
8

Querying Regular Graph Patterns

PABLO BARCELÓ, Universidad de Chile
LEONID LIBKIN, University of Edinburgh
JUAN L. REUTTER, University of Edinburgh and Pontificia Universidad Católica de Chile

Graph data appears in a variety of application domains, and many uses of it, such as querying, matching,
and transforming data, naturally result in incompletely specified graph data, that is, graph patterns. While
queries need to be posed against such data, techniques for querying patterns are generally lacking, and
properties of such queries are not well understood.

Our goal is to study the basics of querying graph patterns. The key features of patterns we consider
here are node and label variables and edges specified by regular expressions. We provide a classification of
patterns, and study standard graph queries on graph patterns. We give precise characterizations of both
data and combined complexity for each class of patterns. If complexity is high, we do further analysis of
features that lead to intractability, as well as lower-complexity restrictions. Since our patterns are based on
regular expressions, query answering for them can be captured by a new automata model. These automata
have two modes of acceptance: one captures queries returning nodes, and the other queries returning paths.
We study properties of such automata, and the key computational tasks associated with them. Finally, we
provide additional restrictions for tractability, and show that some intractable cases can be naturally cast
as instances of constraint satisfaction problems.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computation—
Automata (e.g., finite, push-down, resource-bounded); H.2.1 [Database Management]: Logical Design—
Data models

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Graph databases, graph patterns, query languages, complexity,
automata, constraint satisfaction

ACM Reference Format:
Barceló, P., Libkin, L., and Reutter, J. L. 2014. Querying regular graph patterns. J. ACM 61, 1, Article 8
(January 2014), 54 pages.
DOI:http://dx.doi.org/10.1145/2559905

1. INTRODUCTION

Querying and mining graph-structured data has received much attention lately, due
to numerous applications in areas such as biological networks [Leser 2005; Milo
et al. 2002; Olken 2003], social networks [Ronen and Shmueli 2009; San Martı́n and

Partial support for this work was provided by Fondecyt grant 1110171, EPSRC grant G049165, and
FET-Open Project FoX, grant agreement 233599.
Part of this work was done when P. Barceló visited Edinburgh and L. Libkin and J. L. Reutter visited
Santiago.
Authors’ addresses: P. Barceló, Department of Computer Science, University of Chile, Avda Blanco Encal-
ada 2120, 3er piso, Santiago, Chile; email: pbarcelo@dcc.uchile.cl; L. Libkin, School of Informatics, Univer-
sity of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom; email:
libkin@ed.ac.uk; J. L. Reutter, Department of Computer Science, Pontificia Universidad Católica de Chile,
Vicuna Mackenna 4860, Macul, Santiago, Chile; email: jreutter@ing.puc.cl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0004-5411/2014/01-ART8 $15.00
DOI:http://dx.doi.org/10.1145/2559905

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:2 P. Barceló et al.

Gutierrez 2009], and the semantic Web [Gutierrez et al. 2011; Pérez et al. 2009]. In
such applications, the underlying data is naturally modeled as graphs, in which nodes
are objects, and edge labels define relationships between those objects [Angles and
Gutierrez 2008].

A standard way of querying graph data is to look for reachability patterns. Such
patterns specify that paths satisfying certain conditions should exist between nodes.
Initially proposed in a simple form in Cruz et al. [1987] and Consens and Mendelzon
[1990], pattern languages have been developed over time and used in a variety of
applications, such as biology, studying network traffic, crime detection, modeling
object-oriented data, querying and searching RDF data, etc. [Fan et al. 2010a, 2010b;
Gutierrez et al. 2011; Gyssens et al. 1994; Leser 2005; Milo et al. 2002; Natarajan 2000;
Pérez et al. 2009; Ronen and Shmueli 2009; SanMartı́n and Gutierrez 2009; Tong et al.
2007; Weikum et al. 2009]; see also the survey [Angles and Gutierrez 2008]. In their
simplest form, patterns are just graphs, whose occurrences in large graphs are of in-
terest. Already in this simple form, they are very important in biological applications,
where search for network motifs [Milo et al. 2002] is a common task. But for applica-
tions such as, for example, crime detection or RDF data, more complex patterns are
needed, as one can look for connections between elements in a network that involve
complex paths via some intermediaries.

The notions of finding matches for complex patterns also evolved with time, from
traditional NP-complete subgraph isomorphism (used, nonetheless, in practical appli-
cations, for example, in Cheng et al. [2008] and Tong et al. [2007]) to notions based
on graph homeomorphisms (i.e., mapping edges to paths) and simulation relations be-
tween patterns and graphs [Buneman et al. 1996; Fan et al. 2010a, 2010b]. Outputs
of matching queries are patterns themselves: their nodes are those that are involved
in the simulation relation, and relationships between them are those specified in the
pattern. For example, in a crime detection scenario, a query may output a set of indi-
viduals who might be involved in a crime network, together with descriptions of paths
specifying their relationships. Similar scenarios arise in querying semistructured data
as well, where it is sometimes natural to output incomplete query results [Kanza et al.
2002]. When such matching and query results require extracting additional informa-
tion from them, one ends up querying patterns rather than graphs.

There are other scenarios where the need for querying patterns naturally arises. A
pattern represents partial information about graph-structured data. Querying partial
information is commonly present in integrating and exchanging (or translating) data
[Arenas et al. 2010; Fagin et al. 2005; Lenzerini 2002]. In such applications, one queries
the result of applying some schema mapping rules to source data, which yields a par-
tially specified database. Partial databases – whether relational or XML – are typically
viewed as patterns [Barceló et al. 2010b; Björklund et al. 2007; Imielinski and Lipski
1984]. For graph data, the study of schema mappings and transformations for data
exchange an integration has started recently [Calvanese et al. 2011; San Martı́n and
Gutierrez 2009], but techniques for querying resulting partially specified graphs are
currently lacking.

Motivated by these considerations, we study querying partially defined graph data,
that is, graph patterns. As for other data models [Arenas et al. 2010; Barceló et al.
2010b; Fagin et al. 2005; Imielinski and Lipski 1984; Lenzerini 2002], one is looking
for answers that are independent of the way in which the missing parts of patterns are
interpreted, that is, certain answers.

Based on the examples arising in querying and transforming graph data, we now
analyze types of features that need to be addressed in the study of querying graph
patterns. Recall that in the relational case, one deals with variables in place of miss-
ing data values [Imielinski and Lipski 1984]. In the case of XML, one may also have

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:3

(3)

n1 n2

father-in-law =⇒
n1 n2

x

father spouse

(1)

X

X

Y
Y

B1

B2
n boss

�∗·sub·�∗·sub·�∗A B

B1 B2A1

(2)

=⇒
A

Fig. 1. Examples of (1) node variables, (2) label variables, and (3) regular expressions.

missing structural information [Barceló et al. 2010b]. For graph databases, partiality
of specifications mainly arises in the following three ways.

Node Variables. Similarly to values missing in relational or XML data, identities
of some nodes can be missing in graph data. For example, in transforming a social
network that has different types of relationship edges, we can split an edge (Name1,
father-in-law, Name2) into two edges (Name1, father, x) and (x, spouse, Name2), with
an unknown identity x. This is illustrated in Figure 1(a). Variables can also be used to
model blank nodes in RDF [Pérez et al. 2009].

Label Variables. We may also miss the precise relationships between nodes. But
even if we do not know them, we may still know that some of the relationships are
the same. Taking an example from social networks, consider transforming a net-
work where we have two “celebrities” A and B who have “followers” A1, . . . , An and
B1, . . . , Bm (like on the Twitter network). Suppose we know the relationship between
A and B (e.g., they like, or dislike each other). We may wish to record this as a rela-
tionship between their followers: for instance, if A hates B and Ai follows A, we may
deduce something about how Ai relates to B. At the time of transforming a network,
we may not know the exact nature of such a relationship, but we know there exists
one, and it should be the same for all the followers of A. Likewise, all the followers of
B will be in some relationship with A (but not necessarily the same as the followers of
A with B). So we add edges

(A1, X, B),. . . ,(An, X, B), (B1, Y, A),. . . ,(Bm, Y, A)

where X and Y are edge labels: we do not yet know what the relationship will be,
but want to record that it is the same among all the followers. This is illustrated in
Figure 1(b).

Regular Languages. Returning to the example with crime detection in a network
of people, the result of a matching may contain facts like “there is a path between x
and the boss that goes via at least two intermediaries”, which will be expressed by
a regular expression �∗ · sub · �∗ · sub · �∗, where sub indicates subordinacy in the
hierarchy, and � is the set of all labels. This is illustrated in Figure 1(c). In general,
the situation where only regular paths between nodes can be deduced from a matching
is very common [Fan et al. 2011]. Thus, when we do not have an exact path between
two nodes, we attempt to replace it by an edge (A, e, B), where e is a regular expression.

These are the key features that we add to patterns. Note that replacing known data
by variables is common to all models of incomplete information. One new element that
is specific to graph patterns is adding regular expressions to label edges. Thus, essen-
tially we look at patterns whose key features are captured by variables and regular
languages.

Once we have these features added to patterns, we need to define a query language
for them. Most commonly used query languages for graph databases specify the exis-
tence of paths between nodes, with the restriction that the labels of such path belong

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:4 P. Barceló et al.

to regular languages [Abiteboul et al. 1999; Calvanese et al. 2002; Consens and
Mendelzon 1990; Cruz et al. 1987; Gyssens et al. 1994]. The simplest such queries
are known as regular path queries, or RPQs [Cruz et al. 1987]; those select nodes con-
nected by a path that belongs to a regular language. Conjunctive RPQs, or CRPQs,
extend them by allowing intermediate nodes in paths. Dealing with incomplete data,
we often have duality between data and queries. For example, relational naive tables
are tableaux of conjunctive queries, and in XML, typical query languages are based on
tree patterns, that is, incomplete descriptions of documents. We shall see that queries
such as RPQs and CRPQs arise as special cases of graph patterns, continuing the anal-
ogy with the well studied cases.

To sum up, our main goal is to define classes of regular graph patterns, study their
properties, and query answering over them. Our main contributions are as follows.

(1) We define classes of graph patterns that have the key features listed previously –
node variables, label variables, and edges labeled with regular expressions – and
provide a complete classification of their expressiveness.

(2) We study the complexity of query answering (i.e., the problem of finding certain
answers to queries over graph patterns). We fully analyze it for CRPQs, both for
data complexity (which ranges from NLOGSPACE to CONP) and for combined com-
plexity (which ranges from NP to EXPSPACE). For classes of high complexity, we do
an in-depth analysis, showing which features lead to intractability. We also show
that upper bounds for CRPQs extend to more expressive queries.

(3) We provide an automaton model for query answering. Specifically, we define a class
of automata, called incomplete automata, that naturally give rise to two acceptance
notions that precisely capture certain answers: one of them corresponds to queries
that return nodes, and the other to queries that return paths. In the latter case,
answers to queries are represented by NFAs. We analyze the complexity of incom-
plete automata, and prove lower bounds on the sizes of NFAs representing query
answers.

(4) Returning to the intractable cases for query answering, we look at two ways of
reducing complexity: by imposing structural restrictions, and by reducing to prob-
lems for which many efficient heuristics are known. Along these lines, we prove
that for several classes of graph patterns, the bounded treewidth restriction guar-
antees tractability. We also show how to cast finding certain answers as a con-
straint satisfaction problem, which allows us to use algorithmic techniques from
that field.

Remarks. Graph Patterns in Other Areas. The motivations of this article come from
dealing with graph databases, as is reflected in the word “querying” in the title. While
the models based on variables and regular expressions that we use, and particular
results we show, are specifically tailored to handling patterns as a model of incom-
pleteness in graph databases, this is not the only possible application area of graph
patterns. Indeed, a graph pattern π is just a compact representation of a (potentially
infinite) set of graphs. As such, querying them can be seen as solving the validity prob-
lem. Indeed, suppose φπ is a formula, in some logical formalism, describing the set of
graphs given by π . If a query ψ is issued over the pattern, then evaluating it amounts
to checking validity of the implication φπ → ψ , saying that every graph represented
by π satisfies ψ .

Logical formalisms capable of describing infinite families of graphs and having de-
cidable validity problem have appeared in other areas, notably verification and descrip-
tion logics. In verification, the standard formalisms typically do not distinguish graphs
up to bisimulation. However, up to bisimulation, several of them, for instance, the

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:5

μ-calculus, can describe arbitrary finite graphs, as well as regular properties of paths.
Validity problem for the μ-calculus and several of its extension that add power in a
way relevant for potential applications in graph databases [Bonatti et al. 2008] are
EXPTIME-complete; with our formalisms the complexity generally jumps one exponent
in most fragments. A slightly different take on incompleteness is present in the work
on module checking [Kupferman et al. 2001] which introduces a form of open-world
assumption, similar to the semantics that we are using. While such results and those
in our paper are completely independent, it is worth mentioning them as another way
of specifying sets of graphs and solving the validity problem over them.

Description logics is yet another area where satisfiability and validity are central
problems, and reasonable-complexity algorithms are of great interest. Some of the for-
malism come very close to the μ-calculus and can describe finite graphs as well as
some of the features of patterns. For instance, De Giacomo and Lenzerini [1997] gives
a description logic that is extended with fixed points, thus gaining a lot of expressivity
while remaining decidable, also in exponential time.

Thus, describing sets of graphs by means of incomplete descriptions and solving the
validity problem for formulas over such sets is by no means unique to the area of graph
databases; but specific models considered here are, as well as results about them that
we show.

Organization. In Section 2, we define graph databases and queries over them. In
Section 3, we define graph patterns and, in Section 4, we study their classifications and
structural properties. In Section 5, we analyze both data and combined complexity of
query answering. In Section 6, we deal with incomplete automata, and relate them to
answering queries over graph patterns. In Section 7, we look at tractability restrictions
and reduction to constraint satisfaction.

2. GRAPH DATABASES, RPQS, AND CRPQS

Graph Databases. A graph database [Angles and Gutierrez 2008; Calvanese et al.
2002; Cruz et al. 1987] is just a finite edge-labeled graph. Let � be a finite alphabet,
and N a countably infinite set of node ids. Then, a graph database over � is a pair
G = (N, E), where N is the set of nodes (a finite subset of N), and E is the set of
edges, that is, E ⊆ N × � × N. That is, we view each edge as a triple (n, a, n′), whose
interpretation, of course, is an a-labeled edge from n to n′. When � is clear from the
context, we shall simply speak of a graph database.

A path ρ from n0 to nm in G is a sequence (n0, a0, n1), (n1, a1, n2), . . . , (nm−1,
am−1, nm), for some m ≥ 0, where each (ni, ai, ni+1), for i < m, is an edge in E. In
particular, all the ni’s are nodes in N and all the aj’s are letters in �. The label of ρ,
denoted by λ(ρ), is the word a0 · · · am−1 ∈ �∗. We also define the empty path as (n, ε, n)
for each n ∈ N; the label of such path is the empty word ε.

Regular Path Queries. The basic querying mechanism for graph databases is pro-
vided by means of regular path queries, or RPQs [Abiteboul et al. 1999; Calvanese et al.
2002; Cruz et al. 1987]. They retrieve pairs of nodes in a graph database connected by
a path whose label belongs to a given regular language. Formally, an RPQ Q is an ex-
pression of the form (x, L, y) where L ⊆ �∗ is a regular language. We shall assume that
syntactically L is given as a regular expression. Given a graph database G = (N, E)
and an RPQ Q, both over �, the answer Q(G), is the set of all pairs (n, n′) ∈ N such
that there is path ρ between them whose label λ(ρ) is in L.

It has been argued (see, e.g., Abiteboul et al. [1999], Cruz et al. [1987], Consens and
Mendelzon [1990], and Calvanese et al. [2000b]) that analogs of conjunctive queries
whose atoms are RPQs are much more useful in practice than simple RPQs. In such
queries, multiple RPQs can be combined, and some variables can be existentially

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:6 P. Barceló et al.

quantified. Formally, a conjunctive regular path query, or CRPQ Q over a finite al-
phabet � is an expression of the form:

Ans(z̄) ←
∧

1≤i≤m

(xi, Li, yi), (1)

such that m > 0, each (xi, Li, yi) is an RPQ, and z̄ is a tuple of variables among x̄ and
ȳ. The atom Ans(z̄) is the head of the query, the expression on the right of the ← is its
body. A query with the head Ans() (i.e., no variables in the output) is called a Boolean
query.

Intuitively, such a query Q selects tuples z̄ for which there exist values of the re-
maining node variables from x̄ and ȳ such that each RPQ in the body is satisfied.
Formally, given Q of the form (1) and a graph G = (N, E), a valuation is a map
σ :

⋃
1≤i≤m{xi, yi} → N. We write (G, σ) |= Q if (σ (xi), σ(yi)) is in the answer to RPQ

(xi.Li, yi) in G, that is, if there is a path ρi in G from σ(xi) to σ(yi) with λ(ρi) ∈ Li. Then,
Q(G) is the set of all tuples σ(z̄) such that (G, σ) |= Q. If Q is Boolean, we let Q(G)
be true if (G, σ) |= Q for some σ (i.e., as usual, the singleton set with the empty tuple
models true, and the empty set models false).

In what follows, we also adopt a view of RPQs as potentially having some variables
existentially quantified. That is, RPQs will be of the form Ans(z̄) ← (x, L, y), where z̄
contains variables from {x, y}. For example, Ans() ← (x, L, y) is a Boolean RPQ check-
ing whether there is a path whose label is in L.

3. GRAPH PATTERNS

As in the case of tree-structured data, for example, XML, where the ability to find
binding of variables that match a tree pattern is crucial for the basic querying mech-
anisms [Lakshmanan et al. 2004], our goal in this section is to define a class of graph
patterns that can be considered the core of each query language that provides enough
expressive power to express relevant graph properties [Abiteboul et al. 1999].

As explained in the introduction, the key new features of graph patterns are the
ability to use the following (in addition to nodes and edge labels of graph databases):

— node variables, that is, marked nulls for graph nodes;
— label variables, that is, marked nulls for edge labels;
— regular expressions as labels for edges.

Thus, we shall define graph patterns as graph databases over constant nodes and node
variables, whose edges will be labeled with regular expressions that may use label
variables. To do this, we shall use the following (countably infinite) sets:

— Vnode of node variables (normally denoted by lower-case letters), and
— Vlab of label variables (normally denoted by upper-case letters).

If
 is an arbitrary (finite or infinite) set of symbols, we write REG(
) to denote
the set of nonempty regular languages over
 (if
 is infinite, then each L ∈ REG(
)
only uses finitely many symbols from
). Recall that a graph database over a labeling
alphabet � was defined as a labeled graph, (N, E), where N ⊆ N is the set of nodes
and E ⊆ N ×� ×N is the set of labeled edges. We are now in a position to define graph
patterns formally.

Definition 3.1 (Graph Patterns). A graph pattern over finite alphabet � is a pair
π = (N, E) where

— N ⊆ N ∪ Vnode is the finite set of nodes, and
— E ⊆ N × REG(� ∪ Vlab) × N is the set of edges.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:7

π
n1

n2

X

a∗X

(ab)∗

(a | b)(a | b)

n1

n4

n2y

x

h

h

h

h
b

b

b
n3

a

G

Fig. 2. A homomorphism h : π → G.

Semantics. In complete analogy with relational naive tables or incomplete XML
documents, the semantics is defined via homomorphisms. To define those, we need
extensions of partial functions f :
 →
 to languages L ∈ REG(
) defined as
f (L) = {f (w) | w ∈ L}, where f (w) is obtained by replacing each symbol a of a word
w on which f is defined by f (a), and leaving symbols b on which f is not defined intact.

Since variables can occur at the level of both nodes and edge labels, homomorphisms
will be in fact pairs of mappings. Given a graph database G = (N, E) and a pattern
π = (N′, E′), a homomorphism h : π → G is a pair h = (h1, h2) of mappings h1 : N′ →
N and h2 that maps label variables used in π to labels used in G such that:

(1) h1(n) = n for every node id n ∈ N ; and
(2) for every edge (p, L, p′) ∈ E′, there is path between h1(p) and h1(p′) in G whose

label is in h2(L).

We now write G |= π if there is a homomorphism h : π → G. The semantics is
defined with respect to a labeling alphabet �:

�π�� = {G over � | G |= π}.
Most often � is clear from the context and we write simply �π� then.

Example 3.2. An illustration is given in Figure 2: a homomorphism is defined by
letting label variable X be b, and by mapping both node variables x and y into n3.
The edge (n1, (a|b)(a|b), x) is then mapped into the path (n1, a, n4), (n4, b, n3) with label
ab. The edge (n1, (ab)∗, y) is mapped into the same path, since ab belongs to regular
languages denoted by both (a|b)(a|b) and (ab)∗. The edge (y, a∗X, n2) is mapped into
(n3, b, n2), since b is in the language denoted by a∗b.

Certain Answers. Consider queries Q that take graph databases as input and return
sets of tuples of their nodes. For example, RPQs and CRPQs are such queries. For
them, we can define their certain answers on graph patterns in the standard way:

CERTAIN�(Q, π) =
⋂

{Q(G) | G ∈ �π��}.
Again, if � is clear from the context, we write simply CERTAIN(Q, π).

Example 3.3. The labeling alphabet can make a difference in finding certain an-
swers. Consider a pattern with edges (n1, a, n2), (n2, X, n3), (n3, b, n4), where X is a la-
bel variable. Let Q be the Boolean RPQ Ans() ← (x, ab, y). Then CERTAIN{a,b}(Q, π) =
true: whether X is a or b, there is a path labeled ab. However, CERTAIN{a,b,c}(Q, π) =
false (by setting X = c).

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:8 P. Barceló et al.

Graph Patterns as Queries. Graph patterns can naturally be viewed as queries –
again in complete analogy with relational databases (where naive tables are a natural
representation of conjunctive queries, i.e., tableaux) and XML documents (where tree
patterns form the basis of tree conjunctive queries [Björklund et al. 2007; Gottlob et al.
2006]). This view has also been explored in Cohen and Sagiv [2005].

We adopt the convention that patterns used as queries are denoted by ξ , and pat-
terns used as data are denoted by π . A graph query is a pair Q = (ξ , x̄), where
ξ = (N, E) is a graph pattern, and x̄ is a tuple of elements from N. For example, a
CRPQ Ans(z̄) ← ∧

i≤m(xi, Li, yi), can be viewed as a graph query (ξ , z̄), where ξ sim-
ply contains the edges (xi, Li, yi) for i ≤ m.

We now define the semantics of a graph query on graph databases (later, we shall
extend it to graph patterns). Given a graph database G = (N, E) with N ⊂ N , and a
graph query Q = (ξ , x̄) with |x̄| = k, the answer to Q on G is:

Q(G) = {v̄ ∈ Nk | G |= ξ [v̄/x̄]}.
Here, ξ [v̄/x̄] is the result of substituting v̄ for x̄ in the pattern ξ .

It is easy to see that when Q is a CRPQ viewed as a graph query, the result Q(G)
coincides with the standard semantics of CRPQs.

Example 3.4. Consider again the example in Figure 2 and the homomorphism de-
scribed in Example 3.2. Let ξ be the pattern obtained from π by changing X to b, and
replacing n1 and n2 with variables z1 and z2. The resulting pattern can be viewed as a
CRPQ (ξ , x, y):

Ans(x, y) ← (z1, (a|b)(a|b), x), (z1, (ab)∗, y),
(y, a∗b, z2), (z2, b, z1).

