges in the graph database represented by π that we are

trying to construct to falsify Q, and formula β checks, for each edge e, that such an assignment

is consistent with the tuples in Ce (that is, that we have guessed for ce a tuple in F × 2S× 22S

that is witnessed by L, assuming that L is the regular language that labels e in π). On the other

hand, ¬∃x∃yγ checks that Q does not hold in the graph database G ∈ JπK that is represented by

the Yj’s; that is, G is any graph database that is obtained from π by replacing each edge e in π

such that ce ∈Yj with a word w that realizes the tuple Wj in F ×2S×22S

.

The formulas α, β and γ are defined as follows:

• Formula α(Y1, . . . ,Yt) establishes that the interpretations of Y1, . . . ,Yt form a partition of

the elements of the form ce in Bπ,Q (i.e. the elements that appear in the second coordinate

of the interpretation of the relation Edges in Bπ,Q). Further, only elements of the form ce

belong to the interpretation of Yj, for each 1 ≤ j ≤ t. (Notice that elements of the form

ce are easily definable with the formula ∃z1∃z3Edges(z1,z2,z3)).

• Formula β(Y1, . . . ,Yt) establishes that, for each edge e in π, if the constant ce belongs to

the interpretation of Yj, 1≤ j≤ t, then the tuple ( f ,S′,S) that corresponds to Wj belongs

to Ce. This can be easily expressed by a formula that states that if an element y belongs

to Yj, 1≤ j≤ t, then it also belongs to the interpretation of some Ui, 1≤ i≤ 2t , such that

Wj ∈ Zi.

• Assume that Wj = ( f j,S j,S j), for 1 ≤ j ≤ t. Let X1, . . . ,Xp be fresh monadic

second-order variables and u1,v1,u2,v2 be fresh first-order variables. Then the formula

γ(x,y,Y1, . . . ,Yt) is defined as ∃X1 · · ·∃Xpθ, where θ is the disjunction of the following

formulas:

– θ1(x,y,Y1, . . . ,Yt ,X1, . . . ,Xp),

– ∃u∃vθ2(x,y,u,v,Y1 , . . . ,Yt ,X1, . . . ,Xp)

– ∃u∃vθ3(x,y,u,v,Y1 , . . . ,Yt ,X1, . . . ,Xp),
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– ∃u1∃v1∃u2∃v2 θ4(x,y,u1,v1,u2,v2,Y1, . . . ,Yt ,X1, . . . ,Xp),

and the MSO formulas θi, 1≤ i≤ 4, are as explained below.

First, for S′ ⊆ S and s ∈ S, we define an MSO formula µs,S′(x,y,X1, . . . ,Xp,Y1, . . . ,Yt) that

establishes the following:

– The interpretations of X1, . . . ,Xp contain exactly the least fixpoints defined as fol-

lows: (1) x belongs to Xi, for each 1 ≤ i ≤ p such that si ∈ S′. (2) For each nodes

z, z′ and w, if (a) z belongs to the interpretation X j, 1 ≤ j ≤ p, (b) Edges(z,w,z′)

holds, (c) w belongs to Yi, 1 ≤ i≤ t, then z′ belongs to the interpretation of Xℓ, for

each 1≤ ℓ≤ p such that sℓ ∈ f i(s j).

– The element y belongs to the interpretation of Xi, assuming that s = si.

It is standard, although rather cumbersome, to construct explicitly the MSO formula

µs,S′(x,y,X1, . . . ,Xp,Y1, . . . ,Yt). For the sake of readability we omit it here. Intuitively,

this formula checks the following on a pair of nodes x and y from Bπ,Q: If G is a graph

database defined by the Yj’s (as described above), then the Xi’s contain exactly the nodes

of Bπ,Q (and, hence, of π) that are assigned state si by some “run” of A over the paths of

G, that is initialized by assigning state s′ to x, for each s′ ∈ S′. This is done as follows:

First, assign x to Xi for each 1 ≤ i ≤ p such that si ∈ S′. Then recursively proceed as

follows. If node p of Bπ,Q is assigned to Xi (that is, state si of A), there is an edge e from

node p to q in π, and ce belongs to the interpretation of Yj (that is, ce has been replaced in

G by a word that realizes, in particular, the function f j : S→ 2S), then q has to be assigned

to each state sℓ ∈ f j(si), i.e. to the set Xℓ. The formula µs,S′(x,y,X1, . . . ,Xp,Y1, . . . ,Yt)

checks, in addition, that y is assigned state s (i.e. that y belongs to Xi assuming that

s = si).

Then we define:

– θ1 :=
∨

s′∈F µs′,{s0}(x,y,Y1, . . . ,Yℓ,X1, . . . ,Xp).

– θ2 :=
∧

1≤ j≤ℓ

(
Edges(u,v,x)∧Yj(v) →
∨

S′∈S j

∨
s′∈F µs′,S′(x,y,Y1, . . . ,Yℓ,X1, . . . ,Xp)

)
.

– θ3 :=
∧

1≤ j≤ℓ

(
Edges(y,v,u)∧Yj(v) →

∨
s∈S j µs,{s0}(x,y,Y1, . . . ,Yℓ,X1, . . . ,Xp)

)
.

– Formula θ4 is:

Edges(u1,v1,x)∧Edges(y,v2,u2)∧
∧

1≤ j,ℓ≤t

(
Yj(v1)∧Yℓ(v2)→

∨

S′∈S j ,s∈Sℓ

µs,S′(x,y,Y1, . . . ,Yt ,X1, . . . ,Xp)
)
.
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The meaning of tehse formulas will become clear when we prove the soundness and correctness

of the construction of Bπ,Q and πQ (that is, that CERTAIN(Q,π) = false if and only if Bπ,Q |=

ϕQ).

Clearly, ϕQ can be constructed in constant time from Q. Next we show that

CERTAIN(Q,π) = false if and only if Bπ,Q |= ϕQ.

Soundness and correctness: Assume first that Bπ,Q |= ϕQ. This means that there exists

a partition P1, . . . ,Pt of the elements of the form ce that belong to Bπ,Q, such that Bπ,Q |=

β(P1, . . . ,Pt) ∧ ¬∃x∃yγ(x,y,P1, . . . ,Pt). Since Bπ,Q |= β(P1, . . . ,Pt), it is the case that if an el-

ement of the form ce belongs to Pi, 1 ≤ i ≤ t, then the tuple ( f ,S′,S) that corresponds to Wi

belongs to Ce. With this in mind we prove next that CERTAIN(Q,π) = false. In order to do

that, we construct a graph G ∈ JπK such that Q(G) = false.

Let σ be an assignment from the nodes of π into the set V of node ids that (1) is the identity

map on node ids, and (2) assigns a distinct node id nx, that does not appear in π, to each node

variable x. Then the graph database G is obtained from π by replacing each node p by σ(p),

and then replacing each edge e of the form (p,L,q) with a path ρe of fresh node ids that goes

from σ(p) to σ(q) that satisfies the following: Assume that ce belongs to Pi, 1 ≤ i ≤ t, and

that Wi = ( f ,S′,S). Then λ(ρe) is a word w that belongs to L and such that (1) δ(s,w) = f (s),

for each s ∈ S, (2) S′ is precisely the set of states s such that, for some prefix w′ of w, it is the

case that δ(s,w′) contains at least one final state, and (3) S consists of exactly those S′′ ⊆ S

such that for some suffix w′′ of w it is the case that δ({s0},w
′′) = S′′. Notice that w exists since

Bπ,Q |= β(P1, . . . ,Pt) and hence ( f ,S′,S) is realized by the NFA A ′ that is equivalent to L. It is

immediately clear then that G ∈ JπK.

Now we prove that Q(G) = false. Assume, for the sake of contradiction, that there are

two node ids n and n′ in G such that there is a path ρ from n to n′ that satisfies that λ(ρ) ∈ R.

Notice that ρ is either of the form ρ1ρe1
ρe2
· · ·ρem

ρ2 or ρe1
ρe2
· · ·ρem

ρ2 or ρ1ρe1
ρe2
· · ·ρem

or

ρe1
ρe2
· · ·ρem

, where each ρei
, 1 ≤ i ≤ m, is the path associated with an edge ei of π in G, ρ1

is a suffix of the path ρe0
in G that is associated with an edge e0 of π, and ρ2 is a prefix of the

path ρem+1
in G that is associated with an edge em+1 of π. We assume in the following that ρ is

of the form ρ1ρe1
ρe2
· · ·ρem

ρ2, all other cases being similar.

Assume that ce0
belongs to Yj, for 1 ≤ j ≤ t, and that Wj = ( f j,S j,S j). Thus, if

δ({s0},λ(ρ1)) = S′ ⊆ S then S′ ∈S
j. Further, assume that cem+1

belongs to Yℓ, for 1 ≤ ℓ ≤ t,

and that Wℓ = ( f ℓ,Sℓ,Sℓ). Thus, if δ(S′,λ(ρe1
ρe2
· · ·ρem

)) = S′′ ⊆ S, then S′′ contains at least

some state s′ in Sℓ (otherwise, it would not be the case that δ(S′′,λ(ρ2)) contains at least some

state in F , and, thus, that λ(ρ) ∈ R). Further, it is clear that the following holds for each state

s ∈ S′′: Assume that e1 = (p1,L1,q1) and that em = (pm,Lm,qm). Also, assume that U1, . . . ,Up

contain exactly the least fixpoints defined as follows over the nodes of π: (1) p1 belongs to

Ui, for each 1 ≤ i ≤ p such that si ∈ S′. (2) For each nodes z, z′ and w, if (a) z belongs to the
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interpretation U j, 1 ≤ j ≤ p, (b) Edges(z,w,z′) holds, (c) w belongs to Pi, 1 ≤ i ≤ t, then z′

belongs to the interpretation of Uℓ, for each 1≤ ℓ≤ p such that sℓ ∈ f i(s j). Then the node qm

belongs to the interpretation of Ui, assuming that s = si.

Assume that ei = (pi,Li,qi), for each 1 ≤ i ≤ m + 1. Then clearly Bπ,Q |=

Edges(p0,ce0
,q0)∧Edges(pm+1,cem+1

,qm+1). Further, it is clear from the previous remarks

that

Bπ,Q |= Yj(ce0
)∧Yℓ(cem+1

)∧µs′,S′(p1,qm,P1, . . . ,Pt ,U1, . . . ,Up).

But then Bπ,Q |= ∃x∃yγ(x,y,P1, . . . ,Pt), since s′ ∈ Sℓ and S′ ∈S
j, which is a contradiction.

Assume now that CERTAIN(Q,π) = false. Thus, from Claim 4.3.3, there is a graph

database G in JπK such that G is σ-canonical for π and Q(G) = false. For each edge e ∈ π,

let ρe be the path that is associated with e in G. We first construct a partition P1, . . . ,Pt

for the elements of the form ce in Bπ,Q as follows: For each edge e in π, if the NFA that

only accepts the word λ(ρe) realizes the tuple Wi, then ce belongs to Pi. We show next

that Bπ,Q |= α(P1, . . . ,Pt)∧β(P1, . . . ,Pt)∧¬∃x∃yγ(x,y,P1, . . . ,Pt), which implies, in turn, that

Bπ,Q |= ϕQ.

Clearly, since G is canonical for π, Bπ,Q |= α(P1, . . . ,Pt) ∧ β(P1, . . . ,Pt). It

just rests to show that βπ,Q |= ¬∃x∃yγ(x,y,P1, . . . ,Pt). Assume, on the con-

trary, that βπ,Q |= ∃x∃yγ(x,y,P1, . . . ,Pt). In particular, assume that βπ,Q |=

∃x∃y∃X1, . . . ,Xp∃u1∃v1∃u2∃v2 θ4(x,y,u1,v1,u2,v2,P1, . . . ,Pt ,X1, . . . ,Xp), all other cases

being similar.

Since βπ,Q |= ∃x∃y∃X1, . . . ,Xp∃u1∃v1∃u2∃v2 θ4(x,y,u1,v1,u2,v2,P1, . . . ,Pt ,X1, . . . ,Xp),

there exist elements p, p′, q, q′, ce and ce′ in Bπ,Q such that the following holds: (1)

Edges(p′,ce, p) and Edges(q,ce′ ,q
′) holds in Bπ,Q. (2) If ce ∈ Pj and ce′ ∈ Pℓ, then it is the

case that the following holds: Assume that Wj = ( f j,S j,S j) and Wℓ = ( f ℓ,Sℓ,Sℓ). Then for

some S′ ∈S
j and s ∈ Sℓ it is the case that ∃X1 · · ·∃Xpµs,S′(p,q,P1, . . . ,Pt ,X1, . . . ,Xp) holds in

Bπ,Q. From the two previous facts one can easily conclude the following: (1) There is a suffix

ρ1 of ρe such that δ({s0},λ(ρ1)) = S′. (2) There is a prefix ρ2 of ρe′ such that δ({s},λ(ρ2))

contains at least some final state. (3) There is a path ρ in G from σ(p) to σ(q) such that

δ(S′,λ(ρ)) contains the state s. We conclude that ρ1ρρ2 is a path in G such that λ(ρ) ∈ R. This

concludes this part of the proof.

Extension to arbitrary CRPQs: A procedure that computes certain answers in polynomial

time for arbitrary conjunctions of RPQs is more cumbersome to describe, but relies esentially

on the same proof ideas. First of all, when constructing Bπ,Q from π and Q we have to be

more careful, and provide in advance the necessary information to constants of the form ce, in

order to be able to recognize later when it is possible for a join between two node variables to

occur in a node that belongs to a path that witnesses the edge e. In the same way, formula ϕQ
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has to be changed accordingly, in order to allow for these types of joins to occur in the graph

database. The addition of constants to queries only makes things easier, as then we precisely

know where an element has to be witnessed in the graph database. ✷

The proof actually shows the result for a larger class of patterns, with all the features,

as long as label variables do not have multiple occurrences, and regular expressions do not

mention them. The Codd interpretation of label variables is essential, since without it the

problem is already CONP-hard for treewidth 1 (see Theorem 5.1.1). For P re patterns, CONP-

hardness results of Theorem 5.1.3 used classes of DAGs of unbounded treewidth.

Fixed parameter tractability. The formula ϕQ constructed in the proof only depends on

Q, and the structure Bπ,Q can be constructed in polynomial time from both π and Q. Thus,

it immediately follows from Courcelle’s theorem that the data complexity of finding certain

answers to CRPQs over classes of patterns in P nv,re and P nv,lv
Codd is fixed parameter tractable,

when the treewidth of the input pattern is used as the parameter of the problem. We refer the

reader to [Downey and Fellows, 1999, Flum and Grohe, 2006] for a detailed discussion and

definitions of fixed parameter tractability.

5.3 Tractability Restrictions for Patterns of Unbounded Treewidth

The proofs of Theorems 5.1.1 and 5.1.3 show that the data complexity of query answer-

ing rapidly becomes intractable if we allow patterns with underlying graphs of unbounded

treewidth, even if these graphs are acyclic and the patterns does not use node variables.

However, by staring at these proofs, one observes that this intractability arises from some

rather “unnatural” classes of patterns, in the sense that the structure of these patterns is ex-

tremely intricate, and the interaction of these patterns with the query given in these reductions

is much more complex that what one would expect for many practical applications of query

answering (we shall shortly explain why this is the case).

This gives hope to the idea of finding “natural” classes of patterns with tractable query

evaluation. In this section we propose a set of structural restrictions on graph patterns, and on

the interaction between patterns and queries, that gives rise to a class with good properties for

computing certain answers.

We concentrate from now on a particular class of queries: CRPQs in which each regular

expression occurring in the query does not use the Kleene-star (that is, the regular language

defined by this expression is finite). We say that a CRPQ satisfying this restriction is tame. The

class of tame CRPQs is relevant as it contains, among others, all conjunctive queries over the

standard relational representation of graph databases. Moreover, notice that the intractability

results in Theorem 5.1.1 and 5.1.3 for P lv
Codd and P re were actually proved for a tame RPQ

(since the query in such theorem is a single word), and thus tame CRPQs are intractable even
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over these classes of patterns.

As for the patterns, we know that finding tractable fragments for P lv is almost hopeless. On

the other hand, since P re strictly contains the class of patterns in P lv
Codd, the class P re seems to

be a good alternative for our study. Furthermore, in order to maintain the presentation simple,

we do not use node variables in our patterns, since they overly complicate the presentation

(besides, Theorems 5.1.1 and 5.1.3 tells us that the problem is hard already for patterns without

node variables).

We now define a restriction of the class P re of patterns. This restriction is defined by

two conditions that, when used together, yield tractability to the problem of computing certain

answers of tame CRPQs over patterns in P re. As we later show, the obtained class of patterns

is, in a precise sense, maximal for tractability.

5.3.1 Out-degree of patterns

Our first condition is a very simple restriction on the structure of patterns.

(C1) We require the out-degree of nodes in patterns to be bounded by a constant.

The out-degree of a node u in pattern π is defined as the number of edges of the form

(u,R,u′) in π. The out-degree of a pattern π, denoted by out(π), is the maximum out-degree of

a node in π. Let us denote by ODre
≤d the class of patterns π in P re such that out(π) is at most

d.

Considering bounded out-degree is a common assumption in the study of complex net-

works [Manku et al., 2004]. This assumption reflects the idea that while incoming edges are

generated distributively by all agents in a network, the outgoing edges are generated locally by

a single node, and therefore its number can be assumed to be small as compared to the size of

the whole network. For instance, in the Web it represents the fact that although a Web page can

be linked by many other pages, each Web page has links to a very small number of Web pages

(as compared to the size of the entire Web graph) [Donato et al., 2007].

By using condition (C1) we obtain a first simple tractability result for a limited class of

queries.

Proposition 5.3.1 Let d ≥ 0 be a fixed value and Q a tame CRPQ without existentially quan-

tified variables. Then PATTERN CERTAIN ANSWERS(Q) is in PTIME, when restricted to pat-

terns in ODre
≤d .

We do not show the proof of this proposition, as it follows directly from Theorem 5.3.4

below.

In the same way as a CRPQ can be represented as a graph query Q = (ξ, x̄) with ξ a pattern

in P nv,re, CRPQs without existentially quantified variables corresponds to queries of form (ξ, x̄)
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with ξ ∈ P re. Thus, Proposition 5.3.1 can be restated in terms of graph queries in P re that only

use regular expressions that define finite languages.

5.3.2 Bounded Meaningful Functions

As we later show, tractability for tame CRPQs in general cannot be obtained by just bounding

the out-degree of patterns (see Theorem 5.3.5 (2)). Thus, we provide another restriction that

together with (C1) defines a tractable case for tame CRPQs. Let us illustrate the intuition of

this condition by means of an example.

Example 5.3.2 Let n be odd, and define πn as:

v2

a

v0

a+b b c

vn−2 vn−1 vn vn+1

a+b a+b

v1 v3

and consider tame CRPQs Q = ∃x∃y (x,aa|bb,y) and Q′ = ∃x∃y (x,(a|b)bc,y).

Notice that the certain answers of Q and Q′ over πn are true. In order to show this for the

case of Q, one needs to check over all possible combinations resulting of assigning label either

a or b to each of the edges of the form (vi,a|b,vi+1). On the other hand, in the case of Q′ it is

sufficient to inspect the labels of the last 3 edges of πn, and thus, we essentially have to check

only two combinations.

The above example suggests that existential variables are problematic for query answering

only when they can be witnessed by several nodes in the pattern, whereas queries in which

the possible witnesses are limited should behave better. We formalize this intuition with our

second condition, but first we need to introduce some terminology.

Let π = (N,E) be a pattern over Σ and Q a tame CRPQ over the same schema. Assume that

x̄ is the tuple of free variables in Q and ȳ the tuple of variables that are existentially quantified in

Q, and consider a function f : ȳ→ N ∪E , that is, f maps each existentially quantified variable

of Q either to a node (N) or to an edge (E) in π. Given a tuple t̄, we say that f is meaningful

for π, Q and t̄, if there is a canonical graph database G ∈ RepΣ(π) and a mapping σ, such that

the following holds:

1. σ is a mapping from the variables of Q into the nodes of G, that witnesses t̄ ∈ Q(G), in

particular, σ(x̄) = t̄,

2. for each y in ȳ we have σ(y) = f (y) if f (y) ∈ N, or, if f (y) is and edge e ∈ E , then σ(y)

is a node in the simple path ρ f (y) associated with to the edge e.

We denote by mf(Q,π, t̄) the number of meaningful functions for π, Q and t̄. We need a final

definition before stating our condition. Given a pattern π, the complete graph induced by π,
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denoted by comp(π), is the graph database obtained from π by removing each incomplete edge

of π, that is, each edge labeled with a regular expression that is syntactically distinct from a

symbol in Σ. We are now ready to state our second structural condition, which depends on π,

Q, and t̄.

(C2) If t̄ does not belong to the evaluation of Q over comp(π), then the number of meaningful

functions for π, Q and t̄, is logarithmically bounded by the size of π.

From a practical point of view, we can understand this condition as follows. Assume that

a query Q is not implied by the complete data of π. Then one can expect that the interaction

between π and Q is rather sophisticated, and hence that Q should only have a small bound

on the number of potential witnesses in a completion of the pattern. This is precisely what

condition (C2) expresses, assuming such bound to be logarithmic, since meaningful functions

essentially encode the potential witnesses of Q in a completion of the pattern.

Formally, given a tame CRPQ Q, a tuple t̄, and a value k ≥ 0, we denote by M F Q,t̄
≤k the

class of patterns π for which either t̄ ∈Q(comp(π)) or mf(Q,π, t̄)≤ k · log(|π|), where |π| is the

size of π measured as its number of edges. Notice that for every tame CRPQ Q over Σ without

existentially quantified variables (in particular for every tame RPQ), M F Q,t̄
≤k contains all graph

patterns over Σ independent of k and t̄, since the notion of meaningful functions trivializes in

this case.

The following lemma shows that membership in M F Q,t̄
≤k can be efficiently checked, as long

as the pattern is in OD re
≤d.

Lemma 5.3.3 Given fixed tame CRPQ Q and values d,k ≥ 0, checking if a pattern belongs to

ODre
≤d ∩M F Q,t̄

≤k , for a tuple t̄, can be done in polynomial time w.r.t. |π|.

Proof: Assume that the tame CRPQ Q over Σ is of the form ∃ȳ
∧m

i=1(xi,Li,yi). By slightly

abusing notation, we denote by ȳ also the set of variables used in ȳ. Let π be a pattern over Σ.

Clearly, checking whether π belongs to OD re
≤d can be done in polynomial time. We prove next

that if the latter is the case, that is, π ∈ OD re
≤d , then checking whether π belongs to M F Q,t̄

≤k can

also be done in polynomial time, which proves the lemma.

Clearly, the number of different functions from ȳ into N∪D is polynomial, since the length

of ȳ is fixed, and hence in order to determine whether π∈M F
Q,t̄
≤k it is sufficient to show that the

following problem is polynomial: Given a function f from ȳ into N∪D, determine whether f is

meaningful for π, Q and t̄. Indeed, if the latter is the case, we simply count in polynomial time

the number s of meaningful functions for π, Q and t̄, and then check whether s ≤ k · log(|π|),

which clearly can be done in polynomial time in the size of π.

In order to check whether a function f : ȳ→ N∪D is meaningful for π, Q and t̄, we do the

following: We construct in polynomial time a propositional formula ϕ, of constant size, such

that ϕ is satisfiable if and only if f is meaningful for π, Q and t̄. Since ϕ is of constant size, it
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contains at most a constant number of propositional variables, and hence its satisfiability can

be decided in constant time. This proves the theorem.

Let π = (N,D) be a pattern in OD re
≤d. An edge-path of π is a sequence e1e2 . . .en, n ≥ 1,

of edges in D such that the end node of ei, for 1 ≤ i ≤ n− 1, coincides with the initial node

of ei+1. If e is of the form (p,R,q), we denote its initial node p by i(e) and its end node q by

s(e). Let f : ȳ→ N∪D be the function we want to check whether it is meaningful for π, Q and

t̄. For the sake of simplicity, we assume f also to be defined over the free variables of Q, by

correspondingly assigning to those free variables the tuple t̄.

In order to define ϕ it will be convenient to define first some relevant notation.

• For each word w that belongs to at least one of the (finite) languages Li, 1 ≤ i≤ m, and

each p≤ |w|, we define a set:

Pw = {(w1, . . . ,wp) | {w1, . . . ,wp} ∈ Σ+, and w1 · · ·wp = w}.

Intuitively, this set consists of all possible ways in which w can be divided into small

pieces.

• Assume that v ≥ 0 is the length of the longest string accepted by at least one language

Li, for 1≤ i≤ m. Then for each 1≤ i≤ m and p≤ v we define a set:

Cp,i = {(e1e2 · · ·ep) an edge-path in π |

( f (xi) = e1∨ f (xi) = i(e1)) and ( f (yi) = ep∨ f (yi) = s(ep))}.

Intuitively, this set consists of all possible edge-paths in π of length p that start with edge

e1 and finish with edge ep, assuming that the function f maps variable xi into either e1

or the initial node of e1, i(e1), and f maps yi into either ep or the end node of ep, s(ep).

• We also define a set PQ consisting of all tuples (w̄1, . . . , w̄m) ∈
⋃
{(w1,...,wm)∈L1×···×Lm}Pw1

× ·· · × Pwm
that satisfy the following: (1) If xi = x j, for

1 ≤ i < j ≤ m, and xi and x j belong to ȳ, then the first component of w̄i coincides with

the first component of w̄ j. (2) If yi = y j, for 1 ≤ i < j ≤ m, and yi and y j belong to ȳ,

then the last component of w̄i coincides with the last component of w̄ j. (3) If xi = y j,

for 1 ≤ i ≤ j ≤ m, and xi and y j belong to ȳ, then the first component of w̄i coincides

with the inverse of the last component of w̄ j. This set represents the possible valuations

for the Li’s in a graph database G ∈ Rep(π) that are consistent with the information

contained in the joins of Q.

The idea behind the propositional formula ϕ is trying to construct directly over π a graph

database G ∈ Rep(π) that witnesses the fact that f is meaningful for π, Q and t̄. In order to do
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that, π constructs G by “replacing” each edge e = (p,R,q) of π with a simple path Ge
1 from

p to q of fresh nodes, that is labelled with a word in R. Then it checks that t̄ ∈ Q(G) via a

mapping σ from the variables of Q into the nodes of G that satisfies the following: (i) σ(x̄) = t̄,

and (ii) for each y ∈ ȳ it is the case that σ(y) = f (y), if f (y) ∈ N, and σ(y) is a node in Ge, if

f (y) is the edge e ∈ D. That is, σ coincides with f on each existentially quantified variable y

that f sends to the nodes of π, and if f sends y to an edge e of π then σ must map y into some

node id that belongs to the path that replaces e in G.

However, recall that we are doing this process directly over π, and hence we have to do the

following for each edge-path ρ linking f (yi) from f (xi) in π: Identify the possible replacements

for the nested regular expressions that appear in ρ that force w to be satisfied by some path

corresponding to ρ in G. Then take the disjunction over all those possible replacements, all

paths ρ and all words in Li.

The main technical problem at this stage is that f (xi) and f (yi) may be node ids in π, in the

case when f sends these variables into N, or may have appeared as node ids in G at the moment

of constructing G from π by replacing an edge labeled with a nested regular expression R with

a path that is defined by R (in the case when f sends at least one of these variables into an edge

in π). This complicates the construction, since the nodes f (xi) and/or f (yi) in this case have to

be “guessed” by ϕ.

Notice that since the outdegree of π is constant, we only have to inspect a constant number

of edge-paths (since each language in the query is fixed and finite, hence, we only need to

inspect paths of length at most the length of the longest string in one of these finite languages).

Propositional formula ϕ is the conjunction of formulas ϕ1 and ϕ2, as defined below. The

propositional variables of ϕ are of two classes: First, there are propositional variables of the

form: (Le = w), (Le = wΣ∗), (Le = Σ∗w) and (Le = Σ∗wΣ∗), for (1) e = (p,R,q) an edge of

π labeled with regular expression R, and (2) w a nonempty subword of a word accepted by at

least one of the Li’s. Intuitively, (Le = w) is true if and only if e = (p,R,q) is replaced by path

Ge, when constructing the graph database G that witnesses the fact that f is meaningful for π,

Q and t̄, such that w is precisely the label of the path Ge. Correspondingly, (Le = Σ∗w) is true if

and only if e is replaced by path Ge such that the path from p to some node q′ in Ge is labelled

with w; (Le = wΣ∗) is true if and only if e is replaced by path Ge such that for some node p′ in

Ge the path from p′ to q is labelled w; and (Le = Σ∗wΣ∗) is true if and only if e is replaced by

graph database Ge such that for nodes p′ and q′ in Ge the path from p′ to q′ is labelled with w.

Second, we have all propositional variables of the form (Le,P,S,W1,W2), where e =

(p,R,q) is an edge of π, and there is a path Ge from p to q that is labelled with a word in

R and satisfies the following: (1) P is the set of all words w of size at most v such that there is

a node q′ in Ge such that the path from p to q′ is labelled with w.

1for readability we use Ge instead of the standard ρe.
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(2) S is the set of all words w of size at most v such that there is a node p′ in Ge such that

the path from p′ to q is labelled with w.

(3) W1 is the set of all words w of size at most v such that there are nodes p′ and q′ in Ge

such that the path from p′ to q′ is labelled with w, and (4) W2 is the set of all words w of size

at most v such that the path from p to q is labelled w. Intuitively, (Le,P,S,W1,W2) is true if

and only if e is replaced in G by a path Ge such that the set of “prefixes” of Ge of lenth ≤ v is

precisely P, the set of “suffixes” of Ge of length ≤ v is precisely S, the set of “subwords” of Ge

of length ≤ v is precisely W2, and the set of “words” of Ge that link p to q is precisely W2.

Formula ϕ1 is defined as:

ϕ1 =
∨

{(w̄1,...,w̄m)∈PQ}

∧

1≤i≤m

∨

{ē=(e1,...,ep)∈Cp,i},
assuming w̄i = (w1, . . . ,wp)

ϕē,i,w̄i
,

where ϕē,i,w̄i
is defined by cases as follows:

ϕē,i,w̄i
=







(Le = Σ∗wΣ∗) if ē = (e) and f (xi) = e = f (yi)
∧k−1

l=1 (Lel
= wl)∧ (Lek

= wkΣ∗) if f (xi) = i(e1) and f (yi) = ek

(Le1
= Σ∗w1)∧

∧k
l=2(Lel

= wl) if f (xi) = e1 and f (yi) = s(ek)

(Le1
= Σ∗w1)∧

∧k−1
l=2 (Lel

= wl)∧ (Lek
= wkΣ∗) if f (xi) = e1 and f (yi) = ek

∧k
l=1(Lel

= wl) if f (xi) = i(e1) and f (yi) = s(ek)

This formula, intuitively, states that for each atom (xi,Li,yi) in Q it is the case that f (xi) is

linked to f (yi) by a path in G labeled with word in Li, and hence that Q(t̄) holds in G via some

assignment specified by f .

Formula ϕ2 states that edges in π are replaced by graph databases that satisfy the corre-

sponding regular expression, and that these replacements are consistent with the variables that

ϕ1 assigns the value true. That is, ϕ2 states that for each e mentioned in ϕ1 exactly one vari-

able of the form (Le,P,S,W1,W2) is true. It also states, among others, that if (Le = w) and

(Le,P,S,W1,W2) are true, then w ∈W2; that if (Le = Σ∗w) and (Le,P,S,W1,W2) are true, then

w ∈ S; that if (Le,P,S,W1,W2) is true, then (Le = wΣ∗) is true, for each w ∈ P; etc.

It is clearly the case that ϕ1 can be constructed in polynomial time from π and t̄. This is

because, since the outdegree of π is constant, the number of different edge-paths in Cp,i, for

p≤ v, is also constant. Furthermore, we can determine in polynomial time the variables of the

form (Le,P,S,W1,W2) that are feasible, i.e. if e = (p,R,q) then there is a path Ge from p to q

that satisfies the aforementioned conditions.

Further, it is not hard to see that the size of ϕ is constant. In fact, ϕ1 only mentions a

constant number of propositional variables, and there exists a constant number of propositional

variables of the form (Le,P,S,W ). We conclude that ϕ2 is also of constant size. Hence, ϕ

contains at most a constant number of propositional variables, and its satisfiability can clearly

be checked in constant time.
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We finally prove that f is meaningful for π, Q and t̄ if and only if ϕ is satisfiable. Assume

first that ϕ is satisfiable via assignment γ. Construct a canonical graph database G ∈ Rep(π) as

follows. First, for each edge e = (p,R,q) in π such that Le is not mentioned in ϕ, replace edge

e with an arbitrary path Ge (of fresh node ids) labelled with a word in R.

Second, for each edge e = (p,R,q) in π such that Le is mentioned in ϕ, do the following

assuming that γ(Le,P,S,W ) = 1: Replace e with a graph path Ge that satisfies the conditions

stated before, namely, that the label of Ge belongs to the language of R (1) P is the set of all

words w of size at most v such that there is a node q′ in Ge such that the path from p to q′ is

labelled with w.

(2) S is the set of all words w of size at most v such that there is a node p′ in Ge such that

the path from p′ to q is labelled with w.

(3) W1 is the set of all words w of size at most v such that there are nodes p′ and q′ in Ge

such that the path from p′ to q′ is labelled with w, and (4) W2 is the set of all words w of size at

most v such that the path from p to q is labelled w.

Such graph database G exists because we ensured it with the construction of ϕ2. We prove

below that G witnesses the fact that f is meaningful for π, Q and t̄.

Since γ satisfies ϕ1, it is the case that γ satisfies

∨

{(w̄1,...,w̄m)∈PQ}

∧

1≤i≤m

∨

{ē=(e1,...,ep)∈Cp,i},
assuming w̄i = (w1, . . . ,wp)

ϕē,i,w̄i
.

Hence, for some (w̄1, . . . , w̄m) ∈ PQ it is the case that for every 1≤ i≤ m, if w̄i = (w1, . . . ,wp)

then there is an ē = (e1, . . . ,ep) ∈ Cp,i such that γ satisfies ϕē,i,w̄i
. Then one should proceed by

cases depending on where f takes values and the form of ē. All cases are rather analogous, so

we only consider the case when f (xi) = e1, f (yi) = ep and p≥ 2.

