
Regular Queries on Graph Databases
Juan Reutter1, Miguel Romero2, and Moshe Y. Vardi3

1 Pontificia Universidad Católica de Chile
jreutter@ing.puc.cl

2 Universidad de Chile
mromero@dcc.uchile.cl

3 Rice University
vardi@cs.rice.edu

Abstract
Graph databases are currently one of the most popular paradigms for storing data. One of the
key conceptual differences between graph and relational databases is the focus on navigational
queries that ask whether some nodes are connected by paths satisfying certain restrictions. This
focus has driven the definition of several different query languages and the subsequent study of
their fundamental properties.

We define the graph query language of Regular Queries, which is a natural extension of unions
of conjunctive 2-way regular path queries (UC2RPQs) and unions of conjunctive nested 2-way
regular path queries (UCN2RPQs). Regular queries allow expressing complex regular patterns
between nodes. We formalize regular queries as nonrecursive Datalog programs with transitive
closure rules. This language has been previously considered, but its algorithmic properties are
not well understood.

Our main contribution is to show elementary tight bounds for the containment problem
for regular queries. Specifically, we show that this problem is 2Expspace-complete. For all
extensions of regular queries known to date, the containment problem turns out to be non-
elementary. Together with the fact that evaluating regular queries is not harder than evaluating
UCN2RPQs, our results show that regular queries achieve a good balance between expressiveness
and complexity, and constitute a well-behaved class that deserves further investigation.

1 Introduction

Graph databases have become a popular data model over the last decade. Important ap-
plications include the Semantic Web [3, 4], social network analysis [27], biological networks
[34], and several others. The standard model for a graph database is as an edge-labeled di-
rected graph [12, 30]: nodes represent objects and a labeled edge between nodes represents
the fact that a particular type of relationship holds between these two objects. For a survey
of graph databases, see [1, 5].

Conceptually, graph databases differs from relational databases in that the topology
of the data is as important as the data itself. Thus, typical graph database queries are
navigational, asking whether some nodes are connected by paths satisfying some specific
properties. The most basic query language for graph databases is that of regular-path queries
(RPQs) [24], which selects pairs of nodes that are connected by a path conforming to a
regular expression. A natural extension of RPQs is the class of two-way regular-path queries
(2RPQs), which enable navigation of inverse relationships [14, 15]. In analogy to conjunctive
queries (CQs) and union of CQs (UCQs), the class of union of conjunctive two-way regular
path queries (UC2RPQs) enable us to perform unions, joins and projections over 2RPQs
[14]. The navigational features present in these languages are considered essential in any
reasonable graph query language [5].

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Regular Queries on Graph Databases

More expressive languages have been studied, for example, in the context of knowledge
bases and description logics [11, 9, 8]. The class of nested two-way regular path queries
(N2RPQs) and the corresponding class of union of conjunctive N2RPQs (UCN2RPQs),
extends C2RPQs with an existential test operator, inspired in the language XPath [37, 7].
Typical results show that CN2RPQs is a well-behaved class, as it increases the expressive
power of C2RPQs without increasing the complexity of evaluation or containment [11, 8].
Yet the regular patterns detected by 2RPQs and N2RPQs are still quite simple: they speak of
paths and a restricted form of trees. Thus, these languages cannot express queries involving
more complex regular patterns.

One key property that the query classes of UC2RPQs and UCN2RPQs fail to have is
that of algebraic closure. To see that, note that the relational algebra is defined as the
closure of a set of relational operators [2]. Also, the class of CQs is closed under select,
project, and join, while UCQs are also closed under union [2]. Similarly, the class of 2RPQs
is closed under concatenation, union, and transitive closure. In contrast, UC2RPQs and
UCN2RPQs are not closed under transitive closure. For example, the transitive closure of a
binary UC2RPQ query is not a UC2RPQ query. Thus, UC2RPQs and UCN2RPQs are not
natural classes of graph database queries.

In this paper we study the language of Regular Queries (RQ), which result from closing
the class of UC2RPQs also under transitive closure. We believe that RQ fully captures reg-
ular patterns over graph databases. We define RQ as binary nonrecursive Datalog programs
with the addition of transitive closure rules of the form S(x, y) ← R+(x, y). Such a rule
defines S as the transitive closure of the predicate R (which may be defined by other rules).
The class of RQ queries is a natural extension of C2RPQs and CN2RPQs and can express
many interesting properties that CN2RPQs can not (See e.g. [?, 36]), but its algorithmic
properties until now have not been well understood.