If it is evaluated in graph G shown in Figure 2, one tuple in the output will be (n3, n3),
since G |= ξ [n3/x, n3/y], as witnessed by homomorphism h shown in the figure.

4. CLASSIFICATION AND BASIC PROPERTIES

The three key features of graph patterns – node variables, label variables, and regular
expressions – provide a natural classification of patterns. We shall refer to classes
of patterns as Pσ , where σ enumerates the present features. We use “nv” for node
variables, “lv” for label variables, and “re” for regular expressions. This gives us 8
classes, from P (none of the features is present) to Pnv,lv,re (all are present).

Of course P is the class of graph databases (N, E) with N ⊆ N and E ⊆ N × � × N,
and Pnv,lv,re is the class of all graph patterns as in Definition 3.1 with N ⊆ N ∪ Vnode
and E ⊆ N × REG(� ∪ Vlab) × N. We now examine some others.

— Pnv is the class of graphs where nodes could be either constants, or node variables;
all edges are labeled with alphabet letters, that is, N ⊆ N ∪Vnode and E ⊆ N×�×N.
These patterns can be represented by relational naive tables.

— Pnv,re is the class of patterns where nodes could be either constants or node vari-
ables, and edges are labeled with regular expressions over �. That is, N ⊆ N ∪Vnode
and E ⊆ N × REG(�) × N.

These are essentially CRPQs, which are graph queries (ξ , x̄) where ξ is from Pnv,re

and uses only node variables (without this restriction, we have the class of CRPQs
that can mention constants).

— Pnv,lv is the class of patterns where nodes could be either constants or node vari-
ables, and edges are labeled with letters or variables. That is, N ⊆ N ∪ Vnode and
E ⊆ N × (� ∪ Vlab) × N. The class P lv is its restriction when N ⊆ N .

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:9

Since patterns from Pnv can be represented by relational naive tables, this suggests
that naive query evaluation [Imielinski and Lipski 1984] will work for them, and we
shall see that this is indeed true. However, this will turn out to be the largest class for
which such naive evaluation works.

Given multiple features of graph patterns, it is natural to ask whether all are nec-
essary, or some are expressible with others. We now show that all three are essential.

— We write Pσ � Pσ ′
if Pσ ′

is at least as expressive as Pσ . That is, for every pattern
π ∈ Pσ , there is a pattern π ′ ∈ Pσ ′

so that �π� = �π ′� (i.e., �π�� = �π ′�� for each �
containing the labels used in π).

— We write Pσ ∼ Pσ ′
if Pσ and Pσ ′

are equally expressive (i.e., Pσ � Pσ ′
and

Pσ ′ � Pσ).
— Finally, Pσ ≺ Pσ ′

means that Pσ ′
is strictly more expressive than Pσ : that is,

Pσ � Pσ ′
, but they are not equally expressive.

THEOREM 4.1. Adding each new feature to graph patterns strictly increases their
expressiveness: in other words, Pσ ≺ Pσ ′

if and only if σ � σ ′, and Pσ ∼ Pσ ′
if and

only if σ = σ ′.

PROOF. In order to prove the first part of the theorem, we make use of the following
lemma:

LEMMA 4.2. The following holds:

(1) There exists a pattern π in Pnv over alphabet � = {a}, such that �π�� �= �π ′�� for
all patterns π ′ in P lv,re over the same alphabet.

(2) There exists a pattern π in Pre over alphabet � = {a}, such that �π�� �= �π ′�� for
all patterns π ′ in Pnv,lv over the same alphabet.

(3) There exists a pattern π in P lv over alphabet � = {a, b}, such that �π�� �= �π ′�� for
all patterns π ′ in Pnv,re over the same alphabet.

Indeed, we show next, using Lemma 4.2, that Pσ ≺ Pσ ′
if and only if σ � σ ′.

(⇐): From the definition, it is clear that σ � σ ′ implies Pσ � Pσ ′
. Assume for the

sake of contradiction that σ � σ ′, but Pσ ∼ Pσ ′
. Since σ � σ ′, there is an element

of {nv, lv, re} that belongs to σ ′, but not to σ . It follows from statements (4.2, 4.2, and
4.2) of Lemma 4.2 that there is a pattern π ′ in Pσ ′

over some alphabet �, such that
�π ′�� �= �π�� , for all patterns π ∈ Pσ over �. This is a contradiction.

(⇒): To prove that Pσ ≺ Pσ ′
implies σ � σ ′, assume for the sake of contradiction

that for some σ , σ ′ it is the case that Pσ ≺ Pσ ′
, but it is not the case that σ � σ ′. Then,

the only possibility is that σ �⊆ σ ′. (Indeed, if σ = σ ′ then clearly Pσ ′ � Pσ , which is a
contradiction). Then, there exists an element of {nv, lv, re} that belongs to σ but not to
σ ′. It follows again from statements (4.2, 4.2, and 4.2) in Lemma 4.2 that it is not the
the case that Pσ � Pσ ′

, which is a contradiction.
Thus, in order to prove the first part of Theorem 4.1, we only have to prove

Lemma 4.2. This is what we do next.

PROOF OF LEMMA 4.2. We begin by proving statement (4.2). Consider a pattern
π = (N, E) over alphabet � = {a}, where N consists of the node variables x and y, and

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:10 P. Barceló et al.

E consists of the edge (x, a, y). Clearly, π belongs to Pnv. We now prove that there is
no pattern π ′ in P lv,re such that �π�� = �π ′�� . The idea is as follows. First, notice that
the set

⋂{NG | G = (NG, EG) and G ∈ �π��} containing the node id’s that appear in all
graphs in �π�� is equal to the empty set (this can be easily proved using the fact that
we only enforce homomorphisms to be the identity on constants). Second, it is easy to
see that no pattern without edges over � can represent exactly the graphs in �π�� ,
since all graphs in �π�� must have at least one edge. Thus, all that we need to prove
is that no pattern π ′ in P lv,re over �, with at least one edge, satisfies the following:⋂{NG | G = (NG, EG) and G ∈ �π ′��} �= ∅. That is, all the graphs in �π ′�� must have
at least one node in common. But this is quite obvious since every pattern π ′ in P lv,re,
with at least one edge, contains at least one constant, and such a constant must belong
to every graph G in �π�� .

Now we prove statement (4.2); namely, that there exists a pattern π in Pre over
alphabet � = {a}, such that there is no pattern π ′ in Pnv,lv over the same alphabet
that satisfies �π�� = �π ′�� . Define π = (N, E) over alphabet {a} as follows: The set N
of nodes consists of node ids {n1, n2}, and E consists of the edge (n1, aa∗, n2).

Assume, for the sake of contradiction, that there is a pattern π ′ ∈ Pnv,lv over �, such
that �π�� = �π ′�� . It is clear then that the only node ids that appear in pattern π ′ are
n1 and n2. We distinguish two cases, depending on the structure of π ′.

— The node n2 is not reachable from node n1 in π ′. It is then easy to construct a graph
G ∈ �π ′�� such that n2 is not reachable from n1: It suffices to replace every node
variable in π ′ to a fresh node constant, and every label variable with the symbol a.
This is a contradiction, since every graph in �π�� must satisfy that nodes n1 and
n2 are in the same connected component.

— Node n2 is reachable from n1 in π ′. Let ρ ≥ 0 be the longest simple path between
n1 and n2 in π ′. We prove here the following property, which immediately yields to
a contradiction: For every graph G ∈ �π ′�� , there is a path in G from n1 to n2, and
the length of the shortest such path is at most |ρ|. On the other hand, it is easy to
construct a graph in �π�� such that n1 and n2 are not connected by any path of size
ρ or less. This is a contradiction.

Clearly, every graph G ∈ �π ′�� contains a path from n1 to n2, since these node
ids are in the same connected component of π ′. Assume now, for the sake of contra-
diction, that there is a graph G ∈ �π ′�� such that G has no path of size ≤ |ρ| from
n1 to n2. Furthermore, assume that ρ in π ′ is of form n1, x1, . . . , x|ρ|−1, n2, where
each xi, 1 ≤ i ≤ |ρ| − 1, is a node variable. Since G ∈ �π ′�� , there is a homomor-
phism h = (h1, h2) from π ′ to G. Further, h(n1) and h(x1)) must be connected in
G with a path of size 1, and the same is true for (h(x|ρ|−1 and h(n2)) and for h(xi)

and h(xi+1)), for each 1 ≤ i ≤ |ρ| − 2. (Indeed, since π ′ ∈ Pnv,lv, the regular expres-
sions in the edges of π ′ can only be label variables or letters from the alphabet). We
have just constructed a path from n1 to n2 in G of size at most |ρ|. This proves the
claim.

This concludes the proof of the second statement of the lemma.

For statement (4.2), we prove that there exists a pattern π in P lv over alphabet
� = {a, b}, such that �π�� �= �π ′�� for all patterns π ′ in Pnv,re over �. We use the
following claim.

CLAIM 1. Let π be a pattern in Pnv,re over alphabet {a, b} such that the nodes
n1, n2, n3, n4 are the only node ids of π , and assume that the graph databases G and G′
belong to �π�� , where G consists of edges e12 = (n1, a, n2) and e34 = (n3, a, n4), and G′

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:11

consists of edges e′
12 = (n1, b, n2) and e′

34 = (n3, b, n4). Then, the graph G′′ that consists
of edges e12 and e′

34 also belongs to �π�� .

PROOF. Let h = (h1, h2) and h′ = (h′
1, h′

2) be homomorphisms from π into G and
G′, respectively. Notice that since π belongs to Pnv,re, we are only interested in the
mappings h1 and h′

1 that map nodes of π into nodes of G.
Define, from h1, a mapping h′′

1 from the nodes of π into the nodes of G′′ as follows:

— h′′
1(n) = n, if n is a node id;

— h′′
1(x) = n1, if h1(x) = h′

1(x) = n1;
— h′′

1(x) = n2, if h1(x) = h′
1(x) = n2;

— h1(x) = n3 if h1(x) = n3 or h′
1(x) = n3; and

— h1(x) = n4 if h1(x) = n4 or h′
1(x) = n4.

— h1(x) = n1 otherwise.

We claim that h′′
1 is a homomorphism from π into G′′. It is clear that h′′

1 maps nods of
π into nodes of G′′ and it is the identity on constants. Thus, we only need to prove that
for every edge of form (p, R, q) in π , there exists a path in G′′ from h′′

1(p) into h′′
1(q) that

is labeled with a word from R.
Let e = (p, R, q) be an arbitrary edge of π . Notice that, since h1 and h′

1 are homo-
morphisms, the fact that h1(p) = n1 implies that h1(q) = n2, and h1(p) = n3 implies
h1(q) = n4. This is due to the properties of homomorphisms and the fact that the only
edge in G starting from n1 is (n1, a, n2), and the only edge in G starting with n3 is
(n3, a, n4). Same argument holds for the case of h′

1, namely that h′
1(p) = n1 implies

that h′
1(q) = n2, and h′

1(p) = n3 implies h′
1(q) = n4. We consider all possible cases,

depending on the values of h1(p) and h′
1(p).

— Suppose first that h1(p) = h′
1(p) = n1. Then, as we mentioned previously, it must

be the case that h1(q) = h′
1(q) = n2, and thus h′′

1(p) = n1 and h′′
1(q) = n2. Since

h1 is a homomorphism from π to G, there must be a path from h1(p) to h1(q) in G
labeled with a word in L(R); it follows that a belongs to L(R). Then, it is clear that
there is path in G′′ from h′′

1(p) to h′′
1(q) that is labeled with a word in L(R) (namely,

the word a).
— Suppose that h1(p) = n1, but h′

1(p) = n3. Then, we have that h1(q) = n2 and
h′

1(q) = n4, and thus h′′
1(p) = n3, h′′

1(q) = n4. Since h′
1 is a homomorphism, there

must be a path from h′
1(p) to h′

1(q) in G′ labeled with a word in L(R); it follows that
b belongs to L(R). Then, it is clear that there is path in G′′ from h′′

1(p) to h′′
1(q) that

is labeled with a word in L(R) (namely, the word b).
— Suppose that h1(p) = n3, but h′

1(p) = n1. Then, we have that h1(q) = n4 and
h′

1(q) = n2, and thus h′′
1(p) = n3 and h′′

1(q) = n4. Since h′
1 is a homomorphism, there

must be a path from h′
1(p) to h′

1(q) in G′ labeled with a word in L(R); it follows that
b belongs to L(R). Then, it is clear that there is path in G′′ from h′′

1(p) to h′′
1(q) that

is labeled with a word in L(R) (namely, the word b).
— Suppose that h1(p) = h′

1(p) = n3. Then, h1(q) = h′
1(q) = n4, and thus h′′

1(p) = n3
and h′′

1(q) = n4. Since h′
1 is a homomorphism, there must be a path from h′

1(p) to
h′

1(q) in G′ labeled with a word in L(R); it follows that b belongs to L(R). Then, it
is clear that there is path in G′′ from h′′

1(p) to h′′
1(q) that is labeled with a word in

L(R) (namely, the word b).
— Suppose that h1(p) /∈ {n1, n3}. This is not possible due to the fact that h1 is a ho-

momorphism from π to G, and there are no edges in G that start from nodes n2
or n4.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:12 P. Barceló et al.

P

Pnv P lv Pre

Pnv,lv Pnv,re P lv,re

Pnv,lv,re

Fig. 3. Relationships between classes of graph patterns.

— Suppose finally that h′
1(p) /∈ {n1, n3}. This is also not possible due to the fact that

h′
1 is a homomorphism from π to G′, and there are no edges in G′ that start from

nodes n2 or n4.

To prove the statement, construct the following pattern π in P lv: It contain nodes
{n1, n2, n3, n4}, and edges (n1, X, n2) and (n3, X, n4), where X is a label variable. Clearly,
the graphs G and G′, as defined in the statement of Claim 1, belong to �π�� . On the
other hand, it is straightforward to prove that G′′ /∈ �π�� . Notice that if π ′ is a pattern
in Pnv,re that is equivalent to π over �, then the set of node ids of π ′ must be exactly
{n1, n2, n3, n4}. It follows from Claim 1 that there is no pattern π ′ in Pnv,re over �, such
that �π�� = �π ′�� . This finishes the proof of the lemma.

The proof of the second part of the theorem (that Pσ ∼ Pσ ′
if and only if σ = σ ′)

uses essentially the same arguments and is omitted.
The relationships mentioned in Theorem 4.1 are summarized in Figure 3.
In both relational and XML patterns, it is common to consider a restriction in which

variables cannot be repeated. In relations, these are Codd tables [Imielinski and Lipski
1984] that model SQL’s nulls. We say that a graph pattern is a Codd pattern if every
variable – node or label – occurs at most once in it. In other words, Codd patterns do
not allow us to express equality between unknown entities.

If σ contains nv or lv, we shall write Pσ
Codd for the Codd patterns in Pσ . We next

show that Codd patterns are strictly weaker than the usual patterns, and describe
classes of patterns for which adding variables under Codd interpretation increases
expressiveness.

PROPOSITION 4.3.

— Codd patterns are strictly less expressive: Pσ
Codd ≺ Pσ when σ contains nv or lv.

— Adding variables under Codd interpretation makes patterns more expressive except
adding label variables to regular expressions. That is, if σ ′ � σ and σ − σ ′ contains
either nv or lv, then Pσ ′ ≺ Pσ

Codd except one case: Pre ∼ P lv,re
Codd.

PROOF. We begin with the last part of the second statement, namely that Pre ∼
P lv,re

Codd. Clearly, every pattern π in Pre is also in P lv,re
Codd. Then, we only need to prove

that for every pattern π in P lv,re
Codd over alphabet � there exists a pattern π ′ in Pre over

� such that �π�� = �π ′�� .

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:13

Let π = (N, E) be an arbitrary pattern in P lv,re
Codd over alphabet �. We define a pattern

π ′ = (N′, E′) over � as follows:

— N′ = N;
— E′ contains all edges in E of the form (p, R, q), where R does not use label variables;

and
— For each edge in E of the form (p, R, q) such that R uses label variables X1, . . . , Xn,

let R[X1 → a1, . . . , Xn → an], for a1, . . . , an ∈ �, be the regular expression resulting
of replacing each label variable Xi in R with the symbol ai, for 1 ≤ i ≤ n, and define

R′ =
⋃

a1,...,an∈�

R[X1 → a1, . . . , Xn → an] .

Then, E′ contains the triple (p, R′, q).

We first prove that �π�� ⊆ �π ′�� . Assume that the graph database G over � belongs
to �π�� , and let h = (h1, h2) be a homomorphism from π into G. We claim that h =
(h1, h2) is also a homomorphism from π ′ into G. (Notice that π ′ does not use label
variables, so we may disregard h2 in order to show that h is a homomorphism from π ′
into G). Clearly, h1 sends nodes of π ′ into nodes of G, and is the identity on node ids.
Thus, we only need to show that for every edge (p, R′, q) in π ′, there is a path ρ in G
from h1(p) to h1(q) such that λ(ρ) belongs to L(R′). Let (p, R, q) be an arbitrary edge in
π ′. We have to consider two cases.

— There exists an edge of form (p, R, q) in π , in which case the proof is trivial.
— For some edge (p, R′, q) in π , such that R′ uses label variables X1, . . . , Xn, it is the

case that R = ⋃
a1,...,an∈� R′[X1 → a1, . . . , Xn → an]. Then, we know that there is

a path ρ from n1 to n2 in G such that h1(p) = n1, h1(q) = n2 and λ(ρ) belongs
to h2(R′). But, clearly, h2(R) is of the form R′[X1 → a1, . . . , Xn → an], for some
a1, . . . , an ∈ �. This implies that there is a path ρ in G from h1(p) = n1 to h1(q) = n2
in G such that λ(ρ) belongs to L(R).

Next, we show that �π ′�� ⊆ �π�� . Assume that G belongs to �π ′�� , and let h =
(h1, h2) be a homomorphism from π ′ into G. (Notice that π ′ does not use label variables,
so we are only interested in the function h1 that maps nodes of π ′ into nodes of G). Let
W be the set of label variables mentioned in π . We construct a mapping h′

2 : W → �

such that h′ = (h1, h′
2) is a homomorphism from π into G.

Define h′
2 : W → � as follows. For each edge e = (p, R, q) in π do the following:

Assume that X1, . . . , Xn are the label variables mentioned in R. Since h = (h1, h2) is a
homomorphism from π ′ into G, there is a path ρe in G from h1(p) to h1(q) such that
λ(ρe) belongs to R′ = ⋃

a1,...,an∈� R[X1 → a1, . . . , Xn → an]. This means that λ(ρe)

belongs to R[X1 → ae
1, . . . , Xn → ae

n], for some ae
1, . . . , ae

n ∈ �. We then define h′
2(Xi) to

be ae
i , for each 1 ≤ i ≤ n. Notice that h′

2 defined in this way is indeed a mapping from
W into �, as each variable X mentioned in π appears in exactly one edge of π . (This is
because π belongs to P lv,re

Codd.)
We now show that h′ = (h1, h′

2) is a homomorphism from π into G. Clearly, h1 sends
nodes of π into nodes of G, and is the identity on node ids. Thus, we only need to show
that for every edge (p, R, q) in π , there is a path ρ in G from h1(p) to h1(q) such that
λ(ρ) belongs to L(R). Let e = (p, R, q) be an arbitrary edge in π . Once again, we have
to consider two cases.

— Regular expression R does not use label variables, in which case the proof is trivial
since π ′ also contains the edge (p, R, q).

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:14 P. Barceló et al.

— Regular expression R uses label variables X1, . . . , Xn. But then the path ρe in G goes
from h1(p) to h1(q), and satisfies that λ(ρe) belongs to R[X1 → ae

1, . . . , Xn → ae
n].

But, by definition, we have that R[X1 → ae
1, . . . , Xn → ae

n] = h′
2(R), and thus ρe is a

path from h1(p) to h1(q) such that λ(ρe) belongs to h′
2(R).

We conclude that h′ = (h1, h′
2) is a homomorphism from π into G, and hence that G

belongs to �π�� .

Next, we prove that for all the remaining cases in which σ ′ � σ and σ − σ ′ contains
either nv or lv, it is the case that Pσ ′ ≺ Pσ

Codd.
Let σ and σ ′ as stated. By definition, Pσ ′ � Pσ

Codd. Thus, we only need to show that
Pσ ′

and Pσ
Codd are not equally expressive. This follows easily from the following cases.

(1) There exists a pattern π in Pnv
Codd over � = {a}, such that �π�� �= �π ′�� for all

patterns π ′ in P lv,re over �.
(2) There exists a pattern π in P lv

Codd over � = {a, b}, such that �π�� �= �π ′�� for all
patterns π ′ in Pnv over �.

In particular, from case (1) we obtain that Pσ ′ ≺ Pσ
Codd, for every σ ⊆ {nv, lv, re} and

σ ′ ⊆ {lv, re} such that σ ′ ⊆ σ and σ − σ ′ contains nv. On the other hand, from case (2)
we obtain that Pσ ′ ≺ Pσ

Codd, for each σ ⊆ {nv, lv} and σ ′ ⊆ {nv} such that σ ′ ⊆ σ and
σ − σ ′ contains lv.

Case (1) follows directly from the proof of the first statement of Lemma 4.2, as the
proof only uses patterns in Pnv

Codd. To prove case (2), we use the following fact: Let π be a
pattern in Pnv over an alphabet � such that π contains at least one edge. Then there is
a symbol a ∈ � such that the certain answer to the Boolean RPQ Q = Ans() ← (x, a, y)
over π is true. Indeed, since π belongs to Pnv, the edges of π are labeled only by
symbols from �. Take an arbitrary edge in π , and assume that it is of the form (p, a, q),
for a ∈ �. It is now easy to see that every graph G in �π�� will contain an edge labeled
with the symbol a. This proves that the certain answer to Q = Ans() ← (x, a, y) over π
is true.

We now continue with the proof of case (2). Let π = (N, E) be the following pattern in
P lv

Codd over alphabet � = {a, b}: N contains two node ids n1 and n2, and E contains the
edge (n1, X, n2), where X is a label variable. Notice then that �π�� contains the graph
database G0 that consists only of the edge (n1, a, n2), as well as the graph database G1
that consists only of the edge (n1, b, n2). Thus, it is easy to see that the certain answer
to Q0 and Q1 over π is false, where Q0 = Ans() ← (x, a, y) and Q1 = Ans() ← (x, b, y).
Furthermore, notice that each graph database in π contain at least one edge, so every
pattern π ′ over � such that �π�� = �π ′�� must also contain at least one edge. The
proof then follows, by contradiction, from the fact we proved previously that for every
pattern π in Pnv over �, such that π contains at least one edge, the certain answer to
either the RPQ Q0 or to the RPQ Q1 over π must be true.

We prove next the first statement of the proposition, namely that Pσ
Codd ≺ Pσ when

σ contains nv or lv. Again, by definition, it is the case that Pσ
Codd � Pσ . Thus, we only

need to prove that Pσ
Codd and Pσ are not equally expressive.

Assume first that σ contains lv, but not nv: that is, σ is {lv} or {lv, re}, and assume for
the sake of contradiction that it holds that Pσ

Codd ∼ Pσ . Using the same construction
as in the proof for the second statement of this proposition, it is possible to show that
Pσ

Codd � Pre (since, in particular, we have shown that P lv,re
Codd ∼ Pre). We then obtain

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:15

that Pσ � Pre, and then either Pσ ≺ Pre, or Pσ ∼ Pre. However, any of these two
facts contradicts Theorem 4.1.