Consider an arbitrary i such that 1 ≤ i ≤ m. Then there is an edge path e1 · · ·em in π such

that γ satisfies (Le1
= Σ∗w1), (Lem

= wmΣ∗), and (Le j
= w j), for each 2 ≤ j ≤ m− 1. Hence,

since γ satisfies ϕ2, it must be the case that e j = (p,R,q), for each 2 ≤ j ≤ m− 1, is replaced

in G by path Ge j
labelled with w j.

Similarly, e1 = (p,R,q) is replaced in G by a path Ge1
such that the path from p′ to q is

labelled w1, for some node p′ of Ge1
; and em = (p,R,q) is replaced in G by a path Gem

such

that the path from p to q′ is labelled wm, for some node q′ of Gem

Let us define an assignment σ for the variables of Q into G that sends xi into node p′,

as defined above, and sends yi to node q′. We can do this in a way that the assignment is

consistent with the joins of Q (that is, with the repeated variables in different atoms of Q)

since (w̄1, . . . , w̄p) ∈ PQ. We conclude that t̄ ∈ Q(G) via the mapping σ. Furthermore, clearly

σ(x̄) = t̄, and for each y ∈ ȳ it is the case that σ(y) = f (y), if f (y) ∈ N, and σ(y) is a node in

Ge, if f (y) is the edge e ∈ D.
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Assume, on the other hand, that f is meaningful for π, Q and t̄. Assume that G is a canonical

graph database over Σ that witnesses this fact. That is, it is the case that Q(G) via a mapping σ

from the variables of Q into the nodes of G that satisfies the following: (i) σ(x̄) = t̄, and (ii) for

each y ∈ ȳ it is the case that σ(y) = f (y), if f (y) ∈ N, and σ(y) is a node in Ge, if f (y) is the

edge e ∈ D.

Let us define an assignment γ for ϕ as follows. For each edge e in π that is replaced

by path Ge in G, do the following: First of all, for each e in π it is the case that γ satisfies

the propositional variable (Le,P,S,W1,W2), where P, S, W1 and W2 are defined as usual for

Ge. Furthermore, γ satisfies each propositional variable mentioned in ϕ of the form (Le = w),

(Le = Σ∗w′), (Le = Σ∗w′Σ∗) and (Le = w′ ∈ Σ∗) such that w ∈W2, w ∈ S, w ∈W1, and w ∈ P,

respectively. It falsifies any other propositional variable in ϕ that mentions Le. Clearly, γ

satisfies ϕ2. We prove below that it also satisfies ϕ1.

Since t̄ ∈ Q(G), there is a path ρ(i) in G from σ(xi) into σ(yi) such that its label λ(ρ(i))

belongs to the language specified by Li, for each 1≤ i≤ m. We can assume each one of these

paths to be of the form n0a1n1a2n2 · · ·np−1apnp, where each ni is a node id in G, each a j is

a symbol in Σ, p ≤ v, n0 = f (xi) and np = f (yi). But we can also assume without loss of

generality that the path ρ(i) is either of the form (a) ρi
1, where ρi

1 is the subword of a graph

database of the form Ge such that Ge is the graph database associated with some edge e of

π in G, or (b) ρi
1ρi

e1
. . .ρi

eℓ
ρi

2, ℓ ≥ 0, where each λ(ρi
e j
) is a word in the graph database Ge j

associated with some edge e j of π in G, for 1≤ j ≤ ℓ, λ(ρi
1) is a suffix of a graph database Ge

that is associated with some edge e of π in G, and λ(ρi
2) is the prefix of a graph database Ge′

that is associated with some edge e′ of π in G. We only analyze the second more general case,

the first one being analogous.

It is clear that λ(ρi
1)λ(ρ

i
e1
) · · ·λ(ρi

eℓ
)λ(ρi

2) = λ(ρ(i)). Furthermore, we can assume without

loss of generality that λ(ρi
1), λ(ρi

e2
) and each λ(ρi

e j
), for 1≤ j ≤ ℓ, is a nonempty word. Thus,

it is not hard to see that if w̄i = (λ(ρi
1),λ(ρ

i
e1
), . . . ,λ(ρi

eℓ
),λ(ρi

2)), then (w̄1, . . . , w̄m) belongs to

PQ.

Consider an arbitrary 1≤ i≤m. Then ē = (e,e1, . . . ,eℓ,e
′) belongs to Cℓ+2,i. Furthermore,

γ makes true each propositional variable of the form (Le j
= λ(ρi

e j
)), for 1 ≤ j ≤ ℓ, as well as

propositional variable (Le = Σ∗λ(ρi
1)) and (Le′ = λ(ρi

2)Σ
∗). In any possible case it must be the

case that γ satisfies ϕē,i,w̄i
. This is precisely what we wanted to prove, since it implies that for

every 1 ≤ i ≤ m there is an ē ∈ Cp,i, assuming w̄1 = (w1, . . . ,wp), such that γ satisfies ϕē,i,w̄i
.

This finishes the proof of the Lemma. ✷

5.3.3 Query answering under restrictions (C1) and (C2)

The following result shows that checking whether t̄ ∈ CERTAIN(Q,π) can be efficiently decided

for patterns in ODre
≤d ∩M F

Q,t̄
≤k .
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Theorem 5.3.4

Let d,k ≥ 0 be fixed values and Q a tame CRPQ. Then PATTERN CERTAIN ANSWERS(Q)

is in PTIME, when restricted to patterns in ODre
≤d ∩M F Q,t̄

≤k .

Proof: We start by checking whether t̄ ∈Q(comp(π)), which clearly can be done in polynomial

time. If this is the case, then we can conclude that t̄ ∈ CERTAIN(Q,π). Otherwise, we go over

the procedure described below.

We use essentially the same techniques of the proof of Lemma 5.3.3.

Assume again that the tame CRPQ Q over Σ is of the form ∃ȳ
∧m

i=1(xi,Li,yi). Once again,

we may denote by ȳ also the set of variables used in ȳ. We prove the theorem by constructing,

in polynomial time, from each graph pattern π ∈ ODre
≤d ∩M F

Q,t̄
≤k , without null values, and

tuple t̄ of node ids, a propositional formula ϕ of logarithmic length in the size of π such that

ϕ is satisfiable if and only t̄ 6∈ ✷Q(π). Since ϕ is of logarithmic size, it contains at most a

logarithmic number of propositional variables, and hence its satisfiability can be decided in

polynomial time.

Let π = (N,D) be a pattern in OD re
≤d ∩M F

Q,t̄
≤k without null values. We denote by F the

set of meaningful functions from ȳ into N ∪D. By using the same techniques as in the proof

of Lemma 5.3.3 one can show that the set F can be constructed in polynomial time from π

and t̄. Recall that since π ∈ MF
Q,t̄
≤k , the size of F is bounded by k · log(|π|). For the sake of

simplicity, once again we assume each f ∈ F also to be defined over the free variables of Q, by

correspondingly assigning to those free variables the tuple t̄. It is also important to recall the

sets Pw, Cp,i and PQ that we have defined in the proof of the previous Lemma.

The idea behind the propositional formula ϕ is trying to construct directly over π a graph

database G ∈ Rep(π) such that t̄ 6∈Q(G). In order to do that, π constructs a canonical database

G, and checks that the tuple t̄ of nodes in G does not satisfy the query Q. In order to do that,

ϕ inspects each meaningful function f ∈ F , and show that for each one of them there is an

atom (xi,Li,yi) in Q that is not satisfied in the assignment given by f in G. In order to do

that, it checks that no word w in Li is witnessed by some path that links f (yi) from f (xi) in G.

However, recall that we are doing this directly over π, and hence we have to do the following

for each path ρ linking f (yi) from f (xi) in π: Identify the possible replacements for the nested

regular expressions that appear in ρ that force w not to be satisfied by the path corresponding

to ρ in G. Then take the conjunction over all those possible replacements, all paths ρ and all

words in Li.

The main technical problem at this stage is that f (xi) and f (yi) may be node ids in π, in the

case when f sends these variables into N, or may have appeared as node ids in G at the moment

of constructing G from π by replacing an edge labeled with a nested regular expression R with

a graph database that satisfies R (in the case when f sends at least one of these variables into

an edge in π). This complicates the construction a bit, since the nodes f (xi) and/or f (yi) in this
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case have to be “guessed” by ϕ.

Since the outdegree of π is constant, we only have to inspect a constant number of paths

for each meaningful function (since each language in the query is fixed and finite, hence, we

only need to inspect paths of length at most the length of the longest string in one of these finite

languages). Since there is a logarithmic number of meaningful functions, in the end we only

have to inspect a logarithmic number of paths, which can be reduced to checking satisfiability

of a logarithmic size formula. We formalize this idea below.

Propositional formula ϕ is the conjunction of formulas ϕ1 and ϕ2, as defined below. The

propositional variables of ϕ are the same that we have used in the previous lemma: First, there

are propositional variables of the form: (Le = w), (Le = wΣ∗), (Le = Σ∗w) and (Le = Σ∗wΣ∗),

for (1) e = (p,R,q) an edge of π labeled with regular expression R, and (2) w a nonempty

subword of a word accepted by at least one of the Li’s.

And second, we have all propositional variables of the form (Le,P,S,W1,W2), where e =

(p,R,q) is an edge of π, and there is a path Ge from p to q that is labelled with a word in R and

satisfies the following: (1) P is the set of all words w of size at most v such that there is a node

q′ in Ge such that the path from p to q′ is labelled with w.

(2) S is the set of all words w of size at most v such that there is a node p′ in Ge such that

the path from p′ to q is labelled with w.

(3) W1 is the set of all words w of size at most v such that there are nodes p′ and q′ in Ge

such that the path from p′ to q′ is labelled with w, and (4) W2 is the set of all words w of size at

most v such that the path from p to q is labelled w.

Formula ϕ1 is defined as:

ϕ1 =
∧

f∈F

∧

{(w̄1,...,w̄m)∈PQ}

∨

1≤i≤m

∧

{ē=(e1,...,ep)∈Cp,i},
assuming w̄i = (w1, . . . ,wp)

ϕē, f ,i,w̄i
,

where ϕē, f ,i,w̄i
is defined by cases as follows:

ϕē, f ,i,w̄i
=







¬(Le = Σ∗wΣ∗), if ē = (e) and f (xi) = e = f (yi)
∨k−1

l=1 ¬(Lel
= wl)∨¬(Lek

= wkΣ∗),

if f (xi) = i(e1) and f (yi) = ek

¬(Le1
= Σ∗w1)∨

∨k
l=2¬(Lel

= wl),

if f (xi) = e1 and f (yi) = s(ek)

¬(Le1
= Σ∗w1)∨

∨k−1
l=2 ¬(Lel

= wl)∨¬(Lek
= wkΣ∗),

if f (xi) = e1 and f (yi) = ek
∨k

l=1¬(Lel
= wl) if f (xi) = i(e1) and f (yi) = s(ek)

This formula, intuitively, states that for f in F there is an atom (xi,Li,yi) in Q such that f (xi)

is not linked to f (yi) by a path in G labeled with word in Li, and hence that t̄ 6∈ Q(G).
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Formula ϕ2 states that edges in π are replaced by graph databases that satisfy the corre-

sponding regular expressions, and that these replacements are consistent with the variables that

ϕ1 assigns the value true. It is defined in a similar way that the proof of the previous Lemma.

Since F can be constructed in polynomial time from π and t̄, and Q is fixed, it is clearly

the case that ϕ1 can be constructed in polynomial time from π and t̄. This is because, since

the outdegree of π is constant, the number of different edge-paths in Cp,i, for p ≤ v, is also

constant. Furthermore, as we have discussed in the proof of the previous Lemma, we also have

that ϕ2 can be constructed in polynomial time.

Furthermore, it is not hard to see that the size of ϕ is logarithmically bounded. Indeed, each

formula of the form:

∧

{(w̄1,...,w̄m)∈PQ}

∨

1≤i≤m

∧

{ē=(e1,...,ep)∈Cp,i},
assuming w̄i = (w1, . . . ,wp)

ϕē, f ,i,w̄i

is of constant size, and hence, since F is of size logarithmic in π, the formula ϕ1 is of size

at most logarithmic in π. Furthermore, ϕ2 is of constant size. Hence, ϕ contains at most a

logarithmic number of propositional variables, and its satisfiability can clearly be checked in

polynomial time.

We finally prove that t̄ 6∈ CERTAIN(Q,π) if and only if ϕ is satisfiable. In order to do that,

we use again the notion of canonical graph database introduced in Chapter 4.

Assume first that ϕ is satisfiable via assignment γ. Construct a canonical graph database

G ∈ Rep(π) as follows. First, for each edge e = (p,R,q) in π such that Le is not mentioned ϕ,

replace edge e ∈ π with an arbitrary path of fresh internal node ids, that is labelled with a word

in R. Second, for each edge e = (p,R,q) in π such that Le is mentioned in ϕ, do the following

assuming that γ(Le,P,S,W1,W2) = 1: Replace e with a path Ge that satisfies the conditions

stated before, namely, that the label of Ge belongs to the language of R (1) P is the set of all

words w of size at most v such that there is a node q′ in Ge such that the path from p to q′ is

labelled with w.

(2) S is the set of all words w of size at most v such that there is a node p′ in Ge such that

the path from p′ to q is labelled with w.

(3) W1 is the set of all words w of size at most v such that there are nodes p′ and q′ in Ge

such that the path from p′ to q′ is labelled with w, and (4) W2 is the set of all words w of size

at most v such that the path from p to q is labelled w. We prove below that t̄ 6∈ Q(G), which

suffices for the proof.

Assume, for the sake of contradiction, that t̄ ∈ Q(G), and that this is witnessed by a homo-

morphism σ (in particular, σ(x̄) = t̄, assuming the tuple of free variables of Q to be x̄). Let f

be the mapping from ȳ into N ∪D defined as follows: For each y mentioned in ȳ we have that

f (y) = σ(y), if σ(y) is a node in G that also belongs to π, and f (y) = e, if σ sends y to a fresh
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internal node id in path Ge. It is clear then that f is a meaningful function for π, Q and t̄, as

witnessed by graph database G.

Since γ satisfies ϕ1, it is the case that γ satisfies

∧

{(w̄1,...,w̄m)∈PQ}

∨

1≤i≤m

∧

{ē=(e1,...,ep)∈C f ,i},
if w̄i = (w1, . . . ,wp)

ϕē, f ,i,w̄i
.

Further, since t̄ ∈Q(G), there is a path ρ(i) in G from σ(xi) into σ(yi) such that its label λ(ρ(i))

belongs to the language specified by Li, for each 1≤ i≤ m. We can assume each one of these

paths to be of the form n0a1n1a2n2 · · ·np−1apnp, where each ni is a node id in G, each a j is

a symbol in Σ, p ≤ v, n0 = f (xi) and np = f (yi). But we can also assume without loss of

generality that the path ρ(i) is either of the form (a) ρi
1, where ρi

1 is the subword of a graph

database of the form Ge such that Ge is the path associated with some edge e of π in G, or (b)

ρi
1ρi

e1
. . .ρi

eℓ
ρi

2, ℓ ≥ 0, where each λ(ρi
e j
) is a word in the path Ge j

associated with some edge

e j of π in G, for 1≤ j ≤ ℓ, λ(ρi
1) is a suffix of a path Ge that is associated with some edge e of

π in G, and λ(ρi
2) is the prefix of a path Ge′ that is associated with some edge e′ of π in G. We

only analyze the second more general case, the first one being analogous.

It is clear that λ(ρi
1)λ(ρ

i
e1
) · · ·λ(ρi

eℓ
)λ(ρi

2) = λ(ρ(i)). Furthermore, we can assume without

loss of generality that λ(ρi
1), λ(ρi

e2
) and each λ(ρi

e j
), for 1≤ j ≤ ℓ, is a nonempty word. Thus,

it is not hard to see that if w̄i = (λ(ρi
1),λ(ρ

i
e1
), . . . ,λ(ρi

eℓ
),λ(ρi

2)), then (w̄1, . . . , w̄m) belongs to

PQ.

Consider an arbitrary 1≤ i≤m. Then ē = (e,e1, . . . ,eℓ,e
′) belongs to Cℓ+2,i. Furthermore,

γ makes true each propositional variable of the form (Le j
= λ(ρi

e j
)), for 1 ≤ j ≤ ℓ, as well

as propositional variable (Le = Σ∗λ(ρi
1)) and (Le′ = λ(ρi

2)Σ
∗). In any possible case it must

be the case that γ either does not satisfy ϕē, f ,i,w̄ or it does not satisfy ϕ2. This is our desired

contradiction since it implies that either γ does not satisfy ϕ2, or for every 1≤ i≤m there is an

ē ∈ C f ,i such that γ does not satisfy ϕē, f ,i,w̄i
.

Assume, on the other hand, that t̄ 6∈ CERTAIN(Q,π). Then from Claim 4.3.3 there is a

canonical graph database G ∈ Rep(π) such that t̄ 6∈ Q(G). Let us define an assignment γ for ϕ

as follows. For each edge e in π that is replaced by path Ge in G, do the following: First of all,

for each e in π it is the case that γ satisfies the propositional variable (Le,P,S,W1,W2), where P,

S, W1 and W2 are defined as usual for Ge. Furthermore, γ satisfies each propositional variable

mentioned in ϕ of the form (Le = w), (Le = Σ∗w′), (Le = Σ∗w′Σ∗) and (Le = w′ ∈ Σ∗) such that

w ∈W2, w ∈ S, w ∈W1, and w ∈ P, respectively. It falsifies any other propositional variable in

ϕ that mentions Le. Clearly, γ satisfies ϕ2. We prove that it also satisfies ϕ1.

Assume, for the sake of contradiction, that γ does not satisfy ϕ1. This implies that there is



86 Chapter 5. Tractable Query Answering

a function f ∈ F such that for each 1≤ i≤ m it is the case that γ satisfies:

∨

{(w̄1,...,w̄m)∈PQ}

∧

1≤i≤m

∨

{ē=(e1,...,ep)∈Cp,i},
assuming w̄i = (w1, . . . ,wp)

¬ϕē, f ,i,w̄i

Hence, for some (w̄1, . . . , w̄m) ∈ PQ it is the case that for every 1≤ i≤ m, if w̄i = (w1, . . . ,wp)

then there is an ē = (e1, . . . ,ep) ∈ Cp,i such that γ satisfies ¬ϕē, f ,i,w̄. Then one should proceed

by cases depending on where f takes values and the form of ē. All cases are rather analogous,

so we only consider the case when f (xi) = e1, f (yi) = ep and p≥ 2.

Consider an arbitrary i such that 1 ≤ i ≤ m. Then there is an edge path e1 · · ·em in π such

that γ satisfies (Le1
= Σ∗w1), (Lem

= wmΣ∗), and (Le j
= w j), for each 2 ≤ j ≤ m− 1. Hence,

since γ satisfies ϕ2, it must be the case that e j = (p,R,q), for each 2≤ j≤m−1, is replaced in

G by a path Ge j
labelled with w j. Similarly, e1 = (p,R,q) is replaced in G by a path Ge1

such

that for a node p′ of Ge1
the path from p′ to q is labelled with w1; and em = (p,R,q) is replaced

in G by a path Gem
such that for some node q′ in Ge2

the path from p to q′ is labelled with wm.

Let us define an assignment σ for the variables of Q into G that sends xi into node p′,

as defined above, and sends yi to node q′. We can do this in a way that the assignment is

consistent with the joins of Q (that is, with the repeated variables in different atoms of Q) since

(w̄1, . . . , w̄p) ∈ PQ. We conclude that σ is a homomorphism from Q to G, and then t̄ ∈ Q(G)

via the mapping σ, which is our desired contradiction. ✷

It is possible to prove that the two described classes of patterns are maximal with respect to

tractability, as lifting either condition (C1) or (C2), raises the complexity. It can also be proved

that the class of tame CRPQs is maximal to obtain tractability for patterns satisfying (C1) and

(C2). All this is summarized in our last result. It shows that data complexity remains CONP

hard if we restrict only to tame queries and patterns in P re with bounded meaningful functions

(i.e. if we lift condition (C1)), or if we restrict only to tame queries and patterns with bounded

out degree (that is, we lift condition (C2)), or if we restrict patterns according to C1 and C2,

but do not restrict to tame queries, even if we only allow arbitrary RPQs instead of arbitrary

CRPQs.

Theorem 5.3.5

1. There is a value k≥ 0 and a tame CRPQ Q such that PATTERN CERTAIN ANSWERS(Q)

is CONP-hard, even when restricted to patterns in P re∩M F
Q,t̄
≤k .

2. There is a value d ≥ 0 and a tame CRPQ Q such that PATTERN CERTAIN ANSWERS(Q)

isCONP-hard, even when restricted to patterns in OD re
≤d.

3. There exist a non-tame RPQ Q and values d,k ≥ 0 such that

PATTERN CERTAIN ANSWERS(Q) is CONP-hard, even when restricted to patterns in

OD re
≤d ∩M F

Q,t̄
≤k .



5.3. Tractability Restrictions for Patterns of Unbounded Treewidth 87

Proof:

For part 1 we use essentially the same reduction presented in the first part of Theorem

5.1.3, but this time over the extended alphabet {a,0,1,b}. We use the tame RPQ Q′ defined as

(x,w′,y), where w′ is the word w′ = a1011011101111b.

From ϕ in 3CNF, we first construct graph pattern π as in the proof of the first part of

Theorem 5.1.3, and then extend it to a pattern π′ by adding two fresh node ids m and m′,

such that there is an outgoing edge labeled a from m into every node of π, and an incoming

edge labeled b from each node of π into m′. Clearly, (m,m′) ∈ CERTAIN(Q′,π′) if and only

if CERTAIN(Q,π) = true, where Q is the query used in the previous reduction. This shows

that the problem of checking whether (m,m′) ∈ CERTAIN(Q′,π′), for a graph pattern π′ of the

form described above, is CONP-hard. Clearly, the outdegree of the class of patterns of the form

π′ is not bounded, as the outdegree of m depends on the size of π′. On the other hand, the

number of meaningful functions for π′ and Q′ is clearly logarithmically bounded since Q′ has

no existentially quantified variables.

Part 2 follows immediately from the proof of the first part of Theorem 5.1.3. Indeed, the

second part of this theorem shows that there is a CRPQ Q of the form ∃x∃y(x,w,y), where

w ∈ Σ∗, such that checking whether CERTAIN(Q,π) = true, for a graph pattern π over Σ, is

CONP-complete. Clearly, Q is tame. Moreover, the lower bound is proved by a reduction

from 3SAT that constructs graph patterns with bounded outdegree (in particular, with maximal

outdegree 3).

For Part 3 we reduce again from 3SAT. Given a propositional formula ϕ, we construct in

polynomial time a pattern π over Σ = {0,1} exactly as in the proof of the first part of Theorem

5.1.3. Then from π we construct, in polynomial time, a pattern π′ over the extended alphabet

Σ∪{a,b,c,d}. The pattern π′ extends π with two things: (1) A fresh node id m with a self-loop

labeled d that has incoming edges labeled b from each node node in π. (2) A directed binary

tree in which each internal node is a fresh node id, the leaves are exactly the nodes of π and the

edges of the tree are labeled a. Further, the root of the tree, m′, has a self-loop labeled c.

It is not hard to see, using arguments presented in the proof of the first part of Theorem

5.1.3, that if Q′ is (x,ca∗1011011101111bd,y), then (m′,m) ∈ CERTAIN(Q,π) if and only if

CERTAIN(Q′,π′), where Q is the query ∃x∃y(x,1011011101111,y) and π and π′ are as de-

scribed above. We conclude that the problem of checking whether (m′,m) ∈ CERTAIN(Q′,π′)

is CONP-hard for the class of patterns π′ as defined in the previous paragraph. Notice that this

class of patterns has bounded outdegree (in particular, outdegree 3), and the number of mean-

ingful functions for π′ and Q′ is clearly logarithmically bounded. Indeed, the only meaningful

function is the one that sends variable x to the root m′ of the binary tree and y to m.

✷
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5.4 Certain Answers Via Constraint Satisfaction

Since our notion of certain answers is closely related to the existence of homomorphisms be-

tween structures, it makes sense to look at a similar problem that is also related to homo-

morphisms: the constraint satisfaction problem (CSP). The field of constrain satisfaction has

identified many tractable restrictions and, what is equally important, provided many practical

heuristics that help solve these intractable problems [Dechter, 2003, Kolaitis and Vardi, 2007].

We now demonstrate the potential of using techniques from constraint satisfaction for an-

swering queries over graph patterns, in the spirit of [Calvanese et al., 2000c]. More precisely,

we show how to cast the query answering problem for RPQs over graph patterns as a con-

straint satisfaction problem, with a particularly simple translation for patterns in P nv,lv. The

consequences of the results of this section are twofold. On one hand this enables us to use

the machinery that has been developed through many years in solving constrain satisfaction

problems, but on the other hand, it tells us that it will be probably difficult to obtain a precise

characterization of tractability for query answering, since characterizing the instances of CSP

that are in PTIME is a longstanding open problem [Dechter, 2003, Kolaitis and Vardi, 2007].

We adopt the standard view of the constraint satisfaction problem (CSP) as checking for

the existence of a homomorphism from a relational structure M1 to another structure M2 of the

same vocabulary [Kolaitis and Vardi, 2007], referring to this problem as CSP(M1,M2). We are

working with the non-uniform version of CSP, i.e., the structure M2 is fixed. This problem can

be NP-hard: for instance, if M2 is a cycle on three nodes, CSP(M1,M2) is the 3-colorability

of M1.

Of course pure complexity-theoretic argument tells us that (the complement of) query an-

swering can be cast as a constraint satisfaction problem; what we show here is that the trans-

lation for RPQs is very transparent, opening up the possibility of bringing the huge arsenal of

tools from constraint satisfaction [Dechter, 2003].

Consider a pattern π = (N,E) in P nv,lv, i.e., E ⊆ N× (Σ∪W )×N for a finite set W of

label variables. Let Q be an RPQ of form ϕ(x,y) = (x,L,y), where L⊆ Σ∗ is a regular language.

We now define logical structures Mπ(n,n
′) and MQ over vocabulary

(Nodes,Expr,(Laba)a∈Σ,Src,Sink,Edge),

where Edge is a ternary relation and other relations are unary. Here n and n′ are two node ids

of π.

Structure Mπ(n,n
′) The domain is the disjoint union of N, Σ, and W , the set of label variables

used in π. The interpretation of the predicates is as follows:

Nodes := N Edge := E

Laba := {a} Src := {n}

Expr := W Sink := {n′}
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Structure MQ Assume that L is recognized by an NFA (S,Σ,q0,F,δ) with δ : S× Σ→ 2S

(extended, as usual, to a transition function on sets δ(S′,a) =
⋃

s∈S′ δ(s,a)). The domain of MQ

is the disjoint union of 2S and Σ. The interpretation of the predicates is:

Nodes := 2S Edge := {(S′,a,S′′) ∈ 2S×Σ×2S |

δ(S′,a)⊆ S′′}

Laba := {a} Src := {S′ ∈ 2S | q0 ∈ S′}

Expr := Σ Sink := 2S−F

Theorem 5.4.1 For patterns π ∈ P nv,lv, under the above translations, (n,n′) ∈ CERTAIN(Q,π)

if and only if there is no solution to CSP(Mπ(n,n
′),MQ).

Proof: Assume first that (n,n′) 6∈ CERTAIN(Q,π). Then there is a graph database G over Σ

such that G ∈ JπK but (n,n′) 6∈ Q(G). Since G ∈ JπK, there exists a homomorphism h : (h1,h2)

from π into G, where h1 maps nodes of π into nodes of G, and h2 maps label variables used in

π into symbols from Σ.

Let A = (S,Σ,q0,F,δ) be the NFA that recognizes L, where we assume, without loss of

generality, that δ(q,a) is defined, for each q ∈ S and a ∈ Σ. Further, let A ′ be the NFA A×G.

Recall that π = (N,E) and that W is the set of label variables used in π. Then let f : N → 2S

be the mapping defined as f (p) = S′, where S′ is the subset of S that consists of exactly those

states q such that there is a run of A ′ from state (q0,n) to state (q,h1(p)). Further, let f ′ be the

mapping from the domain of Mπ(n,n
′) into the domain of MQ that is defined as follows:

• For each p ∈Mπ(n,n
′)∩N, it is the case that f ′(p) = f (p);

• For each a ∈Mπ(n,n
′)∩Σ, it is the case that f ′(a) = a;

• For each X ∈Mπ(n,n
′)∩W , it is the case that f ′(X) = h2(X).

We prove next that f ′ is a homomorphism from Mπ(n,n
′) into MQ.

Clearly, for each element c in the domain of Mπ(n,n
′) it is the case that c ∈ T ⇒ f ′(c) ∈ T ,

for each T ∈ {Nodes,Expr,(Laba)a∈Σ}. Further, it is clear from the definition of f ′ and f ,

that f ′(n) contains the state q0, and thus, that for each c in the domain of Mπ(n,n
′) it is the

case that c ∈ Source⇒ f ′(c) ∈ Source. Moreover, since (n,n′) 6∈ Q(G), there is no run of A ′

from (q0,n) to a state (q,n′) such that q ∈ F . Thus, f ′(n′) = f (n′) satisfies that f ′(n′)∩F = /0,

and, therefore, we can conclude that for each c in the domain of Mπ(n,n
′) it is the case that

c ∈ Sink⇒ f ′(c) ∈ Sink.

It just rests to show that for each triple of the form (p,D,q), where p,q∈N and D∈ Σ∪W ,

it is the case that (p,D, p′)∈ Edges⇒ ( f ′(p), f ′(D), f ′(p′))∈ Edges. Assume that (p,D, p′)∈

Edges. Consider an arbitrary state q ∈ f ′(p). Then there exists a run of A ′ from state (q0,n) to

state (q,h1(p)). Since (p,D, p′) is an edge of π, it must be the case that (h1(p),h2(D),h1(p′))
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is an edge of G. Thus, there is a run of A ′ from state (q0,n) to state (δ(q,h2(D)),h1(p′)).

(We assume h2(D) = D if D ∈ Σ). Since q was arbitrarily chosen in f ′(p), we conclude that
⋃

q∈ f ′(p) δ(q, f ′(D))⊆ f ′(p′), and, therefore, that ( f ′(p), f ′(D), f ′(p′)) ∈ Edges.

We conclude that there is a solution for CSP(Mπ(n,n
′),MQ).

Assume, on the other hand, that there is a solution for CSP(Mπ(n,n
′),MQ). Thus, there is

a homomorphism f from Mπ(n,n
′) into MQ. We define G as the graph database over Σ that

can be obtained from π by replacing each node variable x with a fresh node id nx, and each

label variable X ∈W with the symbol f (X) ∈ Σ. (Notice that f (X) is, indeed, a symbol in Σ,

since f is a homomorphism from Mπ(n,n
′) into MQ). It is clear that G ∈ JπK. We prove next

that (n,n′) 6∈ Q(G).

Assume that the set of node ids mentioned in G is N ′ ⊇ N. Consider again the NFA A ′ :=

A ×G. Define a function f ′ : N ′→ 2S such that for each n0 ∈ N ′, f ′(n0) is the subset S′ of S

that consists of exactly those states q such that there is a run of A ′ from state (q0,n) to state

(q,n0). We claim that f ′(n′)∩F = /0, which implies that (n,n′) 6∈Q(G).

First of all, we prove that f ′(n0) ⊆ f (n0), for each n0 ∈ N ′. Assume, for the sake of

contradiction, that for some n0 ∈ N ′ there is a state q ∈ f ′(n0) such that q 6∈ f (n0). Since

q ∈ f ′(n0), there is a run of A ′ that is of the form

(q0,n)(q1,n1) · · · (qt ,nt)(q,n0)

on some word a1a2at · · ·at+1 over Σ. But since q0 ∈ f (n), it must be the case that q j ∈ f (n j),

for each 1 ≤ j ≤ t. This is because f is a homomorphism from Mπ(n,n
′) into MQ, and, thus,

⋃
q′∈ f (n) δ(q′,a1)⊆ f (n1) and

⋃
q′∈ f (n j) δ(q′,a j+1)⊆ f (n j+1), for each 0≤ j < t. For the same

reason, q ∈ f (n0), which is a contradiction.

Notice that f (n′)∩F = /0 (since f is a homomorphism from Mπ(n,n
′) into MQ), and hence

f ′(n′)∩F = /0 (this is because we have just proved that f ′(n′)⊆ f (n′)). The latter implies that

(n,n′) 6∈ Q(G). Further, since G ∈ JπK, we conclude that (n,n′) 6∈ CERTAIN(Q,π). ✷

Many algorithmic techniques for constraint satisfaction for CSP(M1,M2) are based on

exploiting properties of the structure M1, so the extremely simple construction of Mπ(n,n
′)

indeed opens up the possibility of using a large body of heuristics developed in that area.

As we have mentioned, the case of data complexity corresponds to the non-uniform version

of CSP, with MQ fixed. In that case one can immediately obtain some tractable restrictions

for the query answering problem. For example using known results on CSP [Dechter, 2003,

Kolaitis and Vardi, 2007] we can conclude that if we have a class of patterns π ∈ P nv,lv which,

when viewed as the ternary relation Edge, has bounded treewidth, then the data complexity

of RPQs over such a class is in PTIME (note that this is incompatible with Theorem 5.2.1

which gives a PTIME result for a larger class of queries, but under the restriction of the Codd

interpretation of label variables).
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An analog of Theorem 5.4.1 for patterns in P nv,re was shown in [Calvanese et al., 2000c].

Combining both techniques we can extend the result to all patterns in P nv,lv,re, but at the cost

of much more complex definitions of the structures Mπ(n,n
′) and MQ compared to those we

used here. We prefer to skip the formal proof here for the sake of simplicity, and because we

feel that Theorem 5.4.1 already conveys all of our ideas.