Next, assume that σ contains nv. To prove that Pσ
Codd is not equally expressive as

Pσ , we shall prove a more general statement: There exists a pattern π in Pnv over
alphabet � = {a}, such that �π�� �= �π ′�� for all π ′ in Pnv,lv,re

Codd over �.
Let π be the pattern over alphabet {a} that consists of the single edge (x, a, x), where

x is a node variable. Then, notice that all database graphs G ∈ �π�� must contain at
least one edge that forms a self-loop with a node of G. Assume now, for the sake of
contradiction, that there is a pattern π ′ in Pnv,lv,re

Codd over �, such that �π�� = �π ′�� .
Then, it is clear that π ′ contains no node ids (since homomorphisms are enforced to be
the identity on constants). We now prove the following fact that implies that �π�� �=
�π ′�� , which is the desired contradiction: Let π = (N, E) be a pattern in Pnv,lv,re

Codd over
alphabet {a} such that N does not contain node ids. Then, there exists a graph G ∈ �π��

that does not contain any self loops.
Indeed, consider the graph database G resulting of replacing each node variable x in

π with a fresh constant nx, and each edge e = (x, L, y) of π with a path ρe of fresh node
ids from nx to ny, such that λ(ρ) satisfies the regular expression L′ that is obtained by
replacing each label variable in L with letter a. (Notice that paths of the form ρe are
node and edge disjoint; that is, only start and end nodes can be shared between them.)
Clearly, G belongs to �π�� and contains no self-loops.

This finishes the proof of Proposition 4.3.

5. QUERY ANSWERING

The goal of this section is to study the complexity – both data and combined – of query
answering over graph patterns. Recall that for queries Q returning tuples of nodes,
we want to find certain answers defined as CERTAIN(Q, π) = ⋂{Q(G) | G ∈ �π�}. More
precisely, one needs to find CERTAIN�(Q, π), with G ranging over graph databases
with edges labeled in �; it will be clear from the proofs, however, that the complexity
of query answering does not depend on the labeling alphabet.

Since each class of patterns gives rise to a class of graph queries Q = (ξ , x̄), one
could potentially ask for the exact bounds on combined and data complexity for all
these classes of queries on all the classes of patterns. Of course, we are not going to
consider all the resulting 128 cases. Instead, we do the following.

As our benchmark language, we use CRPQs, and provide exact complexity bounds
for CRPQs over all classes of patterns. Recall that CRPQs can be viewed as graph
queries (ξ , x̄) with ξ ∈ Pnv,re. We then show that the upper bounds for CRPQs ex-
tend to the most expressive patterns from Pnv,lv,re. After that, we delve further into
intractable cases, and analyze what really causes intractability. In such cases, we con-
sider restricted classes of queries based on simpler graph patterns.

Certain Answers as Pattern Implication. It is a standard and yet useful observation
that the problem of computing certain answers can be cast as the problem of implica-
tion of patterns. Recall that pattern implication is defined as follows: if π1 and π2 are
two patterns, then we say that π1 implies π2, and write π1 |= π2 if �π1� ⊆ �π2�. In other
words, π1 |= π2 if G |= π entails G |= π2 for every graph database G. The following is
now immediate from the definitions.

LEMMA 5.1. Given a graph pattern π = (N, E) and a graph query Q = (ξ , x̄) with
|x̄| = k,

CERTAIN(Q, π) = {v̄ ∈ Nk | π |= ξ [v̄/x̄]}.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:16 P. Barceló et al.

P : NP-c.

Pnv: NP-c. P lv:�p
2-c. Pre: EXPSPACE-c.

Pnv,lv:�p
2-c. Pnv,re:EXPSPACE-c. P lv,re: EXPSPACE-c.

Pnv,lv,re: EXPSPACE-c.

Fig. 4. Combined complexity for CRPQs over graph patterns.

For Boolean graph queries Q = (ξ , ()) with the empty tuple of output variables (i.e.,
true/false queries), Lemma 5.1 states that CERTAIN(Q, π) = true if and only if π |= ξ .
This simple connection with the implication problem will let us use known results on
containment of CRPQs [Calvanese et al. 2000b] to obtain some of the bounds for the
combined complexity of query answering.

Remark. Using Naive Evaluation. Some classes of patterns can be represented as
naive tables, perhaps with constraints. For example, patterns from Pnv can be stored
as naive tables, and patterns without regular expressions (from Pnv,lv) are represented
as relational naive tables with an additional constraint that the interpretation for
label variables must come from the labeling alphabet �. This can easily be coded as
an inclusion constraint.

Since CRPQs can be expressed in datalog, such a representation gives us good
tractable bounds for data complexity for Pnv patterns. But for combined complexity,
and for data complexity for other classes, we cannot use known results to get tight
bounds. For example, even evaluating conjunctive queries over naive tables with in-
clusion constraints is known to be PSPACE-hard [Johnson and Klug 1984], and we
shall see better bounds obtained for CRPQs over Pnv,lv patterns.

5.1. Combined Complexity

The problem we are dealing with is as follows:

INPUT: A pattern π = (N, E),
a graph query Q = (ξ , x̄) with |x̄| = k,
a tuple v̄ ∈ Nk.

QUESTION: Is v̄ ∈ CERTAIN(Q, π) ?

Checking v̄ ∈ CERTAIN(Q, π) amounts to checking π |= ξ [v̄/x̄], and the problem is
known to be EXPSPACE-complete when both π and ξ are in Pnv,re [Calvanese et al.
2000b]. We now provide a complete analysis of the complexity.

THEOREM 5.2. The combined complexity of answering CRPQs over classes of graph
patterns is as shown in Figure 4 (The abbreviation “-c.” in the figure means, of course,
complete for the class).

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:17

PROOF. The EXPSPACE upper bound for Pnv,lv,re follows from Proposition 5.3.
The EXPSPACE-hardness for patterns in Pre follows by easily adapting the proof of
Theorem 6 in Calvanese et al. [2000b], which proves that containment of CRPQs is
EXPSPACE-complete. Indeed, it immediately follows from such result that combined
complexity of CRPQs over patterns in Pnv,re is EXPSPACE-hard. By slightly adapting
the reduction, one can also show that the problem remains EXPSPACE-hard over the
class of patterns in Pre.

For patterns in P and Pnv, notice that the certain answers of a CRPQ Q over a
pattern π in Pnv can be obtained by naı̈ve evaluation of Q over π ; that is, by directly
evaluating Q over π , treating node variables as if they were ordinary node ids. This can
be simply explained by the following facts: (i) CRPQs are preserved under homomor-
phisms, and (ii) patterns in Pnv can be represented as relational naı̈ve tables [Libkin
2011]. The problem of evaluating a CRPQ over a graph database G is in NP [Barceló
et al. 2010a], and hence performing a naı̈ve evaluation (and, therefore, computing cer-
tain answers) of a CRPQ over a pattern in Pnv is in NP. The problem is clearly also
NP-hard, even over P , as it contains as a subinstance the problem of conjunctive query
evaluation over graphs.

Next we prove the �
p
2-completeness for the classes P lv and Pnv,lv. First, we show

that �
p
2 is an upper bound for the problem over patterns in Pnv,lv. Let π be a graph

pattern in Pnv,lv and Q a CRPQ, both over alphabet �. Assume, without loss of gener-
ality, that Q is Boolean and that W is the set of label variables mentioned in π . Then,
clearly CERTAIN(Q, π) = false if and only for some mapping ν : W → � it is the case
that CERTAIN(Q, πν) = false, where πν is the graph pattern in Pnv that is obtained
from π by simultaneously replacing each label variable X ∈ W with ν(X). Then, a
�

p
2 algorithm that checks whether CERTAIN(Q, π) = false does the following: It first

guesses a polynomial size mapping ν : W → �, where W is the set of label variables
mentioned in π . Then, it constructs in polynomial time the pattern πν in Pnv, and
checks that CERTAIN(Q, πν) = false. As we mentioned previously, the latter can be
solved in CONP.

The proof of �
p
2-hardness for the class P lv is rather technical, and can be found in

the appendix.

Theorem 5.2 tells us that the combined complexity of CRPQs on usual graph
databases is the same as the combined complexity of conjunctive queries over usual
relational databases, that is, NP-complete. Thus, adding node variables comes with no
cost, while adding both node and label variables carries a small cost in terms of com-
bined complexity (jumping up one level in the polynomial hierarchy). Adding regular
expressions comes at a significant cost (jumping up an exponential).

Using essentially the same techniques as in Calvanese et al. [2000b], we can prove
that the previous upper bound extends beyond CRPQs.

PROPOSITION 5.3. The combined complexity of arbitrary graph queries on arbi-
trary patterns is in EXPSPACE.

PROOF. The containment problem for CRPQs is known to be in EXPSPACE
[Calvanese et al. 2000b]. The EXPSPACE algorithm proposed in Calvanese et al.
[2000b] does the following: Given two CRPQs, Q1 and Q2, the algorithm first constructs
in EXPSPACE an NFA A1, of exponential size, that accepts precisely the “codifications”
of the graph databases that satisfy Q1, and then constructs in EXPSPACE an NFA
A2, of double-exponential size, that accepts precisely the “codifications” of the graph
databases that do not satisfy Q2. Then, it is possible to prove that Q1 �⊆ Q2 if and

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:18 P. Barceló et al.

only the language accepted by A1 ∩ A2 is nonempty. The latter can be done in EX-
PSPACE by using a standard “on-the-fly” verification algorithm. We use this idea to
show that the implication problem (i.e., the containment problem) between arbitrary
graph patterns in Pnv,lv,re can also be solved in EXPSPACE. Allowing constants in
CRPQs comes at no cost, and esentially the same construction shows that contain-
ment of CRPQs with constants (and, thus, implication of patterns in Pnv,re) can be
solved in EXPSPACE.

Let π be a graph pattern Pnv,lv,re, and let Q be a graph query such that its underlying
graph pattern ξ also belongs to Pnv,lv,re. Suppose that both patterns are defined over
alphabet � and that the set of label variables used in π or ξ is W. We assume without
loss of generality that Q is Boolean. (Indeed, since patterns in Pnv,lv,re are allowed
to make use of node ids, this is not a restriction, at least in terms of the complexity
analysis.) Then clearly, CERTAIN(Q, π) = false if and only if for some assignment
ν : W → � it is the case that CERTAIN(Q, πν) = false, where πν is the pattern in
Pnv,re that is obtained from π by replacing each occurrence of the label variable X
with ν(X). Notice that πν is a pattern in Pnv,re.

First, we show that for each valuation ν : W → �, the problem of checking whether
CERTAIN(Q, πν) = false can be solved in EXPSPACE. Clearly, CERTAIN(Q, πν) = false
if and only if there is a graph database G ∈ �πν� such that for each mapping ν′ : W →
� it is the case that G �∈ �ξν′�. (Notice that ξν′ belongs to Pnv,re, for each mapping
ν′ : W → �.) First, construct in EXPSPACE an automaton Aν

π , of exponential size, that
accepts precisely the “codifications” of the graph databases that belong to �πν� – as done
in Calvanese et al. [2000b] and explained at the beginning of the proof. Then, for each
valuation ν′ : W → �, construct in EXPSPACE an automaton Aν′

ξ , of double-exponential
size, that accepts precisely the “codifications” of the graph databases that do not belong
to �ξν′� – as done in Calvanese et al. [2000b] and explained at the beginning of the
proof. Then, CERTAIN(Q, πν) = false if and only the language accepted by the NFA
B = Aν

π ∩ ⋂
ν′:W→� Aν′

ξ is nonempty. Notice that the size of B is double-exponential on
the size of the input, and, further, that checking whether B accepts some word can be
done in EXPSPACE using a standard “on-the-fly” verification algorithm.

Thus, an EXPSPACE procedure that checks whether CERTAIN(Q, π) = false does
the following: For each ν : W → �, the procedure first constructs πν and then
checks whether CERTAIN(Q, πν) = false using the algorithm described in the pre-
vious paragraph. If CERTAIN(Q, πν) = false, for some ν : W → �, then we declare
CERTAIN(Q, π) = false. Otherwise, we declare CERTAIN(Q, π) = true. Clearly, the
whole procedure can be performed in exponential space.

The next question is whether we can lower the EXPSPACE bound for patterns in Pre.
There are two natural ways of looking for better behaved subclasses: by restricting
queries, or restricting patterns. Restrictions on queries by means of simplifying reg-
ular languages were studied in Deutsch and Tannen [2001]. For example, it showed
that for regular languages built with concatenation and the Kleene star, the combined
complexity drops to �

p
2-complete. Another possibility is to restrict to RPQs; then, using

techniques similar to Calvanese et al. [2000b], we can prove a PSPACE bound, match-
ing the combined complexity of relational calculus. It also follows from Calvanese
et al. [2000b] that restricting the class of patterns does not help lower the combined
complexity.

PROPOSITION 5.4.

— The combined complexity of answering CRPQs on patterns π ∈ Pre is EXPSPACE-
hard even for patterns π that contain a single edge.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:19

— The combined complexity of answering RPQs on graph patterns from Pnv,lv,re is
PSPACE-complete. The problem remains PSPACE-hard even for answering RPQs on
patterns π ∈ Pre that contain a single edge.

PROOF. The first part follows directly from the proof of Theorem 6 in Calvanese
et al. [2000b]. Next, we prove the second part.

It follows from the proof of Theorem 5 in Calvanese et al. [2000b], that the problem
of checking whether a CRPQ Q1 is contained in CRPQ Q2 can be solved in PSPACE,
if we assume the number of variables used in Q2 to be fixed. It immediately follows
that checking whether a CRPQ is contained in an RPQ is in PSPACE. Again, allowing
constants in CRPQs comes at no cost, and esentially the same construction shows that
containment of a CRPQ with constants into an RPQ (and, thus, combined complexity
of answering RPQs on patterns in Pnv,re) can be solved in EXPSPACE. Next, we use
this fact to construct a PSPACE procedure that checks, for a given pattern π ∈ Pnv,lv,re

and a RPQ Q, whether CERTAIN(Q, π) = true.
Let π be an arbitrary graph pattern in Pnv,lv,re and Q an arbitrary RPQ. Again, we

can assume without loss of generality that Q is Boolean. Assume that both π and Q are
defined over alphabet � and that W is the set of label variables used in π . Then, it is
clear that CERTAIN(Q, π) = false if and only if for some mapping ν : W → � it is the
case that CERTAIN(Q, πν) = false, where πν is the pattern in Pnv,re that is obtained
from π by replacing each label variable X ∈ W with ν(X). Notice that each pattern of
the form πν , for ν a mapping from W to �, is a CRPQ.

It is clear that checking whether CERTAIN(Q, πν) = false can be done in PSPACE.
Indeed, this is equivalent to checking whether the pattern πν in Pnv,re is contained
in the RPQ Q, which by the observations provided above can be solved in polynomial
space. Now, define a procedure that does the following: For each mapping ν : W → �,
first construct πν and then compute CERTAIN(Q, πν). If CERTAIN(Q, πν) = false, for
some ν : W → �, then we declare CERTAIN(Q, π) = false. Otherwise, we declare
CERTAIN(Q, π) = true. Clearly, the whole procedure can be performed in polynomial
space.

The PSPACE-hardness for RPQs over patterns in Pre that contain a single edge
follows from the following reduction from the problem of containment of regular ex-
pressions, which is known to be PSPACE-hard. Assume that L and L′ are two regular
expressions over alphabet �. Let a and a′ be two distinct symbols that do not belong
to �. Define πL to be the following graph pattern in Pre: (n, aLa′, n′). Notice that πL is
defined over alphabet � ∪ {a, a′} and has a single edge. Further, define RPQ QL′ to be
Ans() ← (x, aL′a′, y). Then it can be easily proved that CERTAIN(QL′ , πL) = true if and
only if L ⊆ L′. Further, πL and QL′ can be constructed in polynomial time from L and
L′. This finishes our proof.

5.2. Data Complexity

We now turn to data complexity, i.e. the complexity of query answering when the query
is fixed. In what follows, Q refers to a graph query (ξ , x̄) with |x̄| = k.

PROBLEM: DATA COMPLEXITY(Q)
INPUT: a pattern π = (N, E), a tuple v̄ ∈ Nk.
QUESTION: Is v̄ ∈ CERTAIN(Q, π) ?

Notice that this can also be viewed as a pattern-implication problem π |= ξ [v̄/x̄], but
for a fixed pattern ξ .

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:20 P. Barceló et al.

P :NLOGSPACE-c.

Pnv:NLOGSPACE-c. P lv:CONP-c. Pre:CONP-c.

Pnv,lv: CONP-c. Pnv,re:CONP-c. P lv,re:CONP-c.

Pnv,lv,re:CONP-c.

Fig. 5. Data complexity for CRPQs over graph patterns.

As already mentioned, some cases are simple: for example, patterns in P are graphs,
and thus due to the monotonicity of CRPQs, computing certain answers is the same
as evaluating CRPQs on graphs, that is, NLOGSPACE-complete. Similarly, since Pnv

patterns can be represented as naı̈ve tables, and since CRPQ certain answers can be
obtained by naı̈ve evaluation over naı̈ve tables, we retain an NLOGSPACE bound. For
other cases, as it turns out, the complexity is intractable.

THEOREM 5.5. The data complexity of answering CRPQs over classes of graph pat-
terns is as shown in Figure 5.

Proof Sketch. We have already explained how to obtain the NLOGSPACE upper
bounds, and we shall prove a stronger CONP upper bound in Proposition 5.6. We
now present a simple hardness proof for Pre. It will be tightened significantly (and
extended to P lv) in the remainder of the section.

For Pre, we use reduction to non-3-colorability. Assume we have an arbitrary
undirected graph G; we represent it as a labeled graph where between two nodes
n1 and n2 connected by an edge we have two edges labeled a, that is, (n1, a, n2) and
(n2, a, n1). Now we turn it into a Pre pattern πG over the alphabet {a, r, g, b} by adding
edges (n, rr|gg|bb, n) for each node n. That is, in every graph represented by this
pattern, associated with each node n there is a node n′ and edges (n, �, n′), (n′, �, n)
where � is one of r, g, b. It is now easy to see that the certain answer to the Boolean
RPQ Ans() ← (x, rar|gag|bab, y) over πG is true if and only if G is not 3-colorable.

The upper bound again extends to arbitrary queries. In order to prove this, we apply
similar techniques to those used in Calvanese et al. [2000a] to show that the data
complexity of the problem of answering RPQs using views is in CONP.

PROPOSITION 5.6. Data complexity of arbitrary graph queries over arbitrary graph
patterns is in CONP.

PROOF. Before starting the proof, we need to introduce the notion of a canonical
graph database for a graph pattern π , which will be useful for the rest of the proof. Let
σ be an assignment from the nodes of π into N such that (1) σ is the identity map on
node ids, and (2) σ assigns a fresh node id nx to each node variable x mentioned in π .
(In particular, nx does not appear in π .) Then, we say that σ is canonical for π .

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:21

Let π be a graph pattern over �. Assume that π consists of the edges {(pi, Li, qi) |
1 ≤ i ≤ m}, where each pi and qi is either a node variable or a node id and each Li
belongs to REG(� ∪ Vlab) (1 ≤ i ≤ m). Further, let σ be a canonical assignment for
π . Then, the graph database G over � is σ -canonical for π if and only if there is a
mapping ν : Vlab → � such that the following holds:

— G consists of m simple paths, one for each edge in π , which are node and edge
disjoint, that is, only the start and end nodes can be shared between different paths;
and

— for each 1 ≤ i ≤ m, if ρi is the path associated with the edge (pi, Li, qi), then ρi
starts in the node id σ(pi) and ends in the node id σ(qi), and λ(ρi) ∈ ν(Li).

From now on, whenever G is σ -canonical for π , for some canonical assignment σ ,
then we simply say that it is canonical for π . Clearly, if G is canonical for π , then
G |= π .

Using essentially the same techniques as in Calvanese et al. [2000b] it is possible to
prove the following semantic characterization.

CLAIM 2. For each graph query Q and tuple n̄ of node ids in π , it is the case that
n̄ �∈ CERTAIN(Q, π) if and only if there is a a graph database G over � that is canonical
for π and such that n̄ �∈ Q(G).

Now we have the appropriate tools to prove the proposition. Let Q be a fixed graph
query over the fixed alphabet �. We assume without loss of generality that Q is
Boolean (indeed, since queries are allowed to make use of node ids this is not a re-
striction). We first prove the following small model property: There is a polynomial
p(x) such that for every graph pattern π over �, if

(1) there is a graph database G ∈ �π� such that Q(G) = false, and
(2) every node id that is mentioned in Q is also mentioned in π ,

then there is a canonical graph database G′ for π such that (1) Q(G′) = false, and
(2) the length of each path in G′ that is associated with an edge of π is bounded by
p(|π |), where |π | is the size of π . (Notice that this immediately implies that G′ is of size
polynomial on |π |). We prove this by applying usual cutting techniques.

Let π be a graph pattern over �. Assume that every node id that is mentioned in
Q also appears in π . Further, assume that there is a graph database G ∈ �π� such
that Q(G) = false. Then, we can also assume, without loss of generality, that G is
σ -canonical for π via some mapping ν : Vlab → �, for some canonical assignment
σ (Claim 2). The problem is that some paths in G may be too long, and, thus, not
necessarily every path in G that is associated with some edge of π is of polynomial
size. Next, we show how to prune the long paths in G without changing its semantics
with respect to π and Q.

Consider the query Q′ defined as
∨

{ν|ν:Vlab→�} Qν , where Qν is the graph query ob-
tained from Q by simultaneously replacing each label variable X mentioned in Q with
ν(X). Clearly, Q′ is a finite disjunction of graph queries whose underlying graph pat-
tern belongs to Pnv,re. We assume the semantics of disjunctions of graph queries to be
defined in the standard way from the semantics of graph queries. Then, it is not hard
to see that Q(G) = false if and only if Q′(G) = false.

Further, Q′ is a CRPQ with constants, and hence it can be expressed as a sentence φ
in monadic second-order logic (MSO) – which is the extension of first-order logic with
quantification over sets – with the help of constants for the node ids that appear in Q.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:22 P. Barceló et al.

The vocabulary of φ consists of binary relation symbols Ea, for each a ∈ �. A graph
database G over � can be interpreted in the standard way as a first-order structure
SG over this vocabulary: The interpretation of symbol Ea in this structure contains
all pairs (n, n′) of node ids in G such that there is an edge labeled a from n to n′ in
G. Then, one can construct φ in such a way that G |= Q′ ⇔ SG |= φ, for each graph
database G.

Assume that the quantifier depth of φ is k ≥ 0. Notice that k depends only on φ. It
is well known that there is a finite number of different rank-k MSO types (cf., Libkin
[2004]) of words over vocabulary � with one distinguished element. Assume that such
a number is K ≥ 0. Again, K only depends on k, and thus, on φ.

Also, with each regular language of the form ν(L), where L is a regular language
in REG(� ∪ Vlab) that appears in π , we associate an NFA Aν(L) that recognizes ν(L).
Since each regular language can be converted into an equivalent NFA of polynomial
size, we can assume that there is a polynomial p′(x) such that the number of states of
each NFA of the form Aν(L) is bounded by p′(|L|), and hence by p′(|π |).

Let ρ = n0a0n1 · · · a�−1n�a�n�+1 be an arbitrary path in G, such that both n0 and
n�+1 are mentioned in π , but none of the node ids n1, . . . , n� is mentioned in π . Recall
that G is σ -canonical for π , and, thus, ρ is associated with some edge (p, L, q) in π . That
is, σ(p) = n0, σ(q) = n�+1 and a0a1 · · · a� belongs to ν(L). With each node ni, 1 ≤ i ≤ �,
we associate a pair (αi

1, αi
2) such that:

— αi
1 is the rank-k type of the word λ(ρi→), where ρi→ = niaini+1 · · · a�n�+1; and

— αi
2 is the rank-k type of the word λ(ρi←), where ρi← = n0a0 · · · ai−2ni−1ai−1.

Then, it is clear that if � ≥ p′(|π |) · K + 3, there must be two nodes ni and nj (2 ≤ i <

j ≤ �) such that (1) αi
1 = α

j
1 and αi

2 = α
j
2, and (2) there is an accepting run of Aν(L) over

a0a1 · · · a� such that the state assigned by this run to position i − 1 is the same than
the one assigned to position j − 1. Thus, the word a0a1 · · · ai−1aj · · · a� belongs to ν(L),
and further, if G′ is the graph database that is obtained from G by replacing path ρ by
path ρ′ = n0a0n1 · · · ai−1niajnj+1 · · · n�a�n�+1, then G′ |= π .

We need to show now that the semantics of Q is invariant with respect to G and
G′. First, assume that n̄ is the tuple of all distinct node ids mentioned in π . Then, G
contains each node id n mentioned in n̄, and so does G′ (because we only cut internal
node ids of paths in G that are associated to edges in π , and those nodes – since G
is canonical for π – do not appear in π). Further, let (G, n̄) and (G′, n̄) be the first-
order structures that extend the standard first-order interpretations of G and G′ over
vocabulary {Ea | a ∈ �} with distinguished tuple n̄. By using a standard Ehrenfeucht-
Fraı̈ssè game argument for MSO, it is possible to prove that (G, n̄) and (G′, n̄) are
indistinguishable by MSO sentences of quantifier rank ≤ k. (This is due to the facts
that (1) αi

1 = α
j
1 and αi

2 = α
j
2 implies that the rank-k types of λ(ρ) and λ(ρ′) are the

same, and (2) there are no two different paths in G that share internal nodes from
ρ). We conclude that (G, n̄) |= φ if and only if (G′, n̄) |= φ (since every node id that
is mentioned in φ is among those in n̄), and, thus, Q′(G) = false iff Q′(G′) = false.
Therefore, Q(G) = false iff Q(G′) = false.

By recursively applying the cutting technique, one can show that if there is a graph
database G ∈ �π� such that n̄ �∈ Q(G), then there is a graph database G′ that is canon-
ical for π , Q(G′) = false, and the length of each path in G′ that is associated with an
edge of π is bounded by the polynomial p′(|π |) · K + 4. This finishes the proof of our
small model property. Next, we continue with the proof of the proposition.

In order to do this, we design an NP algorithm that verifies CERTAIN(Q, π) = false.
Let π be a graph pattern over �. If Q contains some node id that does not appear in π ,

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:23

then clearly CERTAIN(Q, π) = false. If this is not the case, then we can use our small
model property.

The algorithm first guesses an assignment ν from the label variables mentioned in
π into alphabet �. Then, it guesses a canonical graph G for π via assignment ν, such
that the length of each path in G that is associated to some edge in π is bounded
by p′(|π |) · K + 4. Clearly, both ν and G are polynomial size witnesses. Finally, the
algorithm checks that Q′(G) = false, which can be done in polynomial time [Consens
and Mendelzon 1990].

Looking at Figure 5, we see that there are two features that cause CONP-hardness:
label variables, and regular expressions. We now analyze their role in causing the
high complexity of query answering. In both cases, we need to investigate two ways of
lowering the complexity: by restricting queries, and by restricting their inputs.

The Role of Label Variables. For restrictions on queries, we shall look at simple
RPQs. To define restrictions on inputs, we use the notion of the underlying graph Gπ

of a pattern π = (N, E): this is simply the graph obtained by erasing labels on edges,
that is, Gπ = (N, {(v1, v2) | (v1, L, v2) ∈ E).

We now show that the CONP-hardness result is very robust. Recall that Pσ
Codd

stands for class of Codd patterns in Pσ , that is, patterns that use each variable once.

THEOREM 5.7.

— There is a Boolean RPQ Q such that DATA COMPLEXITY(Q) is CONP-hard even
over input patterns in P lv whose underlying graph is a path. Moreover, the regular
language in Q is built using only concatenation and the Kleene star.

— There is a Boolean RPQ Q of the form Ans() ← (x, w, y), where w is a word in
{0, 1}∗, such that DATA COMPLEXITY(Q) is CONP-hard even over P lv

Codd patterns
whose underlying graph is a DAG.

PROOF. We prove the first part and leave the second, more technical proof, to the
appendix. We prove that there exists a Boolean RPQ Q of the form Ans() ← (x, L, y),
where L is a regular expression built using only concatenation and Kleene star, and
DATA COMPLEXITY(Q) is CONP-hard even over input patterns in P lv whose underly-
ing graph is a path.

We establish a reduction from monotone 1-in-3 3SAT, which is known to be NP-
hard, to the complement of DATA COMPLEXITY(Q). The input to monotone 1-in-3 3SAT
is a conjunction φ of clauses, with exactly three literals each, in which no negated
variable occurs. The problem is determining whether there is a truth assignment to
the variables so that each clause has exactly one true variable.

Let � = {#, 0, 1, in, out}. The query Q over � is the Boolean RPQ that consists of the
atom Ans() ← (x, L, y), where L is the regular language in · L∗

1 · L∗
2 · · · L∗

10 · out, and
languages Li, 1 ≤ i ≤ 10, are defined as follows (we assume that �∗ corresponds to the
expression (in∗0∗1∗#∗out∗)∗):

L1 := �∗in�∗; L2 := �∗out�∗; L3 := �∗##�∗

L4 := �∗#0#�∗; L5 := �∗#1#�∗; L6 := �∗#111�∗;
L7 := �∗#011�∗; L8 := �∗#101�∗; L9 := �∗#110�∗; L10 := �∗#000�∗.

Clearly, L is a regular expression that uses concatenation and Kleene-star only.
The reduction is as follows. Let φ = C1 ∧ · · · ∧ Cm be a formula in 3CNF using

variables {x1, . . . , xk}, and assume that for each 1 ≤ i ≤ m clause Ci is of form

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:24 P. Barceló et al.

Ci = xi1 ∨ xi2 ∨ xi3 , where 1 ≤ ij ≤ k for j = 1, 2, 3. With each variable x� (1 ≤ � ≤ k)
we associate a different label variable X�. We construct a pattern π over � that uses
variables {X1, . . . , X�} and node ids {nin1 , nin2 , nout, {nj

i | 1 ≤ i ≤ m, 0 ≤ j ≤ 3}}.
Moreover, π contains the following edges:

— it contains the edges (n0
i , Xi1 , n1

i), (n1
i , Xi2 , n2

i) and (n2
i , Xi3 , n3

i), for each 1 ≤ i ≤ m;
— for each 1 < i ≤ m, π contains as well the edge (n3

i−1, #, n0
i); and

— finally, π contains the edges (nin1 , in, nin2), (nin2 , #, n0
1), and (n3

m, out, nout).

Graphically, this pattern looks as follows:

out

nin1
nin2

in # X11 X12 X13

n0
1 n1

1 n2
1 n3

1

. . .
n3

i−1 n0
i n1

i n2
i

Xi1 Xi2

n3
i

Xi3 . . .
n2

m n3
m nout

Xm3

Clearly, π belongs to P lv and can be constructed in polynomial time from φ. Also,
notice that the underlying graph of π is a path. Next we prove that there is a truth
assignment to the variables of φ so that each clause has exactly one true variable if
and only if CERTAIN(Q, π) = false.

(⇒) Let γ : {x1 . . . , xk} → {0, 1} be a truth assignment for the variables of φ so that
γ assigns the value 1 to exactly one variable in each clause of φ. In order to prove
that CERTAIN(Q, π) = false, we show the existence of a graph G ∈ �π� such that
Q(G) = false.

To define G, we construct a mapping ν : {X1, . . . , Xk} → {#, 0, 1, in, out} as follows.
For each 1 ≤ � ≤ k, we set ν(X�) = γ (x�). Then, we define G as the graph resulting of
replacing each variable Xi in {X1, . . . , X�} with ν(Xi).

We now prove that Q(G) = false. Assume for the sake of contradiction that this
is not the case. That is, assume that there is a path ρ in G such that λ(ρ) belongs to
the language defined by L. Simply by construction of G, it is easy to check then that if
Q′ := Ans() ← (nin2 , L∗

1 · L∗
2 · · · L∗

10, n3
m) then it must be the case that G |= Q′. Let ρ be

the unique path from nin2 into n3
m in G. Clearly, ρ is nonempty and, further, does not

satisfy Lj, for each 1 ≤ j ≤ 5. Thus, it must be the case that λ(ρ) contains at least one
subword in the set {#111, #011, #101, #110, #000}, thus matching one of {L6, . . . , L10}.
We only derive a contradiction in the case when λ(ρ) contains the subword #111, all
other cases are completely symmetrical.

Assume then that #111 is a subword of λ(ρ). In other words, we have that G contains
a path ρ′ such that λ(ρ′) = #111 (and, of course, that is a subpath of ρ).

Notice that, from the construction of π and ν, the only edges labeled with # are those
of the form (n3

i−1, #, n0
i), for 1 < i ≤ m, and the edge (nin2 , #, n0

1).
Then, it must be the case that ρ′ start in some node n3

i−1 (1 < i ≤ m), or in node
nin2 , and therefore (by the construction of G), ρ′ uses edges (n3

i−1, #, n0
i), (n0

i , ν(Xi1), n1
i),

(n1
i , ν(Xi2), n2

i) and (n2
i , ν(Xi3), n3

i) (or starting with (nin2 , #, n0
1) if i = 1). Given that λ(ρ′)

is #111, we have that ν(Xi1) = ν(Xi2) = ν(Xi3) = 1; by the construction of π , this means
that there is a clause Ci = xi1 ∨ xi2 ∨ xi3 , 1 ≤ i ≤ m, such that γ (xi1) = γ (xi2) =
γ (xi3) = 1, which contradicts the fact that γ assigns the value 1 to exactly one variable
in each clause.

(⇐): Assume now that CERTAIN(Q, π) = false. Then there must be a graph G ∈ �π�
such that Q(G) = false. Since G ∈ �π� there is a homomorphism h = (h1, h2) from π

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:25

into G, where h1 maps nodes of π into nodes of G and h2 maps the label variables of π
into the alphabet {#, 0, 1, in, out}.

Consider the path ρ in G defined as

nin1 in nin2 # n0
1 h2(X11) n1

1 h2(X12) n2
1 h2(X13) n3

1 # n0
2 · · ·

n0
m h2(Xm1) n1

m h2(Xm2) n2
m h2(Xm3) n3

m out nout.

Then, λ(ρ) does not belong to L, which implies that if ρ′ is the subpath of ρ that starts
in nin2 and finishes in n3

m, then λ(ρ′) does not belong to the language given by L∗
1 · · · L∗

10.
In particular, there is no subword of λ(ρ′) that satisfies Lj, for 1 ≤ j ≤ 5. It can be easily
checked that this implies that h2(X�) ∈ {0, 1}, for each 1 ≤ � ≤ k.

Thus, from h2, we define a valuation γ : {x1, . . . , xk} → {0, 1} for the variables of φ as
follows: For every 1 ≤ � ≤ k, we let γ (x�) = h2(X�). We prove next that γ assigns the
value 1 to exactly one variable in each clause of φ.

Assume for the sake of contradiction that γ does not satisfy this property. Then,
there is a clause Ci = xi1 ∨ xi2 ∨ xi3 , 1 ≤ i ≤ m, such that γ does not assign the value
1 to exactly one of {xi1 , xi2 , xi3}. There are five symmetric cases, for each one of the
possible valuations that do not satisfy this property. It is easy to derive a contradiction
for each one of these cases, and we only show how to do it for the case when γ is such
that γ (xi1) = γ (xi2) = γ (xi3) = 1. But then it is clear that λ(ρ′) ∈ L6, and, thus, λ(ρ)
belongs to L. This contradicts the fact that Q does not hold in G.

The only possibility for a polynomial-time query answering algorithm left open by
this result appears to be Codd patterns in P lv with very nice underlying graphs. We
shall see in Section 7, when we study tractable restrictions, that there is indeed a
tractable class obtained along these lines.

The Role of Regular Expressions. In the case of patterns from Pre, we have an ad-
ditional parameter to vary: the regular expressions used in patterns. Nevertheless, we
shall see that CONP-hardness is already witnessed by very simple regular expressions.

THEOREM 5.8.

— There exists a Boolean RPQ Q of the form Ans() ← (x, w, y), where w is a single word
over � = {0, 1}, such that DATA COMPLEXITY(Q) is CONP-hard even over input
patterns in Pre over � whose underlying graph is a DAG. It remains CONP-hard
even if each regular expression used in input patterns is 0|1.

— There exists a Boolean RPQ Q such that DATA COMPLEXITY(Q) is CONP-hard even
over input patterns in Pre that only use regular expressions of the form a, for a ∈ �,
or a∗

1 . . . a∗
n, where the ai’s are distinct letters in �.

PROOF. The first part of the theorem follows directly from the second part of The-
orem 5.7. This is because each pattern π ∈ P lv

Codd over � = {0, 1} is equivalent to
the pattern π ′ ∈ Pre over � that is obtained from π by replacing each label variable X
mentioned in π by the regular expression (0|1) (i.e., �π� = �π ′�). Clearly, the underlying
graphs of π and π ′ are the same.

For the second part, we use a reduction from non-3-colorability. Assume we have
an arbitrary undirected graph G; we represent it as a labeled graph where between
two nodes n1 and n2 connected by an edge we have two edges labeled a, that is,
(n1, a, n2) and (n2, a, n1). Now we turn it into a Pre pattern πG over the alphabet
{a, r, g, b, d} as follows. For each node n do the following: First, create a self-loop
labeled on n labeled d. Second, add a new node n′ and add edges (n′, (r∗g∗b∗), n)
and (n, (r∗g∗b∗), n′), It can be shown that the certain answer to the Boolean RPQ

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:26 P. Barceló et al.

Ans() ← (x, L, y) over πG is true if and only if G is not 3-colorable, where L is the
language (rdb|rdg|gdb|gdr|bdg|bdr|gag|rar|bab).

Like the case of patterns with label variables, this leaves open the possibility that
more restrictive underlying graphs may lead to tractability. Indeed, we shall prove
such results in Section 7.

6. INCOMPLETE AUTOMATA FOR QUERYING PATTERNS

Notice that graph databases can be viewed as finite automata. Graph patterns in turn
can be viewed as incomplete automata. We now define those, and show that they natu-
rally generate two notions of acceptance. These notions correspond to certain answers:
one for certain answers as we defined them, and the other for certain answers for
queries that can output paths.

Extensions of CRPQs outputting paths have been defined in Barceló et al. [2010a].
We shall present this notion for RPQs (for CRPQs, it includes the concept of synchro-
nizing paths, which will complicate the presentation). An RPQ with a path output is a
query of the form

Ans(z̄, ρ) ← (x, ρ : L, y),
where, on top of the usual RPQ Ans(z̄) ← (x, L, y), one is allowed to name the path ρ
witnessing the query, and to output its label. Of course the number of L-paths between
two nodes could be infinite, but one easily observes that for every nodes n1, n2 in a
graph database, the set of labels of L-paths between them is regular, and thus can be
represented by a finite automaton.

Assume we have an RPQ Q with a path variable, as described here, and a graph
pattern π . Let n1, n2 be two nodes from N that occur in π . We say that a word ρ ∈ �∗
is a certain path between n1 and n2 with respect to Q if for every G ∈ �π�, there is an
L-path between n1 and n2 with label ρ. The set of such certain paths will be denoted
by CERTAINpath(Q; π , n1, n2). We shall write CERTAIN

path
� when � is not clear from the

context.
The following example illustrates this concept.

Example 6.1. For m > 0, consider the pattern πm over � = {0, 1} shown here.

Xm

0|1 0|1

X1 X2

n0 n1 nm

Notice that each G ∈ �πm� will contain a path from node n0 to node nm. In particular,
(n0, nm) is a certain answer to the RPQ Q given by (x, ρ : (0|1)∗, y).

However, one can see that every word in CERTAIN
path
� (Q; π , n0, nm) must contain,

as subwords, all the 2m words of length m over {0, 1} since the Xi’s can be instan-
tiated arbitrarily. Due to the presence of the loops, the converse also holds, and
CERTAIN

path
� (Q; π , n0, nm) consists precisely of the words that contain all the 2m sub-

words of length m. In particular, the smallest certain paths are precisely the non-
circular De Bruijn sequences of order m, and thus have length 2m + m − 1. One can
also easily show that any NFA accepting CERTAIN

path
� (Q; π , n0, nm) will have exponen-

tially many states (in m).

This example suggests that the problem of computing the certain paths is inherently
different from the problem of computing certain answers for graph patterns, and thus
we need to develop new tools for solving this problem. This is what we do next.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:27

6.1. Incomplete Automata and Certain Answers

For convenience, we shall assume that NFAs can have edges labeled by words. That
is, NFAs will be of the form A = (Q, �, q0, F, δ), where Q is the set of states, � is the
alphabet, q0 is the initial state, F is the set of final states, and the transition relation δ
is a finite subset of Q × �∗ × Q (we impose finiteness to maintain equivalence with the
standard notion of NFAs used in the literature). The notion of acceptance extends to
such an automaton in the standard way: if there is a transition (q, w, q′), the automaton
is in state q, then, if w is a subword that starts in the current position, the automaton
skips it and moves to the state q′. When all the w’s used in transitions are single letters,
this is the standard notion of NFAs; in that case, we shall refer to them as standard
NFAs.

The language accepted by an NFA is denoted by L(A). Note that for each NFA, one
can construct, in polynomial time, a standard NFA A′ such that L(A) = L(A′). This
is done by converting each word in a transition into a DFA (in polynomial time) and
plugging it in place of the transition. Hence, using extended transitions is indeed just
a matter of convenience.

Definition 6.2 (Incomplete Automata). An incomplete automaton A is a tuple A =
(Q, �,W, q0, F, δ), where W is a finite set of label variables from Vlab, and δ ⊆ Q ×
REG(� ∪ W) × Q.

Thus, an incomplete automaton is really just a graph pattern from Pnv,lv,re with a
distinguished node corresponding to the initial state, and a set of nodes corresponding
to the final states.

To define acceptance by these automata, we need the notion of valuation. For an
incomplete automaton A = (Q, �,W, q0, F, δ), a valuation is a pair ν = (η, θ), where
η : W → � maps label variables in W to �, and θ : (Q × REG(� ∪ W) × Q) →
(Q × �∗ × Q) assigns to each transition (q, L, q′) ∈ δ a transition (q, w, q′), where w is
a word that belongs to η(L). Thus, a valuation ν = (η, θ) for an incomplete automaton
A defines an NFA ν(A) = (Q, �, q0, F, θ(δ)).

We now consider two notions of acceptance. Weak acceptance refers to those lan-
guages over � that are related to all valuations of an automaton, and strong acceptance
defines words over � that are accepted by all these valuations.

Definition 6.3 (Weak and strong acceptance).

— A regular language L ⊆ �∗ is weakly accepted by an incomplete automaton A if
L ∩ L(ν(A)) �= ∅ for every valuation ν.

— A word w ∈ �∗ is strongly accepted by an incomplete automaton A if w ∈ L(ν(A))
for every valuation ν.

We write Lw(A) for the set of languages weakly accepted by A, and Ls(A) for the set
of words strongly accepted by A. Note that Lw(A) ⊆ 2�∗

while Ls(A) ⊆ �∗.

It is easy to see that for words the two previous notions can be related as follows:
For each incomplete automaton A = (Q, �,W, q0, qf , δ) and word u ∈ �∗, it is the case
that u ∈ Ls(A) if an only if {u} ∈ Lw(A). We prefer to continue talking, however, about
both weak and strong acceptance since in this way we can clearly distinguish when we
refer to acceptance of a word or of a regular language.

While not immediately obvious from the definition, we can show that languages
strongly accepted by incomplete automata are regular.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:28 P. Barceló et al.

PROPOSITION 6.4. For an incomplete automaton A, the language Ls(A) of words
strongly accepted by A is regular. An NFA accepting Ls(A) can be constructed in doubly
exponential time.

PROOF. Let A = (Q, �,W, q0, F, δ) be an incomplete automaton. Assume that
(q, L, q′) is a transition in δ. We use the following technical but self-evident claim:

CLAIM 3. The regular expression L defines a finite language over alphabet � ∪W if
and only if η(L) defines a finite language over alphabet �, for each mapping η : W → �.

The key idea of the proof of the Proposition is the fact that, in terms of strong ac-
ceptance, we can dismiss all transitions in A that are labeled by expressions that de-
fine infinite languages. More precisely, let δfin ⊆ δ be the set of transitions of form
(q1, L, q2) such that L defines a finite language over alphabet � ∪W. We denote by Afin

the automaton (Q, �,W, q0, F, δfin) (notice that Afin may contain variables in W that
do not appear in any transition in δfin). The following lemma formalizes the idea just
presented.

LEMMA 6.5. Ls(A) = Ls(Afin).

PROOF. The fact that Ls(Afin) ⊆ Ls(A) is straightforward. Thus, we only need to
show that Ls(A) ⊆ Ls(Afin). Assume that a word w belongs to Ls(A). To prove that w
belongs to Ls(Afin), we show next that for every valuation ν of Afin it is the case that
ν(Afin) accepts w.

Let ν = (η, θ) be an arbitrary valuation for Afin. Construct a valuation ν′ = (η′, θ ′) for
A as follows:

— valuation η′ is a copy of η,
— define θ ′((q1, L, q2)) = θ((q1, L, q2)), if (q1, L, q2) belongs to δfin, and
— otherwise, θ ′((q1, L, q2)) = w′, where w′ is an arbitrary word in η(L) such that

|w′| > |w| (We know that such word exists since L is an infinite language, and,
therefore, from Claim 3, η(L) is also an infinite language).

Since w ∈ Ls(A) and ν′ is a valuation for A, the word w is accepted by ν′(A). Further-
more, notice that any accepting run ρ of w for ν′(A) is also an accepting run for ν(Afin),
as clearly ρ cannot use any transition labeled by a word of size larger than w. This
shows that ν(Afin) accepts w. Since ν is an arbitrary valuation for Afin, we conclude
that w ∈ Ls(Afin), which finishes the proof of the lemma.

We continue now with the proof of the proposition. Let A be an incomplete automa-
ton. First, we prove that Ls(A) is regular. By Lemma 6.5, we know that Ls(A) can be
defined as the intersection of all NFAs of the form ν(Afin), where ν is a valuation for
Afin. But notice that the set {ν(Afin) | ν is a valuation for Afin} is finite. This is because
every edge in Afin is labeled by an expression L that defines a finite language over
alphabet � ∪ W, and, thus, from Claim 3, for each valuation η : W → � its is the case
that η(L) also defines a finite language over �. The proof then follows from the fact
that every finite intersection of regular languages is regular.

It remains to show that we can construct in double exponential time an NFA B
such that L(B) = Ls(A). We have argued in the previous paragraph that Ls(A) can
be defined as the intersection of each automaton in the set {ν(Afin) | ν is a valuation
for Afin}. But notice that all of these automata are standard NFAs, so they can be
intersected using the standard cross product construction. Thus, we just define B as

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:29

∏
ν ν(Afin). That B can be constructed in double exponential time follows from the next

claim, which can be easily proved using standard automata tools.