Chapter 6

Schema Mappings and Data Exchange

Data exchange, data integration and schema mapping management have received little atten-

tion so far in the graph database context, and tools from relational or XML databases suffer

from important drawbacks when applied on graph-structured data. It has been pointed out

[Kolaitis, 2005] that the study of patterns, and incomplete information in general, has proved to

be essential in the development of the machinery for interoperability issues amongst relational

and XML databases, which suggests that graph patterns shall provide the correct framework

for the study of these issues amongst graph databases. In this chapter we show how to apply

our previous results regarding graph patterns into the study of interoperability issues for graph

databases, including schema mappings, data exchange and certain answers computation.

6.1 A Motivating Example

Suppose one wants to create a database containing the information of all computer science

researchers and their papers in conferences. We want to store this information as graph database

over alphabet ΣT = {makes,inConf}, where each node represents either a particular researcher,

one of its papers, or a conference in computer science, and the intuition behind the edges is the

following. Author A is connected via an edge labelled makes to paper P if A is an author of P,

and paper P is connected via edge labelled inConf to a conference C is P was presented in C.

In order to create our graph database, we do not collect this information from scratch.

Instead, we retrieve it from the RDF Linked Data representation of DBLP [DBLP, 2013], a

fragment of which is shown in Figure 6.1. This fragment contains all the schema information

that we need: authors are connected to their papers via the label creator, and in particular

conference papers have an outgoing path labelled with the word partOf ·series from the author

to the node representing the given conference (for simplicity, we omit prefixes dc:, dct:, and

sw: in edge labels).

In order to create our database of authors of conference papers, we need to exchange in-
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Figure 6.1: Graph G1, a fragment of the RDF Linked Data representation of

DBLP [DBLP, 2013] available at http://dblp.l3s.de/d2r/

formation from the graph in Figure 6.1 into our target graph database over ΣT. Usually, the

instructions for this type of exchange are provided by means of a schema mapping. In a graph

database context, schema mappings shall detail graph patterns in the source side (that is, the

DBLP graph), and explain how these patterns are to be transformed into the target side (onto

our graph of autorship).

The intuition behind our schema mapping is to find all authors of conference papers in the

DBLP database, and then transfer them with the correct structure into our graph. This is done

as follows. For every nodes A, P and C of G1 such that the following pattern ξ1 is realized in

G1 via a homomorphism that maps A to y, P to x and C to w:

creator
x yw

PartOf · series

Add to our target graph the information resulting of replacing y with A, x with P and w

with C in the following pattern ξ2:

inConf
w yx

makes

We shall formally define our notion of schema mapping in Section 6.2. For now, let

Q1(x,y,w) = (ξ1,x,y,w) and Q2(x,y,w) = (ξ2,x,y,w) be graph queries using patterns ξ1 and

ξ2 presented above. Our schema mapping will then be formalized as the rule Q1(x,y,w)→

Q2(x,y,w). With this information we have all the necessary ingredients to start populating our

target graph; a possible result of exchanging the information in Figure 6.1 according to our

mapping yields the graph database in Figure 6.2.

More complex mappings. As another example of an instance of data exchange, suppose we

now want to extract from the graph G1 of Figure 6.1 information about researchers and their

workplaces, to populate, for instance, a network such as LinkedIn [LinkedIn, 2013]. The node

of our graphs shall represent researchers and different research institutions, and the structure is

given by the labels ΣT′ = {worksIn,workedIn}. Each researcher is connected to one or more
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:Jeffrey D. Ullman

:Ronald Fagin

:John E. HopcroftinFocs:HopcroftU67aconf:focs
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:Moshe Y. Vardi

inPods:FaginUV83
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inConf

inConf

makes
inPods:Vardi95

Figure 6.2: Graph G2, a result of exchanging the information of the graph G1 of Figure 6.1

workplaces, label worksIn is for the current affiiliation of the researcher, and label workedIn

connects a researcher with his or hers past affiliations.

Even if we do not know exactly the locations and/or affiliations of the researchers in the

DBLP network, we can assume that, if they are co-authors, then they must have coincided

at a given institute at a given point in the past. There are thus four possibilities: either both

of them work on the same institute, or both of them worked in the same institute (but are

in different places now), or one of them works in an institute where the other used to work

as well. Under this circumstances it is safe to assume that, if two researchers are coau-

thors, then they should be related in our target graph via a combination of labels in the set

{(worksIn,worksIn),(workedIn,workedIn),(worksIn,workedIn),(workedIn,worksIn)}.

Our schema mapping for this exchange will now be given by the rule Q′1(x,y)→ Q3(x,y),

where Q′1 = (ξ′1,x,y), with ξ′1 the pattern

creator

xw

y

creator

and Q3 = (ξ3,x,y), with ξ3 being the following pattern:

workedIn | worksIn
y z x

workedIn | worksIn

Note that, unlike the previous example, the graph query Q3(x,y) uses node variables and

regular expressions in the edges. This time, if we start with the graph G1 in Figure 6.1, it is not

trivial to answer the question of what graph should be materialized. For example, we know that

the pair of nodes :John E. Hopcroft and :Jeffrey D. Ullman: belong to Q′1(G1). However,

do not know the precise information about their workplaces. Since no other information about

workplaces is given, for each pair of coauthors we have 4 possibilities, and the resulting number

of choices is therefore exponential in the number of authors of our database.

This question is in fact is one of the fundamental problems in the area of data exchange. It

is usually overcome by allowing the possibility of materializing incomplete information in the

target side. And indeed, we shall overcome it by choosing to materialize graph patterns instead

of standard graph databases. To be more precise, in the following sections we shall see that the
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best alternative to materialize the exchange of graph G1 with respect to this mapping is not a

graph database, but instead a graph pattern.

There are several other fundamental questions in the areas of data exchange and schema

mappings that deserve to be studied. Besides from the problem of choosing an instance to be

materialized, we study in this chapter how to answer queries in a data exchange context. We

also study these tasks from an algorithmic point of view, providing algorithms to perform them,

and discuss about the optimality of our algorithms.

6.2 Schema Mappings

Schema mappings have been studied both in the relational [Fagin et al., 2005b] and the XML

[Arenas and Libkin, 2008] scenario (see [Arenas et al., 2010], for a recent general presentation

of the area). At a very high level, schema mappings are tuples of the form M = (S1,S2,T ),

where S1 and S2 are appropriate schemas, and T is a finite set of rules of the form

ϕS1
(x̄) → ψS2

(x̄), (6.1)

with ϕS1
(x̄) and ψS2

(x̄) logical formulas over S1 and S2, respectively, that specify the rela-

tionship between the two schemas.

Traditional rule specification has been carried out assuming that ϕS1
and ψS2

are suit-

able conjunctive queries (in other words, patterns) for the data model at hand. This class of

rules is powerful enough to express how the schema S2 is defined in terms of the existence

of certain patterns over the schema S1, but at the same time simple enough for practical pur-

poses. For instance, in the relational case both ϕS1
and ψS2

correspond to usual conjunctive

queries [Fagin et al., 2005b], while in the XML case they correspond to tree pattern queries

[Arenas and Libkin, 2008], which are essentially acyclic conjunctive queries over XML trees

including recursion at the atomic level.

In the same spirit, it seems completely natural to define mappings for graph databases

by allowing rules of the form ϕΣ1
(x̄)→ ψΣ2

(x̄), with ϕΣ1
(x̄) and ψΣ2

(x̄) graph patterns over

alphabets Σ1 and Σ2, respectively.

Definition 6.2.1 (graph mapping) Let Σ1 and Σ2 be finite alphabets. A graph mapping M

(or, simply, mapping, from now on) from Σ1 to Σ2 is a tuple (Σ1,Σ2,T ), where T is a finite set

of rules of the form ϕΣ1
(x̄)→ ψΣ2

(x̄), with ϕΣ1
(x̄) and ψΣ2

(x̄) graph queries over Σ1 and Σ2,

respectively.

Example 6.2.2 Recall alphabets Σ1 = {series,journal,partOf,creator}, Σ2 =

{makes,inConf} and Σ3 = {worksIn,workedIn}, and rules T1 = {Q1(x,y,w) →

Q2(x,y,w)} and T1 = {Q′1(x,y) → Q3(x,y)} as explained in the previous section. Then

M12 = (Σ1,Σ2,T12) and M13 = (Σ1,Σ3,T13) are graph schema mappings.
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workedIn

:Jeffrey D. Ullman

:Robert E. Tarjan Princeton

:John E. Hopcroft

Stanford
worksIn

worksIn

workedIn

Figure 6.3: Graph G3, (a fragment) of a solution for G1 under M13

When the alphabet Σ1 and Σ2 are clear from context, we normally write the rules as ϕ(x̄)→

ψ(x̄). In addition, when ϕ or ψ are graph queries in P nv,re, we often abuse the notation and

denote the rules using the equivalent CRPQs. Thus, for instance, when referring to the mapping

M12 = (Σ1,Σ2,T12) above, we can also write the rule in T12 as

(x,creator,y)∧ (x,partOf · series,w) → (y,makes,x)∧ (x,inConf,w),

6.2.1 Solutions

If G1 and G2 are graph databases over Σ1 and Σ2, respectively, then the pair (G1,G2) satisfies

the mapping M , denoted (G1,G2) |= M , if the following holds. For each rule in T of the form

ϕ(x̄)→ ψ(x̄) and each tuple ū of node ids in G1 such that |ū|= |x̄|, we have that:

ū ∈ ϕ(G1) =⇒ ū ∈ ψ(G2). (6.2)

Recall that ϕ(x̄) and ψ(x̄) are graph queries, and hence they are of the form (ξϕ, x̄) and

(ξψ, x̄), where ξϕ and ξψ are graph patterns over Σ1 and Σ2, respectively. Moreover, assume

that the nodes of ξψ are ȳ∪ x̄, and the label variables of ξψ are X̄ . Therefore, statement (6.2)

means that whenever G1 |= ξϕ[ū/x̄], for some tuple ū of nodes in G1 such that |ū| = |x̄|, it is

also the case that G2 |= ξψ[ū/x̄, v̄/ȳ, Ā/X̄ ] for some tuples v̄ of nodes and Ā of labels from Σ2.

Following the usual data exchange terminology, we say that G2 is a solution for G1 under

M (or simply a solution, if M is clear from the context) whenever (G1,G2) |= M . The set of

solutions for G1 under M , denoted SolM (G1), is {G2 | (G1,G2) |= M }. Finally, the semantics

JM K of mapping M is the set {(G1,G2) | (G1,G2) |= M }. Two mappings M and M ′ are

equivalent if JM K = JM ′K.

Example 6.2.3 The graph G2 in Figure 6.2 is a solution for the graph G1 in Figure 6.1 under

the mapping M12 in example 6.2.2. The graph G3 in Figure 6.3 shows part of a solution for the

graph G1 under the mapping M13 in example 6.2.2
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6.3 Properties of Graph Mappings

6.3.1 Classification

Our mappings are based on graph patterns, so it is natural to classify them in the same way than

we did with patterns. Let P σ and P σ′ be classes of patterns. Then a graph mapping (Σ1,Σ2,T )

is a P σ-TO-P σ′ mapping if every rule in T is of form ϕ(x̄)→ ψ(x̄), where ϕ(x̄) = (χϕ, x̄) is a

graph query in P σ and ψ(x̄) is a graph query in P σ′ .

Thus, for instance, the class of P nv,lv,re-TO-P nv,lv,re mappings is the class of all graph map-

pings, and the class of P nv-TO-P nv is the class of graph mappings that can be represented with

relational mappings. The mapping M12 from Example 6.2.2 is a P nv,re-TO-P nv mapping, and

the mapping M13 from the same example is a P nv,re-TO-P nv,re mapping.

6.3.2 Navigational exchange properties of schema mappings

The mappings we study in the present dissertation are designed for exchanging tuples of node

ids from source to target. But what about more sophisticated navigational exchange tasks that

are relevant in the graph database context, such as exporting entire paths of data satisfying cer-

tain conditions on the source side? We show that graph mappings can express some interesting

exchange properties of this type. We do it by means of an example, but the techniques that we

use can be generalized to show that graph mappings are capable of expressing a broad class of

exchange properties based on the idea of exporting entire paths in the source graph that satisfy

certain regular conditions.

Assume that we have source and target alphabets ΣS = {a,b,c,d} and ΣT = {a′,b′,c′,d′},

respectively. We wish to exchange data according to the following intuitive rule: Copy each

path from the source to the target that starts and ends with an edge labeled c, and has at least

two consecutive edges labeled a or at least one edge labeled b. Clearly, the regular expression

r = c ·Σ∗ · (aa+ b) ·Σ∗ · c extracts from the source the pairs of nodes that are linked by a path

satisfying the regular condition mentioned above. But how can we express our desired copying

rule as a graph mapping?

We start by posing the following question: Under which circumstances do we have to copy

an edge labeled a from the source as an edge labeled a′ in the target, while navigating the

source data? This is the case if one of the following holds:

1. Two consecutive edges labeled a, or one edge labeled b, is yet to appear. That is, we

have read R1
1 = c ·Σ∗ and have yet to read R1

2 = Σ∗ · (aa+b) ·Σ∗ · c.

2. We are reading the first of the consecutive edges labeled a. That is, we have read R2
1 =

c ·Σ∗ and have to read R2
2 = a ·Σ∗ · c.



6.4. Graph Data Exchange 99

3. We are reading the second of the two consecutive edges labeled a. That is, we have read

R3
1 = c ·Σ∗ ·a and need to read R3

2 = Σ∗ · c.

4. We already read two consecutive edges labeled a or an edge labeled b, but are waiting

for the final edge labeled c. In this case we have read R4
1 = c ·Σ∗ · (aa+ b) ·Σ∗ and are

waiting to read R4
2 = Σ∗ · c.

The pairs (Ri
1,R

i
2), for 1≤ i≤ 4, have the following property: A word of the form w1 ·a ·w2,

for w1,w2 ∈ (ΣS)
∗, belongs to the language defined by r if and only if it belongs to L(Ri

1) · a ·

L(Ri
2), for some 1 ≤ i ≤ 4. We say then that the set {(Ri

1,R
i
2) | 1 ≤ i ≤ 4} is a remnant of r

with respect to a. This remnant allows us to create the rules that will copy the edges labeled a

as edges labeled a′, precisely when it is needed. In the same way we can define remnants of r

with respect to b,c and d, respectively.

Then the mapping that defines our desired copying rule consists of the rules:

∃z∃w
(
(z, Ri

1 ,x)∧ (x,a,y)∧ (y, Ri
2 ,w)

)
→ (x,a′,y),

for 1≤ i≤ 4, together with similar rules for the remnants of b, c and d.

6.4 Graph Data Exchange

Data exchange is one of the main applications of schema mappings [Fagin et al., 2005b,

Kolaitis, 2005, Barceló, 2009, Arenas et al., 2010]. In this section we study graph data ex-

change under the mappings we defined in the previous section, that is, we use graph mappings

for specifying how to translate graph data from a source into a target schema. Our study fo-

cuses in two of the main problem in data exchange: materializing a target solution, and query

answering. To define these in more detail, assume that we have a mapping M from a source

alphabet ΣS to a target alphabet ΣT, and a source graph database GS.

The first problem we study is the data exchange problem. It consists in choosing which

solution GT for GS under M to materialize, and how to materialize it. We have mentioned

that the study of patterns and incomplete information has been crucial for the development

of relational and XML data exchange theories. In the following section we show that this is

also the case for graph patterns. In fact, we show that the best alternative for materializing

solutions comes in forms of graph patterns. Afterwards, in section 6.4.2, we study how to

answer queries that are posed over the target alphabet. Once again, we want to compute the

certain answers, or the answers that are independent of which solution one materializes. Here

we also take advantage of our previous results in querying graph patterns, and show how to

reduce the problem of query answering in data exchange to the problem of querying graph

patterns.
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6.4.1 Universal representatives

Given the semantics of mappings, we know that there are infinitely many solutions for a

given graph database GS. This phenomenon also occurs in relational and XML data ex-

change [Fagin et al., 2005b, Arenas and Libkin, 2008]. Thus, in data exchange one usu-

ally wants to compute a “universal representative” [Fagin et al., 2005b, Arenas et al., 2010,

Arenas et al., 2011b], which is (in very broad terms) a finite representation of the set of all

solutions. These representatives are normally tree patterns (in case of XML) or naive tables (in

the relational case), so it is natural to start the study of graph data exchange with a definition

based on graph patterns.

Definition 6.4.1 (Universal representative) Let M = (ΣS,ΣT,T ) be a mapping and GS a

graph database over ΣS. A graph pattern πT is a universal representative of GS under M , if

SolM (GS) = JπTKΣT
.

Example 6.4.2 Recall the mapping M12 = Σ1,Σ2,T12 given by the rule

(x,creator,y)∧ (x,partOf ·series,w) → (y,makes,x)∧ (x,inConf,w),

The graph database G2 shown in Figure 6.2 is a a universal representative of the graph

database G1 (shown in Figure 6.1) under M12.

Consider now mapping M13 = Σ1,Σ3,T13 given by the rule

∃z∃w(z,creator,x)∧ (z,creator,y)∧ (z,partOf,w)→

∃z(x, worksIn | workedIn ,z)∧ (y, worksIn | workedIn ,z)

It is not difficult to show that every universal representative (in form of a graph pattern) for

G1 under M13 must use regular expressions in the edges. In other words, there is no complete

graph that is a universal representative for G1 under M13. For example, a possible universal

representative for G1 under M13 is a pattern containing a fresh node n and edges

(A, worksIn | workedIn ,n) and (B, worksIn | workedIn ,n),

for each pair of nodes A and B in G1 that satisfy the left hand side of M13, i.e. the query

∃z∃w(z,creator,x)∧ (z,creator,y)∧ (z,partOf,w).

In what follows we show how a universal representative can be computed for each source

graph database and mapping. This universal representative will turn out to be crucial for an-

swering queries in graph data exchange.

Universal representative computation. The standard techniques for constructing universal

representatives in relational data exchange are based on the chase [Fagin et al., 2005b]. Those
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techniques can be adapted in a very simple way to design a procedure that constructs universal

representatives also in the graph database context. Such procedure works in polynomial space

(and, thus, in single exponential time) when the input consists of a mapping and a source graph

database (that is, in combined complexity). It works in nondeterministic logarithmic space

(and, thus, in polynomial time) when the mapping is fixed and the input consists of the source

graph database only (thus, in data complexity).

Proposition 6.4.3 There is a procedure that, given a mapping M = (ΣS,ΣT,T ) and a graph

database GS over ΣS, computes a graph pattern πT that is a universal representative of GS

under M in PSPACE. The procedure works in PTIME if the mapping M is assumed to be fixed.

Proof: We use a standard chase procedure. Initialize the universal representative π to be the

empty pattern. For each rule ϕ(x̄)→ ψ(x̄) in T , such that x̄ = (x1, . . . ,xn), ϕ = (ξϕ, x̄) is a

graph query over ΣS, ψ = (ξψ, x̄∪ ȳ) is a graph query over ΣT, the node variables of ξψ are

x̄∪ ȳ, where ȳ = (y1, . . . ,ym); and the label variables of ξψ are X1, . . . ,Xℓ, do the following.

For every tuple ū = (u1, . . . ,un) of node ids in GS such that GS |= ξϕ[ū/x̄], choose tuples w̄ =

(w1, . . . ,wm) of fresh null values, and W̄ = W1, . . . ,Wℓ of fresh label variables, and define π =

π∪ ξψ[ū/x̄, w̄/ȳ,W̄/X̄ ]. Clearly this procedure works in polynomial space. We now show that

it outputs as result a graph pattern π over ΣT that is a universal representative for GS under M .

To see that JπK ⊆ SolM (GS), take an arbitrary graph G ∈ JπK. We need to show that G

belongs to SolM (GS). To that extent, consider an arbitrary rule ϕ(x̄)→ ψ(x̄) in T , such that

x̄ = (x1, . . . ,xn), ϕ = (ξϕ, x̄) is a graph query over ΣS, ψ = (ξψ, x̄∪ ȳ) is a graph query over

ΣT, the node variables of ξψ are x̄∪ ȳ, where ȳ = (y1, . . . ,ym); and the label variables of ξψ

are X1, . . . ,Xℓ, and assume that there is a tuple ū = (u1, . . . ,un) of node ids in GS such that

GS |= ξϕ[ū/x̄]. Then π = π′ ∪ ξψ[ū/x̄, w̄/ȳ,W̄/X̄ ], where w̄ is a tuple of fresh null values, W̄

is a tuple of fresh label variables, and π′ is a graph pattern. Given the homomorphism from π

to G we can now construct a homomorphism from ξψ[ū/x̄, w̄/ȳ,W̄/X̄ ] to G, which proves that

G is a solution for GS under M since the graph G, the rule and the tuple ū were arbitrarily

chosen. For the other direction, take an arbitrary graph G ∈ SolM (GS). We need to construct

a homomorphism from π to G. But since every variable introduced in the chase procedure is a

fresh variable, we can just take the union of all the homomorphisms from the right hand side

of a rule in T to G, that are known to exist every time there is a tuple ū of nodes witnessing the

left hand side of this same rule.

Regarding data complexity, notice that if M is fixed then each graph query can be evaluated

in PTIME. Furthermore, since the size of x̄ and ȳ is constant, we can easily build a PTIME

machine that checks all possible combinations of nodes from GS of size k. We then proceed

exactly as before. ✷
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The following follows directly from the proof above. We use this property extensively in

this Chapter.

Corollary 6.4.4 Let σ1,σ2 be subsets of {nv, lv, re}. If M is a P σ1-to-P σ2 mapping from

ΣS to ΣT, then for every graph GS over ΣS there exists a pattern in P σ2 that is a universal

representative for GS under M .

Traditional data exchange analysis has been carried out in terms of data complexity (save

for a few exceptions [Kolaitis et al., 2006, Arenas et al., 2011a]). But as we mentioned in the

Introduction, this analysis is no longer appropriate for graph data exchange, due to the vast

volumes of data stored by graph data applications. For instance, it is not difficult to construct

a family of mappings Mn and source graph databases Gn of size O(n), such that any universal

representative of Gn under Mn is of size comparable to |Gn|
|Mn|. Computing this representative

is prohibitively expensive for big source databases, even for small mappings. Furthermore, the

problem remains computationally hard in combined complexity even when this exponential

blowup can be avoided. Recall that FPNP[log] is the class of functions that can be computed in

polynomial time using a logarithmic number of calls to an NP oracle [Krentel, 1988].

Proposition 6.4.5 The problem of computing a universal representative for a graph database

GS under a mapping M = (ΣS,ΣT,T ) is FPNP[log]-hard, even if restricted to inputs GS and

M such that there is a universal representative of GS under M of size p(|GS|), for a fixed

polynomial p.

Proof: We use a reduction from CHROMATIC NUMBER, a problem defined as follows: given

a (standard, non database) connected graph G, compute its chromatic number. This problem

was shown to be FPNP[log]-hard in [Krentel, 1988].

Let then G = (N,E) be the input to CHROMATIC NUMBER, and assume N = {n1, . . . ,nk}.

We associate to each node n j in N a corresponding variable z j, and define the CRPQ Q(x) over

alphabet {a,b} as Q(x) =
(∧

(ni,n j)∈E(zi,a,z j)
)
∧(x,b,z1). The idea is that the underlying graph

of the query Q resembles the structure of G, but it has one additional edge, namely (x,b,z1).

Construct the mapping M = (ΣS,ΣT,T ) as follows: ΣS = {a,b}, ΣT = {c} and T =

{Q(x)→ (x,c,x)}. Finally, GS contains, for each 1 ≤ i ≤ k, a clique of a-labelled edges of

size i, each of these cliques constructed using fresh node values. Graph GS also contains, for

each 1≤ i≤ k, a fresh node vi and an edge of form (vi,b,ui), that connects the element vi with

an arbitrary node ui of the clique of size i in GS.

By the construction of M , there is always a universal representative for GS under M that

is of size |GS|. Furthermore, it is not difficult to see that any universal representative GT for

GS under M contains a self loop with the element vi if and only if vi ∈ Q(x). Since the latter

holds if and only if there is a homomorphism from G to Ki, we obtain that GT contains the edge
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(vi,c,vi) if and only if G is i-colorable. One can then easily compute the chromatic number of

G from GT, by checking the lowest vi for which GT contains the self loop (vi,c,vi). This shows

that by computing GT one can effectively compute the chromatic number of any connected

graph, which finishes the reduction. ✷

It is thus crucial for the development of graph data exchange tools to identify relevant

classes of mappings that allow for efficient universal representative computation in combined

complexity. We deal with this important issue in Sections 6.5 and 6.6. Those results shall also

be used to achieve efficient query answering in graph data exchange.

6.4.2 Query answering

As for other applications that need to query incomplete information, in data exchange

one is typically interested in computing the certain answers of queries [Fagin et al., 2005b,

Arenas and Libkin, 2008, Arenas et al., 2010]. Recall that, for graph patterns, we defined cer-

tain answers as the answers that hold in all graphs represented by that pattern. Consequently, in

data exchange we define them as the answers that hold regardless of the solution one chooses to

materialize. In formal terms, given a mapping M = (ΣS,ΣT,T ), a graph database GS over ΣS,

and a query Q over ΣT, we define the certain answers of Q with respect to GS under M , denoted

by CERTAIN-DEM (Q,GS)
1, as the set

⋂
{Q(GT) | GT ∈ SolM (GS)}. We are thus interested in

the following problem:

Problem: DATA EXCHANGE CERTAIN ANSWERS

Input: Mapping M from ΣS to ΣT, graph database GS over ΣS,

k-ary graph query Q over ΣT, and k-ary tuple v̄ ∈ Vk.

Question: Is v̄ ∈ CERTAIN-DEM (Q,GS)?

Notice that the source graph database, the mapping and the query are part of the input, and

thus, we are considering the combined complexity of the problem.

Usually in data exchange one relies on the universal representative to compute query an-

swering. Our case is not different. Consider a mapping M = (ΣS,ΣT,T ), and arbitrary graph

database and queries GS and Q, respectively. Our algorithm to compute the certain answers of

Q with respect to GS under M is given by the following two-step approach:

1. Compute a universal representative πT for GS under M . By Proposition 6.4.3, πT is a

graph pattern, and it can be computed in PSPACE.

2. Compute the certain answers of Q over πT, as explained in Chapter 4. by Proposition

4.3.1, this can be performed in EXPSPACE.

1In [Barceló et al., 2013a] and most data exchange papers the term CERTAINM (Q,GS) is used instead. We use

CERTAIN-DEM (Q,GS) to avoid confusion with certain answers over graph patterns.



104 Chapter 6. Schema Mappings and Data Exchange

These two steps, applied naively, yield an algorithm that runs in double exponential space.

However, by carefully inspecting the proof of Theorem 4.3.1, one realizes that the complexity

of computing certain answers for data exchange remains the same as the complexity of com-

puting certain answers for graph patterns. Hardness follows again from an easy adaptation of

the EXPSPACE-hardness proof for querying graph patterns.

Theorem 6.4.6 The complexity of DATA EXCHANGE CERTAIN ANSWERS is EXPSPACE-

complete.

Proof: Let M = (ΣS,ΣT,T ) be a mapping, Q a graph query and GS a graph database over

ΣS. By Proposition 6.4.3 there is a universal representative πT for GS under M of size at

most exponential in the size of GS, Q and M . Therefore, the automaton that represent all

possible codifications for the graph databases that belong to JπTK, as explained in the proof of

Proposition 4.3.1, is double exponential. But this carries no extra computational cost, since the

other automata constructed in that proof are already of double exponential space, and we check

the nonemptiness of the resulting intersection via a standard on-the-fly procedure that runs in

EXPSPACE even if all the automata that we are intersecting are of double exponential space.

Hardness can be proved by constructing a data exchange setting M and a source graph GS

such that the representative for GS under M is precisely the pattern used to show EXPSPACE

hardness for containment of CRPQs in [Calvanese et al., 2000b]. ✷

We are left facing a complexity that is prohibitively high for practical purposes. Results

from Chapter 4 tells us that, in order to obtain tractability from a combined complexity point

of view, we cannot use graph queries as our language of choice, since answering queries is

NP-hard even for the most simplest patterns and queries. The following shows that this is also

the case for graph data exchange settings.

Proposition 6.4.7 The complexity of DATA EXCHANGE CERTAIN ANSWERS is NP-hard,

even if restricted to P -TO-P mappings and RPQs.

Proof: It is well known that the following problem is NP-hard: The input is a graph pattern

in P and a nonempty graph G, and the question is whether such pattern can be realized in

the graph (i.e., if there is a homomorphism prom the pattern to G). We can then reduce from

this problem as follows. Given pattern π and graph G over Σ, let Q = (π, ·) be the boolean

graph query given by π, and construct the following mapping from Σ to {a,b}: it contains

rules Q→ (x,a,y) and a rule of form (x,d,y)→ (x,b,y) for each symbol d ∈ Σ. Furthermore,

consider boolean RPQ Q() = (x,a,y). It follows that the certain answers for Q over G under

M are true if and only if the evaluation of π over G is true, i.e., if π is realized in G. ✷

There are other possibilities of restrictions that reduce the combined complexity of query

answering. Typical examples are queries based on acyclicity constraints [Yannakakis, 1981],
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or queries with fixed number of variables [Vardi, 1995]. Amongst the most natural classes of

queries that fulfill these restrictions are binary queries, such as RPQs. In the following section

we show how to obtain efficient query answering for a class of mappings based on binary

queries. RPQs, as we shall see, are too limited in expressive power, but there are other binary

query languages which are much more expressive than RPQs, and that will aid us in obtaining

the right tradeoff between complexity and expressive power in our context.

6.5 A Practical Class of Mappings

We have seen in the previous sections that the definition of graph mappings based on patterns

ties us almost inevitably to a high computational complexity when solving two of the most

important tasks of data exchange, namely materialization and query answering.

The standard way of constructing a universal representative in data exchange, and the ap-

proach we adopted for the proof of Proposition 6.4.3 is to evaluate the left-hand side of each

rule against the source database, and then populate the target as defined by the right-hand side

of the respective rules. Hence the most natural way of obtaining restricted classes of graph

mappings, for which universal representatives can be computed in polynomial time, is by re-

stricting the left-hand side of rules to queries that allow for efficient computation of its answer

set (instead of arbitrary patterns, or even patterns in P , that are much more expensive from a

computational point of view).

Formally, let C be a class of graph queries such that the problem of computing Q(G), for a

given query Q(x̄) ∈ C and a graph database G, can be solved in polynomial time. Then there is

a polynomial time procedure that, given a mapping M = (ΣS,ΣT,T ), in which each left-hand

side of a rule in T is a query in C , and a graph database GS over ΣS, computes a universal

representative of GS under M .

There are several relevant classes C of queries that satisfy the condition mentioned above

(i.e. the set Q(G) can be computed in polynomial time, for each graph database G and query

Q ∈ C ). These include, for instance, syntactic restrictions of patterns, based on acyclicity

[Yannakakis, 1981], for queries of fixed arity.2

In this section we study mappings based on binary graph queries, instead of arbitrary ones.

More precisely, we investigate mappings that are defined using nested regular expressions,

a powerful yet computationally simple language. In the rest of this chapter we show how, by

using these expressions to construct our mappings, we achieve a very interesting equilibrium in

the ever-present complexity - expressivity tradeoff of schema mappings. Not only we show that

the computational cost of many data exchange tasks is much less for this type of mappings, but,

2Being precise, those restrictions have been defined for relational conjunctive queries, but the same complexity

bounds apply for graph queries, if the structural restrictions are defined on the underlying undirected graphs of the

patterns defining these queries.
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as we demonstrate in Section 6.5.3, these mappings still allow us to express many interesting

properties.

6.5.1 Nested regular expressions

Let Σ be a finite alphabet. Nested regular expressions (NREs) over Σ extend regular expressions

with an existential nesting test operator [(·)] (or just nesting operator, for short), and an inverse

operator a−, over each a ∈ Σ [Pérez et al., 2010].

The syntax of NREs is given by the following grammar.

R := ε | a (a ∈ Σ) | a− (a ∈ Σ) | R · R | R∗ | R + R | [R] (6.3)

We formalize the semantics of an NRE R over a graph G as a binary relation JRKG defined

as expected: (a is a symbol in Σ, and n, n1 and n2 are arbitrary NREs):

JεKG = {(u,u) | u is a node id in G}

JaKG = {(u,v) | (u,a,v) ∈ G}

Ja−KG = {(u,v) | (v,a,u) ∈ G}

Jn1 ·n2KG = Jn1KG ◦ Jn2KG

Jn1 +n2KG = Jn1KG∪ Jn2KG

Jn∗KG = JεKG∪ JnKG∪ Jn ·nKG∪ Jn ·n ·nKG∪ ·· ·

J [n]KG = {(u,u) | there exists v s.t. (u,v) ∈ JnKG},

where the symbol ◦ denotes the usual composition of binary relations, that is, Jn1KG ◦ Jn2KG =

{(u,v) | there exists w s.t. (u,w) ∈ Jn1KG and (w,v) ∈ Jn2KG}.

A nested path query, or NPQ for short, is a query of form Q(x,y) = (x,R,y), where R is

a nested regular expression. The semantics is evident: Given graph database G and an NPQ

Q(x,y) = (x,R,y), the set Q(G) is just JRKG.

Note that NPQ strictly contains the language of 2 way RPQs, or 2RPQs, the extension to

RPQs with the inverse operator proposed in [Calvanese et al., 2000b].

Example 6.5.1 The following NPQ matches, in the graph database G shown in Figure 6.1, all

pairs (u,v) such that u and v are connected by a coauthorship sequence that only considers

conference papers:

Q(x,y) = (x, (creator− · [partOf ·series] ·creator)+ ,v)

Let us give the intuition of the evaluation of this expression. Assume that we start at node

u. The (inverse) edge creator− forces us to navigate from u to a paper v created by
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u. Then the existential test [partOf · series] is used to check that from v we can navi-

gate to a conference (and thus, v is a conference paper). Finally, we follow edge creator

from v to an author w of v. The (·)+ over the expression allows us to repeat this se-

quence several times. For instance, (:John E. Hopcroft,:Moshe Y. Vardi) is in Q(G),

but (:John E. Hopcroft,:Pierre Wolper) is not in Q(G). It can be proved that the use of

nesting is essential for expressing this query.