CLAIM 4. Let r be a regular expression over an alphabet �, such that L(r) is fi-
nite. Then, all words in L(r) are of size at most |r| (i.e., they have at most |r| symbols).
Furthermore, L(r) contains at most O(|�||r|) words.

From Claims 3 and 4, we immediately obtain that, for each valuation ν = (η, θ) for
Afin, it is the case that ν(Afin) is of size polynomial with respect to A. Let us now
analyze the number of different valuations ν = (η, θ) that can be defined for Afin.
Clearly, we have |�||W | possible mappings η from W to �. For each of one of those
mappings, different mappings θ can be constructed by mapping each edge (p, L, q) in
δfin to different words in η(L). By Claim 3, we have that η(L) always defines a finite
language, and thus, by Claim 4, the number of words in η(L) is bounded by O(|�||L|)
(recall that we assume that L is given as a regular expression). This clearly shows
that the the number of different valuations that can be defined for Afin is at most
exponential in the size of Afin, and then B = ∏

ν ν(Afin) is a product of exponentially
many automata, each one of polynomial size. Using this observation, it is now easy to
show that B can be constructed in double exponential time.

We shall see later (Theorem 6.11) that the bound of Proposition 6.4 is tight.
Given a graph pattern π = (N, E) ∈ Pnv,lv,re over � that uses label variables W, and

two nodes n1, n2 from N ∩ N (i.e., nodes which are not variables), we let Aπ (n1, n2)
be the incomplete automaton (N, �,W, n1, {n2}, E). The following theorem shows the
relation between querying graph patterns and incomplete automata.

THEOREM 6.6. Let Ans(x, y, ρ) ← (x, ρ : L, y) be an RPQ, π = (N, E) a graph pat-
tern, and n1, n2 two of its nodes from N . Then

(1) (n1, n2) ∈ CERTAIN(Q, π) if and only if L is weakly accepted by Aπ (n1, n2).
(2) w ∈ CERTAINpath(Q; π , n1, n2) if and only if w ∈ L and w is strongly accepted by

Aπ (n1, n2).

PROOF. We only prove that w ∈ CERTAINpath(Q; π , n1, n2) if and only if w ∈ L and w
is strongly accepted by Aπ (n1, n2). The first part of the theorem, being similar, is left
to the appendix.

(⇒): Assume that w ∈ CERTAINpath(Q; π , n1, n2). By definition, we have that w be-
longs to L. Thus, we only prove that w is strongly accepted by Aπ (n1, n2). Let ν = (η, θ)
be an arbitrary valuation for Aπ (n1, n2); that is, η is a mapping from W into � and
θ : (N × REG(� ∪ W) × N) → (N × �∗ × N) assigns to each edge (p, r, q) ∈ E
a transition (p, w, q), where w is a word that belongs to η(r). Next we show that
w ∈ L(ν(Aπ (n1, n2))).

Let σ be the assignment from the nodes of π into N that is the identity on node ids
and maps each node variable x into a different node id nx. Then, we define a graph
database G as the unique (up to isomorphism) σ -canonical graph database1 for π that
satisfies the following: For every edge e = (p, r, q) of π , the path ρ that is associated
with e in G is such that λ(ρ) = w, where θ(e) = (p, w, q). Notice that G is, indeed, a
σ -canonical assignment via η. This is because for each edge e = (p, r, q) in E, it is the
case that if θ(e) = (p, w, q) then w ∈ η(r).

It is immediately clear that G ∈ �π� (since G is σ -canonical for π), and that σ(n1) =
n1 and σ(n2) = n2. Furthermore, since w ∈ CERTAINpath(Q; π , n1, n2), there is a path

1For a definition, see the proof of Proposition 5.6.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:30 P. Barceló et al.

ρ in G from n1 to n2 such that λ(ρ) = w. It is now easy to show that there is a run
of ν(Aπ (n1, n2)) that accepts w. This is because the transitions of ν(Aπ (n1, n2)) are
precisely the paths of G that are associated with the edges of π ; that is, if (p, u, q) is a
transition in ν(Aπ (n1, n2)) then there is a path in G from p to q labeled u.

Thus, w ∈ L(ν(Aπ (n1, n2))). Since ν is an arbitrary valuation, we conclude that w is
strongly accepted by Aπ (n1, n2).

(⇐): Assume that w ∈ L and that w is strongly accepted by Aπ (n1, n2). We prove that
w ∈ CERTAINpath(Q; π , n1, n2). Let G be an arbitrary graph in �π�, and h = (h1, h2) a
homomorphism from π to G. Clearly, both node ids n1 and n2 belong to G.

Construct a valuation ν = (η, θ) for Aπ (n1, n2) as follows. Define η(X) = h2(X) for
every variable X in Aπ (n1, n2), and for every edge e = (p, r, q) in E, nondeterministi-
cally choose a word u ∈ L(r) such that there is a path from h1(p) to h1(q) in G that is
labeled with u (we know there is at least one such word since G ∈ �π�). Then, define
θ(e) = (p, u, q). It is clear that ν = (η, θ) is a valid valuation for Aπ (n1, n2). Thus, since
w is strongly accepted by Aπ (n1, n2), we have that w is accepted by ν(Aπ (n1, n2)). It
is not hard to prove then that there is an L-path in G from n1 to n2 that is labeled
w. This is because the transitions of ν(Aπ (n1, n2)) are a subset of the paths of G that
are associated with the edges of π ; that is, if (p, u, q) is a transition in ν(Aπ (n1, n2)),
then there is a path in G from p to q labeled u. Since G is an arbitrary graph database
in �π�, and w ∈ L, we conclude that w ∈ CERTAINpath(Q; π , n1, n2). This finishes the
proof.

The results in this section show that the query evaluation problem, for both nodes
and paths, can be stated in purely automata-theoretic terms. In particular, the set
CERTAINpath(Q; π , n1, n2) is regular for every RPQ. Thus, our next goal is to study
properties of incomplete automata.

6.2. Computational Problems for Incomplete Automata

Theorem 6.6 suggests studying computational problems for incomplete automata re-
lated to query evaluation. Results for weak acceptance have, in essence, been estab-
lished earlier, so we are interested in strong acceptance, which accounts for having
paths in the output.

For weak acceptance, membership (i.e., given incomplete automaton A and a regular
language L, presented as a regular expression or as an NFA, does L belong to Lw(A)?)
is the problem of finding certain answers to RPQs. Hence, we have the following
corollary.

COROLLARY 6.7. The membership problem for incomplete automata under weak
acceptance is PSPACE-complete, and CONP-complete if the language L is fixed.

It can also be easily seen that the emptiness problem under weak acceptance, that
is, whether Lw(A) �= ∅, is solvable in polynomial time.

Now we address the case of strong acceptance, which, by Theorem 6.6, gives us com-
plexity bounds for computing paths that are returned with certainty. There are the
following three versions of the problem we consider.

— Checking whether the query output is not empty. In automata-theoretic terms, this
is the emptiness problem under strong acceptance: given an incomplete automaton
A, check whether Ls(A) �= ∅.

— Checking whether a specific path belongs to the output, that is, whether w ∈
CERTAINpath(Q; π , n1, n2). In automata-theoretic terms, we are interested in the
membership problem under strong acceptance, that is, given an incomplete automa-
ton A and a word w, check whether w ∈ Ls(A).

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:31

— Computing CERTAINpath(Q; π , n1, n2). As this set is regular, in automata-theoretic
terms, we study the following problem: For an incomplete automaton A, construct
an NFA A′ so that L(A′) = Ls(A).

As we analyze these problems, we shall see that hardness results will be witnessed
by an especially simple kind of incomplete automata: namely, wildcard automata, in
which all regular languages used in transitions are single letters (alphabet letters or
variables). Formally, a wildcard automaton A is (Q, �,W, q0, F, δ), where δ ⊆ Q × (� ∪
W) × Q.

We now show that problems related to computing certain paths are computationally
hard as long as regular expressions or label variables are present in the edges.

The following does not appear to follow from known EXPSPACE-completeness results
for graph databases [Calvanese et al. 2000b; Barceló et al. 2010a].

THEOREM 6.8. The emptiness problem under strong acceptance is EXPSPACE-
complete, and remains EXPSPACE-hard for wildcard automata.

The upper bound is easy to obtain: From the proof of Proposition 6.4, it follows that
Ls(A), for each incomplete automata A, can be represented as an intersection of ex-
ponentially many NFAs of polynomial size (measured, of course, in terms of the size
of A). Moreover, it is well known that checking nonemptiness of the intersection of a
family of k NFAs of polynomial size can be solved in polynomial space in k. Given that
k in this case is exponential in the size of A, we get an EXPSPACE upper bound for the
emptiness problem under strong acceptance.

The lower bound requires a new and quite involved proof. However, before proving
this lower bound, we show that an already high lower bound – PSPACE-hardness – can
be obtained with a relatively simple proof. The proof of this lower bound relies directly
on the following lemma, which esentially reduces, in polynomial time, the problem
of emptiness of the intersection of NFAs (which is known to be PSPACE-hard) to the
problem of checking emptiness of a wildcard automaton under strong acceptance. We
will also need this lemma later in order to prove the EXPSPACE lower bound of Theo-
rem 6.8. In such case, we will actually need a stronger version of this result, as stated
in Lemma 6.9, that shows that the problem of emptiness of the intersection of the
languages accepted under strong acceptance by a set of wildcard automata can be re-
duced, in polynomial time, to the problem of checking emptiness of a single wildcard
automaton under strong acceptance.

LEMMA 6.9. Given a set {A1, . . . ,Ak} of wildcard automata over an alphabet � with
at least two symbols, then one can construct in polynomial time a wildcard automaton
A′ over � such that

⋂
j≤k Ls(Aj) �= ∅ if and only if Ls(A′) �= ∅.

It is well known that deciding wether the intersection of a finite set of NFAs is
nonempty is PSPACE-complete [Kozen 1977]. Thus, Lemma 6.9 reduced to the case
when {A1, . . . ,Ak} is a set of standard NFAs, immediately gives us a PSPACE lower
bound for the emptiness problem for wildcard automata under strong acceptance.

It is important to remark that Lemma 6.9 also shows a striking difference between
incomplete automata and standard NFAs. Indeed, under the widely held complexity
theoretic assumption that PTIME �= PSPACE, there is no efficient algorithm that, given
a set {A1, . . . ,Ak} of NFAs, constructs an NFA A such that L(A) is empty if and only if⋂

1≤i≤k L(Ai) is empty.

PROOF OF LEMMA 6.9. Assume that each Aj (1 ≤ j ≤ k) is of the form Aj :=
(Qj, �,Wj, qj

0, Fj, δj). We assume, without loss of generality, that the Qj’s are pairwise
disjoint, and that the same is true for the Wj’s.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:32 P. Barceló et al.

q′
1 q′

2 q′
k

p′
k p′

2 p′
1

qk
0 q2

0 q1
0

X2 Xk−1

S S S

X1

R

RSkRRSkRRSkR

� \ {S} � \ {S} � \ {S}

� \ {S}

� \ {S}

� \ {S}

Fig. 6. Control section of wildcard automaton A′.

Pick up two arbitrary symbols S and R from �. The wildcard automaton A′ contains
a copy of each Aj plus a control that helps simulating the intersection of the Aj’s.
Formally, we construct the wildcard automaton A′ = (Q′, �,W ′, q′

0, F′, δ′) as follows:

— The set Q′ of states is {q′
1, . . . , q′

k} ∪ {p′
1, . . . , p′

k} ∪ ⋃
j≤k Qj, where we assume that

the states in {q′
1, . . . , q′

k, p′
1, . . . , p′

k} are pairwise distinct and {q′
1, . . . , q′

k, p′
1, . . . , p′

k}∩⋃
j≤k Qj = ∅;

— F′ = ⋃
j≤k Fj;

— The initial state is q′
1;

— W ′ = {X1, . . . , Xk−1} ∪ ⋃
j≤k Wj, where each Xi (1 ≤ i ≤ k − 1) is a fresh label

variable;
— the set δ′ of transitions contains the triples in each δj, 1 ≤ j ≤ k, plus the following:

— triples (q′
i, a, q′

i), for each a ∈ � \ {S} and i ∈ [1, k];
— triples (p′

i, a, p′
i), for each a ∈ � \ {S} and i ∈ [1, k];

— the triple (q′
k, R, p′

1);
— triples (q′

i, Xi, q′
i+1), for every i ∈ [1, k − 1];

— triples (p′
i, S, p′

i+1), for every i ∈ [1, k − 1];

— and the triples (p′
j, RSkR, qj

0), for every j ∈ [1, k]

The control part of automaton A′ is depicted in Figure 6. Notice that the states
q1

0, . . . , qk
0 are the initial states of automata A1, . . . ,Ak, respectively.

It is clear that A′ can be constructed in polynomial time from {A1, . . . ,Ak}. We prove
next that

⋂
j≤k Ls(Aj) is empty if and only if Ls(A′) is empty.

(=⇒): Assume that
⋂

j≤k Ls(Aj) is empty, and assume for the sake of contradiction
that there is a word w ∈ �∗ such that w belongs to Ls(A′). It is easy to see from the
construction of A′ that w must contain the word RSkR as a subword. Then there are

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:33

words u, v in �∗ such that w = uRSkRv. We assume, without loss of generality, that u
does not contain the word RSkR (if not, one can always pick different words u and v).

Next we prove that the word u contains exactly k − 1 appearances of S. Assume for
the sake of contradiction that this is not the case. Then there are two cases to consider.

(1) First, suppose that u contains a number p > k − 1 appearances of the symbol S.
Let ν = (η, θ) be a valuation for A′, such that η does not assign the symbol S to any
of the variables of A′. It is now easy to see from the construction of A′ that ν(A′)
cannot accept w, as no state of ν(A′) can be reached from q′

1 using u: first, none
of the states in {q′

1, . . . , q′
k} or {p′

1, . . . , p′
k} in ν(A′) can be reached from q′

1 with a
word that contains more than k − 1 appearances of the symbol S, and, second, the
remaining states in A′ can only be reached with a word containing the subword
RSkR. This is our desired contradiction since w ∈ Ls(A′), and hence w ∈ ν(A′).

(2) On the other hand, if u contains a number p < k − 1 appearances of S, consider
a valuation ν = (η, θ) such that η assigns an S to every label variable in A′. Now
notice that the state q′

k in ν(A′) can only be reached by a word containing exactly
k−1 appearances of S, and that it cannot be reached with a word containing RSkR.
It follows that ν(A′) cannot accept w, which is again a contradiction.

Thus, it must be the case that the word u contains exactly k − 1 appearances of S.
We claim now that the word v belongs to

⋂
j≤k Ls(Aj), which contradicts the fact that⋂

j≤k Ls(Aj) is empty.
Assume for the sake of contradiction that there exists 1 ≤ j ≤ k such that v does not

belong to Ls(Aj). Then, there is a valuation ν = (η, θ) for Aj such that ν(Aj) does not
accept the word v. Construct a valuation ν′ = (η′, θ ′) for A′ as follows: ν′ extends ν by
assigning values to the label variables in W ′\Wj in the following way. It assigns symbol
R to each label variable in {X1, . . . , Xj}, and symbol S to each variable in {Xj+1, . . . , Xk−1}
and each variable in the sets Wi, for 1 ≤ i ≤ k and i �= j.

Recall that we assume, for the sake of contradiction, that w ∈ Ls(A′), and thus w
belongs to L(ν′(A′)). Fix an accepting run ρ for w over ν′(A′). Given that u has exactly
k−1 appearances of S, by counting the transitions in ν′(A′) labeled with S we conclude
that the run ρ can only lead to the state pj after reading the word u. Then ρ must lead
to state qj

0 after reading uRSkR. Given that w is accepted by ν′(A′), and that valuation
ν′ is an extension of ν, it must be possible to reach a final state of ν(Aj) using word v.
This is a contradiction since we have assumed that v is not accepted by ν(Aj).

(⇐=): Assume that Ls(A′) is empty, and assume for the sake of contradiction that
there is a word w ∈ �∗ such that w belongs to

⋂
j≤k Ls(Aj). Let c̄ be a concatenation

(in any order) of the symbols in � \ {S}. We prove below that Ls(A′) contains the word
(c̄kSR)k−1RSkRw, which is a contradiction.

Let ν = (η, θ) be an arbitrary valuation for A′. We show that (c̄kRS)k−1RSkRw be-
longs to ν(A′). The proof depends on the number of label variables in {X1, . . . , Xk−1}
that are assigned value S by η. We only show two cases, the other ones are similar.

— Suppose that η does not assign the symbol S to any of the variables in
{X1, . . . , Xk−1}. Then, clearly, it is possible to reach state q′

k in ν(A′) from q′
1 us-

ing word c̄k. Furthermore, state p′
2 is reachable from q′

k using word RS, and qk
0 is

reachable from p′
2 using word (c̄kRS)k−2RSkR. Let νk be the restriction of ν over the

variables of Ak. Since w belongs to Ls(Ak), a final state of νk(Ak) can be reached

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:34 P. Barceló et al.

from qk
0 using w. We conclude that a final state of ν(A′) can be reached from q′

1
using word (c̄kRS)k−1RSkRw, and hence that (c̄kRS)k−1RSkRw belongs to ν(A′).

— Suppose that η assigns the symbol S to a single variable Xp, 1 ≤ p ≤ k − 1 (and,
therefore, it assigns a symbol different from S to each Xj, for 1 ≤ j ≤ k − 1 and
j �= p). Then it is easy to see that state q′

p can be reached from q′
1 in ν(A′) using

word c̄k, q′
p+1 can be reached from q′

p in ν(A′) using word RS, q′
k is reachable from

q′
p+1 in ν(A′) using word c̄k, and p′

2 is reachable from q′
k using word RS. Further-

more, state qk−1
0 is reachable from p′

2 in ν(A′) using word (c̄kRS)k−3RSkR. Let νk−1

be the restriction of ν over the variables of Ak−1. Since w belongs to Ls(Ak−1), a
final state of νk(Ak−1) can be reached from qk−1

0 using w. We conclude that a final
state of ν(A′) can be reached from q′

1 using word (c̄kRS)k−1RSkRw, and hence that
(c̄kRS)k−1RSkRw belongs to ν(A′).

This finishes the proof of the lemma since ν is an arbitrary valuation for A′.

We prove the EXPSPACE lower bound of Theorem 6.8, using a generic reduction from
the acceptance problem for Turing machines that work in exponential space.

PROOF OF THEOREM 6.8. We have already explained how to obtain the upper
bound. We prove the lower bound directly for wildcard automata. But before showing
the proof, we need to define some auxiliary notation.

In order to keep the proof readable, we shall assume that NFAs can have edges
labeled by regular expressions. That is, NFAs will be of the form A = (Q, �, q0, F, δ),
where Q is the set of states, � is the alphabet, q0 is the initial state, F is the set of
final states, and the transition relation δ is a finite subset of Q × REG(�) × Q. The
notion of acceptance extends to such an automaton in a standard way: if there is a
transition (q, e, q′), the automaton is in state q, then, if there is a subword w ∈ L(e)
that starts in the current position, then the automaton skips it and moves to the state
q′. Note that for each NFA A with transitions labeled by regular expressions, one can
construct, in polynomial time, a standard NFA A′ such that L(A) = L(A′). This is done
by converting each regular expression in a transition into an NFA (in polynomial time)
and plugging it in place of the transition. Hence, using these extended transitions is
indeed just a matter of convenience.

We shall also abuse the notation and define wildcard automata using transitions as
triples in Q × REG(� ∪ W) × Q. But the semantics must not be confused with that
of incomplete automata; on the contrary, these automata represent a set of NFAs as
defined by valuations ν = (η, θ) as follows (recall that we allow transitions in NFAs to
be labeled over regular expressions). A valuation ν = (η, θ) for an extended wildcard
automata is such that θ maps each regular language L ∈ REG(� ∪ W) into η(L) ∈
REG(�), and thus a wildcard automaton A into an NFA ν(A) = (Q, �, q0, qf , θ(δ)),
where (q, η(L), q′) ∈ θ(δ) if and only if (q, L, q′) ∈ δ. The component θ of each val-
uation is, therefore, idle, and thus for the remainder of the proof we omit its defi-
nition, and just refer to valuations as mappings ν from label variables into symbols
of the alphabet. Note that for each wildcard automata A with transitions labeled in
REG(� ∪W), one can construct, in polynomial time, a standard wildcard automata A′,
that is, with transitions labeled in � ∪ W, such that ν(A) = ν(A′), for each valuation
ν for the label variables in W. This is done, again, by converting each regular expres-
sion in REG(� ∪W) in a transition into an NFA over � ∪W (in polynomial time), and
plugging it in place of the transition. Hence, again, using these extended transitions is
indeed just a matter of convenience.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:35

We now start with the reduction for proving the EXPSPACE lower bound. Let L ⊆ �∗
be a language that belongs to EXPSPACE, and let M be a deterministic Turing machine
that decides L in EXPSPACE. Given an input ā ∈ �∗ we construct in polynomial time
with respect to M and ā a wildcard automaton AM,ā such that Ls(AM,ā) �= ∅ if and
only if M accepts ā. This proves that the emptiness problem under strong acceptance
is EXPSPACE-complete for wildcard automata.

Assume that the Turing machine M is defined as (QM, � ∪ {B}, s0, {sm}, δM), where
QM = {s0, . . . , sm} is the set of states, � ∪ {B} is the tape alphabet, with B being the
blank symbol, s0 is the initial state, sm is the unique final state, and δ : (QM \ {sm}) ×
(� ∪ B) → QM × � × {L, R} is the transition function. Notice that we assume without
loss of generality that no transition is defined on the final state sm. Further, we assume
without loss of generality that � = {0, 1}. Since M decides L in EXPSPACE, there is a
polynomial S() such that, for every input ā over �, M decides ā using space of order
2S(|ā|).

Let ā = a0a1 · · · ak−1 ∈ �∗ be an input for M (that is, each ai, 0 ≤ i ≤ k − 1 is a
symbol in �). For notational convenience, we will assume from now on that S(|ā|) = n.
Due to Lemma 6.9, it suffices to construct in polynomial time from M and ā a set A
of wildcard automata such that

⋂
A∈A Ls(A) is nonempty if and only if M accepts on

input ā. We split A into four groups: a single wildcard automaton A1, and three sets
A2, A3 and A4 of NFAs.

The main idea of the reduction is to code each finite sequence of configurations of M
as a word w, such that

⋂
A∈A Ls(A) is nonempty if and only if w represents an accepting

computation of M on input ā (i.e., M accepts ā). The key is that the information of the
computation is not only directly coded into the word, but also into the runs of the NFAs
in A. This can be better explained as follows.

Although it will be formally defined later, the wildcard automaton A1 contains n
label variables, X1, . . . , Xn. Furthermore, the alphabet of our automata is � = {0, 1}.
Thus, the number of different valuations ν : {X1, . . . , Xn} → {0, 1} for A1 is precisely
2n; we shall enumerate them as ν0, . . . , ν2n−1, where for each 0 ≤ i ≤ 2n − 1, νi cor-
responds to the valuation νi : {X1, . . . , Xn} → {0, 1} such that νi(X1) · · · νi(Xn) is the
n-symbol binary representation of the number i. For example, ν0 corresponds to the
valuation that maps each X1, . . . , Xn to the symbol 0, while ν2n−1 maps each variable
to the symbol 1. Since A1 represents 2n NFAs, one way of checking whether a word w
belongs to the language Ls(A1) is to perform a parallel computation of all 2n NFAs rep-
resented by A1, reading w symbol by symbol, while keeping track of the state of each
automata νi(A1), for 0 ≤ i ≤ 2n−1. We represent a parallel run of ν0(A1), . . . , ν2n−1(A1)
by explicitly stating the sequence of arrays of states of size 2n, of the form:

(q1
ν0(A1), . . . , q1

ν2n−1(A1)), (q
2
ν0(A1), . . . , q2

ν2n−1(A1)), . . . ,

where each array represent the states of (ν0(A1), . . . , ν2n−1(A1)) at a given step of the
computation.

The states of A1 are defined as

{qa | a ∈ � ∪ {B}} ∪ {qa,s | a ∈ � ∪ {B}, s ∈ QM}.
Thus, a parallel run of ν0(A1), . . . , ν2n−1(A1) can be seen as representing a sequence of
configurations of the Turing machine M: On a given instance j of this run, for every
i ∈ {0, 2n−1}, if qj

νi(A1)
= qa (a ∈ �M), then the ith cell of the tape of M contains symbol

a at step j of the computation. Moreover, if qj
νi(A1)

= qa,s for some state s of M, then
not only the ith cell of the tape contains symbol a at step j of the computation, but also
the head of M is in position i at such step, and M is in state s.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:36 P. Barceló et al.

Naturally, we need to enforce that these configurations represent a valid run of
M with respect to ā and δ (e.g., we need to enforce that at each step at most one of
ν0(A1), . . . , ν2n−1(A1) is on a state of form qa,s). This is achieved with the transitions of
A1 and the NFAs in the sets A2, A3 and A4.

Next, we describe the sets A2, A3 and A4 of NFAs. In what follows, given a number i
such that 0 ≤ i ≤ 2n − 1, we use the notation [i] to denote its binary representation as
a word of symbols in {0, 1}n. For example, the word [3] corresponds to 0n−211, and the
word [2n − 2] corresponds to word 1n−10.

(A2): The set A2 consists of the following NFAs.

— The first NFA in A2 accepts precisely all the words accepted by the regular
expression:

(
(0|1)n+3)∗.

Thus, each word w in
⋂

A∈A Ls(A) must be of size 0 mod (n+3). The idea is that we
find useful to divide each such word into several consecutive subwords of size n+3.
Given a word w, we say that a subword w′ is an (n + 3)-subword of w if the size of
w′ is n+3, w′ is a subword of w and there is an integer k = 0 mod (n+3) such that
there is a match for w′ that starts from position k in w. For example, consider the
word w = 0101n0001n. Then, w contains two (n + 3)-subwords, namely the words
0101n and 0001n.

— The set A2 also contains the NFA that accepts the words represented by the
expression

(
(000)(0|1)n)∗(

(001|101|100|101)(0|1)n)∗(111)(0|1)n)∗.

This states that all (n + 3)-subwords of every word w that belongs to
⋂

A∈A Ls(A)
are such that their first three symbols are either 000, 001, 010, 100, 101, or 111,
followed by an n-bit word. The first three symbols are used to code a particular
behavior of the reduction, while the subsequent n-bit words are used to signal one
(and only one) of the automata ν0(A1), . . . , ν2n−1(A1).

Further, all words represented by this NFA will be such that its first (n + 3)-
subword can only have 000 as a prefix, while the last one can only have prefix 111.
Intuitively, all (n + 3)-subwords with prefix 000 are related to the initial configura-
tion of M on input ā, while all (n + 3)-subwords with prefix 111 are related to the
final configuration of M.

— Next, set A2 also contains a set of NFAs whose intersection defines the language
given by the expression

000[0] · 000[1] · · · 000[2n − 2] · 000[2n − 1] · ((001|101|100|101|111)(0|1)n)∗.

In other words, all words accepted by this language contain exactly 2n (n + 3)-
subwords starting with the prefix 000, one for each different n-bit word, and
ordered from [0] to [2n − 1].

— Finally, A2 contains an NFA accepting the language given by the expression:
(
(000|001|101|100|101)(0|1)n)∗111(0|1)n,

stating that there is only one (n + 3) subword of w that starts with the prefix 111.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:37

(A3): Next, we describe A3. This consists of a set of NFAs such that
⋂

A∈A3
L(A) is the

language described by the expression:

(
000(0 | 1)n)∗

(
001(0 | 1)n · 001(0 | 1)n · (010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1]

)∗

111(0 | 1)n.

Thus, any word w in
⋂

A∈A3
L(A) can be decomposed as viu1 · · · upvf , where vi is the

initial part of w, corresponding to a concatenation of words of the form 000(0|1)n, vf
is the final part of w, of the form 111(0|1)n, and each um, 1 ≤ m ≤ p is of the form(
001(0 | 1)n001(0 | 1)n(010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1]

)
.

Each of these words will intuitively represent one transition of M. This will be better
explained after we define A1; let us just say for the time being that we need to force
each um to contain exactly one (n+3)-subword that ends with [j], for each 0 ≤ j ≤ 2n−1;
the easiest way to impose this condition is to force each um to be a concatenation of
words whose final n symbols form exactly the sequence [0] [1] · · · [2n − 1].

(A4): Finally, let Lj be the language represented by the following expression:

001(0 | 1)n · 001[j] ·(010(0 | 1)n)∗ · (100[j − 1] | 101[j + 1]) · (
010(0 | 1)n)

.

Then, A4 consists of a set of NFAs such that
⋂

A∈A4
L(A) is the language described by

the expression:

(
000(0 | 1)n)∗·((

001(0 | 1)n · 001[0] · (010(0 | 1)n)∗ · 101[1] · (010(0 | 1)n)∗
)

|
L1 | L2 | · · · | L2n−2 |(

001(0 | 1)n · 001[2n − 1] · (010(0 | 1)n)∗ · 100[2n − 2] · (010(0 | 1)n)∗
))∗

·
111(0 | 1)n.

Notice that A4 intuitively imposes more conditions on the form of the words
u1, . . . , up mentioned before. That is, any word w ∈ ⋂

A∈A3
L(A) ∩ ⋂

A∈A4
L(A) is

such that w = viu1 · · · upvf , where vi is a concatenation of words of the form
000(0 | 1)n, vf is of the form 111(0 | 1)n, and each um, 1 ≤ m ≤ p, is of the form(
001(0 | 1)n001[j] (010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n−1]

)
, for some 0 ≤ j ≤ 2n−1,

but such that each um contains exactly one (n+3)-subword w starting with 100 or 101.
Further, w is either of the form 100[j − 1] or 101[j + 1].

We now have enough ingredients to give some intuition on how the words u1, . . . , up
simulate a transition of M. The first (n + 3) symbols on each um represent the state
into which M enters after the transition, and the following (n + 3) symbols represent
the position in the tape that the head of M is scanning. Furthermore, if um contains a
(n + 3)-subword of the form 101[j + 1], it means that M is moving its head to the right
(into the j + 1-th position). On the other hand, the presence of a (n + 3)-subword of the
form 100[j − 1] indicates a transition that moves the head to the left.

For example, consider that for some 1 ≤ m ≤ p, the word um is of the form

001[�]n · 001[j] · 010[0] · · · 010[j] · 101[j + 1] · 010[j + 2] · · · 010[2n − 1]

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:38 P. Barceló et al.

for some 0 ≤ � ≤ m and 0 ≤ j ≤ 2n − 1. Then this word intuitively represents a
transition in which the head of M is moved from the jth to the (j +1)-th position of the
tape, that is, to the right, and M enters state s�.

We give now the formal definition of A1 = (Q, �,W, q0, F, δ).

— The set Q of states of A1 contains state qa, for each a ∈ � ∪ {B}, plus state qa,s for
each a ∈ � ∪ {B} and s ∈ QM; plus states qf , q0, . . . , qk and q′

0, . . . , q′
k.

— The initial state is q0.
— The unique final state in F is qf .
— The set of label variables: W is {X1, . . . , Xn}.

In what follows, we denote by X̄ the word X1X2 · · · Xn.
The transition function δ is defined next.

— First, we simulate the initial configuration of M with the following transitions: For
each 0 ≤ j < k − 1, add transition (qj, 000(0 | 1)n, qj+1) to δ, and for each 0 ≤ j ≤ k,
add transitions (qj, 000X̄, q′

j) and (q′
j, 000(0 | 1)n, q′

j) to δ.
In addition, add to δ the following transitions: (q′

j, 0001n, qaj) for each 1 ≤ j ≤ k − 1,
plus the triples (q′

0, 0001n, qa0,s0), (q′
k, 0001n, qB), (qk, 0001n, qk), (q′

k, 0001n, q′
k) and

(qk, 000X̄, qB). All these transitions are depicted in the following graph:

000X̄

000(0 | 1)n000(0 | 1)n

q0 qkq1 qk−1

000(0 | 1)n

000(0 | 1)n 000(0 | 1)n 000(0 | 1)n 000(0 | 1)n

q′
0 q′

k−1 q′
k

000(0 | 1)n

q′
1

000(0 | 1)n

000X̄ 000X̄ 000X̄

0001n 0001n 0001n 0001n

000X̄

qa0,s0 qa1
qak−1 qB

The idea is that, after reading word 000[0] · · · 000[2n − 1], each νi(A1) is in a state
that corresponds to the initial configuration of M; that is, ν0(A1) is in state qa0,s0 ,
the NFA ν1(A1), · · · , νk−1(A1) are in state qa1 , . . . , qak−1 , respectively, and the rest
of the NFAs are in state qB (recall that k is the size of the initial input).

— Next we define the transitions that simulate the final transition of M. Add to δ the
triples (qa, 111(0 | 1)n, qf), for every a ∈ �; and (qa,sm , 111X̄, qf) for every a ∈ �
(recall that sm is the final state of M). The intuition behind these transitions is
that they check that the head is on the final state at the end of the configuration.
Indeed, since the only transition leaving from a state of the form qa,sm on input

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:39

111[i] is (qa,sm , 111X̄, qf), this ensures that it must be the case that νi(A1) is on
state qa,sm before reading the last (n + 3) symbols of w.

— We continue with the transitions that simulate the run of M. For each transition
in δM of the form δ(sj, a) = (s�, b, L) (a ∈ � ∪ {B}, b ∈ �, 0 ≤ j, � ≤ m), we add the
following pair to δ:

(qa,sj , 001[�] 001X̄
(
010(0 | 1)n)∗ 100(0 | 1)n (

010(0 | 1)n)∗, qb);

and for each transition in δM of the form δ(sj, a) = (s�, b, L) (a ∈ � ∪ {B}, b ∈ �,
0 ≤ j, � ≤ m), we add the following pair to δ:

(qa,sj , 001[�] 001X̄
(
010(0 | 1)n)∗ 101(0 | 1)n (

010(0 | 1)n)∗, qb).

— Finally, for every D ∈ {L, R}, a ∈ � ∪ {B} and 0 ≤ � ≤ m, δ contains the following
pairs:

(qa, 001[�] 001(0 | 1)n (010(0 | 1)n)∗ (100 | 101)X̄ (010(0 | 1)n)∗, qa,s�
)

(qa, 001[�] 001(0 | 1)n ((010 | 100 | 101)(0 | 1)n)∗ 010X̄ ((010 | 100 | 101)(0 | 1)n)∗, qa).

We provide some intuitions regarding this last set of transitions in δ. Recall the first
(n + 3) symbols of each word of the form

001(0 | 1)n · 001(0 | 1)n · (010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1]

represent the state in which M enters after a transition, and that the following (n+3)
symbols represent the position in the tape that the head of M is scanning. The idea
of this set of transitions is to force each νi to behave correctly, according to the new
configuration of M after performing a new computation.

For example, consider a word of the form

001[�]n 001[j] 010[0] · · · 010[j] 101[j + 1] 010[j + 2] · · · 010[2n − 1] ,

for 0 ≤ � ≤ m and 0 ≤ j ≤ 2n − 1. As we already mentioned, this word intuitively
represents a transition in which the head of M is moved from the jth to the (j + 1)-
th position of the tape, that is, to the right, and M enters state s�. But furthermore,
assume that such transition is of the form δ(sp, a) = (s�, b, R), for 0 ≤ p ≤ m, a ∈ �∪ {B}
and b ∈ �. Then the last set of transitions in δ allow νj(A1) to advance from state qa,sp

to state qb, and force νj+1(A1) to move from state of the form q′
a to state qa′,s�

. The rest
of the states are forced to remain unchanged.

This finishes the definition of A. It is clear that A1 can be constructed in polynomial
time from M and ā. Moreover, while not immediate from the definition, it is important
to notice that also A2, A3 and A4 can be constructed in polynomial time.

CLAIM 5. Each of the sets A2, A3, and A4 can be constructed in polynomial time
with respect to ā and M.

The proof for Claim 5 is esentially based on the idea that the language that consists
of the word w = [0] · [1] · · · [2n−1] can be represented as an intersection of a polynomial
number of NFAs. This intersection expresses that for each i ≤ 2n − 2, the word [i] has
to be followed by the word [i + 1], and that the only occurrences of [0] or [2n − 1]
as an n-subword of w are respectively at the beginning and at the end of w. We skip
the proof for the sake of presentation, since it is rather cumbersome and, at the same
time, based on absolutely standard ideas on how to encode an n-bit counter [Börger
et al. 1997; Calvanese et al. 2000b; Kozen 1977].

Finally, we prove that the language Ls(A1) ∩ ⋂
A∈A2,A3,A4

L(A) is nonempty if and
only if M accepts on input ā.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:40 P. Barceló et al.

(=⇒) Assume that there is a word w that belongs to Ls(A1) ∩ ⋂
A∈A2,A3,A4

L(A). We
show that M accepts in input ā by constructing an accepting run for M, as follows.

Since w belongs to
⋂

A∈A2,A3,A4
L(A), it must be of the form:

(
000(0 | 1)n)∗

(
001(0 | 1)n001(0 | 1)n(010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1]

)∗

111(0 | 1)n.

Let us then divide w into xu1 · · · upy, where each ui belongs to to the language repre-
sented by the expression

001(0 | 1)n001(0 | 1)n(010 | 100 | 101)[0] · · · (010 | 100 | 101)[2n − 1] .

It is clear that there is only one possible to split w in this way, as each ui begins with
two (n + 3)-subwords with prefix 001 and contains no more (n + 3)-subwords with this
prefix.

Since w belongs to Ls(A1) it must also belong to νj(A1), for each 0 ≤ j ≤ 2n − 1.
Let ρ0, . . . , ρ2n−1 be accepting runs over the word w for ν0(A1), . . . , ν2n−1(A1), respec-
tively. We are interested in the states assigned by the runs ρ0, . . . , ρ2n−1 only to those
positions of w that immediately precced one of the subwords of w of the form ui, for
1 ≤ i ≤ p. For simplicity, we denote each such state by ρj(ui); that is, ρj(ui) is the state
that is assigned by ρj to the subword x, if i = 1, and to xu1 · · · ui−1, if 1 < i ≤ p.

Consider the following sequence d1, . . . , dp of configurations of M: The jth position of
the tape in a given di contains a symbol a ∈ � ∪ {B} if and only if ρj(ui) = qa. Further,
it contains a symbol a ∈ � ∪ {B} and the head is in position j in state s if and only
if ρj(ui) = qa,s. In any other case, it contains the symbol B. All that is left to do is to
show that each di is, indeed, a configuration of M (for instance, that the head is not
assigned to two different positions of the tape by di), and that d1, . . . , dp represents
an accepting computation of M on input ā. This follows from the following claim (the
simple but rather technical proof can be found in the appendix).

CLAIM 6. The following hold.

(1) The configuration d1 corresponds the initial configuration of M on input ā.
(2) For each 1 ≤ i < p, di+1 is a configuration of M that can be obtained from di by

applying the transition rules of M.
(3) The configuration dp is a final configuration for M.

(⇐=) Assume, on the other hand, that there is an accepting computation d1, . . . , dp
of M on input ā. That is, d1, . . . , dp is a sequence of configurations of M such that: (1)
d1 is the initial configuration of M on input ā, (2) dp is a final configuration for M, and
(3) for each 1 ≤ i < p, di+1 is a configuration that can be obtained from di by applying
the transition rules of M. We show that Ls(A1) ∩ ⋂

A∈A2,A3,A4
L(A) is nonempty.

Construct a word w = xu1 · · · upy over � as follows.

— x = 000[0] · · · 000[2n − 1].
— Assume that in the final configuration dp the head of M is in position j (1 ≤ j ≤

2n − 1). Then, y := 111[j].
— The word ui, for 1 ≤ i ≤ p, is constructed as follows. Assume that in di, 1 ≤ i ≤ p,

M is in state sj, 0 ≤ j ≤ m, and with its head pointing to the �th position of the tape
(0 ≤ � ≤ 2n − 1). Further, assume that in di the �′-th cell of the tape contains the
symbol c�′ ∈ � ∪ {B}, for each 0 ≤ �′ ≤ 2n − 1, and that di+1 is obtained from di by

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:41

applying a transition of the form δ(sj, a) = (sj′ , b, D), where 0 ≤ j′ ≤ m, a ∈ � ∪ {B},
b ∈ �, and D is either L or R. Then ui is:
— 001[�] 001[j′] 010[0] · · · 010[� − 2] 100[l − 1] 010[�] · · · 010[2n − 1], if D = L, and
— 001[�] 001[j′] 010[0] · · · 010[�] 101[� + 1] 010[l + 2] · · · 010[2n − 1], if D = R.

It is not difficult, but rather cumbersome, to show that w belongs to Ls(A1) ∩⋂
A∈A2,A3,A4

L(A). The proof can be found in the appendix.

We now consider problems related to query answering. The first is finding cer-
tain paths, or, in automata-theoretic terms, the membership problem under strong
acceptance.

PROPOSITION 6.10. The membership problem under strong acceptance for incom-
plete automata is CONP-complete. It remains CONP-hard for wildcard automata and
for incomplete automata that do not use any label variables.

PROOF. We can easily prove CONP-hardness for wildcard automata as follows: The
second part of Theorem 5.7 shows that there is a Boolean RPQ Q of the form Ans() ←
(x, w, y), where w is a word over {0, 1}, such that checking whether CERTAIN(Q, π) =
true is CONP-hard over the class of patterns π ∈ P lv

Codd. Let π be a pattern in P lv
Codd

and let π ′ be the pattern obtained from π by adding two fresh node ids n1 and n2,
and adding an outgoing edge labeled 0 from n1 into every node of π and an ingo-
ing edge labeled 0 from each node of π into n2. Clearly, Aπ ′(n1, n2) is a wildcard
automaton. Further, by easily adapting the proof of Theorem 6.6, we can show that
CERTAIN(Q, π) = true if and only if {0w0} is weakly accepted by Aπ ′(n1, n2). But the
latter holds if and only if 0w0 is strongly accepted by Aπ ′(n1, n2). Clearly, Aπ ′(n1, n2)
can be constructed in polynomial time from π , which proves that the membership prob-
lem under strong acceptance for wildcard automata is CONP-hard (notice that this is
true even for the fixed word 0w0). In order to prove CONP-hardness for patterns with-
out label variables, we only need to convert the pattern π ∈ P lv

Codd into an equivalent
pattern πr in Pre by replacing each label variable X in π with the regular expression
(0|1). The rest of the proof uses exactly the same ideas explained above.

For the membership in CONP, let A = (Q, �,W, q0, F, δ) be an incomplete automa-
ton. Recall that Afin is the automaton (Q, �,W, q0, F, δfin), where δfin ⊆ δ is the set of
transitions in δ of the form (q1, L, q2) such that L defines a finite language over al-
phabet � ∪ W. Moreover, recall that the proof of Proposition 6.4 shows that each NFA
ν(Afin) is of polynomial size with respect to A, for every possible valuation ν = (η, θ)

for Afin. The same argument can be used to show that every valuation for Afin can be
easily represented in polynomial space with respect to A.

Then, given an incomplete automaton A = (Q, �,W, q0, F, δ) and a word w, the
CONP algorithm first constructs Afin (which can be done in polynomial time as we
only have to remove all those transitions of the form (p, L, q) in A such that L uses the
Kleene-star ∗), then guesses in polynomial time a valuation ν = (η, θ) for Afin, then
checks in polynomial time that ν is a valuation for Afin, and finally, checks in polyno-
mial time that w /∈ L(ν(Afin). The correctness and soundness of this procedure follow
immediately from Lemma 6.5.

The next question is about the size of automata defining Ls(A). Normally large size
bounds are easy to obtain for deterministic automata, while NFAs could be exponen-
tially smaller. Here we use techniques from Glaister and Shallit [1996] to show that
even the smallest NFAs capturing certain paths in the answer to an RPQ could be
doubly exponential, matching the upper bound of Proposition 6.4.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:42 P. Barceló et al.

THEOREM 6.11. There exists a polynomial p and a family {An}n∈N of wildcard au-
tomata such each An is of size at most p(n) and uses n wildcards, and every NFA A′

n

satisfying L(A′
n) = Ls(An) has 22�(n)

states.
There also exists a family of incomplete automata without label variables with the

same property.

PROOF. Let {An}n∈N be the family of automata containing, for each n ∈ N, the in-
complete automata An = (Q, �,W, q0, F, δ), where:

— Q = {q0, q1, . . . , qn, p1, . . . , pn, r1, . . . , rn},
— � = {0, 1} and W = {X1, . . . , Xn},
— F contains only qn, and
— δ contains (qi−1, Xi, qi) for every 1 ≤ i ≤ n, plus the triples (q0, 0, p1), (q0, 1, p1),

(qn, 0, r1), (qn, 0, r1), and (pj−1, 0, pj), (pj−1, 1, pj), (rj−1, 0, rj), (rj−1, 1, rj) for each 1 ≤
j ≤ n.

The automaton is depicted by the following figure, where the transitions labeled by
(0 | 1)n represent the sections of the automata corresponding to states p1, . . . , pn and
r1, . . . , rn; the intended meaning of these sections of An is to allow the runs of An to do
an n-symbol loop on states q0 and qn.

Xn

(0 | 1)n

q1q0 qn
X1 X2

(0 | 1)n

It is clear that the size of An is polynomial with respect to n. In order to show that
every NFA A′

n satisfying L(A′
n) = Ls(An) has 22�(n)

states, we use the following result.

THEOREM 6.12 [GLAISTER AND SHALLIT 1996]. Let L ⊂ �∗ be a regular lan-
guage, and suppose that there exists a set of pairs P = {(ui, vi) | 1 ≤ i ≤ n} such
that

(1) uivi ∈ L, for every 1 ≤ i ≤ n,
(2) ujvi /∈ L, for every 1 ≤ i, j ≤ n and i �= j.

Then, any NFA accepting L has at least n states.

Given a collection S of words over {0, 1}, let wS denote the concatenation, in lexico-
graphical order, of all the words that belong to S, and let wS̄,n denote the concatenation
of all words in {0, 1}n that are not in S.

Then, define a set of pairs Pn = {(wS, wS̄,n) | S ⊂ {0, 1}n and |S| = 2n−1}. Since there

are 2n binary words of length n, the are
(2n

2n−1

)
different subsets of {0, 1}n of size 2n−1,

and thus Pn contains
(2n

2n−1

)
pairs, which clearly belongs to 22�(n)

.
Next we show that Pn satisfies the conditions of (1) and (2) of the aforementioned

result by Glaister and Shallit [1996].