With respect to complexity of query evaluation, NPQs are not only polynomial in combined

complexity (i.e. when both the database and the query are given as input), but they can be

evaluated linearly in both the size of the database and the expression. Given a graph database G

and an NPQ Q, we use |G| to denote the size of G (in terms of the number of egdes (u,a,v)∈G),

and |Q| to denote the size of Q.

Proposition 6.5.2 [Pérez et al., 2010] Checking, given a graph database G, a pair of nodes

(u,v), and an NPQ Q, whether (u,v) ∈ Q(G), can be done in time O(|G| · |Q|).

Inverse of a nested regular expression. Along this Chapter we make use of the notion of

inverse of an NRE R, which is an NRE (R)−1 such that for each graph database G and pair of

node ids (u,v) in G it is the case that (u,v) ∈ JRKG if and only if (v,u) ∈ J(R)−1KG. It is easy to

prove that the class of NREs is closed under inverse, and hence that (R)−1 is well-defined.

The following inductive construction shows how to compute the inverse of an NRE.

ε−1 = ε

a−1 = a−, for each a ∈ Σ

(a−)−1 = a, for each a ∈ Σ

(R1 ·R2)
−1 = R−1

2 ·R
−1
1

(R∗)−1 = (R−1)∗

(R1 +R2)
−1 = R−1

1 +R−1
2

[R]−1 = [R]

It is straightforward to prove the correctness of the construction. Moreover, a polynomial

construction can be implemented by considering any binary parse tree of the expression, and

then performing the operations in a bottom-up fashion.

6.5.2 NPQ-restricted mappings

We shall now focus on a particular class of mappings that satisfies our tractability conditions

and allows for a simple definition: The class of mappings such that the left-hand side of each

rule is an NPQ. We pinpoint the precise complexity of the problem of computing universal
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representatives for this class, and discuss about the expressiveness of the class for graph data

exchange purposes. It is worth remarking that the other natural choice, restricting left-hand

sides of rules to acyclic CRPQs, yields a much less expressive class of mappings, and thus all

of the results below hold for acyclic CRPQs as well.

Definition 6.5.3 (NPQ-restricted mapping) Let Σ1 and Σ2 be finite alphabets. An NPQ-

restricted mapping M from Σ1 to Σ2 is a tuple (Σ1,Σ2,T ), where T is a finite set of rules

of the form ϕ(x̄)→ ψ(x̄), with ϕ(x̄) an NPQ over Σ1 and ψ(x̄) a graph query over Σ2.

Note that one could have defined these mappings in a much more symmetric way, by al-

lowing the right side of the rules of our mappings to be based on graph queries built using

patterns with nested regular expressions in the edges. However, this would over complicate the

presentation, without adding up much expressive power from a practical point of view. For this

reasons we have chosen to introduce NPQ-restricted mappings in their present form.

6.5.3 Expressivity of NPQ-restricted mappings

One evidently loses expressive power when focusing on mappings given by binary queries,

instead of arbitrary graph patterns. Nevertheless, in this section we show that this loss is much

smaller that what would appear at a first glance, as NPQs, and therefore NPQ-restricted map-

pings, can express many interesting properties, some of which can not be expressed in any of

the mapping languages based on graph patterns.

Let us come back to the example presented in Section 6.3.2. We had source and target

alphabets ΣS = {a,b,c,d} and ΣT = {a′,b′,c′,d′}, respectively, and wish to exchange data

according to the following intuitive rule: Copy each path from the source to the target that

starts and ends with an edge labeled c, and has at least two consecutive edges labeled a or at

least one edge labeled b. The regular expression r = c ·Σ∗ · (aa+ b) ·Σ∗ · c extracts from the

source the pairs of nodes that are linked by a path satisfying the regular condition mentioned

above. We showed in Section 6.3.2 how to construct a graph mapping to express this exchange

rule. Interestingly, we now show how to express it with an NPQ restricted mapping.

Recall that in Section 6.3.2 we pointed out how to compute the remnants of r with respect to

a, which are pairs of nested regular expressions (Ri
1,R

i
2), for 1≤ i≤ 4, that have the following

property: A word of the form w1 ·a ·w2, for w1,w2 ∈ (ΣS)
∗, belongs to the language defined by

r if and only if it belongs to L(Ri
1) ·a ·L(R

i
2), for some 1≤ i≤ 4.

We can now express our mapping with rules:

(x, [(Ri
1)
−1] ·a · [Ri

2] ,y) → (x,a′,y), for 1≤ i≤ 4,

together with similar rules for the remnants of b, c and d. Note that the expression [(Ri
1)
−1] ·

a · [Ri
2] is an NRE, and therefore we are constructing an NPQ-restricted mapping. Furthermore,
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the use of nesting in the queries is crucial for expressing these types of rules without using

more expressive patterns, or queries with conjunction.

The example above is a consequence of the following stronger result. Let C be a class of

mappings. As usual, we say that a mapping M (not necessarily in C ) can be expressed as a

C -mapping if one can find an equivalent mapping M ′ in C that is equivalent to M .

Proposition 6.5.4

1. Every P nv,re-TO-P nv,lv,re-mapping M such that each of its rules is of form ϕ(x̄)→ ψ(x̄),

with ϕ a binary graph query whose underlying graph is acyclic and connected can be

expressed as an NPQ-restricted-mapping.

2. There exists an NPQ-restricted-mapping that cannot be expressed as a

P nv,lv,re-TO-P nv,lv,re-mapping.

The proof of this proposition follows almost immediately from the following result on

expressibility of NPQs. The proof is in the appendix.

Lemma 6.5.5

1. Every binary graph query (ξ,x1,x2) where the underlying graph of ξ is acyclic and con-

nected is equivalent to an NPQ.

2. There is an NPQ that is not equivalent to any graph query.

Using nesting to specify complex mappings. The first part of Proposition 6.5.4 tells us that

by restricting to NPQs we are also dealing with acyclic CRPQs. The second part shows that,

in addition, the use of NPQs in mappings allows us to express some properties that couldn’t

be expressed even if we used the full power of P nv,lv,re-TO-P nv,lv,re-mappings. Let us give an

example of such a mapping

Recall the graph G1 of Figure 6.1 in Section 6.1 over alphabet Σ1 containing the in-

formation about authors, and their publications. We have seen that the query Q′1(x,y) =

∃z∃w(z,creator,x)∧ (z,creator,y) extracts from G1 the information about coauthors of a pa-

per. However, if one wants to extract only those researchers that are coauthors of a conference

paper, then one needs to add more information to the queries that form the mapping. One

possibility is to use query Q′′1(x,y) = ∃z∃w∃p(z,creator,x)∧ (z,creator,y)∧ (z,partOf,w)∧

(w,series, p).

But suppose now that one wishes to extract the transitive closure of the coauthor relation,

restricted to conference papers only. We want to store this information into a target graph

over alphabet Σ4 = {confConnected}, such that two nodes A and B are connected via an edge
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:Ronald Fagin

:John E. Hopcroft

:Moshe Y. Vardi

:Jeffrey D. Ullman

confConnected

confConnectedconfConnected confConnectedcon
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confConnected confConnected

confConnected confConnected

confConnected

Figure 6.4: Graph G4, a universal representative for the graph G1 of Figure 6.1 under M14.

confConnected in this graph if A and B belong to the transitive closure of the coauthor relation.

The following rule satisfies precisely this desiderata:

T14 =
(
x,(creator− · [partOf · series] · creator)+,y

)
→ (x,confConnected,y).

Let M14 = (Σ1,Σ4,T14). Then M14 is an NPQ-restricted mapping. A universal representa-

tive for G1 under M14 is shown in Figure 6.4. Using the same tools involved in the proof of

Proposition 6.5.4 one can show that this mapping is not equivalent to any P nv,lv,re-TO-P nv,lv,re-

mapping.

6.6 Feasible Data Exchange Using NPQ-restricted Mappings

In the previous section we introduced NPQ-restricted mappings, and showed that they could

express many interesting navigational properties in the context of graph data exchange. We now

show their good properties with respect to the data exchange tasks we study in this dissertation.

6.6.1 Computing representatives in polynomial time

Since the combined complexity of evaluating NPQs over graphs is already in PTIME, we can

use the same algorithm that we used in Section 6.4.1 to compute universal representatives in

the general case, and immediately obtain tractability. The following theorem states the precise

complexity of the problem:

Theorem 6.6.1 There is a procedure that, given an NPQ-restricted mapping M = (ΣS,ΣT,T )

and a graph database GS over ΣS, computes a universal representative of GS under M in time

O(|GS|
2 · |M |).

Proof: It was shown in [Pérez et al., 2010] that given a NRE R and a graph G computing the

set JRKG can be done in time O(|G|2 · |R|) (see Theorem 3.3 in [Pérez et al., 2010]3).

3Actually, in [Pérez et al., 2010], the following stronger property was proved from which the bound |G|2 · |R|
follows directly. Given a node u, computing the set of all elements v such that (u,v) ∈ JRKG can be done in time

O(|G| · |R|) [Pérez et al., 2010].
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From this fact it immediately follows that the procedure in Proposition 6.4.3 to compute a

representative for a graph GS under an NPQ-restricted mapping M = (GS,GT,T ) runs in time

O(|G|2 · |M |), by computing first JRKGS
for each expression in the left hand side of the rules of

T , and then proceed accordingly. ✷

Thus, by focusing on NPQ-restricted mappings, we reduce the complexity of universal

representative computation from |GS|
O(|M |), implicit in Proposition 6.4.3, to quadratic in the

size of the source graph database. One can also prove that the bound in Theorem 6.6.1 is tight.

Proposition 6.6.2 There are families of NPQ-restricted mappings {Mn = (Σn
S,Σ

n
T,Tn)}n≥1 and

graph databases {Gm
S }m≥1, such that |Mn| is O(n), |Gm

S | is O(m), and every universal repre-

sentative of Gm
S under Mn is of size Ω(m2 ·n).

Proof: For every n ≥ 1 consider the alphabets Σn
S = {a}, Σn

T = {b1, . . . ,bn}, the mapping

Mn = (Σn
S,Σ

n
T,T

n), with Tn given by the rules

(x,a∗,y) → (x,b1,y)

(x,a∗,y) → (x,b2,y)
...

(x,a∗,y) → (x,bn,y)

Notice that |Mn| is O(n). Now, for every m ≥ 1 consider the graph database Gm
S over Σn

S

containing the edges

(1,a,2),(2,a,3), . . . (m−1,a,m),(m,a,1),

that is, Gm
S is a cycle of length m. Clearly |Gm

S | is O(m). Now notice that for every 1 ≤ k ≤ n

and for every pair (i, j) such that 1≤ i, j ≤ m, we have that i and j are connected by a path of

a-labelled edges, and thus they satisfy the query on the left hand side of each of the rules in

Mn. This implies that for every graph database GT such that GT ∈ SolMn
(Gm

S ) each of the pairs

(i, j) must satisfy all of the right hand side queries of Mn. In other words, for every 1≤ k ≤ n

and for every pair (i, j) such that 1 ≤ i, j ≤ m we have that (i,bk, j) ∈ GT. Therefore, we have

that |GT| ≥ m2 · n. Finally, since all the values (i, j) such that 1 ≤ i, j ≤ m are actually values

in the source graph Gm
S , we have that every pattern that is a universal representative for Gm

S has

at least m2 ·n edges. This completes the proof. ✷

6.6.2 Query answering

So far, we have achieved to identify an expressive class of mappings that has good properties

in terms of computation of universal representatives. However, this universal representative

might still be any arbitrary graph pattern. Since we know that querying arbitrary graph patterns
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is computationally hard, we need a further restriction on this class of mappings in order to

obtain a good class for query answering purposes.

In the same way, we cannot expect to have efficient query evaluation algorithms if we allow

as query language the whole class of graph patterns, or even CRPQs, as a querying mechanism,

since they are computationally hard in combined complexity. For this reason we focus solely

on queries defined by NPQs.

NPQ-TO-P nv mappings. The class of mappings we consider restrict the right hand side of de-

pendencies to be graph patterns in P nv i.e., conjunctive queries. In other words, it prohibits the

use of regular expressions and label variables, which are the major contributors to complexity

of query answering. More formally, a mapping M = (Σ1,Σ2,T ) is an NPQ-TO-P nv mapping

if T is a finite set of rules of the form ϕ(x̄)→ ψ(x̄), with ϕ(x̄) an NPQ and ψ(x̄) a graph query

in P nv.

Our approach to compute certain answers for this class of mappings is as follows. Let M

be a NPQ-TO-P nv-mapping, Q an NPQ and GS a source graph for M . Note that the universal

representative for GS under M , by Corollary 6.4.4, is as well a pattern in P nv, and thus naive

evaluation works for this pattern. One can then answer queries by first computing this universal

representative, and then evaluate Q over the representative, in linear time, as was pointed out

in [Pérez et al., 2010]. Summing up, we have:

Theorem 6.6.3 Given an NPQ-TO-P nv mapping M from ΣS to ΣT, a source graph database

GS and an NPQ Q over ΣT, DATA EXCHANGE CERTAIN ANSWERS can be solved in time

O(|GS|
2 · |M | · |Q|).

GAV mappings. By further restricting the class of mappings, we can obtain even linear com-

bined complexity, in the size of the database, for the problem of computing certain answers for

NPQs.

This class of mappings corresponds to NPQ-TO-P nv mappings of form M = (ΣS,ΣT,T )

in which all of its rules are of form ϕ(x,y) → (x,a,y), where a is just a letter of the target

alphabet ΣT. This class of mappings defines target symbols in terms of NPQs views over

the source, which resemble global-as-view (GAV) mappings as studied in relational databases

[Lenzerini, 2002]. For these reason we call this mappings NPQ-GAV mappings. However lim-

ited in expressive power, these can still define many simple yet useful mappings. For instance,

the first of the mappings presented in Section 6.1 is an NPQ-GAV-mapping.

Theorem 6.6.4 Given an NPQ-GAV mapping M from ΣS to ΣT, a graph database GS over ΣS

and an NPQ Q over ΣT, the problem DATA EXCHANGE CERTAIN ANSWERS can be solved in

time O(|GS| · |Q| · |M |).
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The lower bound proved in Proposition 6.6.2 also holds for NPQ-GAV mappings, so one

cannot use universal representative computation in order to obtain Theorem 6.6.4. Instead, the

proof of Theorem 6.6.4 is based on query rewriting techniques, as explained in the following

technical result.

Lemma 6.6.5 There is a procedure that, given an NPQ-GAV mapping M = (ΣS,ΣT,T ), and

an NPQ Q over ΣT, computes an NPQ rewM (Q) over ΣS, in time O(|Q| · |M |), such that

CERTAIN-DEM (Q,GS) = rewM (Q)(GS) for every source graph database GS.

Proof: We describe an algorithm that receives an NPQ-GAV mapping M = (ΣS,ΣT,T ), with

T of form

T = {(x,R1,y)→ (x,a1,y), . . . ,(x,Rn,y)→ (x,an,y)},

where each Ri is an NRE and an NPQ Q over ΣT, and computes an NPQ rewM (Q) over ΣS that

satisfies the conditions of the Lemma. We let rewM (Q) = (x, rewM (R),y), where rewM (R) is

defined in an inductive fashion. For simplicity, and since M is clear from the context, we omit

it from in the description of the algorithm, and speak of rew(R) instead of rewM (R).

Notice that if the language defined by R does not contain ε, then R can be written as an

ε-free expression, and if it does contain ε, then R can be written in the form ε+R′ were R′ is

ε-free. Given this, it is safe to assume that R is either ε or it is ε-free. We assume this in the

proof.

• If R = ε, then the rewriting rew(R) corresponds to [R1 | · · · | Rn] | [R
−1
1 | · · ·+R−1

n ].

• If R = a for a ∈ Σ, then assume that Rk1
, . . . ,Rkm

are the expressions in the left hand side

of the rules in T such that the right hand side of this rule corresponds to (x,a,y). Then

rew(R) = Rk1
| · · · | Rkm

.

• If R = e1 | e2, for e1 and e2 NRE’s over ΣT, then rew(R) = rew(e1) | rew(e2).

• If R = e1 · e2, then rew(R) = rew(e1) · rew(e2).

• If R = e∗1, then rew(R) = rew(ε) | rew(e1) · (rew(e1))
∗.

• If R = e−1 , then rew(R) = (rew(e1))
−1.

• If R = [e1], then rew(R) = [rew(e1)].

It is clear that the resulting expression is of size |R| × |M |. For the correctness of the

rewriting, let GT be the universal representative for GS under M . Note that this time GT

is indeed a graph database (that is, a pattern belonging to P ), and thus the notions of naive

evaluation and usual evaluation coincide. Since we know from Section 4.2 that certain answers
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for patterns in P nv (and therefore in P ) can be computed by naive evaluation, it is enough to

show the following claim. The proof is in the Appendix.

Claim 6.6.6 Given an NPQ-GAV mapping M = (ΣS,ΣT,T ), an NPQ Q over ΣT and the uni-

versal representative GT for GS under M , we have that Q(GT) = rewM (Q)(GS).

This finishes the proof of the Lemma. ✷

Hence in order to evaluate the certain answers of an NPQ Q over GS under the NPQ-GAV

mapping M , we can perform the following algorithm: Compute from M and Q the NPQ Q′.

Then evaluate Q′ over GS in time O(|GS| · |Q
′|) (as stated in Proposition 6.5.2), and thus in time

O(|GS| · |Q| · |M |).

6.7 Composition of Mappings

We have seen that the class of NPQ-GAV mappings has remarkably good properties for query

answering. In this section we take advantage of those properties, in particular the existence of

rewritings over the source alphabets, and make a case for the usefulness of this language in a

rather different scenario: when composing schema mappings. Composition has been identified

as a fundamental process for several interoperability tasks [Melnik, 2004, Bernstein, 2003],

and, as such, it has received considerable attention in relational and XML data ex-

change [Madhavan and Halevy, 2003, Melnik, 2004, Fagin et al., 2005c, Nash et al., 2005,

Arenas et al., 2009, Amano et al., 2009]. On the other hand, the composition of schema map-

pings for graph databases has not yet been considered in the literature.

Given mappings M1 and M2, the composition M1 ◦M2 is a new mapping that, intuitively,

has the same effect as the application of M1 and M2 one after the other. Formally, given

mappings M1 from Σ1 to Σ2, and M2 from Σ2 to Σ3, the composition of M1 and M2 is the

mapping from Σ1 to Σ3 defined by JM1K◦ JM2K = {(G1,G3) | there exists G2 over Σ2 such that

(G1,G2) ∈ JM1K and (G2,G3) ∈ JM2K} [Melnik, 2004, Fagin et al., 2005c].

Example 6.7.1 Recall mappings M12 = (Σ1,Σ2,T12) and M14 = (Σ1,Σ4,T14) from sections

6.1 and 6.5.3, respectively, given by rules

T12 = (x,creator,y)∧ (x,partOf ·series,w) → (y,makes,x)∧ (x,inConf,w)

T14 =
(
x,(creator− · [partOf ·series] ·creator)+,y

)
→ (x,confConnected,y)

Let us show how to obtain the mapping M14 by means of M12. Indeed, consider mapping

M24 = (Σ2,Σ4,T24), with

T24 =
(
x,(makes ·makes−)+,y

)
→ (x,confConnected,y).
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Then, it is possible to show that M14 is equivalent to the composition M12 ◦M24. As a proof

of concept, consider again the graph database G1 in Figure 6.1. The graph G2 in Figure 6.2

is a universal representative for G1 under M12. If one uses again G2 to exchange information

using mapping M24, one has that the graph G4 in Figure 6.4 is a universal representative for

G2 under M24. But this graph is also a universal representative for G1 under M14. Thus,

successive applications of M12 and M24 yield the same result as a single application of M14.

One fundamental question in this context is definability of composition: given M1 and M2

defined in some mapping language, what is the language needed to specify the composition of

both mappings? Of particular interest is the search for a mapping language L that is closed

under composition. This means that for any two mappings M1 and M2 specified in L , the

composition JM1K◦ JM2K can also be specified in L (i.e. there is a mapping M in L such that

JM K = JM1K ◦ JM2K). It has been shown that in the relational scenario the language of GAV

mappings is closed under composition [Fagin et al., 2005c]. The next result shows that for

NPQ-GAV mappings we obtain a similar good behavior. The proof is based on the rewriting

properties of NPQ-GAV mappings that we stated in the previous section.

Theorem 6.7.2 The language of NPQ-GAV mappings is closed under composition.

Proof: Let M12 = (Σ1,Σ2,T12) and M23 = (Σ2,Σ3,T23) be NPQ GAV-mappings. Next we

define the set of rules T13 such that the mapping M13 = (Σ1,Σ3,T13) specifies the composition

of M12 and M23. To construct T13, replace each dependency in T23 of form (x,R,y)→ (x,a,y)

with (x, rewM12
(R),y)→ (x,a,y), where rewM12

(R) is the rewriting of R with respect to M12,

as shown in Lemma 6.6.5. Notice that M13 is indeed an NPQ-GAV mapping. The following

Lemma shows that the above mapping correctly defines the composition.

Lemma 6.7.3 Given NPQ-GAV mappings M12 = (Σ1,Σ2,T12) and M23 = (Σ2,Σ3,T23), the

mapping M13 = (Σ1,Σ3,T13), where T13 is as defined above, is such that JM13K = JM12K ◦

JM23K.

Proof: We need to prove that (G1,G3) ∈ JM13K if and only if there exist a graph G2 over Σ2

such that (G1,G2) ∈ JM12K and (G2,G3) ∈ JM23K.

(=⇒): Assume that (G1,G3) ∈ JM13K. Moreover, let G2 be the universal representative for

G1 under M12. Notice that G2 is a proper graph database over Σ2, since M12 is an NPQ-GAV

mapping. It is clear that (G1,G2) ∈ JM12K, since G2 is a universal representative. Next we

show that (G2,G3) ∈ JM23K. Let (x,R,y)→ (x,a,y) be a rule in T23, and (u1,u2) ∈ JRKG2
, for a

pair of nodes u1, u2 in G2. We need to show that there is an edge in G3 of form (u1,a,u2). But

this follows from the construction of T13 and Lemma 6.6.5: In this case we know that (u1,u2)∈

JrewM12
(R)KG1

, and then since (G1,G3)∈ JM13K and there is a rule of form (x, rewM13
(R),y)→

(x,a,y) in T13, it must be that (u1,a,u2) is an edge in G3.
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(⇐=): Assume that there exist a graph G2 over Σ2 such that (G1,G2) ∈ JM12K and

(G2,G3) ∈ JM23K. We have to show that (G1,G3) ∈ JM13K. Let (x, rewM12
(R),y)→ (x,a,y)

be a rule in T13, and suppose that a pair (u1,u2) of nodes from G1 belong to JrewM12
(R)KG1

.

We show that there is an edge (u1,a,u2) in G3. By Lemma 6.6.5, we have that (u1,u2) belongs

to the certain answers of R over G1 under M12, and therefore (u1,u2) ∈ JRKG2
, since G2 is a

solution for G1 under M . But then since G3 is a solution for G2 under M23, and (by construc-

tion) T23 contains a rule of form (x,R,y)→ (x,a,y), it must be the case that the edge (u1,a,u2)

belongs to G3. ✷ ✷

We finish this section with a remark about the possibility of obtaining similar closure re-

sults for other classes of mappings studied in this chapter. We show that this is not the case,

when restricted to the GAV case, which is an advantage of NPQ-restricted mappings over other

choices of binary relations. In what follows, we use the notion of L-GAV mappings, where L

is a class of queries, for the class of mappings specified by rules of the form ϕ(x,y)→ (x,a,y),

where ϕ(x,y) is a binary query in L over the source and a is a symbol in the target.

We start with languages without conjunction, that is, RPQs. In order to show that the

nesting operator of NPQs is the crucial feature needed for composition, we also consider the

language of 2RPQs, the extension of RPQs with the inverse operator. The next proposition

shows, in particular, that the nesting feature of NPQs is necessary to obtain the closure result

in Theorem 6.7.2.

Proposition 6.7.4 There exist RPQ-GAV mappings M12 from Σ1 to Σ2 and M23 from Σ2 to Σ3,

such that the mapping M12 ◦M23 is not equivalent to a 2RPQ-GAV mapping.

Proof: We need the following definition. Let G = (N,E) be a graph over Σ. A semipath in

G is a sequence u1,a1,u2,a2, . . . ,um,am,um+1,, where each ui belongs to N, each ai belongs to

Σ∪{a− | a ∈ Σ}, and for each ui,ai,ui+1, we have that (ui,ai,ui+1) belongs to E , if ai is not

an inverse symbol, and (ui+1,ai,ui) belongs to E if ai is an inverse symbol, i.e., of form a− for

some a ∈ Σ.

Let Σ1 = {a,b}, Σ2 = {c,d}, Σ3 = {e}, and consider RPQ-mappings M12 = (Σ1,Σ2,T12)

and M23 = (Σ2,Σ3,T23), with

T12 = {(x,a,y)→ (x,c,y)},

T23 = {(x,d∗,y)→ (x,e,y)}.

We next show that the composition of M12 and M23 cannot be specified by 2RPQ-GAV map-

ping. On the contrary, assume that M13 = (Σ1,Σ3,T13) is a mapping such that JM12K◦JM23K=

JM13K. Since M13 is 2RPQ-GAV, we have that T13 is of the following form:

T13 = {(x,r1,y)→ (x,e,y), . . . , (x,rk,y)→ (x,e,y)},
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with ri a 2RPQ over Σ1 for every i ∈ {1, . . . ,k}. Consider now the graphs G1, G2 and G3 over

Σ1, Σ2 and Σ3, respectively, given by:

b1

2 a

a

3

4

3

1

2 c

c

e

1

2

3

e

e

G1 G2 G3

It is not difficult to see that (G1,G2) ∈ JM12K, and that (G2,G3) ∈ JM23K. Thus, we also have

that (G1,G3) ∈ JM12K ◦ JM23K. Moreover it is not difficult to show that for every graph G ∈

SolM12
(G1) it holds that G2 ⊆G, and that for every G ∈ SolM23

(G2) it holds that G3 ⊆G. From

this and since we are assuming that JM12K ◦ JM23K = JM13K, we obtain that G3 ∈ SolM13
(G1)

and that for every G ∈ SolM13
(G1) it holds that G3 ⊆ G.

Now consider the set T13. We next show that there exists a dependency (x,r,y)→ (x,e,y)

in T13 such that (1,1) ∈ JrKG1
. To obtain a contradiction, assume that it is not the case. Then

we have that (G1,G3 r {(1,e,1)}) |= T13 given that G1 6|= (1,r,1) for every r that appears in

the left-hand side of a dependency in T13. This is a contradiction since we know that for every

G∈ SolM13
(G1) it holds that G3 ⊆G, and G3r{(1,e,1)} 6⊆G3. Then consider the dependency

(x,r,y)→ (x,e,y) in T13 such that (1,1) ∈ JrKG1
. We consider two cases:

• First, if the language defined by r contains the empty path (ε) then we have that G1 |=

(4,r,4) and thus G3 |= (4,e,4) which is a contradiction.

• Second, assume that every semi path defined by r has at least one edge. Then every path

from 1 to 1 that conforms to r should visit node 3. Moreover, notice that every sequence

of edges that defines a (semi) path in G1 from 3 to 1 also defines a (semi) path from 3 to

2 (this is only because of the symmetry of G1). Thus, given that (1,1) ∈ JrKG1
and every

semi path defined by r has at least one edge, we obtain that (1,2) ∈ JrKG1
, but this is a

contradiction since G3 6|= (1,e,2).

In both cases we obtain a contradiction, such 2RPQ mapping M13 cannot exist. ✷

One may also ask whether the use of conjunctions over 2RPQs or RPQs can lead to a closed

mapping language. The following result shows that this is not the case.

Proposition 6.7.5 There are CRPQ-GAV mappings M12 from Σ1 to Σ2 and M23 from Σ2 to Σ3,

such that the mapping M12 ◦M23 is not equivalent to any P nv,lv,re-TO-P nv,lv,re-mapping.

Proof: Let Σ1 = {a,b,c,d}, Σ2 = {e, f} and Σ3 = {g}, and consider the mappings M12 =

(Σ1,Σ2,T12), and M23 = (Σ2,Σ3,T23), where

T12 = {∃z
(
(x,a,y)∧ (y,b,z)∧ (z,c,x)

)
→ (x,e,y), (x,d,x)→ (x, f ,x)}

T23 = {(x, f ,x)∧ (x,e+,y)∧ (y, f ,y)→ (x,g,y)}
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We next show that the composition of M12 and M23 cannot be specified by a graph map-

ping. Assume that there is a mapping M13 such that JM13K = JM12K ◦ JM23K. We now show

that there is a graph G1 over Σ1 such that (G1, /0) /∈ JM13K but (G1, /0) ∈ JM12K◦ JM23K.

Consider then an arbitrary mapping M13 = (Σ1,Σ3,T13) such that JM13K⊆ JM12K◦ JM23K.

We assume that T13 is of the form:

T13 = {ϕ1(x̄1)→ ψ1(x̄1), . . . , ϕk(x̄k)→ ψk(x̄k)},

with each ϕi and ψi are arbitrary graph queries over Σ1 and Σ3, respectively, for every i ∈

{1, . . . ,k}.

Let p = |M | + 2. We then define graph G1 as follows: it consists of elements

{u1,v1,u2,v2, . . . ,up−1,vp−1,up}, and contains edges (ui,a,ui+1),(ui+1,b,vi),(vi,c,ui) for

each 1 ≤ i ≤ p, plus edges (u1,d,u1) and (up,d,up). In other words, it is a sequence of tri-

angles, all of them concatenated together, with a self loop in the beginning and in the end.

Now consider graph G3, given by the single edge (u1,g,up). It is clear that (G1,G3) belong to

JM12K◦ JM23K, and any graph G such that (G1,G) ∈ JM12K◦ JM23K is a superset of G3. Since

JM13K= JM12K◦JM23K, we have in particular that (G1,G3) |=M13. All of this means that G3 is

a universal representative for G1 under M13, and therefore any representative must contain the

edge (u1,g,up). Then, there has to be a rule in T13, say ϕ j(x̄ j)→ψ j(x̄ j), that produces the edge

(u1,g,up) in G3, when computing the universal representative according to the algorithm in the

proof of Proposition 6.4.3. Then there are nodes um1
, . . . ,um| x̄ j | that witness the satisfaction of

ϕ j(x̄ j) over G1, and with h the corresponding homomorphism from x̄ j to um1
, . . . ,um| x̄ j |.

Note that |x̄ j| is strictly smaller than p. Assume that ϕ j(x̄ j) = (ξϕ j
, x̄ j), where ξϕ j

is a

graph pattern, and let G′1 be a graph database over Σ1 that is canonical for G1. By construction

G′1 |= ϕ j(um1
, . . . ,um| x̄ j |). But notice however that G1 can only contain a limited number of

nodes with more than 1 incoming edge, namely nodes um1
, . . . ,um| x̄ j |. The rest of the nodes of

G′1 are added as a result of the canonical construction, and are therefore only connected to the

previous and next node of a path.

There are now two possibilities:

• There is no path from u1 and up in G′1 consisting only of concatenated triangles.

This shows that (G′1, /0) belongs to JM12K ◦ JM23K. This is a contradiction, since

(um1
, . . . ,um|x̄ j |) belongs to Jϕ j(x̄ j)KG′1

, the chase for G′1 over M13 as explained in the

proof of Proposition 6.4.3 is not empty, and thus by definition (G′1, /0) cannot belong to

JM12K◦ JM23K.

• There is a path from u1 and up in G′1 that are only concatenated triangles. Then all of

the nodes of this path belong to um1
, . . . ,um|x̄ j |. From this fact one can conclude that the

universal representative for G1 under M13 is strictly a superset of G3, which is also a

contradiction.
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✷

As a final remark we note that the restriction to GAV mappings in general is crucial for

obtaining the closure result in Theorem 6.7.2. In fact, it is not difficult to adapt results by

Fagin et al. [Fagin et al., 2005c] to show that our graph mappings cannot express even the

composition of two NPQ-TO-P nv-mappings.





Chapter 7

Applications in Formal Language

Theory

Just as graph databases can be viewed as finite automata, graph patterns in turn can be viewed

as incomplete automata, in which the precise information about the transition relation is lost.

In this chapter we formally define this model of automata, and study some of their basic prop-

erties. We define two notions of acceptance for them, and show how they give rise to a much

intricate model, with applications not only in graph databases, but also in other fields such as

program analysis and constraint satisfaction.

7.1 Incomplete Automata

An incomplete automaton is just a graph pattern from P nv,lv,re with a distinguished node cor-

responding to the initial state, and a set of nodes corresponding to the final states. Recall

that REG(Σ) denotes the language of all regular expressions that can be constructed from the

symbols of an alphabet Σ. We then have the following definition:

Definition 7.1.1 (Incomplete automata) An incomplete automaton A is a tuple A =

(Q,Σ,W ,q0,F,δ), where W is a finite set of label variables from Vlab, and δ⊆Q×REG(Σ∪

W )×Q.

Example 7.1.2 Figure 7.1 depicts two incomplete automata. The automaton A1 on the left uses

alphabet {0,1}, variables X and Y in its transitions and the regular expression XY . Automaton

A2 over alphabet {a,b} uses only regular expressions in some of its transitions (the expression

a+), but no label variables. As usual, initial states are pointed by an arrow, and final states are

depicted with double lines.
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a+

1

q3

XY
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X

q1q0

p0 p1

b

Figure 7.1: Incomplete automata A1 and A2

7.1.1 Semantics

There are two natural notions of acceptance that can be defined for incomplete automata.

To state them formally, we need the notion of valuation. For an incomplete automaton

A = (Q,Σ,W ,q0,F,δ), a valuation is a pair ν = (η,θ), where η : W → Σ maps label vari-

ables in W to Σ, and θ : (Q×REG(Σ∪W )×Q)→ (Q×Σ∗×Q) assigns to each transition

(q,L,q′) ∈ δ a transition (q,w,q′), where w is a word that belongs to η(L). Thus, a valuation

ν = (η,θ) for an incomplete automaton A defines an NFA ν(A) = (Q,Σ,q0,F,θ(δ)).

We now introduce our two semantics for incomplete automata. The first one is inspired

in the notion of certain answers, and we call it certainty semantics. Formally, let A be an

incomplete automaton. We define the language of A under certainty semantics, that we denote

by L✷(A), as

L✷(A) :=
⋂
{L(ν(A)) | ν is a valuation for A}.

As expected, the study of incomplete automata under certainty semantics has direct ap-

plications in graph databases, specifically when querying graph patterns; and indeed we have

already proved some results for these automata when studying the complexity of query answer-

ing in Chapter 4. We explain these applications in Sections 7.2.1 and 7.2.2.

Our second semantics is based on the unions of the languages of the valuations of the au-

tomata, instead of the intersection, and for this reason we call it possibility semantics. Formally,

the language of A under possibility semantics, that we denote by L✸(A), is the set

L✷(A) :=
⋃
{L(ν(A)) | ν is a valuation for A}.

Example 7.1.3 Consider again incomplete automaton A1 from figure 7.1. The language

L✷(A1) generated by the certainty semantics on A1 is simply the language {1} (con-

taining the single word 1), as it corresponds to the intersection of the languages given

by expressions (00)∗1(00)∗, (00)∗1(01)∗, (01)∗1(10)∗ and (01)∗1(11)∗. The language

L✸(A1) generated by the possibility semantics on A1 corresponds to the union of the lan-

guages of the aforementioned expressions. In other words, it is given by the expression

(00)∗1(00)∗ | (00)∗1(01)∗ | (01)∗1(10)∗ | (01)∗1(11)∗.
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The possibility semantics has been already studied in some cases (see e.g.

[Grumberg et al., 2010, Kaminski and Zeitlin, 2010, Freydenberger, 2011]), and has several

applications, particularly in program analysis. We shall also detail these in the next section,

but before let us introduce a more restricted model of automata that will take a very important

role in this Chapter.

7.1.2 Parameterized automata and parameterized regular expressions

If we only allow incomplete automata to have transitions labelled by symbols in Σ∪W (instead

of arbitrary regular expressions), then we arrive at a restricted notion of incomplete automata

that has been already studied in formal language theory, albeit mostly in the context of words

of infinite length. We denote these as parameterized automata, since the variables in the tran-

sitions can be seen as parameters of the automata. Formally, a parameterized automaton is

a tuple A = (Q,Σ,W ,q0,F,δ), where W is a finite set of label variables from Vlab, and now

δ⊆Q×(Σ∪W )×Q. In other words, these automata are just patterns in P lv, with distinguished

nodes for the initial and final states.

For these automata we have a corresponding notion of regular expressions, that we call

parameterized regular expressions, which are simply defined as regular expressions built from

alphabet Σ∪W . For example, (Xab)∗ and (0X)∗1(XY )∗ are parameterized regular expressions.

Valuations for parameterized automata (or expressions) are just mappings ν : W → Σ, so

we can define certainty semantics and possibility semantics in the same way as for incomplete

automata. More precisely, let e be a parameterized regular expression over Σ∪W . Then

L✷(e) :=
⋂
{L(ν(e)) | ν is a valuation for e} and L✸(e) :=

⋃
{L(ν(e)) | ν is a valuation for e}

Equivalence between parameterized automata and expressions. Since the transitions

for parameterized automata are now subsets of Q× (Σ∪W )×Q, we can view them as NFAs

over alphabet Σ∪W , and therefore they also define regular languages over this alphabet. In

the same way, parameterized regular expressions also define regular languages over Σ∪W .

Thus, given a parameterized expression e, we can perform the usual expression to automata

translation (See e.g. [Hagenah and Muscholl, 1998]), and obtain an incomplete automaton Ae

that accepts the same language (over Σ∪W ) as the expression e). It is immediate from the

definition that Ae and e also define the same languages under both possibility and certainty

semantics, now of course under alphabet Σ. The converse is also true, i.e., one can go from

parameterized automata to parameterized regular expressions. We thus obtain:

Lemma 7.1.4 For every parameterized regular expression e one can construct, in PTIME, a

parameterized automata Ae such that L✷(e) = L✷(Ae) and L✸(e) = L✸(Ae). For every pa-

rameterized automata A one can construct in EXPTIME a parameterized regular expression

eA such that L✷(A) = L✷(eA) and L✸(A) = L✸(eA )
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This lemma states that, as usual, we can easily go from expressions to automata, while

the converse translation may incur in an exponential blowup. For this reason when we study

decision problems associated with these models we usually state the lower bounds for regular

expressions, while the upper bounds are stated in terms of automata. We shall see that, despite

the asymmetry mentioned above, for most of the problems studied in this dissertation the as-

sumption of regular expressions or automata does not make any substantial difference in the

computational complexity associated with these tasks.

Example 7.1.5 Consider again automata A1 and A2 from figure 7.1. We have that A1 is a

parameterized automaton, and a parameterized regular expression equivalent to A1 is e1 =

(0X)∗1(XY )∗, i.e. we have that L✸(A1) = L✸(e1) and L✷(A1) = L✷(e1). On the other hand,

A2 is not a parameterized automaton. In fact, we shall later see that the language generated

by A2 under the possibility semantics is not even a regular language.

7.2 Applications of Incomplete Automata

Incomplete automata and parameterized regular expressions arise in a variety of applications,

in particular in the fields of querying graph-structured data, and static analysis of programs.

We now explain these connections.

7.2.1 Certain answers over patterns

While not completely equivalent to the certainty or possibility semantics for incomplete au-

tomata, the task of querying graph patterns is closely related with computational tasks for in-

complete automata. Given a graph pattern π = (N,E)∈ P nv,lv,re over Σ that uses label variables

W , and two nodes n1,n2 from V∩N (i.e., nodes which are not variables), we let Aπ(n1,n2)

be the incomplete automaton (N,Σ,W ,n1,{n2},E). The following theorem shows the relation

between querying graph patterns and incomplete automata.

Proposition 7.2.1 Let ϕ(x,y) = (x,L,y) be an RPQ, π = (N,E) a graph pattern, and n1,n2

two of its nodes from V. Then (n1,n2) ∈ CERTAIN(Q,π) if and only if L∩L(ν(Aπ(n1,n2))) 6= /0

for every valuation ν.

Proof: Let Q(x,y) = (x,L,y) be an RPQ, π = (N,E) be a graph pattern, with W the set of

label variables mentioned in π; and n1,n2 two of its nodes from V. We prove that (n1,n2) ∈

CERTAIN(Q,π) if and only if L∩L(ν(Aπ(n1,n2))) 6= /0, for every valuation ν.

(⇒): Assume that (n1,n2) ∈ CERTAIN(Q,π). Let ν = (η,θ) be an arbitrary valuation for

Aπ(n1,n2); that is, η is a mapping from W into Σ and θ : (N ×REG(Σ∪W )×N)→ (N×

Σ∗×N) assigns to each edge (p,r,q) ∈ E a transition (p,w,q), where w is a word that belongs
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to η(r). Next we show that L∩ L(ν(Aπ(n1,n2))) 6= /0, which suffices for the proof since ν is

arbitrarily chosen.

Let σ be the assignment from the nodes of π into V that is the identity on node ids and

maps each node variable x into a different node id nx. Then we define a graph database G as

the unique (up to isomorphism) σ-canonical graph database for π that satisfies the following:

For every edge e = (p,r,q) of π, the path ρ that is associated with e in G is such that λ(ρ) = w,

where θ(e) = (p,w,q). Notice that G is, indeed, a σ-canonical assignment via η. This is

because for each edge e = (p,r,q) in E it is the case that if θ(e) = (p,w,q) then w ∈ η(r).

It is immediately clear that G ∈ JπK (since G is σ-canonical for π), and that σ(n1) = n1 and

σ(n2) = n2. Furthermore, since (n1,n2) ∈ CERTAIN(Q,π), it is the case that (n1,n2) ∈ Q(G).

Thus, there is a path ρ in G from n1 to n2 such that λ(ρ) ∈ L. It is now easy to show that there

is a run of ν(Aπ(n1,n2)) that accepts a word in L (namely, the word λ(ρ)). This is because the

transitions of ν(Aπ(n1,n2)) are precisely the paths of G that are associated with the edges of π;

that is, if (p,w′,q) is a transition in ν(Aπ(n1,n2)) then there is a path in G from p to q labeled

w′.

(⇐): Assume that L∩L(ν(Aπ(n1,n2))) 6= /0 for every valuation ν. We prove that (n1,n2) ∈

CERTAIN(Q,π). From Claim 4.3.3 we only need to show that for every canonical graph

database G for π, it is the case that (n1,n2) ∈ Q(G). This is what we do next.

Let G be an arbitrary graph database G ∈ JπK, and assume that G is σ-canonical for π via

assignment η : W → Σ. (Recall that σ is an assignment from the nodes of π into V that is the

identity on node ids and maps each node variable x into a different node id nx). Clearly, both

node ids n1 and n2 belong to G. For each edge e in π, let us denote by ρe the path of G that is

associated with e.

Let us define now a mapping θ : (N×REG(Σ∪W )×N)→ (N×Σ∗×N) that assigns to

each edge e = (p,r,q) ∈ E a transition (p,w,q), where w is the word λ(ρe). This is clearly

well-defined, since, by definition, λ(ρe) satisfies η(r).

Since L∩L(ν(Aπ(n1,n2))) 6= /0 for every valuation, it is the case that L∩L(ν(Aπ(n1,n2))) 6=

/0. Thus, there is a word w ∈ L that is accepted by ν(Aπ(n1,n2)). It is not hard to prove then

that there is a path in G from n1 to n2 that is labeled w. This is because the transitions of

ν(Aπ(n1,n2)) are precisely the paths of G that are associated with the edges of π; that is, if

(p,w′,q) is a transition in ν(Aπ(n1,n2)) then there is a path in G from p to q labeled w′.

This implies that (n1,n2) ∈ Q(G). Since G is an arbitrary graph database that is canonical

for π, we conclude that (n1,n2) ∈ CERTAIN(Q,π) ✷

Thus, for instance, if L defines a single word w ∈ Σ∗, then (n1,n2) ∈ CERTAIN(Q,π) if

and only if w belongs to L✷(Aπ(n1,n2)). This already motivates the need for studying the

membership problem for incomplete automaton over the certainty semantics, as it is tightly

related to the task of querying RPQs defined by words over graph patterns. Note that the
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results in chapter 5 tells us that query answering is non-trivial even for this class of queries.

There are other much more intricate connections between incomplete automata and query-

ing graph patterns. We now present a different, novel scenario where the notion of certainty

semantics is of crucial importance: certain answers for queries that can output paths.

7.2.2 Certain answers for queries returning paths

Extensions of CRPQs outputting paths have been defined in [Barceló et al., 2010a]. We shall

present this notion for RPQs (for CRPQs, it includes the concept of synchronizing paths, which

will complicate the presentation). An RPQ with a path output is a query of the form

Ans(z̄,ρ) ← (x,ρ : R,y)

where, on top of the usual RPQ Q(z̄) = (x,R,y), one is allowed to name the path ρ witnessing

the query, and to output its label. Of course the number of R-paths between two nodes could be

infinite, but one easily observes that for every nodes n1,n2 in a graph database, the set of labels

of R-paths between them is regular, and thus can be represented by a finite automaton.

Assume we have an RPQ Q with a path variable, as above, and a graph pattern π. Let

n1,n2 be two nodes from V that occur in π. We say that a word ρ ∈ Σ∗ is a certain path

between n1 and n2 with respect to Q if for every G ∈ JπK, there is a path between n1 and n2

with label ρ, and ρ belongs to the language of R. The set of such certain paths will be denoted

by CERTAIN
path(Q;π,n1,n2). We shall write CERTAIN

path
Σ when Σ is not clear from the context.

The following example illustrates this concept.

Example 7.2.2 For m > 0, consider the pattern πm over Σ = {0,1} shown in the figure below.

Xm

0|1 0|1

X1 X2

n0 n1 nm

Notice that each G ∈ JπmK will contain a path from node n0 to node nm. In particular,

(n0,nm) is a certain answer to the RPQ Q given by (x,ρ : (0|1)∗,y).

However, one can see that every word in CERTAIN
path
Σ (Q;π,n0,nm) must contain, as sub-

words, all the 2m words of length m over {0,1} since the Xi’s can be instantiated arbitrar-

ily. Due to the presence of the loops, the converse also holds, and CERTAIN
path
Σ (Q;π,n0,nm)

consists precisely of the words that contain all the 2m subwords of length m. In particu-

lar, the smallest certain paths are precisely the non-circular De Bruijn sequences of order

m, and thus have length 2m + m− 1. One can also easily show that any NFA accepting

CERTAIN
path
Σ (Q;π,n0,nm) will have exponentially many states (in m).
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Note that, if we see the above pattern π as an incomplete automata Aπ(n0,nm), with

n0 and nm the initial and final nodes, when computing the set of words in word in

CERTAIN
path
Σ (Q;π,n0,nm) we are really asking for the language of Aπ(n0,nm) under certainty

semantics, or L✷(Aπ(n0,nm)). This is formalized in the following Proposition:

Proposition 7.2.3 Let Ans(x,y,ρ) ← (x,ρ : L,y) be an RPQ with path output, π = (N,E) a

graph pattern, and n1,n2 two of its nodes from V. Then w ∈ CERTAIN
path(Q;π,n1,n2) if and

only if w ∈ L and w belongs to L✷(Aπ(n1,n2)).

Proof: (⇒): Assume that w ∈ CERTAIN
path(Q;π,n1,n2). By definition we have that w belongs

to L. Thus, we only prove that w belongs to L✷(Aπ(n1,n2)). Let ν = (η,θ) be an arbitrary

valuation for Aπ(n1,n2); that is, η is a mapping from W into Σ and θ : (N×REG(Σ∪W )×

N)→ (N×Σ∗×N) assigns to each edge (p,r,q) ∈ E a transition (p,w,q), where w is a word

that belongs to η(r). Next we show that w ∈ L(ν(Aπ(n1,n2))).

Let σ be the assignment from the nodes of π into V that is the identity on node ids and

maps each node variable x into a different node id nx. Then we define a graph database G as

the unique (up to isomorphism) σ-canonical graph database for π that satisfies the following:

For every edge e = (p,r,q) of π, the path ρ that is associated with e in G is such that λ(ρ) = w,

where θ(e) = (p,w,q). Notice that G is, indeed, a σ-canonical assignment via η. This is

because for each edge e = (p,r,q) in E it is the case that if θ(e) = (p,w,q) then w ∈ η(r).

It is immediately clear that G ∈ JπK (since G is σ-canonical for π), and that σ(n1) = n1 and

σ(n2) = n2. Furthermore, since w ∈ CERTAIN
path(Q;π,n1,n2), there is a path ρ in G from n1 to

n2 such that λ(ρ) = w. It is now easy to show that there is a run of ν(Aπ(n1,n2)) that accepts w.

This is because the transitions of ν(Aπ(n1,n2)) are precisely the paths of G that are associated

with the edges of π; that is, if (p,w′,q) is a transition in ν(Aπ(n1,n2)) then there is a path in G

from p to q labeled w′.

Thus, w ∈ L(ν(Aπ(n1,n2))). Since ν is an arbitrary valuation, we conclude that w belongs

to L✷(Aπ(n1,n2)).

(⇐): Assume that w ∈ L and that w belongs to L✷(Aπ(n1,n2)). We prove that w ∈

CERTAIN
path(Q;π,n1,n2). Let G be an arbitrary graph in JπK, and h = (h1,h2) a homomor-

phism from π to G. Clearly, both node ids n1 and n2 belong to G.

Construct a valuation ν = (η,θ) for Aπ(n1,n2) as follows. Define η(X) = h2(X) for every

variable X in Aπ(n1,n2), and for every edge e = (p,r,q) in E , nondeterministically choose a

word u ∈ L(r) such that there is a path from h1(p) to h1(q) in G that is labeled with u (we

know there is at least one such word since G ∈ JπK). Then define θ(e) = (p,u,q). It is clear

that ν = (η,θ) is a valid valuation for Aπ(n1,n2). Thus, since w belongs to L✷(Aπ(n1,n2)), we

have that w is accepted by ν(Aπ(n1,n2)). It is not hard to prove then that there is an L-path in

G from n1 to n2 that is labeled w. This is because the transitions of ν(Aπ(n1,n2)) are a subset
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of the paths of G that are associated with the edges of π; that is, if (p,w′,q) is a transition in

ν(Aπ(n1,n2)) then there is a path in G from p to q labeled w′. Since G is an arbitrary graph

database in JπK, and w ∈ L, we conclude that w ∈ CERTAIN
path(Q;π,n1,n2). This finishes the

proof. ✷

In other words, the above proposition states that the set CERTAIN
path(Q;π,n1,n2) of words

corresponds to L✷(Aπ(n1,n2))∩L. This simple connection further motivates the need to study

certainty semantics for incomplete automata, as it raises several questions about it. For exam-

ple, is the set L✷(Aπ(n1,n2)) regular? if so, can we return the set of words L✷(Aπ(n1,n2))∩L

as an NFA? And, further, is it possible to decide if there are any certain paths at all in a pattern

π, i.e. is the set L✷(Aπ(n1,n2)) nonempty? What is the complexity of checking if a word

belongs to L✷(Aπ(n1,n2))? We shall answer this questions shortly, but let us first motivate the

study of possibility semantics for incomplete automata.

7.2.3 Applications in program analysis

Finally, we analyze the need for the study of incomplete automata under maybe semantics.

Here we focus not on incomplete automata, but rather on parameterized regular expressions.

That regular expressions with variables appear naturally in program analysis tasks was noticed,

for instance, in [Liu et al., 2004, Liu and Stoller, 2006, de Moor et al., 2003]. One uses the

alphabet that consists of symbols related to operations on variables, pointers, or files, e.g.,

def for defining a variable, use for using it, open for opening a file, or malloc for allocating

a pointer. A variable then follows: def(x) means defining variable x. While variables and

alphabet symbols do not mix freely any more, it is easy to enforce correct syntax with an

automaton. An example of a regular condition with parameters is searching for uninitialized

variables: (¬def(x))∗use(x).

Expressions like this are evaluated on a graph that serves as an abstraction of a program.

One considers two evaluation problems: whether under some evaluation of variables, either

some path, or every path between two nodes satisfies it. This amounts to computing L✸(e)

and checking whether all paths, or some path between nodes is in that language. In case

of uninitialized variables one would be using ‘some path’ semantics; the need for the ‘all

paths’ semantics arises when one analyzes locking disciplines or constant folding optimizations

[Liu et al., 2004, de Moor et al., 2003]. So in this case the language of interest for us is L✸(e),

as one wants to check whether there is an evaluation of variables for which some property of a

program is true.

Parameterized regular expressions appear in other applications as well, e.g., in phase-

sequence prediction for dynamic memory allocation [Shen et al., 2007], or as a compact way to

express a family of legal behaviors in hardware verification [Bhadra et al., 2005], or as a tool

to state regular constraints in constraint satisfaction problems [Pesant, 2004]. In all of these
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applications we deal with problems similar to the ones stated for certainty semantics, such as

regularity, nonemptiness, membership, to name a few. To answer these problems we devote the

remainder of this chapter, and the next one.

7.3 Properties of Languages Generated by Incomplete Automata

Our first task in the study of these languages is to compare them in terms of their regularity.

While not immediately obvious from the definition, we can show that language generated by

certainty semantics for incomplete automata are regular. The intuition behind this fact is based

on the idea that one can dismiss all transitions in incomplete automaton that are labeled by

expressions that define infinite languages.

On the other hand, or possibility semantics the languages need not be regular. However,

we show regularity for parameterized automata, the fragment of incomplete automata that dis-

allows the use of regular expressions in the transitions.

Whenever the languages are regular, we show how to compute NFA’s that define these

languages. These can be of size doubly exponential for certainty semantics, or single expo-

nential for parameterized automata under possibility semantics. We give precise algorithms to

construct these NFAs, and finish this section by proving the optimality of these algorithms.

Along the section we make use of the following technical but self evident claim.

Claim 7.3.1 The regular expression L defines a finite language over alphabet Σ∪W if and

only if η(L) defines a finite language over alphabet Σ, for each mapping η : W → Σ.

7.3.1 Certainty semantics

We start by proving that all languages generated by certainty semantics are regular. The proof

is based in the idea that all transitions not defining a finite language can be dismissed when

dealing with certainty semantics. More precisely, let A = (Q,Σ,W ,q0,F,δ) be an incomplete

automaton, and let δ f in ⊆ δ be the set of transitions of form (q1,L,q2) such that L defines a

finite language over alphabet Σ∪W . We denote by A f in the automaton (Q,Σ,W ,q0,F,δ
f in).

The following lemma formalizes the idea presented above:

Lemma 7.3.2

L✷(A) = L✷(A f in)

Proof: The fact that L✷(A f in) ⊆ L✷(A) is straightforward. Thus, we only need to show that

L✷(A)⊆ L✷(A f in). Assume then that a word w belongs to L✷(A). To prove that w belongs to

L✷(A f in) we show next that for every valuation ν of A f in it is the case that ν(A f in) accepts w.

Let ν = (η,θ) be an arbitrary valuation for A f in. Construct a valuation ν′ = (η′,θ′) for A

as follows:
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• valuation η′ is a copy of η,

• define θ′((q1,L,q2)) = θ((q1,L,q2)), if (q1,L,q2) belongs to δ f in, and

• otherwise θ((q1,L,q2)) = w′, where w′ is an arbitrary word in η(L) such that |w′|> |w|

(We know that such word exists since L is an infinite language, and, therefore, from

Claim 7.3.1, η(L) is also an infinite language).

Since w∈L✷(A) and ν′ is a valuation for A , the word w is accepted by ν′(A). Furthermore,

notice that any accepting run ρ of w for ν′(A) is also an accepting run for ν(A f in), as clearly

ρ cannot use any transition labeled by a word of size larger than w. This shows that ν(A f in)

accepts w. Since ν is an arbitrary valuation for A f in, we conclude that w ∈ L✷(A f in), which

finishes the proof of the Lemma. ✷

We now have all the ingredients to show regularity for certainty semantics.

Proposition 7.3.3 For an incomplete automaton A , the language L✷(A) is regular. An NFA

accepting L✷(A) can be constructed in doubly exponential time.

Proof: First, we prove that L✷(A) is regular. By Lemma 7.3.2 we know that L✷(A) can be

defined as the intersection of all NFAs of the form ν(A f in), where ν is a valuation for A f in.

But notice that the set {ν(A f in) | ν is a valuation for A f in} is finite. This is because every edge

in A f in is labeled by an expression L that defines a finite language over alphabet Σ∪W , and,

thus, from Claim 7.3.1, for each valuation η : W → Σ its is the case that η(L) also defines a

finite language over Σ. The proof then follows from the fact that every finite intersection of

regular languages is regular.

It remains to show that we can construct in double exponential time an NFA B such that

L(B) = L✷(A). We have argued in the previous paragraph that L✷(A) can be defined as the

intersection of each automaton in the set {ν(A f in) | ν is a valuation for A f in}. But notice

that all of these automata are standard NFAs, so they can be intersected using the standard

cross product construction. Thus, we just define B as ∏ν ν(A f in). That B can be constructed

in double exponential time follows from the next claim, which can be easily proved using

standard automata tools:

Claim 7.3.4 Let r be a regular expression over an alphabet Σ, such that L(r) is finite. Then all

words in L(r) are of size at most |r| (that is, they have at most |r| symbols). Furthermore, L(r)

contains at most O(|Σ||r|) words.

From Claims 7.3.1 and 7.3.4 we immediately obtain that, for each valuation ν = (η,θ) for

A f in, it is the case that ν(A f in) is of size polynomial with respect to A . Let us now analyze the

number of different valuations ν = (η,θ) that can be defined for A f in. Clearly, we have |Σ||W |
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possible mappings η from W to Σ. For each of one of those mappings, different mappings

θ can be constructed by mapping each edge (p,L,q) in δ f in to different words in η(L). By

Claim 7.3.1 we have that η(L) always defines a finite language, and thus by Claim 7.3.4 the

number of words in η(L) is bounded by O(|Σ||L|) (recall that we assume that L is given as a

regular expression). This clearly shows that the the number of different valuations that can

be defined for A f in is at most exponential in the size of A f in, and then B = ∏ν ν(A f in) is a

product of exponentially many automata, each one of polynomial size. This shows that B can

be constructed in double exponential time. ✷

We later show that the algorithm for computing NFA’s presented in this section is optimal.

First, let us examine the possibility semantics.

7.3.2 Possibility semantics

In contrast with certainty semantics, we easily loose regularity when we deal with possibility

semantics.

Example 7.3.5 Consider again the incomplete automaton A2 depicted in Figure 7.1 in Section

7.1. It contains states p0 and p1, and transitions (p0,a
+, p1) and (p1,b, p0). Since it does not

use variables in the transitions (only regular expressions) the valuations for this automaton

are just assignments that map the transition (p0,a
+, p1) to transitions of form (p0,w, p1), with

w a word in a+. From this observation we conclude that the language L✸(A2) generated by

possibility semantics corresponds to {(aib)∗ | i ≥ 1}, which is clearly not a regular language,

and in fact not even context-free.

Example 7.3.5 suggest that the regularity is lost not because of the possibility of using vari-

ables in incomplete automata, but because of the regular expressions in the transitions. Indeed,

next we show that that the language defined by parameterized automata over the possibility

semantics is regular.

Proposition 7.3.6 For a parameterized automaton A , the language L✸(A) is regular. An NFA

accepting L✸(A) can be constructed in exponential time.

Proof: Let A = (Q,Σ,W ,q0,F,δ) be a parameterized automaton. In order to construct an

NFA accepting L✸(A) one just needs to construct each of the ν(A), for each of the |Σ||W |

valuations ν : W → Σ, and then simply combine all of them with a nondeterministic choice. ✷

In view of these results, for the remainder of the chapter we sometimes focus solely on

parameterized automata when dealing with possibility semantics, and leave the complete study

of incomplete automata under possibility semantics as future work. For certainty semantics we

study full incomplete automata. This does not contrast the use case and applications that were
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presented in the previous section, since all the ones using possibility semantics required only

parameterized automata.

We finish this section by showing that the bounds for computing NFAs in Propositions

7.3.3 and 7.3.6 are tight.

7.3.3 Lower bounds

In this section we show the optimality of the algorithms for building NFAs over Σ capturing

L✸(A) and L✷(A), by providing matching lower bounds on the sizes of such NFAs. For

certainty semantics we actually prove a stronger result, since both of our lower bounds shall be

given with parameterized regular expressions.

We say that the sizes of minimal NFAs for L∗ are necessarily exponential (respectively,

double-exponential) if there exists a family {en}n∈N of parameterized regular expressions such

that:

• the size of each en is O(n), and

• every NFA A satisfying L(A) = L∗(en) has at least 2n (resp., 22n

) states.

Theorem 7.3.7 The sizes of minimal NFAs are necessarily double-exponential for L✷, and

necessarily exponential for L✸.

Proof: We begin with the double exponential bound for L✷. For each n ∈ N, let en be the

following parameterized regular expression over alphabet Σ = {0,1} and variables x1, . . . ,xn+1:

en = ((0 | 1)n+1)∗ · x1 · · ·xn · xn+1 · ((0 | 1)
n+1)∗.

Notice that each en uses n+1 variables, and is of linear size in n. We first show a technical

lemma:

Lemma 7.3.8 Let u ∈ {0,1}n+1 be a word of size n+1. Then u is a subword of every word

w ∈ L✷(en). Moreover, there is a match for u in w that starts in a position j of w (1≤ j ≤ |w|)

such that j = 1 mod n+1.

Proof: Consider an arbitrary word u = u1, . . . ,un+1 ∈ {0,1}
n+1, and let ν be the valuation for

en such that ν(xi) = ui, for 1 ≤ i ≤ (n+ 1). Then ν(en) = ((0 | 1)n+1)∗ · u · ((0 | 1)n+1)∗, and

thus all words w in L(ν(en)) contain u as a subword, matching in a position j = 1 mod n+1

of w. The lemma follows since by definition L✷(en)⊆ L(ν(en)). ✷

We now show that every NFA deciding L✷(en) has 22n

states. Our main tool comes from

[Glaister and Shallit, 1996], and can be shown using a standard communication complexity

argument:
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Theorem 7.3.9 [Glaister and Shallit, 1996] If L ⊂ Σ∗ is a regular language, and there exists

a set of pairs P = {(ui,vi) | 1≤ i≤ m} ⊆ Σ∗×Σ∗ such that:

1. uivi ∈ L, for every 1≤ i≤ m, and

2. u jvi /∈ L, for every 1≤ i, j ≤ m and i 6= j,

then every NFA accepting L has at least m states.

Given a collection S of words over {0,1}, let wS denote the concatenation, in lexicograph-

ical order, of all the words that belong to S, and let wS̄,n denote the concatenation of all words

in {0,1}n+1 that are not in S.

Then define a set of pairs Pn = {(wS,wS̄,n) | S ⊂ {0,1}
n+1 and |S| = 2n}. Since there are

2n+1 binary words of length n+1, there are
(

2n+1

2n

)
different subsets of {0,1}n+1 of size 2n, and

thus Pn contains
(

2n+1

2n

)
≥ 22n

pairs. Next, we show that L✷(en) and Pn satisfy properties (1) and

(2) in Theorem 7.3.9, which proves the double exponential lower bound.

1. We need to show that for every set S⊂ {0,1}n+1 of size 2n, the word wS ·wS̄,n belongs to

L(ν(en)), for every possible valuation ν : Σ→ {x1, . . .xn+1}. Let then S be an arbitrary

subset of {0,1}n+1 of size 2n, and let ν be an arbitrary valuation from Σ to {x1, . . . ,xn+1}.

Define u = ν(x1) · · ·ν(xn+1). Then u is a substring of either wS or wS̄,n. Assume the

former is true (the other case is analogous). Then the word wS ·wS̄,n can be written in

the form v · u · v′ ·wS̄,n, with v,v′ ∈ L((0 | 1)n+1). This shows that wS ·wS̄,n belongs to

L(ν(en)). Since ν was arbitrarily chosen, we have that wS ·wS̄,n belongs to L✷(en).

2. Assume for the sake of contradiction that there are distinct subsets S1,S2 of {0,1}n+1

of size 2n such that wS1
·wS̄2,n belongs to L✷(en). Since S1 and S2 are distinct, proper

subsets of {0,1}n+1 (they are of size 2n), there must be a word in {0,1}n+1 that belongs

to S2 but not to S1. Let s be such word. Given that the word wS1
·wS̄2,n belongs to L✷(en),

by Lemma 7.3.8 we have that s is a subword of wS1
·wS̄2,n that matches wS1

·wS̄2,n in a

position j such that j = 1 mod n+1. There are two possibilities. First, it could be that

j < |wS1
|. But since j = 1 mod n+1, this means that s corresponds to one of the words

in S1, that gives form to wS1
, which is a contradiction. On the other hand, if j ≥ |wS1

|,

using essentially the same argument we conclude that s does not belong to S2, which is

also a contradiction.

We use essentially the same technique to address the ✸-semantics. To show the exponential

lower bound for L✸, define en = (x1 · · ·xn)
∗, and let Pn = {(w,w) | w ∈ {0,1}

n}. Clearly, Pn

contains 2n pairs. All that is left to do is to show that L✸(en) and Pn satisfy properties (1) and

(2) in Theorem 7.3.9.
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1. From the fact that L✸(en) =
⋃

w∈{0,1}n w∗, we have that for each u ∈ {0,1}n the word uu

belongs to L✸(en).

2. The same fact shows that for every u,v ∈ {0,1}n, if u 6= v, then uv /∈
⋃

w∈{0,1}n w∗, and

thus uv /∈ L✸(en).

This finishes the proof of the theorem. ✷



Chapter 8

Decision Problems for Incomplete

Automata

The goal of this chapter is to determine the exact complexity of key problems related to lan-

guages L✷(A) and L✸(A). We consider standard language-theoretic decision problems, such

as membership of a word in the language, language nonemptiness, universality, and contain-

ment. Motivated by the applications of incomplete automata, we also study the problem of

computing the intersection of L✷(A) and L✸(A) with a regular language. For all of these

problems, upper bounds shall be given in terms of incomplete automaton, and we give match-

ing lower bounds that hold even when the input to the problem is restricted to parameterized

regular expressions.

8.1 Definition of the Problems

We now describe the decision problems we study in this Section. We study both semantics,

so for each problem we shall have two versions, depending on which semantics – L✷ or L✸ –

is used. So each problem will have a subscript ∗ that can be interpreted as ✷ or ✸. Note that

these problems are motivated from the applications mentioned in Section 7.2

NONEMPTINESS∗ Given an incomplete automaton A , is L∗(A) 6= /0?

MEMBERSHIP∗ Given an incomplete automaton A and a word w ∈ Σ∗, is w ∈ L∗(A)?

UNIVERSALITY∗ Given an incomplete automaton A , is L∗(A) = Σ∗?

CONTAINMENT∗ Given incomplete automata A1 and A2, is L∗(A1)⊆ L∗(A2)?

NONEMPTYINTREG∗ Given an incomplete automata A , and a regular language L over Σ, is

L∩L∗(A) 6= /0?

135
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Problem

Semantics
Certainty ✷ Possibility ✸

NONEMPTINESS EXPSPACE-complete NLOGSPACE-complete

(for automata)

MEMBERSHIP CONP-complete NP-complete

CONTAINMENT EXPSPACE-complete EXPSPACE-complete†

UNIVERSALITY PSPACE-complete EXPSPACE-complete†

NONEMPTYINTREG EXPSPACE-complete NP-complete†

†: For parameterized automata

Figure 8.1: Summary of complexity results

The last problem is motivated by the task of computing certain paths over graph patterns,

as seen in Section 7.2.

The table in Fig. 8.1 summarizes the main results in Sections 8.2 to 8.6.

8.2 Nonemptiness

The problem NONEMPTINESS✸ has a trivial algorithm for parameterized regular expressions.