(1) We need to show that for every set S ⊂ {0, 1}n of size 2n−1, the word wSwS̄,n be-
longs to Ls(An). Let then S be an arbitrary subset of {0, 1}n of size 2n−1, and let
ν = (η, θ) be an arbitrary valuation for An. Notice that η maps each element from
{X1, . . . , Xn} into �. Define u = η(X1) · · · η(Xn). Then, u is a subword of either wS
or wS̄,n. Assume the former is true (the other case is analogous). Then, the word

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:43

wSwS̄,n can be decomposed in v ·u ·v′ ·wS̄,n, with v′, v′′, wS̄,n ∈ L((0 | 1)n)∗). Then, to
build an accepting run for ν(An) on the word wSwS̄,n, just let the automaton ν(An)

loop on q0 until the beginning of u appears, at which point we advance to state qn
using u, and then continue in qn until the end of the word is reached.

(2) Assume for the sake of contradiction that there are distinct subsets S1, S2 of {0, 1}n

of size 2n−1 such that wS1wS̄2,n belongs to Ls(An). Since S1 and S2 are distinct,
proper subsets of {0, 1}n (they are of size 2n−1), there must be a word in {0, 1}n

that belongs to S2 but not to S1. Let s be such word. Moreover, let η be a valuation
from {X1, . . . , Xn} into � such that η(X1) · · · η(Xn) = s. It is straightforward to show
the following: Let u ∈ {0, 1}n be a word of size n. Then, u is a subword of every
w ∈ Ls(An). Moreover, there is a match for u in w that starts in a position j of w
(1 ≤ j ≤ |w|), and such that j = 0 mod n. Since we have assumed that the word
wS1wS̄2,n belongs to Ls(An), by this claim we have that s must be a subword of
wS1wS̄2,n that matches wS1wS̄2,n in a position j such that j = 0 mod n. Then, from
the construction of wS1 and wS̄2,n, it must be that s either belongs to S1 or does not
belong to S2. This is a contradiction.

For the family of automata without label variables, notice that each An can be eas-
ily transformed into an equivalent incomplete automaton without label variables, by
replacing each label variable in An with the regular expression (0 | 1). The proof is
analogous.

This gives a lower bound on the size of automata for representing certain paths in
answers to RPQs.

COROLLARY 6.13. There exists a polynomial p, a family {πn}n∈N of P lv graph pat-
terns, each with two distinguished nodes n1 and n2, and an RPQ Q such that the size of
πn is at most p(n), and every NFA defining CERTAINpath(Q; πn, n1, n2) has 22�(n)

states.

The same holds for Pre patterns.

Note there is an exponential gap between the complexity of the membership prob-
lem and the size of a representation of all words strongly accepted by an incomplete
automaton. There is no contradiction, of course, between Theorem 6.11 and Proposi-
tion 6.10 as smallest NFAs accepting even finite languages L can be of size exponential
in the maximum length of a word in L.

Remark. By closely inspecting proofs, one notices that lower bounds in Theorem
6.11, Proposition 6.10, and Corollary 6.13 remain true even for the Codd interpreta-
tion of patterns and wildcard automata (i.e., each label variable is used in at most one
transition). The same is true of Theorem 6.8, but at the cost of a much more involved
reduction. For the sake of presentation, we have decided to leave it to the appendix.

7. TRACTABILITY RESTRICTIONS AND HEURISTICS

While many results of Sections 5 and 6 point to a rather high complexity of query an-
swering, they still leave a few routes for finding tractable classes, or providing heuris-
tics that – at least based on the experience of other areas – may be useful.

If we look at data complexity, results of Section 5.2 show that one possibility of get-
ting tractable cases is to impose further restrictions on underlying graphs of patterns.
Being DAGs, as we saw, is not enough, which suggests trees. We shall in fact get a
more general result, replacing trees with graphs of bounded treewidth.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:44 P. Barceló et al.

Combined complexity results in Section 5.1 point to Pnv,lv as the largest class with
acceptable combined complexity (i.e., not exceeding that of FO; in fact staying in the
2nd level of the polynomial hierarchy). The data complexity for the class, although
intractable, drops to the 1st level of the polynomial hierarchy. This suggests using
techniques from a field that has achieved great success in solving problems of this
complexity, namely constraint satisfaction [Dechter 2003; Kolaitis and Vardi 2007].
The field has identified many tractable restrictions and, what is equally important,
provided many practical heuristics that help solve intractable problems. The connec-
tion between RPQs on graph databases and constraint satisfaction was already es-
tablished in Calvanese et al. [2000c]. As the second contribution of this section, we
show how to cast the query answering problem for RPQs over graph patterns as
a constraint satisfaction problem, with a particularly simple translation for several
classes.

7.1. Tractability Restrictions

Recall the standard definition of tree decompositions and treewidth of a graph G =
(N, E), with E ⊆ N × N (see, e.g., Diestel [2005]). A tree decomposition is a pair (T, f)
where T is a tree and f : T → 2N assigns to each node t in T a set of nodes f (t) of G such
that every edge of G is contained in one of the sets f (t), and each set {t | n ∈ f (t)} is a
connected subset of T for all n ∈ N. The width of such a decomposition is maxt |f (t)|−1.
The treewidth of G is the minimum width of a tree decomposition of G. The treewidth
of a connected graph G equals 1 if and only if G is a tree.

A class of graph patterns is of bounded treewidth if there is a fixed k ∈ N so that for
every pattern π in the class, the treewidth of its underlying graph Gπ is at most k.

We saw that label variables and regular expressions lead to intractable data com-
plexity of query answering. We now show that bounded treewidth guarantees tractabil-
ity for large classes of patterns with these features.

THEOREM 7.1. The data complexity of finding certain answers to CRPQs over
classes of graph patterns of bounded treewidth in Pnv,re and Pnv,lv

Codd is in PTIME.

PROOF. It is sufficient to prove the theorem for the case of patterns in Pnv,re. This
is because each pattern π ∈ Pnv,lv that does not repeat label variables is equivalent to
the pattern π ′ ∈ Pnv,re that is obtained from π by replacing each label variable X men-
tioned in π by the regular expression

⋃
a∈� a (i.e., �π� = �π ′�). Clearly, the underlying

graphs of π and π ′ are the same.
We start by proving some auxiliary but necessary results. Let A1 and A2 be two

NFAs over the same alphabet �. Assume that the set of states of A1 is S, its transition
function is given by δ : S × � → 2S, s0 is the initial state, and F ⊆ S is the set of
final states. Let f be a function from S into 2S, S′ be a subset of S, and S be a subset
of 2S. We say that the tuple (f , S′,S) is realized in A2 whenever A2 accepts a word w
such that (1) δ({s}, w) = f (s), for each s ∈ S, (2) S′ ⊆ S consists of exactly those states
s such that for some prefix w′ of w, δ({s}, w′) contains at least one final state, and (3)
S consists of exactly those S′′ ⊆ S such that for some suffix w′′ of w it is the case that
δ({s0}, w′′) = S′′. The following claim will be useful for the rest of the proof. The proof
can be found in the appendix.

CLAIM 7. Assume that the size of A1 is considered to be fixed. Then the set of tuples
of the form (f , S′,S) that are realized in A2 can be computed in polynomial time.

Now we prove the proposition. In order to do this, we use the following idea. Given
a pattern π in Pnv,re, whose underlying undirected graph is of fixed treewidth, and a

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:45

fixed CRPQ Q (that we assume, without loss of generality, to be Boolean), we do the
following.

— First, from π and Q, we construct in polynomial time a first-order structure Bπ ,Q
over vocabulary σ (as defined here) such that the tree-width of Bπ ,Q is fixed.

— Second, from Q, we construct in constant time a sentence φQ in monadic second-
order logic (MSO) over vocabulary σ such that CERTAIN(Q, π) = false if and only
if φQ holds in Bπ ,Q.

It follows from Courcelle’s theorem that the fixed MSO sentence φQ can be evaluated
in polynomial-time over Bπ ,Q (since Bπ ,Q is of fixed tree-width). Since φQ can be con-
structed in constant time from Q, and Bπ ,Q can be constructed in polynomial time from
π and Q, we conclude that there is a polynomial-time algorithm that evaluates fixed
CRPQs over the class of patterns in Pnv,re such that its underlying undirected graph
is of fixed treewidth.

Let π be a pattern in Pnv,re over �, such that its underlying undirected graph is of
fixed treewidth k > 0, and let Q be a Boolean CRPQ. We assume that Q is an RPQ
of the form (x, R, y), where R is a regular expression over �. We later explain how to
extend the argument to arbitrary CRPQs with constants. This case, although much
more cumbersome, uses essentially the same ideas that we use to solve the problem
for RPQs.

We start by constructing an NFA A that is equivalent to R. Clearly, this can be done
in constant time since Q itself is constant. Assume that the set of states of A is S, that
its transition function is δ : S × � → 2S, the initial state is s0 ∈ S, and F ⊆ S contains
the final states. Let s1, . . . , sp be an arbitrary enumeration of the states in S. Further,
let F be the set of all functions f : S → 2S, let W1, . . . , Wt an arbitrary enumeration
of the elements in F × 2S × 22S

(i.e., t = |F | × 2p × 22p
), and Z1, . . . , Z2t an arbitrary

enumeration of the subsets of F × 2S × 22S
. Then, we construct, for each e of the form

(p, L, q) in π , the set Ce ⊆ F × 2S × 22S
that contains exactly those tuples of the form

(f , S′,S), where f : S → 2S, S′ ⊆ S, and S ⊆ 2S, that are realized by the NFA that
is equivalent to L. Using Claim 7, and the fact that for each regular expression an
equivalent NFA can be constructed in polynomial time, one can easily prove that the
set Ce can be constructed in polynomial time, for each edge e in π .

Construction of Bπ ,Q. Now we show how to construct Bπ ,Q from π and Q. First, we
define the vocabulary σ . This consists of a ternary relation Edges and unary predicates
U1, . . . , U2t . Next, we define the domain of Bπ ,Q. In order to do that, we associate, with
each edge e in π a constant ce that works as an identifier for e (i.e., if e and e′ are
distinct edges in π , then ce and ce′ are also distinct constants). Then, the domain of
Bπ ,Q consists of each node p mentioned in π plus all constants of the form ce such that
e is an edge in π .

The interpretation of Edges in Bπ ,Q contains all tuples of the form (p, ce, q) such that
e is an edge from p to q in π . The interpretation of predicate Ui, 1 ≤ i ≤ 2t, contains
exactly those constants of the form ce such that Ce = Zi. (Thus, the interpretations of
U1, . . . , U2t define a partition of the set of elements of the form ce in Bπ ,Q.) It easily
follows from previous remarks that Bπ ,Q can be constructed in polynomial time from
π and Q (recall that Q is fixed). The next claim proves that the treewidth of Bπ ,Q is
fixed.

CLAIM 8. The treewidth of Bπ ,Q is at most 6k2.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:46 P. Barceló et al.

PROOF. Since Bπ ,Q consists of several unary predicates and one ternary relation
symbol, it is sufficient to prove that the restriction B′

π ,Q of Bπ ,Q to the relation symbol

Edges has treewidth bounded by 6k2. Take an arbitrary tree decomposition (T, (Bt)t∈T),
of the underlying undirected graph G of π , that witnesses that the treewidth of G is at
most k. Recall that (T, (Bt)t∈T) satisfies the following: (1) T is a tree; (2) Each Bt, t ∈ T,
is a subset of the nodes in G, and every node of G belongs to at least some Bt, t ∈ T;
(3) For every node p in G, the set {t | p ∈ Bt} is connected; (4) If (p, q) is an edge of G,
then, for some t ∈ T, it is the case that {p, q} ⊆ Bt; (5) |Bt| ≤ k + 1, for each t ∈ T. From
(T, (Bt)t∈T), we construct the following tree decomposition of B′

π ,Q: For each edge (p, q)

in G, we choose an arbitrary Bt, t ∈ T, that contains both p and q. Assume that there
are exactly m edges e1, . . . , em that go from p to q in π . Then, we replace t in T with a
path of m new nodes t1, . . . , tm, and define Bti := Bt ∪ {ce1}, for each 1 ≤ i ≤ m. It is not
hard to see that the resulting tuple (T′, (B′

t)t∈T′) is a tree decomposition of B′
π ,Q, and

that |B′
t| ≤ (k + 1) + (k + 1)2 ≤ 6k2, for each t ∈ T′. We conclude that the treewidth of

Bπ ,Q is at most 6k2.

Construction of φQ. The MSO formula φQ is defined as follows:

φQ := ∃Y1 · · · ∃Yt
(
α(Y1, . . . , Yt) ∧ β(Y1, . . . , Yt) ∧ ¬∃x∃yγ (x, y, Y1, . . . , Yt)

)
,

where x and y are first-order variables and each Yj (1 ≤ j ≤ t) is a monadic second-order
order variable. Intuitively, with φQ we try to “guess” a graph database in �π� that does
not satisfy Q. This is done as explained here.

In the Yj’s, we try to guess an assignment (i.e., a graph database) that replaces each
element of the form ce in Bπ ,Q (i.e., each edge e in π) with a word w in the regular
language L, assuming that the edge e is labeled with L in π . Notice, however, that it is
impossible with the power of MSO to guess an entire word for an edge. Nevertheless,
we do not need to guess all the information contained in w, and, indeed, for the sake of
query answering with respect to Q, it is enough to guess only the tuple in F × 2S × 22S

that is witnessed by w. This is precisely what formulas α and β do. Formula α guesses
in the Yj’s the tuples in F × 2S × 22S

that are witnessed by the words that replace
edges in the graph database represented by π that we are trying to construct to falsify
Q, and formula β checks, for each edge e, that such an assignment is consistent with
the tuples in Ce (i.e., that we have guessed for ce a tuple in F×2S×22S

that is witnessed
by L, assuming that L is the regular language that labels e in π). On the other hand,
¬∃x∃yγ checks that Q does not hold in the graph database G ∈ �π� that is represented
by the Yj’s; that is, G is any graph database that is obtained from π by replacing each
edge e in π such that ce ∈ Yj with a word w that realizes the tuple Wj in F × 2S × 22S

.
The formulas α, β and γ are defined as follows.

— Formula α(Y1, . . . , Yt) establishes that the interpretations of Y1, . . . , Yt form a par-
tition of the elements of the form ce in Bπ ,Q (i.e., the elements that appear in
the second coordinate of the interpretation of the relation Edges in Bπ ,Q). Fur-
ther, only elements of the form ce belong to the interpretation of Yj, for each
1 ≤ j ≤ t. (Notice that elements of the form ce are easily definable with the for-
mula ∃z1∃z3Edges(z1, z2, z3)).

— Formula β(Y1, . . . , Yt) establishes that, for each edge e in π , if the constant ce be-
longs to the interpretation of Yj, 1 ≤ j ≤ t, then the tuple (f , S′,S) that corresponds
to Wj belongs to Ce. This can be easily expressed by a formula that states that if an
element y belongs to Yj, 1 ≤ j ≤ t, then it also belongs to the interpretation of some
Ui, 1 ≤ i ≤ 2t, such that Wj ∈ Zi.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:47

— Assume that Wj = (f j, Sj,Sj), for 1 ≤ j ≤ t. Let X1, . . . , Xp be fresh monadic second-
order variables and u1, v1, u2, v2 be fresh first-order variables. Then the formula
γ (x, y, Y1, . . . , Yt) is defined as ∃X1 · · · ∃Xpθ , where θ is the disjunction of the follow-
ing formulas:
— θ1(x, y, Y1, . . . , Yt, X1, . . . , Xp),
— ∃u∃v θ2(x, y, u, v, Y1, . . . , Yt, X1, . . . , Xp),
— ∃u∃v θ3(x, y, u, v, Y1, . . . , Yt, X1, . . . , Xp),
— ∃u1∃v1∃u2∃v2 θ4(x, y, u1, v1, u2, v2, Y1, . . . , Yt, X1, . . . , Xp),

and the MSO formulas θi, 1 ≤ i ≤ 4, are as explained here.
First, for S′ ⊆ S and s ∈ S, we define an MSO formula μs,S′(x, y, X1, . . . , Xp,

Y1, . . . , Yt) that establishes the following.
— The interpretations of X1, . . . , Xp contain exactly the least fixpoints defined as

follows: (1) x belongs to Xi, for each 1 ≤ i ≤ p such that si ∈ S′; (2) For each nodes
z, z′ and w, if (a) z belongs to the interpretation Xj, 1 ≤ j ≤ p, (b) Edges(z, w, z′)
holds, and (c) w belongs to Yi, 1 ≤ i ≤ t, then z′ belongs to the interpretation of
X�, for each 1 ≤ � ≤ p such that s� ∈ f i(sj).

— The element y belongs to the interpretation of Xi, assuming that s = si.
It is standard, although rather cumbersome, to construct explicitly the MSO for-

mula μs,S′(x, y, X1, . . . , Xp, Y1, . . . , Yt). For the sake of readability, we omit it here.
Intuitively, this formula checks the following on a pair of nodes x and y from Bπ ,Q:
If G is a graph database defined by the Yj’s (as described previously), then the Xi’s
contain exactly the nodes of Bπ ,Q (and, hence, of π) that are assigned state si by
some “run” of A over the paths of G, that is initialized by assigning state s′ to x, for
each s′ ∈ S′. This is done as follows: First, assign x to Xi for each 1 ≤ i ≤ p such that
si ∈ S′. Then recursively proceed as follows. If node p of Bπ ,Q is assigned to Xi (i.e.,
state si of A), there is an edge e from node p to q in π , and ce belongs to the inter-
pretation of Yj (i.e., ce has been replaced in G by a word that realizes, in particular,
the function f j : S → 2S), then q has to be assigned to each state s� ∈ f j(si), that is,
to the set X�. The formula μs,S′(x, y, X1, . . . , Xp, Y1, . . . , Yt) checks, in addition, that
y is assigned state s (i.e., that y belongs to Xi assuming that s = si).

Then we define the following.
— θ1 := ∨

s′∈F μs′,{s0}(x, y, Y1, . . . , Y�, X1, . . . , Xp).
— θ2 := ∧

1≤j≤�

(
Edges(u, v, x) ∧ Yj(v) →∨

S′∈Sj
∨

s′∈F μs′,S′(x, y, Y1, . . . , Y�, X1, . . . , Xp)
)
.

— θ3 := ∧
1≤j≤�

(
Edges(y, v, u) ∧ Yj(v) → ∨

s∈Sj μs,{s0}(x, y, Y1, . . . , Y�, X1, . . . , Xp)
)
.

— Formula θ4 is:

Edges(u1, v1, x) ∧ Edges(y, v2, u2) ∧∧
1≤j,�≤t

(
Yj(v1) ∧ Y�(v2) →

∨
S′∈Sj,s∈S�

μs,S′(x, y, Y1, . . . , Yt, X1, . . . , Xp)
)
.

The meaning of tehse formulas will become clear when we prove the soundness and
correctness of the construction of Bπ ,Q and πQ (i.e., that CERTAIN(Q, π) = false if and
only if Bπ ,Q |= φQ).

Clearly, φQ can be constructed in constant time from Q. Next, we show that
CERTAIN(Q, π) = false if and only if Bπ ,Q |= φQ.

Soundness and Correctness. Assume first that Bπ ,Q |= φQ. This means that there
exists a partition P1, . . . , Pt of the elements of the form ce that belong to Bπ ,Q, such
that Bπ ,Q |= β(P1, . . . , Pt) ∧ ¬∃x∃yγ (x, y, P1, . . . , Pt). Since Bπ ,Q |= β(P1, . . . , Pt), it is

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:48 P. Barceló et al.

the case that if an element of the form ce belongs to Pi, 1 ≤ i ≤ t, then the tuple
(f , S′,S) that corresponds to Wi belongs to Ce. With this in mind, we prove next that
CERTAIN(Q, π) = false. In order to do that, we construct a graph G ∈ �π� such that
Q(G) = false.

Let σ be an assignment from the nodes of π into the set N of node ids that (1) is the
identity map on node ids, and (2) assigns a distinct node id nx, that does not appear in
π , to each node variable x. Then, the graph database G is obtained from π by replacing
each node p by σ(p), and then replacing each edge e of the form (p, L, q) with a path
ρe of fresh node ids that goes from σ(p) to σ(q) that satisfies the following: Assume
that ce belongs to Pi, 1 ≤ i ≤ t, and that Wi = (f , S′,S). Then, λ(ρe) is a word w that
belongs to L and such that (1) δ(s, w) = f (s), for each s ∈ S, (2) S′ is precisely the set of
states s such that, for some prefix w′ of w, it is the case that δ(s, w′) contains at least
one final state, and (3) S consists of exactly those S′′ ⊆ S such that for some suffix w′′
of w it is the case that δ({s0}, w′′) = S′′. Notice that w exists since Bπ ,Q |= β(P1, . . . , Pt)

and hence (f , S′,S) is realized by the NFA A′ that is equivalent to L. It is immediately
clear then that G ∈ �π�.

Now we prove that Q(G) = false. Assume, for the sake of contradiction, that there
are two node ids n and n′ in G such that there is a path ρ from n to n′ that satisfies
that λ(ρ) ∈ R. Notice that ρ is either of the form ρ1ρe1ρe2 · · · ρemρ2 or ρe1ρe2 · · · ρemρ2 or
ρ1ρe1ρe2 · · · ρem or ρe1ρe2 · · · ρem , where each ρei , 1 ≤ i ≤ m, is the path associated with
an edge ei of π in G, ρ1 is a suffix of the path ρe0 in G that is associated with an edge
e0 of π , and ρ2 is a prefix of the path ρem+1 in G that is associated with an edge em+1
of π . We assume in the following that ρ is of the form ρ1ρe1ρe2 · · · ρemρ2, all other cases
being similar.

Assume that ce0 belongs to Yj, for 1 ≤ j ≤ t, and that Wj = (f j, Sj,Sj). Thus, if
δ({s0}, λ(ρ1)) = S′ ⊆ S, then S′ ∈ Sj. Further, assume that cem+1 belongs to Y�, for
1 ≤ � ≤ t, and that W� = (f �, S�,S�). Thus, if δ(S′, λ(ρe1ρe2 · · · ρem)) = S′′ ⊆ S, then S′′
contains at least some state s′ in S� (otherwise, it would not be the case that δ(S′′, λ(ρ2))
contains at least some state in F, and, thus, that λ(ρ) ∈ R). Further, it is clear that the
following holds for each state s ∈ S′′: Assume that e1 = (p1, L1, q1) and that em =
(pm, Lm, qm). Also, assume that U1, . . . , Up contain exactly the least fixpoints defined
as follows over the nodes of π : (1) p1 belongs to Ui, for each 1 ≤ i ≤ p such that si ∈ S′;
(2) For each nodes z, z′ and w, if (a) z belongs to the interpretation Uj, 1 ≤ j ≤ p, (b)
Edges(z, w, z′) holds, (c) w belongs to Pi, 1 ≤ i ≤ t, then z′ belongs to the interpretation
of U�, for each 1 ≤ � ≤ p such that s� ∈ f i(sj). Then, the node qm belongs to the
interpretation of Ui, assuming that s = si.

Assume that ei = (pi, Li, qi), for each 1 ≤ i ≤ m + 1. Then, clearly Bπ ,Q |=
Edges(p0, ce0 , q0) ∧ Edges(pm+1, cem+1 , qm+1). Further, it is clear from the previous re-
marks that

Bπ ,Q |= Yj(ce0) ∧ Y�(cem+1) ∧ μs′,S′(p1, qm, P1, . . . , Pt, U1, . . . , Up).

But then Bπ ,Q |= ∃x∃yγ (x, y, P1, . . . , Pt), since s′ ∈ S� and S′ ∈ Sj, which is a
contradiction.