So we consider regular expressions for the certainty semantics only; for the possibility seman-

tics, we give the lower bound for incomplete automata.

Theorem 8.2.1 • The problem NONEMPTINESS✷ is EXPSPACE-complete. It remains

EXPSPACE-hard even if the input is a parameterized regular expression.

• The problem NONEMPTINESS✸ is NLOGSPACE-complete.

The result for the possibility semantics is by a standard reachability argument. Note that the

bound is the same here as in the case of infinite alphabets studied in [Grumberg et al., 2010].

To see the upper bound for NONEMPTINESS✷, note that by Lemma 7.3.2 we can focus instead

on A f in. For these automata we have shown that there are exponentially many valuations

ν, and each automaton ν(A f in) is of polynomial size, so we can use the standard algorithm

for checking nonemptiness of the intersection of a family of regular languages which can be

solved in polynomial space in terms of the size of its input; since the input to this problem is

of exponential size in terms of the original input, the EXPSPACE bound follows.

The hardness is by a generic (Turing machine) reduction; we show it even for the case of

parameterized regular expressions. In the proof we use the following property of the certainty

semantics, that shows a striking difference between incomplete automata and NFAs:
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Lemma 8.2.2 Given a set e1, . . . ,ek of parameterized expressions of size at most n ≥ k, it is

possible to build, in time O(|Σ| · k2 ·n) an expression e′ such that L✷(e
′) is empty if and only if

L✷(e1)∩ ·· ·∩L✷(ek) is empty.

Of course, since we can construct an equivalent parameterized automata from each param-

eterized regular expression, Lemma 8.2.2 holds as well for parameterized automata. But one

can also show that this result holds even for incomplete automata, i.e. given incomplete au-

tomata A1, . . . ,An it is also possible to construct, in polynomial time, an incomplete automaton

A ′ such that L✷(A ′) is empty if and only if L✷(A1)∩·· ·∩L✷(Ak) is empty. For completeness,

we provide the proof of this remark in the Appendix.

The reason the case of the L✷(e) semantics is so different from the usual semantics of

regular languages is as follows. It is well known that checking whether the intersection of

the languages defined by a finite set S of regular expressions is nonempty is PSPACE-complete

[Kozen, 1977], and hence under widely held complexity-theoretical assumptions no regular

expression r can be constructed in polynomial time from S such that L(r) is nonempty if and

only if
⋂

s∈S L(s) is nonempty. Lemma 8.2.2, on the other hand, says that such a construction

is possible for parameterized regular expressions under the certainty semantics. Next we prove

Lemma 8.2.2:

Proof: Assume first that Σ has at least two symbols. Let e1, . . . ,ek be parameterized regular

expressions as stated in the Lemma, and let a,b be different symbols in Σ. We use (Σ−a) as a

shorthand for the expression whose language is the union of every symbol in Σ different from

a, and define Ai =
(
(Σ− a)∗ · a · (Σ− a)∗

)i
, for 1 ≤ i ≤ k− 1. Finally, let x1, . . . ,xk−1 be fresh

variables. We define e′ as

(Σ−a)∗ · x1 · (Σ−a)∗ · x2 · (Σ−a)∗ · · ·xk−1 · (Σ−a)∗·
(
bakb · e1 | b ·A

1 ·bakb · e2 | b ·A
2 ·bakb · e3 | · · · | b ·A

k−1 ·bakb · ek

)

We prove next that L✷(e
′) 6= /0 if and only if L✷(e1)∩·· ·∩L✷(ek) 6= /0. For the if direction,

consider a word w ∈ Σ∗ that belongs to L✷(e1)∩·· ·∩L✷(ek). Then it can be observed from the

construction of e′ that the word (c̄kab)k−1bakbw belongs to L✷(e
′) where c̄ is the concatenation

(say, in lexicographical order) of all the symbols in Σ different from a.

On the other hand, assume that a word w belongs to L✷(e
′). It is clear that w must contain

the substring bakb. Thus, there are words u,v ∈ Σ∗ such that w = u · bakb · v, and u does not

contain the word bakb as a substring. Our goal is to prove that v belongs to L✷(e1)∩ ·· · ∩

L✷(ek). But first we need to show that u contains exactly k− 1 appearances of the symbol

a. We prove this statement by contradiction. Assume first that u contains less than k− 1

appearances of the symbol a. Then consider a valuation ν that maps each variable in e′ to the
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symbol a. Since ν(e′) is of the form

((Σ−a)∗a)k−1(Σ−a)∗ ·
(
bakb ·ν(e1) | b ·A

1 ·bakb ·ν(e2) |

b ·A2 ·bakb ·ν(e3) | · · · | b ·A
k−1 ·bakb ·ν(ek)

)
,

we conclude that the language of ν(e′) cannot contain any word that starts with u ·bakb, since

we have assumed that u contains less than k− 1 appearances of the symbol a. Next, assume

that u contains more than k− 1 appearances of the symbol a, and consider a valuation ν′ that

maps each variable in e′ to the symbol b. Then ν′(e′) is of the form

((Σ−a)∗b)k−1(Σ−a)∗(bakb ·ν′(e1) | b ·A
1 ·bakb ·ν′(e2) |

b ·A2 ·bakb ·ν′(e3) | · · · | b ·A
k−1 ·bakb ·ν′(ek)).

Recall that we define Ai as Ai =
(
(Σ−a)∗ ·a ·(Σ−a)∗

)i
. Then notice that any word in L(ν′(e′))

is such that the symbol a cannot appear more than k− 1 times before the substring bakb. We

conclude that L(ν′(e′)) cannot contain a word starting with u ·bakb.

We have just proved that w can be decomposed into u ·bakb ·v, where u does not contain the

substring bakb and has exactly k− 1 appearances of the symbol a. With this observation, and

the assumption that w belongs to L✷(e
′), it is not difficult to show the following fact. If ν is a

valuation for e′ that assigns the symbol a to exactly j variables in {x1, . . . ,xk−1} (0≤ j≤ k−1),

then the word v must belong to L✷(ek− j). This proves that v belongs to L✷(e1)∩ ·· ·∩L✷(ek),

which was to be shown.

For the case when Σ contains a single symbol a, notice that for each 1 ≤ i ≤ k it is the

case that L✷(ei) = L(e′i), where e′i is the expression resulting from replacing all parameters in

ei with the symbol a. We perform this replacement, and afterwards augment Σ with a fresh

new symbol. The construction previously explained can be then used on input e′1, . . . ,e
′
k. The

correctness of this algorithm follows directly from the proof of the previous case, and the fact

that the expressions e′1, . . . ,e
′
k contain no variables.

Regarding the size of the expression e′, we have that the size of the first part of e′, corre-

sponding to (Σ−a)∗ ·x1 · (Σ−a)∗ ·x2 · (Σ−a)∗ · · ·xk−1 · (Σ−a)∗, is O(|Σ| ·k). Furthermore, the

second part comprises of a union of k expressions, each of them of size O(|Σ| · k ·n). Thus, the

size of e′ is O(|Σ| · k2 ·n). ✷

Lower bound for certainty semantics: To complete the proof of Theorem 8.2.1, we prove an

EXPSPACE lower bound for NONEMPTINESS✷, using a reduction from the acceptance problem

for deterministic Turing machines that work in exponential space. Along the proof we use the

shorthand [i] to denote the binary representation of the number i < 2n as a string of n symbols

from {0,1}. For example, [0] corresponds to the word 0n, and [2] corresponds to the word

0n−210.
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Let L ⊆ Σ∗ be a language that belongs to EXPSPACE, and let M be a Turing machine that

decides L in EXPSPACE. Given an input ā ∈ Σ∗, we construct in polynomial time with respect

to M and ā a parameterized regular expression eM ,ā such that L✷(eM ,ā) 6= /0 if and only if M

accepts ā.

Assume that M = (Q,Γ,q0,{qm},δ), where Q = {q0, . . . ,qm} is the set of states, Γ =

{0,1,B} is the tape alphabet (B is the blank symbol), the initial state is q0, qm is the unique final

state, and δ : (Q\{qm})×Γ→Q×Γ×{L,R} is the transition function. Notice that we assume

without loss of generality that no transition is defined on the final state qm. Furthermore, we

also assume without loss of generality that every accepting run of M ends after an odd number

of computations. Since M decides L in EXPSPACE, there is a polynomial S() such that, for

every input ā over Σ, M decides ā using space of order 2S(|ā|).

Let ā = a0a1 · · ·ak−1 ∈ Σ∗ be an input for M (that is, each ai, 0≤ i≤ k−1, is a symbol in

Σ). For notational convenience we will assume from now on that S(|ā|) = n. Due to Lemma

8.2.2, it suffices to construct a set E of parameterized regular expressions, such that
⋂

e∈E L✷(e)

is empty if and only if M accepts on input ā.

Consider the alphabet Σ = {0,1}. The idea of the reduction is to code the run of M on

input ā into a word in Σ∗, in such a way that
⋂

e∈E L✷(e) contains precisely the words that code

an accepting run τ for M on input ā. In intuitive terms, such a word w represents the sequence

of “instant descriptions” of M with respect to run τ. We do it as follows.

Assume that M performs m computations according to the run τ. With each 1≤ i≤ 2n and

i≤ j ≤ m, we associate a symbol bi, j ∈ Γ∪ (Γ×Q), in such a way that bi, j corresponds to the

symbol in the i-th cell of the tape in the j-th step of the run τ, if the head of M in the j-th step

of the computation is not pointing into such cell, and otherwise as the pair (c,q), where c is

the symbol in the i-th cell of the tape in the j-th step of the run τ, and q is the state of M in

the j-th step of τ. We need each bi, j to be coded as a string over {0,1}. In order to do this, let

p = |Γ∪ (Γ×Q)|. We shall code each symbol in Γ∪ (Γ×Q) in unary, i.e. as a p-bit string. We

denote by [bi, j] the unary representation of the symbol bi, j .

We also need to include information about the action that was performed in each cell of M

at each step of the computation (i.e. read the cell, point the cell after moving the pointer, or

nothing). More precisely, let [nothing] = 100, [read] = 101 and [head] = 111, and define, for

each 1≤ i≤ 2n and 1≤ j ≤ m, the string [aci, j] as [read] if M is to read the content of the i-th

cell at the j-th step of the computation; [head], if after the j-th computation M moves the head

to point into the i-th cell of the tape, and [nothing] otherwise.
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Roughly speaking, the idea is to define w = w1 ·w2 · · ·wm, where each w j is of the form:

[ac(0, j)] · [b(0, j)] · [0] · [b(0, j+1)]·

[ac(1, j)] · [b(1, j)] · [1] · [b(1, j+1)]·

...

[ac(2n−1, j)] · [b(2n−1, j)] · [2
n−1] · [b(2n−1, j+1)] (8.1)

For example, assume that in the first step of the computation, M reads the first cell of the

tape, writes a blank symbol, changes from state q0 to q1, and advances to the right. That is, the

first and second configurations of M are as depicted in the following figure:

a0 a1 a2 · · · ak B · · · =⇒ B a1 a2 · · · ak B · · ·

↑ ↑

q0 q1

Then w1 corresponds to the string

[read] · [(a0,q0)] · [0] · [B] ·

[head] · [a1] · [1] · [(a1,q1)] ·

[nothing] · [a2] · [2] · [a2] ·
...

[nothing] · [ak] · [k] · [ak] ·

[nothing] · [B] · [k+1] · [B] ·
...

[nothing] · [B] · [2n−1] · [B] ·

Essentially, we use 4 substrings to describe the action on each cell of the tape. The first

substring, of length 3, refers to the action performed in that computation. In this case, an action

[read] accompanies the first cell, since it was the cell read in the first step of the computation,

and an action [head] accompanies the second cell, since as a result of the computation the head

of M is now pointing into that cell. As expected, all other actions in w1 are set to [nothing],

since nothing was done to those cells in the first step of the computation. The second substring

(of length p) refers to the content of the cell before the computation, the third is of length n, and

contains the number identifying a particular cell as the i-th cell, from left to right, where i is

binary, and the fourth string, of length p, is the content of that cell right after the computation.

Finally, we also need to explicitly distinguish even and odd computations of M . Formally,

let [even] = 000 and [odd] = 001. We construct E in such a way that if there is a word w in
⋂

e∈E L✷(e) then it is of the form:

[even] ·w1 · [even] · [odd] ·w2 · [odd] · [even] ·w3 · [even] · · · [odd] ·wm · [odd],
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where each w j is of the form (8.1), as explained above.

The rest of the proof is devoted to construct such set E . We divide the set E into sets E1,

E2, E3, E4 and E5.

First, E1 contains only the expression

(

[even]
(
[action](0 | 1)p(0 | 1)n(0 | 1)p

)∗
[even][odd]

(
[action](0 | 1)p(0 | 1)n(0 | 1)p

)∗
[odd]

)∗

,

where [action] is just a shorthand for the expression ([read] | [head] | [nothing]). In intuitive

terms, it ensures that all words accepted by
⋂

e∈E L✷(e) are repetitions of sequences of sub-

words of length 3+2p+n, contained between [even] or [odd] strings.

So far, we only have that all words in
⋂

e∈E L✷(e) must be of the above form. The next step

is to ensure that the number of substrings of the form
(
[action](0 | 1)p(0 | 1)n(0 | 1)p

)
between

any two strings [even] or [odd] has to be precisely 2n (one for each cell used in the tape) and,

furthermore, the numbers in binary representation used to code the position of the cell in each

of these substrings (i.e., the part corresponding to (0 | 1)n ) have to be arranged in numerical

order. To ensure this we use a set of regular expressions E2. It is defined in such a way that the

language
⋂

e∈E2 L(e) corresponds to the language accepted by the expression:

(
([even] | [odd]) · [action] · (0 | 1)p · [0] · (0 | 1)p ·

[action] · (0 | 1)p · [1] · (0 | 1)p ·

...

[action] · (0 | 1)p · [2n−1] · (0 | 1)p · ([even] | [odd])
)∗

The definition of the set E2 is standard, but very technical, and it is therefore omitted. It is

based on the idea of representing the string [0] · [1] · · · [2n−1] as an intersection of a polynomial

number of regular expressions stating all together that, for each even i≤ 2n−1, the string [i] has

to be followed by the string [i+1], and likewise for each odd number (see e.g. [Kozen, 1977]).

Next, we ensure that the state and contents of the cells are carried along the descriptions.

More precisely, E3 must ensure that, if for some 1≤ i< 2n and 1≤ j≤m, the word w j features

a substring of the form:

[even] · · · [action] · (0 | 1)p · [i] · [b(i, j)] · · · [even],

with b(i, j) ∈ Γ∪ (Γ×Q), then it must be directly followed by a string of form

[odd] · · · [action] · [b(i, j)] · [i] · · · [odd],

so that the slots representing the content of the i-th cell after the j-th computation coincide with

the slots representing the content of the i-th cell before the j+1-th computation.
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It is straightforward to state such a condition by enumerating all cases, for each 0 ≤ i ≤

2n− 1, but this would yield exponentially many equations. Instead, we exploit the use of pa-

rameters in our expression. We include in E3 parameterized expressions E3
1 and E3

2 , where E3
1

(and, correspondingly, E3
2 ) force that the content of the cell x1 · x2 · · ·xn after an even (corre-

spondingly, odd) computation corresponds exactly to the state before the next computation. To

define E3
1 , consider the following expressions, for each b ∈ Γ∪ (Γ×Q):

E3
(1,b,even) = [even] · ([action] · (0 | 1)p · (0 | 1)n · (0 | 1)p)∗·

[action] · (0 | 1)p · x1 · · ·xn · [b]·

([action] · (0 | 1)p · (0 | 1)n · (0 | 1)p)∗ · [even]

E3
(1,b,odd) = [odd] · ([action] · (0 | 1)p · (0 | 1)n · (0 | 1)p)∗·

[action] · [b] · x1 · · ·xn · (0 | 1)
p·

([action] · (0 | 1)p · (0 | 1)n · (0 | 1)p)∗ · [odd]

Then we define E3
1 as follows:

E3
1 =

( ⋃

b∈Γ∪(Γ×Q)

(
E3
(1,b,even) ·E

3
(1,b,odd)

)
)∗

Expression E3
2 is defined accordingly, simply by interchanging the order of [even] and [odd]

strings, carefully checking that the first step of the computation is even, and allowing for the

possibility that a word representing a computation ends in an odd configuration (that is, an odd

configuration may be followed by an even configuration with the aforementioned properties,

or may be the last configuration of the computation).

All that is left to do is to construct regular expressions that ensure that each of the substrings

w j (1≤ j ≤ m) of the word w in
⋂

e∈E L✷(e) represent valid computations of M . This is done

by set E4 of expressions, accepting all words such that:

• Between each two consecutive [even] or [odd] strings there is exactly one [read] and one

[head] in the slots devoted to [action] in form (8.1).

• No other cell can change its context, except for those marked with [read] or [head], and

• The content that changes in the cells marked by [read] and [head] respects the transition

function δ of M .

Moreover, we also add a set of expressions E5, accepting words such that:

• The initial configuration of M is encoded as the first step of the computation represented

by w.
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• The last computation ends in a final state of M .

It is a tedious, but straightforward task to define the sets E4 and E5 of expressions. Further-

more, the fact that
⋂

e∈E L✷(e) is empty if and only if M accepts on input ā follows immedi-

ately from the remarks given along the construction. This finishes the proof. ✷

The generic reduction used in the proof of EXPSPACE-hardness of NONEMPTINESS✷ also

provides lower bounds on the minimal sizes of words in languages L✷(e) (note that the lan-

guage L✸(e) always contains a word of linear size in |e|).

Corollary 8.2.3 There exists a polynomial p : N→N and a sequence of parameterized regular

expressions {en}n∈N such that each en is of size at most p(n), and every word in the language

L✷(en) has size at least 22n

.

The single exponential bound was already hinted in Example 7.2.2. Let us now explain the

doubly exponential bound.

Proof: Clearly, for each n ∈ N, it is possible to construct a deterministic Turing machine Mn

over alphabet Σ = {0,1} that on input 1n works for exactly 22n

steps, using 2n cells. Further-

more, it is possible to specify this machine using polynomial size with respect to n.

Next, using the construction in the reduction of Theorem 8.2.1, construct a set of parame-

terized regular expressions E(Mn,1n) such that the single word wn ∈
⋂

e∈E(Mn ,1n)
L✷(e) represents

a run (or, more precisely, a sequence of configurations) of Mn on input 1n. Note that each set

E(Mn,1n) is of size polynomial with respect to n. Moreover, according to the reduction in the

proof of Theorem 8.2.1,
⋂

e∈E(Mn ,1n)
L✷(e) contains a single word, of length greater than 22n

,

representing the single run of Mn on input 1n.

For each n, we define en as the expression such that L✷(en) is empty if and only if
⋂

e∈E(Mn ,1n)
L✷(e) is empty, constructed as in the proof of Lemma 8.2.2, so that en is of size

polynomial with respect to E(Mn,1n). It follows from the proof of such lemma that every word

accepted by L✷(en) has size at least 22n

. ✷

8.3 Membership

We now turn to the membership problem. We can easily show CONP-hardness for incomplete

automata using the results in Chapter 4 and the remark in Proposition 7.2.1. However, upper

bounds for both semantics, and lower bounds for parameterized regular expressions, remain to

be shown.

Theorem 8.3.1 • The problem MEMBERSHIP✷ is CONP-complete. It remains CONP-

hard even if the input is a parameterized regular expression.

• The problem MEMBERSHIP✸ is NP-complete. It remains NP-hard even if the input is a

parameterized regular expression.
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Proof: We only show the upper bounds, the lower bounds follow from a much more stronger

result that we present afterwards.

We begin with MEMBERSHIP✷ Let A = (Q,Σ,W ,q0,F,δ) be an incomplete automaton.

Recall that A f in is the automaton (Q,Σ,W ,q0,F,δ
f in), where δ f in ⊆ δ is the set of transitions

in δ of the form (q1,L,q2) such that L defines a finite language over alphabet Σ∪W . Moreover,

recall that the proof of Proposition 7.3.3 shows that each NFA ν(A f in) is of polynomial size

w.r.t. A , for every possible valuation ν = (η,θ) for A f in. The same argument can be used to

show that every valuation for A f in can be easily represented in polynomial space with respect

to A .

Then, given an incomplete automaton A = (Q,Σ,W ,q0,F,δ) and a word w, the CONP

algorithm first constructs A f in (which can be done in polynomial time as we only have to

remove all those transitions of the form (p,L,q) in A such that L uses the Kleene-star ∗ in a

non-trivial way), then guesses in polynomial time a valuation ν = (η,θ) for A f in, then checks

in polynomial time that ν is a valuation for A f in, and finally, checks in polynomial time that

w /∈ L(ν(A f in). The correctness and soundness of this procedure follow immediately from

Lemma 7.3.2.

For the case of MEMBERSHIP✸, one just needs to guess a valuation ν(η,θ) for A such that

ν(A) accepts the word w. Of course, θ needs not send any transition in A of form (q1,L,q2)

to a transition (q1,w
′,q2) where w′ is of size greater that w, so there always exists one such

valuation ν of polynomial size. ✷

The similarities between incomplete automata and certain answers for graph pattern are

even more evident with this next result, showing that the lower bounds for the membership

problem are very resilient. To show this, we adapt the notion of codd patterns and acyclic

underlying graphs for the case of parameterized regular expression, as follows:

We say that a parameterized regular expression is simple if each variable occurs only once

in the expression. Moreover, an expression has star height 0 if it does not make use of the

Kleene star: these denote finite languages, and each finite language is denoted by such an

expression.

Note that these restrictions are actually stronger than the equivalent restrictions for pa-

rameterized automata. In fact, it is not difficult to construct an incomplete automata with a

single label variable, used only once, that is not equivalent to any simple parameterized regular

expression.

Proposition 8.3.2 The complexity of the membership problem remains as in Theorem 8.3.1

over the classes of simple expressions, and expressions of star-height 0. Over the class of

simple expressions of star-height 0, MEMBERSHIP✸ can be solved in polynomial time (actually,

in time O(nm log2 n), where n is the size of the expression and m is the size of the word).
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Proof: For the sake of readability, in this proof we use ∪ – instead of | – for representing the

operation of union between regular expressions.

1) ✸-semantics: We first consider the ✸-semantics. We start by showing NP-hardness of

MEMBERSHIP✸, for regular expressions of star-height 0. We use a reduction from POSI-

TIVE 1-3 3-SAT, which is the following NP-hard decision problem: Given a conjunction

ϕ of clauses, with exactly three literals each, and in which no negated variable occurs, is there

a truth assignment to the variables so that each clause has exactly one true variable?

The reduction is as follows. Let ϕ =C1∧·· ·∧Cm be a formula in CNF, where each Ci (1≤

i ≤ m) is a clause consisting of exactly tree positive literals. Let {p1, . . . , pn} be the variables

that appear in ϕ. With each propositional variable pi (1 ≤ i ≤ n) we associate a different

variable xi ∈ V. We show next how to construct, in polynomial time from ϕ, a parameterized

regular expression e over alphabet Σ = {a,0,1} and a word w over the same alphabet, such that

there is an assignment to the variables of ϕ for which each clause has exactly one true variable

if and only if w ∈ L✸(e).

The parameterized regular expression e is defined as ae1ae2a · · ·aema, where the regular

expression ei, for 1 ≤ i ≤ m, is defined as follows: Assume that Ci = (p j ∨ pk ∨ pℓ), where

1 ≤ j,k, ℓ ≤ n. Then ei is defined as (x jxkxℓ |x jxℓxk |xkx jxℓ |xkxℓx j |xℓx jxk |xℓxkx j). That is, ei

is just the union of all the possible forms in which the variables in V that correspond to the

propositional variables that appear in Ci can be ordered. Further, the word w is defined as

(a100)ma. Clearly, e and w can be constructed in polynomial time from ϕ. Next we show that

there is an assignment for variables {p1, . . . , pn} for which each clause has exactly one true

variable if and only if w ∈ L✸(e).

Assume first that w ∈ L✸(e). Then there exists a valuation ν : {x1, . . . ,xn} → Σ such that

w∈L(ν(e)). Thus, it must be the case that the word a100 belongs to ν(aei), for each 1≤ i≤m.

But this implies that if Ci = (x j∨ xk∨ xℓ), then ν assigns value 1 to exactly one of the variables

in the set {x j,xk,xℓ} and it assigns value 0 to the other two variables. Let us define now a

propositional assignment σ : {p1, . . . , pn}→ {0,1} such that σ(pi) = ν(xi), for each 1≤ i≤ n.

It is not hard to see then that for each clause C j, 1≤ j ≤ m, σ assigns value 1 to exactly one of

its propositional variables.

Assume, on the other hand, that there is a propositional assignment σ : {p1, . . . , pn} →

{0,1} that assigns value 1 to exactly one variable in each clause Ci, 1 ≤ i ≤ m. Let us define

ν as a valuation from {x1, . . . ,xn} into {0,1} such that ν(xi) = 1 if and only if σ(pi) = 1.

Clearly then 100 ∈ L(ν(ei)), for each 1≤ i≤m. Thus, (a100)ma ∈ L(ν(e)). We conclude that

w ∈ L✸(e).

Next we prove NP-hardness of MEMBERSHIP✸ for simple expressions. We use a reduction

from 3-SAT. Let ϕ =
∧

1≤i≤n(ℓ
1
i ∨ ℓ

2
i ∨ ℓ

3
i ) be a propositional formula in 3-CNF over variables

{p1, . . . , pm}. That is, each literal ℓ
j
i , for 1 ≤ i ≤ n and 1 ≤ j ≤ 3, is either pk or ¬pk, for
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1 ≤ k ≤ m. Next we show how to construct in polynomial time from ϕ, a simple regular

expression e over alphabet Σ = {a,b,c,d,0,1} and a word w over the same alphabet such that

ϕ is satisfiable if and only if w ∈ L✸(e).

The regular expression e is defined as f ∗, where f := a( f1 ∪ g1∪ ·· · ∪ fm∪ gm)b, and the

regular expressions fi and gi are defined as follows: Intuitively, fi (resp. gi) codifies pi (resp.

¬pi) and the clauses in which pi (resp. ¬pi) appears. Formally, we define fi (1≤ i≤m) as

(
(ci∪

⋃

{1≤ j≤n|pi = ℓ1
j or pi = ℓ2

j or pi = ℓ3
j}

d j) · xi),

where xi is a fresh variable in V. In the same way we define gi as

((ci ∪
⋃

{1≤ j≤n|¬pi = ℓ1
j or ¬pi = ℓ2

j or ¬pi = ℓ3
j}

d j) · x̄i),

where x̄i is a fresh variable in V. The variable xi (resp. x̄i) is said to be associated with pi (resp.

¬pi) in e. Clearly, e is a simple regular expression and can be constructed in polynomial time

from ϕ.

The word w is defined as:

ac1bac0bacc1bacc0b · · · acm1bacm0bad1badd1b · · · adn1b.

Clearly, w can be constructed in polynomial time from ϕ. Next we show that ϕ is satisfiable if

and only if w ∈ L✸(e).

Assume first that w ∈ L✸(e). That is, there is a valuation ν for the variables in the set

{x1, x̄1, . . . ,xm, x̄m} over Σ such that w ∈ L(ν(e)). But then, given the form of w, it is clear that

aci1b and aci0b belong to L(ν( f )), for each 1 ≤ i ≤ m. Notice that the only way for this to

happen is that both ν(xi) and ν(x̄i) take its value in the set {0,1}, and, further, ν(xi) 6= ν(x̄i). For

the same reasons, ad j1b ∈ L(ν( f )), for each 1≤ j ≤ n. But the only way for this to happen is

that for each 1≤ j≤ n it is the case that either the variable associated with ℓ1
j or with ℓ2

j or with

ℓ3
j in e is assigned value 1 by ν. Thus, the propositional assignment σ : {p1, . . . , pm} → {0,1},

defined as σ(pi) = 1 if and only if ν(xi) = 1, is well-defined and satisfies ϕ.

Assume, on the other hand, that there is a satisfying propositional assignment σ :

{p1, . . . , pm} → {0,1} for ϕ. Consider the following valuation ν for e: For each 1 ≤ i ≤ m

it is the case that ν(xi) = σ(pi) and ν(x̄i) = 1−σ(xi). Using essentially the same techniques as

in the previous paragraph it is possible to show that w∈L(ν(e)), and, therefore, that w∈L✸(e).

Next we show that MEMBERSHIP✸ can be solved in time O(mn · log2 n) for simple ex-

pressions of star-height 0. Given a regular expression e ∈ REG(Σ,V) that is simple and of

star-height 0, one can construct in time O(n · log2 n) [Hagenah and Muscholl, 1998] an ε-free

NFA A over Σ∪V that accepts precisely L(e), and satisfies the following two properties: (1)

Its underlying directed graph is acyclic (this is because e does not mention the Kleene star),
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and (2) for each x ∈V that is mentioned in e there is at most one pair (q,q′) of states of A such

that A contains a transition from q to q′ labeled x (this is because e is simple). From Lemma

7.1.4, checking whether w∈ L✸(e), for a given word w∈ Σ∗, is equivalent to checking whether

w ∈ L(ν(A)), for some valuation ν for A . We show how the latter can be done in polynomial

time.

First, construct in time O(m) a deterministic finite automaton (DFA) B over Σ such that

L(B) = {w}. We assume without loss of generality that the set Q of states of A is disjoint

from the set P of states of B . Next we construct, the following NFA A ′ over the alphabet

Σ∪ (V× Σ) as follows: The set of states of A ′ is Q×P. The initial state of A ′ is the pair

(q0, p0), where q0 is the initial state of A and p0 is the initial state of B . The final states of A ′

are precisely the pairs (q, p) ∈ Q×P such that q is a final state of A and p is a final state of B .

Finally, there is a transition in A ′ from state (q, p) to state (q′, p′) labeled a ∈ Σ if and only if

there is a transition in A from q to q′ labeled a and there is a transition in B from p to p′ labeled

a. There is a transition in A ′ from state (q, p) to state (q′, p′) labeled (x,a) ∈ V×Σ if and only

there is a transition in A from q to q′ labeled x and there is a transition in B from p to p′ labeled

a. Clearly, such construction can be performed by checking all combinations of transitions of

both A and B , and thus it can be performed in time O(mn· log2 n). Checking whether L(A ′) 6= /0

can easily be done in linear time with respect to the size of A ′, thus obtaining the O(mn · log2 n)

bound. We prove next that checking this is equivalent to checking whether w ∈ L(ν(A)), for

some valuation ν for A , which finishes the proof of the proposition in terms of the ✸-semantics.

Assume first that L(A ′) 6= /0. Let (q0, p0)
u1−→ (q1, p1)

u2−→ ·· ·
un−1
−−→ (qn−1, pn−1)

un−→ (qn, pn)

be an accepting run of A ′. That is, u1u2 · · ·un ∈ (Σ∪ (V× Σ))∗ and (qn, pn) is a final state

of A ′. Since the underlying directed graph of A is acyclic, and each variable x mentioned in

e appears in at most one transition of A , it must be the case that for each 1 ≤ i < j ≤ n, if

ui = (xi,ai) ∈ V×Σ and u j = (x j,a j) ∈ V×Σ then xi 6= x j. This implies that we can define

a mapping ν : W → Σ, where W is the set of variables used in transitions of A , such that

ν(x) = a, if ui = (x,a) for some 1 ≤ i≤ n, and ν(x) is an arbitrary element a′ ∈ Σ, otherwise.

It is not hard to see that q0
a1−→ q1

a2−→ ·· ·
an−1
−−→ qn−1

an−→ qn is also an accepting run of L(ν(A))

and that a1a2 · · ·an = w. The latter can be proved as follows: Let f : {u1, . . . ,un} → Σ be

the mapping such that f (ui) = ui, if ui = a ∈ Σ, and f (ui) = a, if ui = (x,a) ∈ V×Σ. Then

clearly p0
f (u1)
−−−→ p1

f (u2)
−−−→ ·· ·

f (un−1)
−−−−→ pn−1

f (un)
−−−→ pn is an accepting run of B , and, therefore,

w = f (u1) · · · f (un). Further, let g : {u1, . . . ,un} → Σ be the mapping such that g(ui) = ui,

if ui = a ∈ Σ, and g(ui) = ν(x) = a, if ui = (x,a) ∈ V×Σ. Then clearly f (ui) = g(ui), for

each 1 ≤ i ≤ n, and, further, q0
g(u1)
−−−→ q1

g(u2)
−−−→ ·· ·

g(un−1)
−−−−→ qn−1

g(un)
−−−→ qn is an accepting run of

L(ν(A)). We conclude that w ∈ L(ν(A)).

Assume, on the other hand, that w ∈ L(ν(A)), for some valuation ν for A . Suppose that

w = a1a2 · · ·an, where each ai ∈ Σ (1 ≤ i ≤ n), and let q0
a1−→ q1

a2−→ ·· ·
an−1
−−→ qn−1

an−→ qn be an
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accepting run of L(ν(A)); i.e. qn is a final state of A . Assume that i1 < i2 < · · · < im are the

only indexes in the set {0,1, . . . ,n− 1} such that, for each 1 ≤ j ≤ m, there is no transition

labeled ai j+1 from qi j
to qi j+1 in A . Then there must be a transition in A from qi j

to qi j+1

labeled xi j
∈ V. Consider an arbitrary accepting run p0

a1−→ p1
a2−→ ·· ·

an−1
−−→ pn−1

an−→ pn of B ;

i.e. pn is a final state of B . Then it is clear that

(q0, p0)
a1−→ (q1, p1) · · · (qi1 , pi1)

(xi1
,ai1+1)

−−−−−→ (qi1+1, pi1+1) · · ·

(qim , pim)
(xim ,aim+1)
−−−−−−→ (qim+1, pim+1) · · · (qn−1, pn−1)

an−→ (qn, pn)

is an accepting run of A ′. Thus, L(A ′) 6= /0.

2) ✷-semantics: Now we deal with the ✷-semantics. That MEMBERSHIP✷ is CONP-hard, even

over the class of expressions of star-height 0, follows from the second part of Theorem 5.1.1.

Indeed, we constructed there a pattern π whose underlying graph is a DAG and an RPQ of

form (x,w,y), where w is a word such that computing the certain answers of Q over π was

CONP-hard. The pattern π can be seen as an incomplete automata, and we can transform it into

a parameterized regular expression of star height 0 in polynomial time. In fact, such theorem

proves something stronger: MEMBERSHIP✷ is CONP-hard for the class of expressions of star-

height 0, even for a fixed word w. Next we prove that MEMBERSHIP✷ is CONP-hard, even

over the class of simple regular expressions.

We use a reduction from 3-SAT to the complement of MEMBERSHIP✷ over the class of

simple expressions. Let ϕ =
∧

1≤i≤n(ℓ
1
i ∨ ℓ

2
i ∨ ℓ

3
i ) be a propositional formula in 3-CNF over

variables {p1, . . . , pm}. That is, each literal ℓ j
i , for 1≤ i≤ n and 1≤ j ≤ 3, is either pk or ¬pk,

for 1 ≤ k ≤ m. Next, we show how to construct in polynomial time from ϕ, a simple regular

expression e over alphabet Σ = {a,b,0,1} and a word w over the same alphabet such that ϕ is

satisfiable if and only if w 6∈ L✷(e).
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We start by defining w as the following word, where we have distinguished several prefixes

that will be used in the rest of the proof:

1111a11111ab1110a11110ab111111a1111111ab111110a1111110ab · · ·
︸ ︷︷ ︸

w′,w′′,w+
i ,w

−
i ,w

u
j

w−i
︷ ︸︸ ︷

· · ·12i+11a12i+21a
︸ ︷︷ ︸

w+
i

b12i+10a12i+20a b · · ·12m+11a12m+21ab12m+10a12m+20ab

︸ ︷︷ ︸

w′,w′′,wu
j

13(m+1)+10a13(m+1)+20a13(m+1)+30ab16(m+1)+10a16(m+1)+20a16(m+1)+30ab · · ·
︸ ︷︷ ︸

w′,w′′,wu
j

wu
j

︷ ︸︸ ︷

· · ·13 j(m+1)+10a13 j(m+1)+20a13 j(m+1)+30a b · · ·
︸ ︷︷ ︸

w′,w′′

w′

︷ ︸︸ ︷

· · ·13n(m+1)+10a13n(m+1)+20a13n(m+1)+30ab
︸ ︷︷ ︸

w′′

baa. (8.2)

As it is shown above, we denote by w′ the prefix of w such that w = w′aa and by w′′ the prefix

of w such that w = w′′baa. Clearly, w can be constructed in polynomial time from ϕ.

The regular expression e is defined as (Σ∗b∪ ε) f (bΣ∗∪ ε), where f is defined as:

(
( f1∪g1∪ ·· · fm∪gm)(a∪ ε)

)∗
.

Intuitively fi (resp. gi) codifies pi (resp. ¬pi) and the clauses in which pi (resp. ¬pi) appears.

Formally, we define fi (1≤ i≤ m) as

(
({w′}∪{w′′}∪12i+1∪

⋃

{1≤ j≤n|pi = ℓ1
j}

13 j(m+1)+1∪
⋃

{1≤ j≤n|pi = ℓ2
j}

13 j(m+1)+2∪
⋃

{1≤ j≤n|pi = ℓ3
j}

13 j(m+1)+3) · xia
)
,

where xi is a fresh variable in V. In the same way we define gi as

(
({w′}∪{w′′}∪12i+2∪

⋃

{1≤ j≤n|¬pi = ℓ1
j}

13 j(m+1)+1∪
⋃

{1≤ j≤n|¬pi = ℓ2
j}

13 j(m+1)+2∪
⋃

{1≤ j≤n|¬pi = ℓ3
j}

13 j(m+1)+3) · x̄ia
)
,

where x̄i is a fresh variable in V. The variable xi (resp. x̄i) is said to be associated with pi (resp.

¬pi) in e. Clearly, e is a simple regular expression and can be constructed in polynomial time

from ϕ.

Next we show that ϕ is satisfiable if and only if w 6∈ L✷(e).

We prove first that if w 6∈ L✷(e) then ϕ is satisfiable. Assume that w 6∈ L✷(e). Then there

exists a valuation ν : {x1, x̄1, . . . ,xm, x̄m} → Σ such that w 6∈ L(ν(e)). First of all, we prove
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that for each 1 ≤ i ≤ m both ν(xi) and ν(x̄i) belong to the set {0,1}. Assume, for the sake

of contradiction, that this is not the case. Suppose first that ν(xi) = a, for some 1 ≤ i ≤ m.

Then it is clear that L(w′aa)⊆ L(ν(e)) (because L(w′ν(xi)a)⊆ L(ν(e))). But w = w′aa, and,

therefore, w ∈ L(ν(e)), which is a contradiction. Suppose now that ν(xi) = b, for some 1≤ i≤

m. Then, again, it is clear that L(w′′baa)⊆ L(ν(e)) (because L(w′′ν(xi)aa)⊆ L(ν(e))). As in

the previous case, w = w′′baa, and, therefore, w ∈ L(ν(e)), which is a contradiction. The other

case, when ν(x̄i) ∈ {a,b}, for some 1≤ i≤ m, is completely analogous.

Next we prove that for each 1 ≤ i ≤ m it is the case that ν(xi) = 1− ν(x̄i). Assume

otherwise. Then for some 1 ≤ i ≤ m it is the case that ν(xi) = ν(x̄i). Suppose first that

ν(xi) = ν(x̄i) = 1. Consider the unique prefix w1 of w that is of the form u12i+11a12i+21a, for

u∈Σ∗. Then w is of the form w1w2, where w2 ∈ bΣ∗. Since w 6∈L(ν(e)), it must be the case that

w 6∈ L((Σ∗b∪ ε)ν( f )(bΣ∗ ∪ ε)). It follows that w1 6∈ L((Σ∗b∪ ε)ν( f )). But since w1 is of the

form u12i+11a12i+21a, it follows that u= ε or u= u′b, for some u′ ∈Σ∗. In any case it must hold

that 12i+11a12i+21a 6∈ L(ν( f )). Notice, however, that L(12i+1ν(xi)a12i+2ν(x̄i)a) ⊆ L(ν( f )).

Hence, 12i+11a12i+21a ∈ L(ν( f )), which is a contradiction. Suppose, on the other hand, that

ν(xi) = ν(x̄i) = 0. Consider the unique prefix w1 of w that is of the form u12i+10a12i+20a, for

u∈Σ∗. Then w is of the form w1w2, where w2 ∈ bΣ∗. Since w 6∈L(ν(e)), it must be the case that

w 6∈ L((Σ∗b∪ ε)ν( f )(bΣ∗ ∪ ε)). It follows that w1 6∈ L((Σ∗b∪ ε)ν( f )). But since w1 is of the

form u12i+10a12i+20a, it follows that u= ε or u= u′b, for some u′ ∈Σ∗. In any case it must hold

that 12i+10a12i+20a 6∈ L(ν( f )). Notice, however, that L(12i+1ν(xi)a12i+2ν(x̄i)a) ⊆ L(ν( f )).

Hence, 12i+10a12i+20a ∈ L(ν( f )), which is a contradiction.

We can then define a propositional assignment σ : {p1, . . . , pm}→ {0,1} such that σ(pi) =

ν(xi), for each 1 ≤ i ≤ m. Notice, from our previous remarks, that σ(¬pi) = 1− ν(xi) =

ν(x̄i), for each 1 ≤ i ≤ m. We prove next that σ satisfies ϕ. Assume this is not the case.

Then for some 1 ≤ j ≤ n it is the case that σ(ℓ1
j) = σ(ℓ2

j) = σ(ℓ3
j) = 0. Consider now the

unique prefix w1 of w such that w1 is of the form ub13 j(m+1)+10a13 j(m+1)+20a13 j(m+1)+30a,

for u ∈ Σ∗. Then w is of the form w1w2, where w2 ∈ bΣ∗. Since w 6∈ L(ν(e)), it must be the

case that w 6∈ L(Σ∗bν( f )bΣ∗). It follows that w1 6∈ L(Σ∗bν( f )). But since w1 is of the form

ub13 j(m+1)+10a13 j(m+1)+20a13 j(m+1)+30a, it is the case that

13 j(m+1)+10a13 j(m+1)+20a13 j(m+1)+30a 6∈ L(ν( f )).

Let q1, q2 and q3 be the variables in e associated with ℓ1
j , ℓ2

j and ℓ3
j , respectively. Then

it cannot be the case that ν(q1) = ν(q2) = ν(q3) = 0. Assume otherwise. It is clear that

L(13 j(m+1)+1ν(q1)a13 j(m+1)+2ν(q2)a13 j(m+1)+3ν(q3)a)⊆ L(ν( f )), and, therefore,

13 j(m+1)+10a13 j(m+1)+20a13 j(m+1)+30a ∈ L(ν( f )),

which is a contradiction. Thus, either ν(q1) = σ(ℓ1
j) = 1 or ν(q2) = σ(ℓ2

j) = 1 or ν(q3) =

σ(ℓ3
j) = 1. This is our desired contradiction.



8.4. Universality 151

We prove second that if ϕ is satisfiable then w 6∈ L✷(e). Assume that ϕ is satisfiable. Then

there exists a propositional assignment σ : {p1, . . . , pm} → {0,1} that satisfies ϕ. We define a

valuation ν : {x1, x̄1, . . . ,xm, x̄m}→ {0,1} for e as follows: For each 1≤ i≤m it is the case that

ν(xi) = σ(pi) and ν(x̄i) = 1−σ(pi). We prove next that w 6∈ L(ν(e)).

Clearly, w 6∈ L(ν(e)) if and only if for each words w1,w2,w3 ∈ Σ∗ such that w = w1w2w3

it is the case that w1 6∈ L(Σ∗b∪ ε) or w2 6∈ L(ν( f )) or w3 6∈ L(bΣ∗ ∪ ε). Thus, in order to

prove that w 6∈ L(ν(e)) it is enough to prove that for each words w1,w2,w3 ∈ Σ∗ such that

w = w1w2w3,

(*) if w1 ∈ L(Σ∗b∪ ε) and w3 ∈ L(bΣ∗∪ ε) then w2 6∈ L(ν( f )).

Take arbitrary words w1,w2,w3 ∈ Σ∗ such that w = w1w2w3. We consider several cases:

1. Either w1 6∈ L(Σ∗b∪ ε) or w3 6∈ L(bΣ∗∪ ε). Then (*) is trivially true.

2. It is the case that w1 ∈ L(Σ∗b ∪ ε), w3 ∈ L(bΣ∗ ∪ ε), and w2 is of the form

12i+11a12i+21au, for some 1 ≤ i ≤ m and u ∈ Σ∗. Assume, for the sake of contradic-

tion, that w2 ∈ L(ν( f )). Since clearly there is no word accepted by L(ν( f )) with prefix

baa, it must be the case that w3 is not the empty word, and, therefore, that w3 ∈ L(bΣ∗).

Thus, the only possibility for w2 to belong to L(ν( f )) is that 12i+11a ∈ L(ν( fi)) and

12i+21a ∈ L(ν(gi)). But this can only happen if ν(xi) = 1 and ν(x̄i) = 1, which is our

desired contradiction (since ν(xi) = 1−ν(x̄i)).

3. It holds that w1 ∈ L(Σ∗b∪ ε), w3 ∈ L(bΣ∗∪ ε), and w2 is of the form 12i+10a12i+20au,

for some 1≤ i≤ m and u ∈ Σ∗. This case is completely analogous to the previous one.

4. It is the case that w1 ∈ L(Σ∗b∪ ε), w3 ∈ L(bΣ∗∪ ε), and w2 is of the form

13 j(m+1)+10a13 j(m+1)+20a13 j(m+1)+30au,

for some 1≤ j≤ n and u∈ Σ∗. Assume, for the sake of contradiction, that w2 ∈L(ν( f )).

It is easy to see that the only way in which this can happen is that ν(q1) = ν(q2) =

ν(q3) = 0, where q1, q2 and q3 are the variables in e that are associated with ℓ1
j , ℓ

2
j and

ℓ3
j , respectively. Thus, σ(ℓ1

j) = σ(ℓ2
j) = σ(ℓ3

j) = 0, which is or desired contradiction.

This finishes the proof of the proposition. ✷

8.4 Universality

Somewhat curiously, the universality problem is more complex for the possibility semantics

L✸, even for parameterized automata. Indeed, consider an incomplete automaton A over Σ and
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W . For the certainty semantics, it suffices to construct the equivalent automata A f in without

edges labelled with expressions denoting an infinite alphabet, and just guess a word w and a

valuation such that w 6∈ L(ν(A f in)). We have shown in Section 7.3 that all such ν(A f in) are of

polynomial size, which results in a PSPACE upper bound for this problem. This is the best that

we can do, as the universality problem is PSPACE-hard even for standard regular expressions.

On the other hand, a simple adaptation to the proof of Theorem 10 in [Freydenberger, 2013]

shows that this problem is undecidable for incomplete automata under possibility semantics.

But even if one considers only parameterized automata, in order to solve universality one can

expect that all possible valuations for A will need to be analyzed, which increases the complex-

ity by one exponential. (In fact, when one moves to infinite alphabets, this problem becomes

undecidable even for parameterized regular expressions [Grumberg et al., 2010]). The lower

bound proof for parameterized expressions is again by a generic reduction.

Theorem 8.4.1

• The problem UNIVERSALITY✷ is PSPACE-complete. It remains PSPACE-hard even if

restricted to standard regular expressions.

• The problem UNIVERSALITY✸ is undecidable, and EXPSPACE-complete when restricted

to parameterized automata. It remains EXPSPACE-hard for parameterized regular ex-

pressions.

Proof: We only need to show the EXPSPACE bound of the second part. We begin with the

upper bound. It is well known that there is an algorithm to decide whether the language of

a standard NFA is universal, that requires polynomial space with respect to the size of the

input NFA. Given an incomplete automaton A , we construct the equivalent NFA B such that

L(B) = L✸(A), and then decide universality of L(B). Since the NFA B is of size exponential

with respect to the original incomplete automaton A , the above procedure runs in EXPSPACE.

The lower bound is again shown for parametrized regular expressions. We present a reduc-

tion from the complement of the acceptance problem of a Turing machine. Let L be a language

that belongs to EXPSPACE, and let M be a Turing machine that decides L in EXPSPACE. Given

an input ā we construct in polynomial time with respect to M and ā a parameterized regular

expression eM ,ā over some alphabet ∆ such that L✸(eM ,ā) consists of all the strings over ∆ if

and only if M does not accept input ā.

Just as in section 8.2, we assume that M = (Q,Γ,q0,{qm},δ), where Q = {q0, . . . ,qm}

is the set of states, Γ is the tape alphabet (that contains the distinguished blank symbol B),

the initial state is q0, qm is the unique final state, and δ : (Q \{qm})×Γ→ Q×Γ×{L,R} is

the transition function. Notice that we assume without loss of generality that no transition is

defined on the final state qm. Since M decides L in EXPSPACE, there is a polynomial S() such

that, for every input ā over Σ, M decides ā using space of order 2S(|ā|).
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Let ā = a0a1 · · ·ak−1 ∈ Σ∗ be an input for M (that is, each ai, 0≤ i ≤ k−1 is a symbol in

Γ). For notational convenience we will assume from now on that S(|ā|) = n.

We also find it convenient to introduce the following notation. For an alphabet

Σ = {b1, . . . ,bp} of symbols, we abuse notation and denote by Σ the regular expression

(b1 | · · · | bp). Thus, for example, assume that Γ = {b1, . . . ,bp}∪{B}. Then, when we write

(Γ∪ (Γ×Q)) we represent the language given by (b1 | · · · | bp | B | (b1,q0) | · · · | (B,qm)).

Furthermore, we reuse the notation introduced in Section 8.2, and write the shorthand [i] to

denote the binary representation of the number i as a string of n characters (i.e., [0] corresponds

to the word 0n, and [2] corresponds to the word 0n−210).

Our parameterized expression eM ,ā uses the alphabet ∆ = {0,1,#,&,%}∪Γ∪(Γ×Q). The

idea of the reduction is as follows. Using ∆, we represent a configuration of M by words in ∆∗

of the form:

# · [0] · (Γ∪ (Γ×Q)) ·&·

[1] · (Γ∪ (Γ×Q)) ·&·

[2] · (Γ∪ (Γ×Q)) ·&

...

[2n−1] · (Γ∪ (Γ×Q)) ·& ·% (8.3)

Intuitively, the strings [0], [1], . . . , [2n−1] indicate each one of the 2n cells of M , and the symbol

following these strings represents either the content of the cell, or the content of the cell plus

the state of M , if M is pointing into that particular cell of the tape in the configuration that is

being encoded.

Since each word of the form (8.3) represents a configuration of M , we can represent a run

of M on input ā as a sequence of concatenations of words of the form (8.3), as long as each

one of these configurations is consistent with the computation of M . The idea of the reduction

is to construct a parameterized regular expression eM ,ā that represent all words w in ∆∗ that are

either not valid concatenations of subwords of the form (8.3), or, in case that they are, that the

sequence of configurations represented by w is not a valid run of M on input ā. In other words,

any word in ∆∗ that does not belong to L✸(eM ,ā) is bound to represent a valid run of M over

input ā, thus obtaining that L✸(e) 6= ∆∗ if and only if M accepts on input ā.

We split the definition of eM ,ā into five parts: eM ,ā = e1 | e2 | e3 | e4 | e5, where:

• e1 describes all the words that are not concatenations of subwords of form (8.3).

• e2 describes all the words that, even if they are concatenations of subwords of form (8.3),

these subwords do not represent valid configurations of M .

• e3 describes words that do not start with a subword of form (8.3) correctly describing the

initial configuration of M over input ā.
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• e4 describes words whose final subword of form (8.3) does not contain any final states

(and is therefore not a final configuration of M ).

• e5 describes words that contains two consecutive subwords of form (8.3) that represent

configurations α and β for M such that α and β do not agree on δ.

Next we show how to construct expressions e1,e2,e3,e4,e5. We do not provide the precise

details of e1, since it is straightforward to define it from (8.3). Expression e2 is defined as the

union of the following two expressions, stating that:

• Between a symbol # and % there is no symbol in (Γ×Q) (in other words, the machine

is pointing at none of the cells in that configuration):

e2
1 = ∆∗ ·# · (∆\ ({%}∪Γ×Q))∗ ·% ·∆∗

• Between a symbol # and % there is more than one symbol in (Γ×Q) (a configuration

features two positions being read by the machine):

e2
2 = ∆∗ ·# · (∆\{%})∗ · (Γ×Q) · (∆\{%})∗ · (Γ×Q) · (∆\{%})∗ ·% ·∆∗

Expression e3 is the union of the following expressions, describing that:

• The first configuration does not contain the initial state in the first position of the tape,

reading the first symbol of the output:

e3
1 = # · [0] ·Γ∪

(
(Γ×Q)\{(q0,a0)}

)
·∆∗

• The rest of the k−1 symbols of the tape do not agree with the input:

e3
2 = # · [0] · (Γ∪ (Γ×Q)) ·& · [1] · (Γ∪ (Γ×Q)\{a1}) ·∆

∗

... =
...

e3
k = # · [0] · (Γ∪ (Γ×Q)) ·& · · · [k−1] · (Γ∪ (Γ×Q)\{ak−1}) ·∆

∗

• The rest of the symbols of the first configuration are not blank symbols:

e3
k+1 = # · [0] ·∆ ·& · · · [k−1] ·∆ ·& · (∆\{%})∗ · (0 | 1)n · (Γ∪ (Γ×Q)\{B}) ·∆∗

Expression e4 describes words whose final configuration is not in a final state:

e4 = ∆∗ ·# · (∆\{%})∗ ·
(
Γ× (Q\{qm})

)
· (∆\{%})∗ ·%

Finally, we describe expression e5. Intuitively, it describes words that feature two subse-

quent configurations that are not consistent with each other. More precisely, it is the union of

the following expressions, stating that:



8.4. Universality 155

• A cell not pointed by the head changed its content from one configuration to the subse-

quent one:

e5
1 =

⋃

a∈Γ

∆∗ · x1 · · ·xn ·a ·& · (∆\{%})
∗ ·%·

# ·
(
(0|1)n · (Γ∪ (Γ×Q)) ·&

)∗
· x1 · · ·xn ·

(
(Γ\{a})∪ ((Γ\{a})×Q)

)
·∆∗

• A configuration that is not final features a pair in Q×Σ for which no transition is defined

(the symbol # states the configuration is not the final one):

e5
2 =

⋃

{(a,q) | δ(q,a) is not defined}

∆∗ · (a,q) ·∆∗ ·# ·∆∗

• The change of state does not agree with δ:

e5
3 =

⋃

{(a,q) | δ(q,a)=(q′,a′,{L,R})}

∆∗ · (a,q) · (∆\{%})∗ ·%·

# · (∆\{%})∗ · (Γ× (Q\{q′})) ·∆∗

• The symbol written in a given step does not agree with δ:

e5
4 =

⋃

{(a,q) | δ(q,a)=(q′,a′,{L,R})}

∆∗ · y1 · · ·yn · (a,q) · (∆\{%})
∗ ·%·

(∆\{%})∗ · y1 · · ·yn · (Γ\{a
′}) ·∆∗

• The movement of the head does not agree with δ:

e5
5 =

⋃

{(a,q) | δ(q,a)=(q′,a′,R)}

∆∗ · z1 · · · zn · (a,q) · (∆\{%})
∗ ·%·

(∆\{%})∗ · z1 · · · zn ·a
′ ·& ·

(
ε | ((0|1)n ·Γ · (∆\{%}))∗

)
·% ·∆∗

e5
6 =

⋃

(a,q) | δ(q,a)=(q′,a′,L)

∆∗ ·w1 · · ·wn · (a,q) · (∆\{%})
∗ ·%·

# ·
(
ε | ((∆\{%})∗ · (0|1)n ·Γ ·&)

)
·w1 · · ·wn ·∆

∗

Having defined eM ,ā, it is now straightforward to show that L✸(eM ,ā) = ∆∗ if and only if

M does not accept on input ā. This finishes the proof of the EXPSPACE lower bound. ✷

One can also show that the EXPSPACE bound for UNIVERSALITY✸ holds even for simple

expressions (note that it makes no sense to study expressions of star-height 0, as they denote

finite languages and thus cannot be universal).
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Proposition 8.4.2 The problem UNIVERSALITY✸ remains EXPSPACE-hard over the class of

simple parameterized regular expressions.

Proof: We sketch how to adapt the reduction of Theorem 8.4.1 to hold for simple parameter-

ized regular expressions (i.e. without repetitions of variables).

Recall that the previous reduction used the alphabet {0,1,%,#,&}∪Γ∪ (Γ×Q). In this

case, we need a slightly bigger alphabet. Let ∆ = {0,1,&,#even ,%even,#odd,%odd}∪Γ∪ (Γ×

Q). The idea is to modify the way configurations are represented.

Previously, we had that runs of M were represented by words in the language:

(
# · [0] · (Γ∪ (Γ×Q)) ·& · · · [2n−1] · (Γ∪ (Γ×Q)) ·& ·%

)∗
.

We modify the coding, so that configurations are represented in the following way:

(
#even · [0] · (Γ∪ (Γ×Q)) ·& · · · [2n−1] · (Γ∪ (Γ×Q)) ·& ·%even·

#odd · [0] · (Γ∪ (Γ×Q)) ·& · · · [2n−1] · (Γ∪ (Γ×Q)) ·& ·%odd

)∗

The intuition is that configurations using #even and %even represent an even step of the

computation of the Turing machine, whereas configurations using #odd and %odd represent an

odd step. Notice that one can assume, without loss of generality, that the run of M over input

ā ends after an odd number of computations.

All that remain to do is to adapt the definition of the expression eM ,ā = e1 | · · · | e5 so that

it works under this modified coding, and such that eM ,ā is simple. We omit most of the details,

since most of the expressions in e1, . . . ,e5 do not use parameters, and thus are not difficult to

modify.

To see how the expressions using parameters can be modified so that they are simple,

we show how to adapt the expression e5
1, that intuitively accepts all words describing two

configurations in which a cell not pointed by the head changed its content. It was defined

previously as

e5
1 =

⋃

a∈Γ

∆∗ · x1 · · ·xn ·a ·& · (∆\{%})
∗ ·%·

# ·
(
(0|1)n · (Γ∪ (Γ×Q)) ·&

)∗
· x1 · · ·xn ·

(
(Γ\{a})∪ ((Γ\{a})×Q)

)
·∆∗

A straightforward idea is to explicitly state even - odd and odd - even cases, that is, redefine

e5
1 as e5

1,e | e
5
1,o, where

e5
1,e =

⋃

a∈Γ

∆∗ · x1 · · ·xn ·a ·& · (∆\{%even,%odd})
∗ ·%even·

#odd ·
(
(0|1)n · (Γ∪ (Γ×Q)) ·&

)∗
· x1 · · ·xn ·

(
(Γ\{a})∪ ((Γ\{a})×Q)

)
·∆∗
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e5
1,o =

⋃

a∈Γ

∆∗ · y1 · · ·yn ·a ·& · (∆\{%even,%odd})
∗ ·%odd·

#even ·
(
(0|1)n · (Γ∪ (Γ×Q)) ·&

)∗
· y1 · · ·yn ·

(
(Γ\{a})∪ ((Γ\{a})×Q)

)
·∆∗

The problem is that these expressions are not simple: they reuse the variables x1, . . . ,xn or

y1, . . . ,yn. The solution is instead a bit more technical. We redefine e5
1 as e6

1,e | e
6
1,o, where:

e6
1,e =

⋃

a∈Γ

∆∗#even · (∆\{%even})
∗·

(

x1 · · ·xn ·

(
(
a ·& · (∆\{%even})

∗ ·%even ·#odd(∆\{%odd})
∗ ·&

)
|

(
((Γ\{a})∪ ((Γ\{a})×Q)) · (∆\{%odd,#even,%even})

∗
)
))∗

·%odd ·∆
∗

e6
1,o =

⋃

a∈Γ

∆∗#odd · (∆\{%odd})
∗·

(

y1 · · ·yn

(
(
a ·& · (∆\{%odd})

∗ ·%odd ·#even(∆\{#even})
∗ ·&

)
|

(
((Γ\{a})∪ ((Γ\{a})×Q)) · (∆\{%even,#odd,%odd})

∗
)
))∗

·%even ·∆
∗

Notice then that e6
1,e | e

6
1,o is a simple parameterized regular expression. In order to see that

the intended meaning of these expressions remains the same, notice that L✸(e
5
1,e) ⊆ L✸(e

6
1,e)

and L✸(e
5
1,o) ⊆ L✸(e

6
1,o). Moreover, it is not difficult to check that none of the words that

belong to L✸(e
6
1,e) but not to L✸(e

5
1,e) represent a valid run of M , and neither does any word in

L✸(e
6
1,o) but not in L✸(e

5
1,o). Thus, the words in L✸(e

6
1,e) but not in L✸(e

5
1,e) (respectively, in

L✸(e
6
1,o) but not in L✸(e

5
1,o)) are not harmful for our purposes, since these extra words already

belong to the language of some other disjunction in eM ,ā.

With these observations, it is not difficult to modify the remainder of the reduction of the

proof of Theorem 8.4.1 so that every expression is simple. The proof then follows along the

same lines as the proof of Theorem 8.4.1. ✷

8.5 Containment

The bounds for the containment problem are easily obtained from the fact that both nonempti-

ness and universality can be cast as its versions. That is, we have:

Theorem 8.5.1 • The problem CONTAINMENT✷ is EXPSPACE-complete. It remains

EXPSPACE-hard when restricted to parameterized regular expressions.

• The problem CONTAINMENT✸ is undecidable. It is EXPSPACE-complete when restricted

to parameterized automata, and remains EXPSPACE-hard when restricted to parameter-

ized regular expressions.
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Proof: Since Σ∗ ⊆ L✸(A) iff UNIVERSALITY✸(A) is true, and L✷(A) ⊆ /0 iff

NONEMPTINESS✷(A) is false, we get EXPSPACE-hardness and undecidability from Theorems

8.2.1 and 8.4.1.

To check whether L✷(A1) ⊆ L✷(A2), we focus once again in automata without transi-

tions labelled with infinite alphabets A f in
1 and A f in

2 . We must check that
⋂

ν L(ν(A f in
1 ))∩

L(ν′(A f in
2 )) = /0 for each valuation ν′ on A f in

2 . This is doable in EXPSPACE, since one can con-

struct exponentially many automata for L(ν(A
f in
1 )) in EXPTIME, as well as the automaton for

the complement L(ν′(A f in
2 )), and checking nonemptiness of the intersection of those is done

in polynomial space in terms of their size, i.e., in EXPSPACE. Since this needs to be done for

exponentially many valuations ν′, the overall EXPSPACE bound follows. The proof for the L✸

semantics is similar, having in mind that we restrict once again to parameterized automata ✷

Containment with one fixed expression. We look at two variations of the contain-

ment problem, when one of the automata is fixed: CONTAINMENT∗(A1, ·) asks, for an in-

complete automaton A2, whether L∗(A1) ⊆ L∗(A2); and CONTAINMENT∗(·,A2) is defined

similarly. The reductions proving Theorem 8.5.1 show that CONTAINMENT✷(·,A2) and

CONTAINMENT✸(A1, ·) remain EXPSPACE-hard and undecidable, respectively. For the other

two versions of the problem, the proposition below shows that the complexity is lowered by at

least one exponential. For CONTAINMENT✸(·,A2) we focus solely on parameterized automata.

The complexity for the general case when the input is an arbitrary incomplete automaton is left

open.

Proposition 8.5.2 • CONTAINMENT✷(A1, ·) is PSPACE-complete.

• CONTAINMENT✸(·,A2) is CONP-complete when restricted to parameterized automata.

Proof: For Part 1, it is well known that CONTAINMENT✷(A1, ·) is PSPACE-hard even for

standard NFA or regular expressions. For the upper bound, let A ′1 be an NFA such that L(A ′1) =

L✷(A1). Since A1 is fixed, the expression A ′1 can be computed in constant time. Then, it

suffices to guess a valuation ν and a word w such that w ∈ L(A ′1), but w /∈ L(ν(A2)), which

can clearly be done in PSPACE by considering the equivalent automata A f in
2 without transitions

labelled with infinite languages (since we know that all ν(A f in
2 ) are of polynomial size).

For Part 2, we begin with the upper bound for the problem CONTAINMENT✸(·,A2).

Assume that the input is a parameterized automata A1 over Σ, and that W ⊂ V is the

set of variables mentioned in A1. The following CONP algorithm solves the problem

CONTAINMENT✸(·,A2). First, construct an NFA A ′2 such that L(A ′2) = L✸(A2), and then

construct AC
2 , the NFA that accepts the complement of L(A ′2). Since A2 is fixed, AC

2 can be con-

structed in constant time. Next, guess a valuation ν : W → Σ, and, check that ν(A1)∩AC
2 6= /0,

which can be performed in polynomial time using a standard reachability test over the product

of ν(A1) and AC
2 . It is not hard to see that this algorithm is sound and complete for the problem.
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In fact, if ν(A1)∩AC
2 6= /0, then there is a word w ∈ L(ν(A ′1)), and hence in L✸(A1), that does

not belong to L✸(A2). This implies that L✸(A1) is not contained in L✸(A2). On the other

hand, it is clear that if ν(A1)∩AC
2 6= /0 for all possible valuations ν from W to Σ, then L✸(A1)

is contained in L✸(A2).

The lower bound is given again for the case when the input are parameterized reg-

ular expressions. It is established via a reduction from 3-SAT to the complement of

CONTAINMENT✷(·,e2), where e2 is the following regular expression over the alphabet Σ =

{0,1,#}:

e2 :=
(
(10 | 01)∗#((0 | 1)3)∗000((0 | 1)3)∗

)
|
(
((0 | 1)2)∗(00 | 11)Σ∗

)
|
(
Σ∗#Σ∗#Σ∗

)
.

Notice that e2 mentions no variables, and hence L✸(e2) = L(e2).

Let ϕ =
∧

1≤i≤n(ℓ
1
i ∨ ℓ2

i ∨ ℓ3
i ) be a propositional formula in 3-CNF over variables

{p1, . . . , pm}. That is, each literal ℓ
j
i , for 1 ≤ i ≤ n and 1 ≤ j ≤ 3, is either pk or ¬pk, for

1 ≤ k ≤ m. Next we show how to construct in polynomial time from ϕ a parameterized

regular expression e1 over the alphabet Σ = {0,1,#} such that ϕ is satisfiable if and only if

L✸(e1) 6⊆ L(e2).

Let W = {xi, x̂i | 1 ≤ i ≤ m}. Intuitively, each xi represents the value assigned to pi, and

x̂i represents the value of ¬pi. Moreover, assume that h is a mapping from the literals ℓ
j
i

(1≤ i≤ n and 1≤ j≤ 3) to W , defined as expected: h(ℓ
j
i ) = xk if ℓ

j
i is pk, for some 1≤ k≤m,

and h(ℓ
j
i ) = x̂k if ℓ

j
i is ¬pk.

Define e1 as follows:

e1 = x1x̂1 · · ·xmx̂m#h(ℓ1
1)h(ℓ

2
1)h(ℓ

3
1) · · ·h(ℓ

1
n)h(ℓ

2
n)h(ℓ

3
n).

We show that ϕ is satisfiable if and only if L✸(e1) 6⊆ L(e2).

(⇒): Assume that ϕ is satisfiable by valuation σ. Let ν be a valuation from W to Σ, defined

as follows:

• For each 1≤ k ≤ m, ν(xk) = 1 if σ(pk) = 1, and ν(xk) = 0 otherwise.

• For each 1≤ k ≤ m, ν(x̂k) = 0 if σ(pk) = 1, and ν(x̂k) = 1 otherwise.

Notice that L(ν(e1)) consists of the single word:

ν(x1)ν(x̂1) · · ·ν(xm)ν(x̂m)#ν(h(ℓ1
1))ν(h(ℓ

2
1))ν(h(ℓ

3
1)) · · ·ν(h(ℓ

1
n))ν(h(ℓ

2
n))ν(h(ℓ

3
n)).