Assume now that CERTAIN(Q, π) = false. Thus, from Claim 2, there is a graph
database G in �π� such that G is σ -canonical for π and Q(G) = false. For each edge
e ∈ π , let ρe be the path that is associated with e in G. We first construct a partition
P1, . . . , Pt for the elements of the form ce in Bπ ,Q as follows: For each edge e in π , if
the NFA that only accepts the word λ(ρe) realizes the tuple Wi, then ce belongs to Pi.
We show next that Bπ ,Q |= α(P1, . . . , Pt) ∧ β(P1, . . . , Pt) ∧ ¬∃x∃yγ (x, y, P1, . . . , Pt), which
implies, in turn, that Bπ ,Q |= φQ.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:49

Clearly, since G is canonical for π , Bπ ,Q |= α(P1, . . . , Pt) ∧ β(P1, . . . , Pt). It
just rests to show that βπ ,Q |= ¬∃x∃yγ (x, y, P1, . . . , Pt). Assume, on the con-
trary, that βπ ,Q |= ∃x∃yγ (x, y, P1, . . . , Pt). In particular, assume that βπ ,Q |=
∃x∃y∃X1, . . . , Xp∃u1∃v1∃u2∃v2 θ4(x, y, u1, v1, u2, v2, P1, . . . , Pt, X1, . . . , Xp), all other cases
being similar.

Since βπ ,Q |= ∃x∃y∃X1, . . . , Xp∃u1∃v1∃u2∃v2 θ4(x, y, u1, v1, u2, v2, P1, . . . , Pt, X1, . . . , Xp),
there exist elements p, p′, q, q′, ce and ce′ in Bπ ,Q such that the following holds: (1)
Edges(p′, ce, p) and Edges(q, ce′ , q′) holds in Bπ ,Q; (2) If ce ∈ Pj and ce′ ∈ P�, then it is the
case that the following holds: Assume that Wj = (f j, Sj,Sj) and W� = (f �, S�,S�). Then
for some S′ ∈ Sj and s ∈ S� it is the case that ∃X1 · · · ∃Xpμs,S′(p, q, P1, . . . , Pt, X1, . . . , Xp)
holds in Bπ ,Q. From the two previous facts, one can easily conclude the following: (1)
There is a suffix ρ1 of ρe such that δ({s0}, λ(ρ1)) = S′; (2) There is a prefix ρ2 of ρe′ such
that δ({s}, λ(ρ2)) contains at least some final state; (3) There is a path ρ in G from σ(p)
to σ(q) such that δ(S′, λ(ρ)) contains the state s. We conclude that ρ1ρρ2 is a path in G
such that λ(ρ) ∈ R. This concludes this part of the proof.

Extension to Arbitrary CRPQs. A procedure that computes certain answers in poly-
nomial time for arbitrary conjunctions of RPQs is more cumbersome to describe, but
relies essentially on the same proof ideas. First of all, when constructing Bπ ,Q from π
and Q, we have to be more careful, and provide in advance the necessary information
to constants of the form ce, in order to be able to recognize later when it is possible for
a join between two node variables to occur in a node that belongs to a path that wit-
nesses the edge e. In the same way, formula φQ has to be changed accordingly, in order
to allow for this kind of joins to occur in the graph database. The addition of constants
to queries only makes things easier, as then we precisely know where an element has
to be witnessed in the graph database.

The Codd interpretation of label variables is essential, since without it the problem
is already CONP-hard for treewidth 1 (see Theorem 5.7). For Pre patterns, CONP-
hardness results of Theorem 5.8 used classes of DAGs of unbounded treewidth.

7.2. Certain Answers via Constraint Satisfaction

We now demonstrate the potential of using techniques from constraint satisfaction
for answering queries over graph patterns, in the spirit of Calvanese et al. [2000c].
We shall concentrate on patterns in Pnv,lv, for which data complexity is in CONP. Of
course, pure complexity-theoretic argument tells us that (the complement of) query
answering can be cast as a constraint satisfaction problem; what we show here is that
the translation for RPQs is very transparent, opening up the possibility of bringing the
huge arsenal of tools from constraint satisfaction [Dechter 2003].

We adopt the standard view of the constraint satisfaction problem (CSP) as checking
for the existence of a homomorphism from a relational structure M1 to another struc-
ture M2 of the same vocabulary [Kolaitis and Vardi 2007], referring to this problem
as CSP(M1,M2). Often this problem is considered with M2 fixed; in which case, one
refers to nonuniform CSP.

Consider a pattern π = (N, E) in Pnv,lv, that is, E ⊆ N × (� ∪W) × N for a finite set
W of label variables. Let Q be an RPQ given by Ans(x, y) ← (x, L, y), where L ⊆ �∗ is a
regular language. We now define logical structures Mπ (n, n′) and MQ over vocabulary

(Nodes, Expr, (Laba)a∈� , Src, Sink, Edge),

where Edge is a ternary relation and other relations are unary. Here, n and n′ are two
node ids of π .

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:50 P. Barceló et al.

Structure Mπ (n, n′). The domain is the disjoint union of N, �, and W, the set of
label variables used in π . The interpretation of the predicates is as follows.

Nodes := N Edge := E
Laba := {a} Src := {n}
Expr := W Sink := {n′}

Structure MQ. Assume that L is recognized by an NFA (S, �, q0, F, δ) with δ :
S×� → 2S (extended, as usual, to a transition function on sets δ(S′, a) = ⋃

s∈S′ δ(s, a)).
The domain of MQ is the disjoint union of 2S and �. The interpretation of the predi-
cates is the following.

Nodes:=2S Edge:= {(S′, a, S′′) ∈ 2S × � × 2S | δ(S′, a) ⊆ S′′}
Laba:={a} Src:={S′ ∈ 2S | q0 ∈ S′}
Expr:=� Sink:=2S−F

THEOREM 7.2. For patterns π ∈ Pnv,lv, under these translations, (n, n′) ∈
CERTAIN(Q, π) if and only if there is no solution to CSP(Mπ (n, n′),MQ).

PROOF. Assume first that (n, n′) �∈ CERTAIN(Q, π). Then, there is a graph database
G over � such that G ∈ �π� but (n, n′) �∈ Q(G). Since G ∈ �π�, there exists a homomor-
phism h : (h1, h2) from π into G, where h1 maps nodes of π into nodes of G, and h2
maps label variables used in π into symbols from �.

Let A = (S, �, q0, F, δ) be the NFA that recognizes L, where we assume, without loss
of generality, that δ(q, a) is defined, for each q ∈ S and a ∈ �. Further, let A′ be the
NFA A × G. Recall that π = (N, E) and that W is the set of label variables used in π .
Then, let f : N → 2S be the mapping defined as f (p) = S′, where S′ is the subset of S
that consists of exactly those states q such that there is a run of A′ from state (q0, n)
to state (q, h1(p)). Further, let f ′ be the mapping from the domain of Mπ (n, n′) into the
domain of MQ that is defined as follows:

— For each p ∈ Mπ (n, n′) ∩ N, it is the case that f ′(p) = f (p);
— For each a ∈ Mπ (n, n′) ∩ �, it is the case that f ′(a) = a;
— For each X ∈ Mπ (n, n′) ∩ W, it is the case that f ′(X) = h2(X).

We prove next that f ′ is a homomorphism from Mπ (n, n′) into MQ.
Clearly, for each element c in the domain of Mπ (n, n′), it is the case that c ∈ T ⇒

f ′(c) ∈ T, for each T ∈ {Nodes, Expr, (Laba)a∈�}. Further, it is clear from the definition
of f ′ and f , that f ′(n) contains the state q0, and thus, that for each c in the domain of
Mπ (n, n′) it is the case that c ∈ Source ⇒ f ′(c) ∈ Source. Moreover, since (n, n′) �∈ Q(G),
there is no run of A′ from (q0, n) to a state (q, n′) such that q ∈ F. Thus, f ′(n′) = f (n′)
satisfies that f ′(n′) ∩ F = ∅, and, therefore, we can conclude that for each c in the
domain of Mπ (n, n′) it is the case that c ∈ Sink ⇒ f ′(c) ∈ Sink.

It just remains to show that, for each triple of the form (p, D, q), where p, q ∈ N
and D ∈ � ∪ W, it is the case that (p, D, p′) ∈ Edges ⇒ (f ′(p), f ′(D), f ′(p′)) ∈ Edges.
Assume that (p, D, p′) ∈ Edges. Consider an arbitrary state q ∈ f ′(p). Then there exists
a run of A′ from state (q0, n) to state (q, h1(p)). Since (p, D, p′) is an edge of π , it must
be the case that (h1(p), h2(D), h1(p′)) is an edge of G. Thus, there is a run of A′ from
state (q0, n) to state (δ(q, h2(D)), h1(p′)). (We assume h2(D) = D if D ∈ �.) Since q was
arbitrarily chosen in f ′(p), we conclude that

⋃
q∈f ′(p) δ(q, f ′(D)) ⊆ f ′(p′), and, therefore,

that (f ′(p), f ′(D), f ′(p′)) ∈ Edges.
We conclude that there is a solution for CSP(Mπ (n, n′),MQ).

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:51

Assume, on the other hand, that there is a solution for CSP(Mπ (n, n′),MQ). Thus,
there is a homomorphism f from Mπ (n, n′) into MQ. We define G as the graph database
over � that can be obtained from π by replacing each node variable x with a fresh node
id nx, and each label variable X ∈ W with the symbol f (X) ∈ �. (Notice that f (X) is,
indeed, a symbol in �, since f is a homomorphism from Mπ (n, n′) into MQ.) It is clear
that G ∈ �π�. We prove next that (n, n′) �∈ Q(G).

Assume that the set of node ids mentioned in G is N′ ⊇ N. Consider again the NFA
A′ := A × G. Define a function f ′ : N′ → 2S such that for each n0 ∈ N′, f ′(n0) is
the subset S′ of S that consists of exactly those states q such that there is a run of
A′ from state (q0, n) to state (q, n0). We claim that f ′(n′) ∩ F = ∅, which implies that
(n, n′) �∈ Q(G).

First of all, we prove that f ′(n0) ⊆ f (n0), for each n0 ∈ N′. Assume, for the sake of
contradiction, that for some n0 ∈ N′ there is a state q ∈ f ′(n0) such that q �∈ f (n0).
Since q ∈ f ′(n0), there is a run of A′ that is of the form

(q0, n)(q1, n1) · · · (qt, nt)(q, n0)

on some word a1a2at · · · at+1 over �. But since q0 ∈ f (n), it must be the case that
qj ∈ f (nj), for each 1 ≤ j ≤ t. This is because f is a homomorphism from Mπ (n, n′)
into MQ, and, thus,

⋃
q′∈f (n) δ(q′, a1) ⊆ f (n1) and

⋃
q′∈f (nj)

δ(q′, aj+1) ⊆ f (nj+1), for each
0 ≤ j < t. For the same reason, q ∈ f (n0), which is a contradiction.

Notice that f (n′) ∩ F = ∅ (since f is a homomorphism from Mπ (n, n′) into MQ),
and hence f ′(n′) ∩ F = ∅ (this is because we have just proved that f ′(n′) ⊆ f (n′)). The
latter implies that (n, n′) �∈ Q(G). Further, since G ∈ �π�, we conclude that (n, n′) �∈
CERTAIN(Q, π).

Many algorithmic techniques for constraint satisfaction for CSP(M1,M2) are based
on exploiting properties of the structure M1, so the extremely simple construction of
Mπ (n, n′) indeed opens up the possibility of using a large body of heuristics developed
in that area.

The case of data complexity corresponds to the nonuniform version of CSP, with MQ
fixed. In that case one can immediately conclude (using known results on CSP [Dechter
2003; Kolaitis and Vardi 2007]) that if we have a class of patterns π ∈ Pnv,lv which,
when viewed as ternary relations E, has bounded treewidth, then the data complexity
of RPQs over such a class is in PTIME (note that this is incompatible with Theorem
7.1 which gives a PTIME result for a larger class of queries, but under the restriction
of the Codd interpretation of label variables).

An analog of Theorem 7.2 for patterns in Pnv,re was shown in Calvanese et al.
[2000c], which implies tractability of RPQ evaluation in data complexity over patterns
in Pnv,re whose underlying graph is of bounded treewidth. The idea of the proof in such
case is the following: The domain of the structure MQ will contain, in addition to 2S,
where S is the set of states of the NFA A that recognizes L, each function τ : S → S. We
then enlarge MQ by adding a unary predicate P
, for each set
 of functions from S to
S. The interpretation of P
 consists of all the functions τ ∈
. The domain of Mπ (n, n′)
will contain, in addition to the set N of node ids of π , each regular expression L′ that
labels an edge of π (and if two edges are labeled by the same regular expression, we
see them as different objects in the domain). We then ensure that L′ is mapped into
some function τ : S → S, such that there is a word w ∈ L′ that realizes τ : S → S; that
is, that there is a run of A over w from state s to τ(s), for each s ∈ S. In order to do that,
we add L′ to the interpretation of P
 in Mπ (n, n′), where
 is the set of all functions
τ : S → S, such that there is a word w ∈ L′ that realizes τ : S → S. It is not hard to
prove that Mπ (n, n′) can be constructed in polynomial time (since L, and, thus, A, is

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:52 P. Barceló et al.

fixed). A homomomorphism from Mπ (n, n′) to MQ assigns a function τ : S → S to each
regular expression L′ in the domain of Mπ (n, n′). Intuitively, this represents the type
with respect to A of the word that will replace the regular expression L′ in a graph
database G that belongs to �π�. This is all the information we need to know about that
word in order to check whether (n, n′) ∈ Q(G).

We have not been able to extend these techniques to the most expressive class of
patterns in Pnv,lv,re. A possible explanation is that data complexity of RPQ evaluation
is intractable even over extremely simple patterns in the class P lv,re, which makes the
search for well-behaved fragments difficult.

PROPOSITION 7.3. There is an RPQ Q such that DATA COMPLEXITY(Q) is in-
tractable even over input patterns in P lv,re with exactly one edge.

The proof of Proposition 7.3 is by a mild modification of the proof of the second part
of Theorem 9 in Barceló et al. [2013].

8. CONCLUSIONS

We studied structural properties and querying of graph patterns. We looked at three
main features of patterns: node variables, label variables, and regular expressions
specifying paths. We showed that each of these features strictly increases the expres-
siveness of patterns. We looked at data and combined complexity of answering CRPQs
and other queries (both extensions and restrictions of CRPQs). We developed a model
of automata that capture query answering, both for returning nodes and paths, and
studied their properties. Finally, we identified tractable restrictions, as well as classes
of reasonable combined complexity for which query answering is naturally viewed as
a constraint satisfaction property.

The main conclusion is that, without carefully chosen restrictions, querying graph
patterns is computationally harder than querying relational or XML patterns. In par-
ticular, this has implications for ongoing work on defining schema mappings as well
as integration and exchange techniques for graph-structured data. However, we can
identify rather robust classes with either tractable query answering, or for which one
can hope to find good heuristics by using techniques from other fields. Developing such
techniques is a natural continuation of this work. Another line for further work is to
study tractable restrictions for integrating and exchanging graph data.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

We thank Wenfei Fan and Peter Wood for their comments.

REFERENCES

Abiteboul, S., Buneman, P., and Suciu, D. 1999. Data on the Web: From Relations to Semistructured Data
and XML. Morgan-Kauffman.

Angles, R. and Gutierrez, C. 2008. Survey of graph database models. ACM Comput. Surv. 40, 1.
Arenas, M., Barceló, P., Libkin, L., and Murlak, F. 2010. Relational and XML Data Exchange. Morgan &

Claypool.
Barceló, P., Hurtado, C., Libkin, L., and Wood, P. 2010a. Expressive languages for path queries over graph-

structured data. In Proceedings of the 29th ACM Symposium on Principles of Database Systems (PODS).
3–14.

Barceló, P., Libkin, L., Poggi, A., and Sirangelo, C. 2010b. XML with incomplete information. ACM 58, 1,
1–62.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

Querying Regular Graph Patterns 8:53

Barceló, P., Libkin, L., and Reutter, J. 2013. Parameterized regular expressions and their languages. Theoret.
Comput. Sci. 474, 21–45.

Björklund, H., Martens, W., and Schwentick, T. 2007. Conjunctive query containment over trees. In Proceed-
ing of the 11th International Symposium on Database Programming Languages (DBPL). 66–80.

Bonatti, P. A., Lutz, C., Murano, A., and Vardi, M. Y. 2008. The complexity of enriched mu-calculi. Log. Meth.
Comput. Sci. 8, 4.

Börger, E., Gräedel, E., and Gurevich, Y. 1997. The Classical Decision Problem. Perspectives in Mathematical
Logics, Springer-Verlag.

Buneman, P., Davidson, S. B., Hillebrand, G. G., and Suciu, D. 1996. A query language and optimization
techniques for unstructured data. In Proceedings of the SIGMOD Conference. 505–516.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. 2000a. Answering regular path queries using
views. In Proceedings of the 16th International Conference on Data Engineering (ICDE). 389–398.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. 2000b. Containment of conjunctive regular
path queries with inverse. In Proceedings of the 7th International Conference on Principles of Knowledge
Representation and Reasoning (KR). 176–185.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. 2000c. View-based query processing and con-
straint satisfaction. In Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science
(LICS). 361–371.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. 2002. Rewriting of regular expressions and
regular path queries. J. Comput. Syst. Sci. 64, 3, 443–465.

Calvanese, D., De Giacomo, G., Lenzerini, M., and Vardi, M. 2011. Simplifying schema mappings. In
Proceedings of the 14th International Conference on Database Theory (ICDT). 114–125.

Cheng, J., Yu, J. X., Ding, B., Yu, P. S., and Wang, H. 2008. Fast graph pattern matching. In Proceedings of
the 24th International Conference on Data Engineering (ICDE). 913–922.

Cohen, S. and Sagiv, Y. 2005. An abstract framework for generating maximal answers to queries. In
Proceedings of the 10th International Conference on Database Theory (ICDT). 129–143.

Consens, M. and Mendelzon, A. 1990. Graphlog: A visual formalism for real life recursion. In Proceedings of
the 9th ACM Symposium on Principles of Database Systems (PODS). 404–416.

Cruz, I., Mendelzon, A., and Wood, P. 1987. A graphical query language supporting recursion. In Proceed-
ings of the ACM Special Interest Group on Management of Data 1987 Annual Conference (SIGMOD).
323–330.

De Giacomo, G. and Lenzerini, M. 1997. A uniform framework for concept definitions in description logics.
J. Artif. Intell. Res. (JAIR) 6, 87–110.

Dechter, R. 2003. Constraint Processing. Morgan-Kauffman.
Deutsch, A. and Tannen, V. 2001. Optimization properties for classes of conjunctive regular path queries. In

Proceedings of the 8th International Workshop on Database Programming Languages (DBPL). 21–39.
Diestel, R. 2005. Graph Theory. Springer.
Fagin, R., Kolaitis, P., Miller, R., and Popa, L. 2005. Data exchange: Semantics and query answering. Theoret.

Comput. Sci. 336, 1, 89–124.
Fan, W., Li, J., Ma, S., Tang, N., and Wu, Y. 2010a. Graph pattern matching: From intractable to polynomial

time. In Proc. VLDB Endow. 3, 1, 264–275.
Fan, W., Li, J., Ma, S., Wang, H., and Wu, Y. 2010b. Homomorphism revisited for graph matching. In Proc.

VLDB Endow. 3, 1, 1161–1172.
Fan, W., Li, J., Ma, S., Tang, N., and Wu, Y. 2011. Adding regular expressions to graph reachability and

pattern queries. In Proceedings of the 27th International Conference on Data Engineering (ICDE).
39–50.

Glaister, I. and Shallit, J. 1996. A lower bound technique for the size of nondeterministic finite automata.
Inf. Process. Lett. 59, 2, 75–77.

Gottlob, G., Koch, C., and Schulz, K. 2006. Conjunctive queries over trees. J. ACM 53, 2, 238–272.
Gutierrez, C., Hurtado, C., Mendelzon, A. O., and Pérez, J. 2011. Foundations of semantic web databases.

J. Comput. Syst. Sci. 77, 3, 520–541.
Gyssens, M., Paredaens, J., Van den Bussche, J., and Van Gucht, D. 1994. A graph-oriented object database

model. IEEE Trans. Knowl. Data Eng. 6, 4, 572–586.
Imielinski, T. and Lipski, W. 1984. Incomplete information in relational databases. J. ACM 31, 4, 761–791.
Johnson, D. and Klug, A. 1984. Testing containment of conjunctive queries under functional and inclusion

dependencies. J. Comput Syst. Sci. 28, 1, 167–189.

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

8:54 P. Barceló et al.

Kanza, Y., Nutt, W., and Sagiv, Y. 2002. Querying incomplete information in semistructured data. J. Comput.
Syst. Sci. 64, 3, 655–693.

Kolaitis, P. and Vardi, M. 2007. A logical approach to constraint satisfaction. In Finite Model Theory and Its
Applications, Springer, 339–370.

Kozen, D. 1977. Lower bounds for natural proof systems. In Proceeding of the 18th Annual Symposium on
Foundations of Computer Science (FOCS). 254–266.

Kupferman, O., Vardi, M. Y., and Wolper, P. 2001. Module checking. Inf. Computat. 164, 2, 322–344.
Lakshmanan, L., Ramesh, G., Wang, W. H., and Zhao, Z. 2004. On testing satisfiability of tree pat-

tern queries. In Proceedings of the 30th International Conference on Very Large Data Bases (VLDB).
120–131.

Lenzerini, M. 2002. Data integration: A theoretical perspective. In Proceedings of the 21st ACM Symposium
on Principles of Database Systems (PODS). 233–246.

Leser, U. 2005. A query language for biological networks. Bioinformatics 21, 2, ii33–ii39.
Libkin, L. 2004. Elements of Finite Model Theory. Springer.
Libkin, L. 2011. Incomplete information and certain answers in general data models. In Proceedings of the

30th ACM Symposium on Principles of Database Systems (PODS). 59–70.
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. 2002. Network motifs: Simple

building blocks of complex networks. Science 298, 5594, 824–827.
Natarajan, M. 2000. Understanding the structure of a drug trafficking organization: A conversational anal-

ysis. Crime Prevention Studies 11, 273–298.
Olken, F. 2003. Graph data management for molecular biology. OMICS: A Journal of Integrative Biology

7, 1, 75–78.
Pérez, J., Arenas, M., and Gutierrez, C. 2009. Semantics and complexity of SPARQL. ACM Trans. Datab.

Syst. 34, 3.
Ronen, R. and Shmueli, O. 2009. Soql: A language for querying and creating data in social networks. In

Proceedings of the 25th International Conference on Data Engineering (ICDE). 1595–1602.
San Martı́n, M. and Gutierrez, C. 2009. Representing, querying and transforming social networks with

RDF/SPARQL. In Proceedings of the 6th European Semantic Web Conference (ESWC). 293–307.
Tong, H., Faloutsos, C., Gallagher, B., and Eliassi-Rad, T. 2007. Fast best-effort pattern matching in large

attributed graphs. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). 737–746.

Weikum, G., Kasneci, G., Ramanath, M., and Suchanek, F. 2009. Database and information-retrieval meth-
ods for knowledge discovery. Commun. ACM 52, 4, 56–64.

Received November 2011; revised May 2013; accepted November 2013

Journal of the ACM, Vol. 61, No. 1, Article 8, Publication date: January 2014.