We shall abuse notation and denote by ν(e1) both this word and the aforementioned ex-

pression. It is clear that ν(e1) contains a single symbol #, and starts with a prefix in

(01 | 10)∗#. Thus, if L✸(e1) ⊆ L(e2) it must be that ν(e1) is defined by the expression

(10 | 01)∗#((0 | 1)3)∗000((0 | 1)3)∗. But this implies that there are literals ℓ1
i , ℓ2

i and ℓ3
i ,

for some 1 ≤ i ≤ n, such that ν(h(ℓ1
i ))ν(h(ℓ

2
i ))ν(h(ℓ

3
i )) = 000. By construction of ν, it must
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be the case that σ falsifies the i-th clause of ϕ, which contradicts the fact that σ is a satisfying

assignment.

(⇐): Assume on the other hand that L✸(e1) 6⊆ L(e2). From the definition of the ✸-

semantics, there is at least one valuation ν from W to Σ such that L(ν(e1)) 6⊆ L(e2). Notice

again that, by construction of e1, ν(e1) consists of the single word:

ν(x1)ν(x̂1) · · ·ν(xm)ν(x̂m)#ν(h(ℓ1
1))ν(h(ℓ

2
1))ν(h(ℓ

3
1)) · · ·ν(h(ℓ

1
n))ν(h(ℓ

2
n))ν(h(ℓ

3
n)).

Again, we shall denote this word also by ν(e1). Then if L(ν(e1)) 6⊆ L(e2) it must be the case

that ν(e1) is not in L(e2). This immediately entails that ν(e1) cannot have two or more copies

of the symbol #, and thus we conclude that ν assigns to each variable W a symbol in {0,1}.

From this it follows that the following valuation σ for the variables in ϕ is well defined:

• σ(pi) = 1 if ν(xi) = 1, and σ(pi) = 0 if ν(xi) = 0

Next we show that for each 1 ≤ i ≤ m, it is the case that ν(xi) 6= ν(x̂i). Assume for the

sake of contradiction that for some i ≤ i ≤ m we have ν(xi) = ν(x̂i). From the construction

of e1 it must be the case that ν(e1) is denoted by the expression ((0 | 1)2)∗(00 | 11)Σ∗, which

contradicts the fact that ν(e1) is not in L(e2). Finally, we claim that ϕ is satisfiable by the

valuation σ. Assume the contrary. Then there is a clause (ℓ1
i ∨ ℓ

2
i ∨ ℓ

3
i ), for 1≤ i≤ n, such that,

for each 1 ≤ j ≤ 3, if ℓ
j
i is the literal pk, for some 1 ≤ k ≤ m, then σ assigns the value 0 to

pk, and if ℓ j
i is the literal ¬pk, for some 1 ≤ k ≤ m, then σ assigns the value 1 to pk. It is now

straightforward to conclude that this fact contradicts the assumption that ν(e1) is not in L(e2),

by studying all of the 8 possible cases.

✷

8.6 Intersection With a Regular Language

This problem is a natural analog of the standard decision problem solved in automata-based

verification; we also saw in the introduction that it arises when one computes certain paths for

queries over graph patterns.

Checking whether L∩L✷(A) 6= /0 can be done in EXPSPACE using the same brute-force

algorithm as for the nonemptiness problem (intersection of exponentially many regular lan-

guages). Since the nonemptiness problem is a special case with L = Σ∗, we get the matching

lower bound by Theorem 8.2.1. For possibility semantics, languages need not be regular, and

thus to maintain regularity we only focus on parameterized automata. For L✸(A), an NP up-

per bound is easy: one just guesses a valuation so that L∩L(ν(A)) 6= /0. If L denotes a single

word w, we have an instance of the membership problem, and hence there is a matching lower

bound, by Theorem 8.3.1. Summing up, we have:
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Corollary 8.6.1 • The problem NONEMPTYINTREG✷ is EXPSPACE-complete.

• The problem NONEMPTYINTREG✸ is NP-complete when restricted to parameterized

automata.





Chapter 9

Conclusions and Future Work

The work in this dissertation is relevant to graph-based applications that need to deal with

patterns. We have studied structural properties of graph patterns, how to query them, how

to use them as queries, and we have also studied several of their applications. We looked

at three main features of patterns: node variables, label variables, and regular expressions

specifying paths, and showed that each of these features strictly increases the expressiveness

of patters. Moreover, we studied the problem of querying graph patterns, and looked at data

and combined complexity of CRPQs and other queries (both extensions and restrictions of

CRPQs) over graph patterns. This line of work has direct applications in scenarios where the

need for querying patterns is present, such as social networks, online retailing, search result

classification, crime detection and plagiarism detection [Fan et al., 2010b, Fan et al., 2010a,

Natarajan, 2000, Kanza et al., 2002], to name a few.

The main conclusion is that, without carefully chosen restrictions, querying graph patterns

is computationally harder than querying relational or XML patterns. This of course has im-

plications on ongoing work in applications that need to query patterns. For example, we took

them into account when studying schema mappings and data exchange in Chapter 6. We have

also identified rather robust classes with tractable query answering, as well as classes of rea-

sonable combined complexity for which query answering is naturally viewed as a constraint

satisfaction property.

Based on our work on graph patterns, we have studied interoperability issues for graph

databases, and shown how patterns allow for a natural definition of different classes of schema

mappings. We took into account the existence of scenarios in which the size of the graph

forbids any algorithm that is not linear - or at most quadratic - in terms of the database. For

these applications it is not advisable to define mappings in terms of patterns, but if one focuses

instead on binary queries, such as NPQs, then it is still possible to perform data exchange and

query answering in such restricted complexity bounds.

Finally, we defined and studied incomplete automata, a model of automata with applica-
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tions not only in graph databases, but in many other areas linked to databases or verification,

such as program analysis. Regarding graph databases, we have shown that this model of au-

tomata can indeed capture query answering over graph patterns, both for queries returning

nodes and queries returning paths. We also studied the basic properties of the languages gener-

ated by incomplete automata, such as regularity, emptiness, membership and universality. We

believe that this is just the start in this direction, and that the model of incomplete automata

provides an engaging new area for future research.

9.1 Future Work

The work in this dissertation opens up many interesting new ideas for research, and several

questions remain unanswered.

Patterns. We have formalized our graph patterns in terms of node variables, label variables,

and regular expressions; the latter in order to specify paths between nodes. Our features were

motivated by real graph databases scenarios, but in the end a graph pattern is just a concise

representation of an infinite set of graph databases, and these features are of course not the

only possibilities to specify them. However, other areas different from databases may need

different specifications for patterns. For example, in areas such as verification one is interested

in properties that cannot be expressed by regular expressions, but can be defined with other

formalisms, such as modal logics. Examples of these are the existence of loops (so call liveness

properties) or multiple recursion (to specify, for example, that a certain part of the graph has

the shape of a finite but unbounded tree).

It would be interesting to look at the behavior of other types of graph patterns, defined

perhaps using different formalisms to specify paths between nodes; and study the applications

of this work in the context of verification of transition systems. It would also be interesting to

study the more expressive models of patterns that result of adding extra features to patterns,

apart from the three features studied in this dissertation. Here a natural choice is to add data

values to the nodes –or edges– of patterns, as what has been done, for example, for patterns

in XML databases [Barceló et al., 2010b] or XML data exchange [Arenas and Libkin, 2008,

Amano et al., 2009].

Another possible extension of patterns is to add features capable of expressing negation.

The patterns that we have defined are positive, in the sense that they can only specify that some

node, label or path must exist in the graphs represented by the pattern. However, one could

also specify that a certain feature does not exist in these graphs. Of course, adding unrestricted

negation would inevitably lead to the intractability of query answering, since the problem be-

comes undecidable already for relational conjunctive queries with negation [Libkin, 2004]. But

nothing is telling us that we cannot find milder forms of negation which will not significantly
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increase the complexity of query answering. For instance, in relational and XML scenarios

one can add limited atomic negation [Arenas et al., 2011a] or evaluate boolean combinations

of patterns [Gheerbrant et al., 2012, David et al., 2013] without any major computational ex-

pense.

On the other hand, the problems one encounters with certain answers and patterns with

negation are deeply related with the semantics of patterns. For instance, it was shown in

[Gheerbrant et al., 2013] that, for relational databases, if one restrict to different versions of

closed world semantics, then one can perform naive evaluation for positive queries with uni-

versal –as well as existential– quantification, and even for more expressive queries. This means

that the certain answers of this class of queries can be computed in polynomial time, contrast-

ing what is known for the default open world semantics that we have chosen in this dissertation.

It would thus be interesting to study these forms of closed world semantics in the context of

graph patterns. This would yield immediate results for answering queries with universal quan-

tification over patterns in P nv, which are essentially relational naive tables, but one might also

find better bounds for patterns using label variables, or regular expressions.

Other applications of patterns. When studying how graph patterns represent data we have

so far assumed that no other information is known about the graphs that are represented by

these patterns. A natural continuation of our work is to study the case when the represen-

tation is given in form of a pattern, plus a set of additional constraints. If the constraints

are not chosen carefully, we could easily face undecidability of query answering. But the

field of description logics (DLs) has successfully identified a good number of logics to specify

constraints that have good query answering properties, such as those in the DL-LITE family

[Calvanese et al., 2007]. These families of logics are a good starting point to study how to

query graph patterns under additional constraints, and indeed this problem has already been

studied in [Calvanese et al., 2011b] for the case when patterns are just RPQs. Furthermore,

[Arenas et al., 2011b] has already studied the problem of schema mapping and data exchange

using instances represented by DL constraints. It would be interesting to see how can these

results be applied in the context of graph data exchange under DL constraints.

Another possible application domain for graph patterns are workflow models such as elec-

tronic services or business processes (see [Hull et al., 2003] for a good theoretical introduction

on the subject). While generally these are modelled with Petri nets, one might use graph

patterns, or an adaptation thereof, to represent services that are incomplete or unknown; or per-

haps as a query language, to certify that a workflow satisfy certain criteria. Alternatively, one

could study which properties of e-services can be modelled by graph databases (for instance,

provenance [Acar et al., 2010, Belhajjame et al., 2011]), and then naturally apply patterns in

this context.

Query answering. With respect to querying graph patterns, a natural continuation of this
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work is to carry on with the task of finding tractable fragments for query answering, at least in

data complexity. There are two possible directions in this research. The most obvious one is to

continue the search for tractable restrictions for the general problem of querying graph patterns.

Due to the connection between query answering and constraint satisfaction that we presented

in Chapter 5, this line of research is also of interest in that field, since identifying tractable

fragments for query answering might transfer in different, unknown tractable restrictions for

the constraint satisfaction problem.

But one could also analyze the tractability of query answering specifically from the point

of view of applications that need to do query graph patterns. For example, it deserves to be

studied how to link our positive results for graph patterns to the context of computing mapping-

based certain answers, that is, deciding CERTAIN-DEM (Q,GS). One trivial way of doing so, is

to just consider the class of all mappings M and graph databases GS, such that the universal

representative πT for GS under M constructed in the proof of Proposition 6.4.3, belongs to the

one of the tractable classes for query answering identified in Chapter 5. Nevertheless, it would

be fairly more interesting to search for natural structural conditions imposed over mappings

and graph databases, that ensures that the universal representative πT always belong to this

class. We believe this to be an interesting and challenging topic for future research.

Finally, we would like to continue with the study of the complexity of query

answering under the notion of parameterized complexity [Downey and Fellows, 1999,

Flum and Grohe, 2006]. We have already shown results for fixed parameter tractability us-

ing bounded treewidth, and we believe that we can also obtain results on the same direction if

using the out-degree of patterns or their meaningful functions as parameters of the problem.

Schema mappings. Continuing with the topic of schema mappings for graph databases, a

particularly interesting issue has to do with the level of synchronization between source and

target paths allowed in graph mappings. For now, we do not allow any synchronization at all

between paths, but one could think of mapping rules that could specify, for instance copying

entire paths from the source graph to the target graphs. One could even impose much milder

restrictions, such as forcing that each source path has to be transferred as a target path of the

same length. Numerous notions of synchronization have been studied, such as regular rela-

tions, or rational relations [Elgot and Mezei, 1965, Frougny and Sakarovitch, 1993], and query

languages capable of doing this have already appeared in the literature [Barceló et al., 2010a].

Incomplete automata. Finally, the study of incomplete automata opens up many possibilities

for future work. There are several open problems involving decision problems for incomplete

automata for possibility semantics, and even the issue of characterizing what type of language

is produced by them is still unknown. Furthermore, for most bounds on the decision problems

(except of course universality and containment), the complexity under the possibility semantics

is reasonable, while for the certainty semantics it is quite high (i.e., double-exponential in
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practice). At the same time, the concept of L✷(e) captures many query answering scenarios

over graph databases with incomplete information. One of the future directions of this work

is to devise better algorithms for problems related to the certainty semantics under restrictions

arising in the context of querying graph databases, and specifically for queries returning paths.

Another line of work has to do with closure properties: we know that the language gen-

erated by incomplete automata under certainty semantics, and for parameterized automata un-

der possibility semantics, are regular. Therefore, results of Boolean operations on languages

L✷(A) and L✸(e) remain to be regular and can be represented by NFAs; the bounds on sizes

of such NFAs follow from the results shown in this dissertation. However, it is conceivable

that such NFAs can be succinctly represented by parameterized regular expressions. To be

concrete, one can easily derive from results in Chapter 7 that there is a doubly-exponential

size NFA A so that L(A) = L✷(A1)∩L✷(A2), and that this bound is optimal. However, it

leaves open a possibility that there is a much more succinct incomplete automata A so that

L✷(A) = L✷(A1)∩L✷(A2); in fact, nothing that we have shown contradicts the existence of

a polynomial-size expression with this property. We plan to study bounds on such regular

expressions in the future; we imagine this study to be relevant in applications that need to suc-

cessively operate and complement different NFAs, since it might be less costly to perform these

operations at an incomplete automata level, and transform back these automata into NFAs only

when all of these operations have been performed.
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[Barceló et al., 2011a] Barceló, P., Libkin, L., and Reutter, J. L. (2011a). Parameterized regu-

lar expressions and their languages. In FSTTCS, pages 351–362.
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Appendix A

Proofs and Additional Results

A.1 Proof of Claim 5.2.2

Let s1, . . . ,sp be an arbitrary enumeration of the states in S, f be a mapping from S to 2S, S′ ⊆ S

and S ⊆ 2S. In order to determine whether ( f ,S′,S) is realized in A2 we do the following.

First, construct in constant time a deterministic NFA A3 that is equivalent to A1 using the

standard powerset construction. Thus, the states of A3 are precisely the subsets S′ of S. Assume

that δ′ : 2S×Σ→ 2S is the transition function of A3. Then, from A3 we construct, in constant

time, two deterministic NFAs A4 (without initial/final states) and A5 as follows:

• The set of states of A4 is the disjoint union between {S′ | S′⊆ S} and {S′∪{saux} | S
′⊆ S},

where saux is a new auxiliary state. The transition function of A4 is constructed from the

transition function δ′ of A3 using the following rules: (1) If transition from S′1 ⊆ S into

S′2 ⊆ S labeled a exists in A3, add the same transition to A4, and add also a transition

labeled a from S′1∪{saux} into S′2∪{saux}. (2) Delete every transition labeled a from a

state S′1 ⊆ S, such that S′1∩F = /0, into a state S′2 ⊆ S such that S′2∩F 6= /0, and replace it

by a transition labeled a from S′1 into S′2∪{saux}.

Intuitively, saux works as a flag for states of A3 that contain some final state in F . Thus,

the transition function of A4 leads from a state {s} to a state f (s)∪{saux} over a word w

if and only if δ′({s},w) = f (s), and there is a prefix w′ of w such that δ′({s},w′) contains

some state in F . On the contrary, the transition function of A4 leads from a state {s} to

a state f (s) over a word w if and only if δ′({s},w) = f (s), and there is no prefix w′ of w

such that δ′({s},w′) contains some state in F .

• The set of states of A5 is 22S

. Its initial state is {{}} and its final state is S. There

is a transition labeled a from {S1, . . . ,Sℓ} into {S′1, . . . ,S
′
ℓ′} if and only {S′1, . . . ,S

′
ℓ′} is

precisely the set that contains (1) all states of A3 of the form δ′(Si,a), for 1≤ i≤ ℓ, and

(2) state δ({s0},a).
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Intuitively, the transition function of A5 leads from state {{}} into state S over a word w

if and only if the set S consists of exactly those states S′′ of A3 such that for some suffix

w′ of w it is the case that δ′({s0},w
′) = S′′.

Then we construct, in constant time, p copies A1
4 , . . . ,A

p
4 of A4, and set the initial state of

A i
4 (1 ≤ i≤ p) to be {si} and its final state to be f (si)∪{saux}, if si ∈ S′, and f (si) otherwise.

Afterwards, we construct in polynomial time the NFA A6 := A2×A1
4 ×·· ·×A p

4 ×A5. Clearly,

the tuple ( f ,S′,S) is realized in A1 if and only if A6 is nonempty. But the latter can be checked

in polynomial time in the size of A6, and, thus, in the size of A2. Now the claim follows from

the fact that there is a constant number of tuples of the form ( f ,S′,S). ✷

A.2 Proof of Lemma 6.5.5

Part 1. Let us first assume that query Q = (ξ,x1,x2) belongs to P nv,re. We show afterwards

how to deal with label variables. We use a technique which is similar to the roll-up of an acyclic

conjunctive query, which has been used to provide decidability results for query containment

in the context of description logics (see [Glimm et al., 2006, Calvanese et al., 2008]). In this

case we roll-up the acyclic graph query into an NPQ.

First we need to construct the graph G(ξ,x1,x2) as follows. The nodes of G(ξ,x1,x2) are the

nodes of ξ, and for each edge of form (u,R,v) in ξ, add an undirected edge in G(ξ,x1,x2) with

two labels ℓ(u,v)({u,v}) = R and ℓ(v,u)({u,v}) = R−1.

Notice that G(ξ,x1,x2) is a tree (since it is acyclic and connected).

Now, for every node u in G(ξ,x1,x2) we define an NRE ν(u) as follows. First consider the

graph G ′(ξ,x1,x2)
obtained from G(ξ,x1,x2) by deleting all the edges in the unique path between x1

and x2. Notice that G ′(ξ,x1,x2)
is no longer a tree, but a forest, and every node of G(ξ,x1,x2) belongs

to a unique tree in G ′(ξ,x1,x2)
. Let Tu be the tree in G ′(ξ,x1,x2)

to which node u belongs, and assume

that Tu is a rooted tree, with root u. Then for every node v in Tu construct an expression τu(v)

recursively as follows:

• if v is a leaf in Tu then τu(v) = ε

• else, if v has v1, . . . ,vk as children in Tu then

τu(v) = [ℓ(v,v1)({v,v1}) · τu(v1)] · · · · · [ℓ(v,vk)({v,vk}) · τu(vk)]

Finally we say that ν(u) = τu(u). Notice that the size of ν(u) is linear in the size of the tree

Tu. Also notice that the fact that G(ξ,x1,x2) is actually a tree is crucial for defining ν(u) for every

node in G(ξ,x1,x2).

Now, with ν(u) for every possible node of ξ we are ready to describe the NPQ that defines

(ξ,x1,x2). Let x1,u1,u2, . . . ,uk,x2 be the unique path in G(ξ,x1,x2) from x1 to x2. Then we
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consider the expression

R = ν(x) · ℓ(x,u1)({x,u1}) ·ν(u1) · ℓ(u1,u2)({u1,u2}) ·ν(u2) · · · ·

· · · ·ν(uk) · ℓ(uk,y)({uk,y}) ·ν(y).

It is not difficult to see that R is of size linear in the size of ξ. Moreover, it is not difficult to

prove by induction that for every graph G it holds that JRKG = Q(G).

Essentially, expression R is testing for the existence of the unique path (in the query

(ξ,x1,x2)) between x1 and x2, and also existentially testing for all the branches that start from

the variables in this path as described in (ξ,x1,x2). In particular, let ψu(u) be the formula

obtained by considering the conjunction of all formulas (v,R,v′) obtained from the edges of

graph Tu with all variables except for u existentially quantified. It is not difficult to prove that

for every graph G and node v of G, it holds that G |= ψu(v) if and only if (v,v) ∈ Jν(u)KG.

Moreover, it is easy to see that if (x1,R0,u1),(u1,R1,u2), . . . ,(uk,Rk,x2) are the edges defin-

ing the single path from x1 to x2 in ξ, then (ξ,x,y) is equivalent to the formula

∃u1 · · ·∃uk

(

ψx(x1)∧ (x1,R0,u1)∧ψu1
(u1)∧ (u1,R1,u2)∧ψu2

(u2) · · ·

· · · ∧ψuk
(uk)∧ (uk,Rk,y)∧ψx2

(x2)

)

From this we obtain that our construction of R is correct and then the NPQ Q′ = (x1,R,x2) is

equivalent to (ξ,x1,x2).

Now if we start with a query Q = (ξ,x1,x2) with label variables from W , we first need to

transform such query into a union of queries Q′ =
⋃
(η(ξ),x1,x2) for each valuation η from W

to Σ. Note that queries Q and Q′ are equivalent. For each of these subqueries we construct an

NRE R as explained above, and then we just consider the NPQ given by the disjunction of all

of them.

Part 2

Let Q = (x,a[b])+,y), and assume for the sake of contradiction that there is a graph query

(ξ,x,y) using label variables from W that is equivalent to Q over Σ. Let N be the number of

edges in ξ, and consider the following graph G

a

n0

a

b

n1

m1

n2

m2

b

· · ·

b

nK

mK

a a

where K > N + 1. Now, since we are assuming that (ξ,x,y) is equivalent to Q and given that

(n0,nK) ∈ JRKG, we have that there is a valuation η from W to Σ such that η(ξ)[x/n0,y/nK ] |=

G.
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Assume without loss of generality that the edges of η(ξ) are of the form (z1,r1,z
′
1)∧ ·· · ∧

(zN ,rN ,z
′
N), where now each expression r1, . . . ,rN is a regular expression over Σ. Then by

the semantics of patterns, we know that there exists a mapping h from {z1,z
′
1, . . . ,zN ,z

′
N} to

{n0,n1,m1, . . . ,nK ,mK} such that h(x) = n0, h(y) = nK and for every i ∈ {1, . . . ,N} there is a

path ρh
i between h(zi) and h(z′i) such that the sequence of edge labels λh

i associated to ρh
i , satis-

fies the expression ri. We use the mapping h and the fact that K is sufficiently large compared

with N to obtain a contradiction.

From h and ξ we construct a graph Gh(ξ) as follows. Initially consider the values

h(z1),h(z
′
1), . . . ,h(zN),h(z

′
N) as nodes in Gh(ξ). Now, for every edge (zi,ri,z

′
i) of ξ let λh

i =

a0a1 . . .ak be the sequence of edges in the path between h(zi) and h(z′i) in G that satisfies the

regular expression ri when evaluated over G. Then, we include k fresh nodes s1,s2, . . . ,sk to

Gh(ξ) and the following edges. Assuming that s0 = h(zi) and that sk+1 = h(z′i), then for every

j ∈ {1, . . . ,k+1}:

• if a j = a or a j = b then add edge (s j−1,a j,s j) to Gh(ξ), and

• if a j = a− or a j = b− then add edge (s j,a j,s j−1) to Gh(ξ).

By the construction of Gh(ξ) it is easy to conclude that η(ξ)[x/n0,y/nK ] |= Gh(ξ), and thus

ξ[x/n0,y/nK ] |= Gh(ξ). We prove below that (n0,nK) /∈ JRKGh(ξ)
, which shows that (n0,nK) /∈

Q(Gh(ξ)) and suffices for the proof.

First notice that if n0 and nK are in different connected components in Gh(ξ), then clearly

(n0,nK) /∈ JRKGh(ξ)
. Thus, assume that n0 and nK are in the same connected component of Gh(ξ).

Notice that since n0 and nK are at distance K in G, then any path connecting n0 and nK in Gh(ξ)

should have at least K edges. Now, given that ξ has N edges and K > N +1 we know that each

one of the paths connecting n0 and nK in Gh(ξ) should contain a portion that was constructed

by converting a sequence of edge labels of G into a linear path in Gh(ξ). All this implies that

every possible path from n0 to nK in Gh(ξ) should contain some intermediate nodes such that

the sum of the out and in-degrees of the node is at most 2 (they are part of a line). On the other

hand, given the semantics of NREs, every path that satisfies the expression (a · [b])+ should

be such that all intermediate nodes (that is without considering the first and last node), should

have in-degree at least 1 (one edge going into the node with label a) and out-degree at least 2

(one edge going out with label a, and another going out with label b), which implies that no

path from n0 to nK in Gh(ξ) satisfies expression (a · [b])+.

A.3 Proof of Claim 6.6.6

We prove the Claim using induction. Note that we only need to show that JRKGT
= Jrew(R)KGS

.
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• If R = ε, then a pair (n1,n1) of nodes belong to JRKGT
if and only if there is a pair of

nodes containing node n1 that satisfies the left hand side of the dependencies in M . If

n1 is the first component of that pair, then this must mean that (n1,n1) ∈ JR′KGS
, where

R′ = [R1 | · · · | Rn]. On the other hand, if n1 is in the second component of such pair,

then (n1,n1) ∈ JR′′KGS
, where R′′ = [R1 | · · · | Rn].

• If R = a, then since M is a GAV mapping, a pair (n1,n2) ∈ JRKGT
if and only if (n1,n2)

satisfies one of the left hand side of the dependencies that produce a labelled edges,

according to M , which suffices for the proof.

• The case when Ra− is analogous to the previous one.

• If R = e1 ·e2, then rew(R) = rew(R1) · rew(R2). Assume first that (n1,n2) ∈ JRKGT
. Then

there is a node n3 such that (n1,n3) ∈ Je1KGT
and (n3,n2) ∈ Je2KGT

. From the induc-

tion hypothesis, we have that (n1,n3) ∈ Jrew(e1)KGS
and (n3,n2) ∈ Jrew(e2)KGS

, which

suffices for the proof. The other direction is completely symmetrical.

• The rest of the proof follows along the same line as this previous cases.

A.4 Proof of Lemma 8.2.2 for Incomplete Automata

We show the following:

Lemma A.4.1 Given a set A1, . . . ,Ak of incomplete automata, it is possible to build, in poly-

nomial time, an automaton A ′ such that L✷(A ′) is empty if and only if L✷(A1)∩ ·· ·∩L✷(Ak)

is empty.

Proof: We only focus on the case when Σ contains at least two symbols. The case when Σ

contains a single symbol is treated in the same way as in the proof of Lemma 8.2.2 in Chapter

8.

Assume that each A j (1 ≤ j ≤ k) is of the form A j := (Q j,Σ,W j,q
j
0,Fj,δ j). We assume

without loss of generality that the Q j’s are pairwise disjoint, and that the same is true for the

W j’s.

Pick up two arbitrary symbols S and R from Σ. The incomplete automaton A ′ contains a

copy of each A j plus a control that helps simulating the intersection of the A j’s. Formally, we

construct the automaton A ′ = (Q′,Σ,W ′,q′0,F
′,δ′) as follows:

• The set Q′ of states is {q′1, . . . ,q
′
k} ∪ {p′1, . . . , p′k} ∪

⋃
j≤k Q j, where we assume that

the states in {q′1, . . . ,q
′
k, p′1, . . . , p′k} are pairwise disjoint and {q′1, . . . ,q

′
k, p′1, . . . , p′k} ∩

⋃
j≤k Q j = /0;
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Figure A.1: Control section of incomplete automaton A ′.

• F ′ =
⋃

j≤k Fj;

• The initial state is q′1;

• W ′ = {X1, . . . ,Xk−1}∪
⋃

j≤k W j, where each Xi (1≤ i≤ k−1) is a fresh label variable;

• the set δ′ of transitions contains the triples in each δ j, 1≤ j ≤ k, plus the following:

– triples (q′i,a,q
′
i), for each a ∈ Σ\{S} and i ∈ [1,k];

– triples (p′i,a, p′i), for each a ∈ Σ\{S} and i ∈ [1,k];

– the triple (q′k,R, p′1);

– triples (q′i,Xi,q
′
i+1), for every i ∈ [1,k−1];

– triples (p′i,S, p′i+1), for every i ∈ [1,k−1];

– and the triples (p′j,RSkR,q
j
0), for every j ∈ [1,k]

The control part of automaton A ′ is depicted in Figure A.1. Notice that the states q1
0, . . . ,q

k
0

are the initial states of automata A1, . . . ,Ak, respectively.

It is clear that A ′ can be constructed in polynomial time from {A1, . . . ,Ak}. We prove next

that
⋂

j≤k Ls(A j) is empty if and only if Ls(A ′) is empty.

(=⇒): Assume that
⋂

j≤k Ls(A j) is empty, and assume for the sake of contradiction that

there is a word w ∈ Σ∗ such that w belongs to Ls(A ′). It is easy to see from the construction of

A ′ that w must contain the word RSkR as a subword. Then there are words u,v in Σ∗ such that

w = uRSkRv. We assume, without loss of generality, that u does not contain the word RSkR (if

not, one can always pick different words u and v).
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Next we prove that the word u contains exactly k−1 appearances of S. assume for the sake

of contradiction that this is not the case. Then there are two cases to consider:

1. First, suppose that u contains a number p > k− 1 appearances of the symbol S. Let

ν = (η,θ) be a valuation for A ′, such that η does not assign the symbol S to any of

the variables of A ′. It is now easy to see from the construction of A ′ that ν(A ′) cannot

accept w, as no state of ν(A ′) can be reached from q′1 using u: first, none of the states in

{q′1, . . . ,q
′
k} or {p′1, . . . , p′k} in ν(A ′) can be reached from q′1 with a word that contains

more than k− 1 appearances of the symbol S, and, second, the remaining states in A ′

can only be reached with a word containing the subword RSkR. This is our desired

contradiction since w ∈ Ls(A ′), and hence w ∈ ν(A ′).

2. On the other hand, if u contains a number p< k−1 appearances of S, consider a valuation

ν = (η,θ) such that η assigns an S to every label variable in A ′. Now notice that the state

q′k in ν(A′) can only be reached by a word containing exactly k− 1 appearances of S,

and that it cannot be reached with a word containing RSkR. It follows that ν(A ′) cannot

accept w, which is again a contradiction.

Thus, it must be the case that the word u contains exactly k−1 appearances of S.

We claim now that the word v belongs to
⋂

j≤k Ls(A j), which contradicts the fact that
⋂

j≤k Ls(A j) is empty.

Assume for the sake of contradiction that there exists 1≤ j≤ k such that v does not belong

to Ls(A j). Then there is a valuation ν = (η,θ) for A j such that ν(A j) does not accept the word

v. Construct a valuation ν′ = (η′,θ′) for A ′ as follows: ν′ extends ν by assigning values to the

label variables in W ′ \W j in the following way. It assigns symbol R to each label variable in

{X1, . . . ,X j}, and symbol S to each variable in {X j+1, . . . ,Xk−1} and each variable in the sets

Wi, for 1≤ i≤ k and i 6= j.

Recall that we assume, for the sake of contradiction, that w∈ Ls(A ′), and thus w belongs to

L(ν′(A ′)). Fix an accepting run ρ for w over ν′(A ′). Given that u has exactly k−1 appearances

of S, by counting the transitions in ν′(A ′) labeled with S we conclude that the run ρ can only

lead to the state p j after reading the word u. Then ρ must lead to state q
j
0 after reading uRSkR.

Given that w is accepted by ν′(A ′), and that valuation ν′ is an extension of ν, it must be possible

to reach a final state of ν(A j) using word v. This is a contradiction since we have assumed that

v is not accepted by ν(A j).

(⇐=): Assume that Ls(A ′) is empty, and assume for the sake of contradiction that there is

a word w ∈ Σ∗ such that w belongs to
⋂

j≤k Ls(A j). Let c̄ be a concatenation (in any order) of

the symbols in Σ\{S}. We prove below that Ls(A ′) contains the word (c̄kSR)k−1RSkRw, which

is a contradiction.
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Let ν = (η,θ) be an arbitrary valuation for A ′. We show that (c̄kRS)k−1RSkRw belongs to

ν(A ′). The proof depends on the number of label variables in {X1, . . . ,Xk−1} that are assigned

value S by η. We only show two cases, the other ones being similar:

• Suppose that η does not assign the symbol S to any of the variables in {X1, . . . ,Xk−1}.

Then clearly it is possible to reach state q′k in ν(A ′) from q′1 using word c̄k. Furthermore,

state p′2 is reachable from q′k using word RS, and qk
0 is reachable from p′2 using word

(c̄kRS)k−2RSkR. Let νk be the restriction of ν over the variables of Ak. Since w belongs

to Ls(Ak), a final state of νk(Ak) can be reached from qk
0 using w. We conclude that a

final state of ν(A ′) can be reached from q′1 using word (c̄kRS)k−1RSkRw, and hence that

(c̄kRS)k−1RSkRw belongs to ν(A ′).

• Suppose that η assigns the symbol S to a single variable Xp, 1≤ p≤ k−1 (and, therefore,

it assigns a symbol different from S to each X j, for 1 ≤ j ≤ k− 1 and j 6= p). Then it

is easy to see that state q′p can be reached from q′1 in ν(A ′) using word c̄k, q′p+1 can be

reached from q′p in ν(A ′) using word RS, q′k is reachable from q′p+1 in ν(A ′) using word

c̄k, and p′2 is reachable from q′k using word RS. Furthermore, state qk−1
0 is reachable

from p′2 in ν(A ′) using word (c̄kRS)k−3RSkR. Let νk−1 be the restriction of ν over the

variables of Ak−1. Since w belongs to Ls(Ak−1), a final state of νk(Ak−1) can be reached

from qk−1
0 using w. We conclude that a final state of ν(A ′) can be reached from q′1 using

word (c̄kRS)k−1RSkRw, and hence that (c̄kRS)k−1RSkRw belongs to ν(A ′).

This finishes the proof of the lemma since ν is an arbitrary valuation for A ′. ✷