It is easy to see that the complexity of evaluation of regular queries is the same as
for UC2RPQs: NP-complete in combined complexity and NLogspace-complete in data
complexity. This is a direct consequence of the fact that regular queries are subsumed
by binary linear Datalog [21, 19]. Nevertheless, the precise complexity of checking the
containment of regular queries has been open so far. This is the focus of this paper.

The containment problem for queries asks, given two queries Ω and Ω′, whether the
answer of Ω is contained in the answer of Ω′, over all graph databases. Checking query
containment is crucial in several contexts, such as query optimization, view-based query
answering, querying incomplete databases, and implications of dependencies [13, 18, 28,
31, 26, 32]. A non-elementary upper bound for regular query containment follows from
[22, 23]. But, is the complexity of the containment problem elementary or non-elementary?
Given the importance of the query-containment problem, a non-elementary lower bound for
containment of regular queries would suggest that the class may be too powerful to be useful
in practice.

Our main technical contribution is to show elementary tight bounds for the containment
problem of regular queries. We attack this problem by considering an equivalent query
language, called nested unions of C2RPQs (nested UC2RPQs), which is of independent
interest. The intuition is that a regular query can be unfolded to construct an equivalent
nested UC2RPQ. This is remiscent of the connection between nonrecursive Datalog and
UCQs: each nonrecursive program can be unfolded to construct an equivalent UCQ [2].
Unfoldings of regular queries may involve an exponential blow up in size, and thus we can
think of regular queries as a succinct version of nested UC2RPQs. We also analyze the
impact of this succinctness on the complexity of the containment problem.

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 3

Remarkably, despite the considerable gain in expressive power that comes with nesting
UC2RPQs, we are able to show that checking containment of nested UC2RPQs is Expspace-
complete, i.e, it is not harder than checking containment of UC2RPQs [14]. Our proof is
based on two novel ideas:
1. We reduce containment of nested UC2RPQs, to containment of a 2RPQ in a nested

UC2RPQ. The reduction is based on a serialization technique, where we represent ex-
pansions of nested UC2RPQs as strings, and modify the original nested UC2RPQs ac-
cordingly.

2. We show that checking containment of a 2RPQ E in a nested UC2RPQ Γ can be done
in Expspace. Here, we exploit automata-theoretic techniques used before, e.g. in [14,
16, 19] to show that containment of UC2RPQs is in Expspace. Nevertheless, our proof
requires a deep understanding and a significant refinement of these techniques. The
essence of the proof is a novel representation of the partial mappings of Γ to the expansions
of E. This representation is robust against nesting and does not involve a non-elementary
blow up in size.

This result yields a 2Expspace upper bound for containment of regular queries, and we
also provide a matching lower bound. Thus, the succinctness of regular queries is inherent
and the containment problem is 2Expspace-complete.

There are several other languages that are either more expressive or incomparable to
regular queries. One of the oldest is GraphLog [21], which is equivalent to first-order logic
with transitive closure. More recent languages include extended CRPQs [6], which extends
CRPQs with path variables, XPath for graph databases [35, 33], and algebraic languages
such as [29, 36]. Although all these languages have interesting evaluation properties, the
containment problem for all of them is undecidable. Another body of research has focused
on fragments of Datalog with decidable containment problems. In fact, regular queries were
investigated in [11] (under the name of nested positive 2RPQs), but the precise complexity
of checking containment was left open, with non-elementary tight bounds provided only for
strict generalizations of regular queries [38, 10, 11]. Interestingly, the containment problem
is non-elementary even for positive first-order logic with unary transitive closure [11], which
is a slight generalization of regular queries.
Organization. We present preliminaries in Section 2. In Section 3 we introduce regular
queries. The containment problem of regular queries is analyzed in Section 4. Finally, in
Section 5 we conclude the paper by discussing realistic restrictions on regular queries and
future work.

2 Preliminaries

Graph databases. Let Σ be a finite alphabet. A graph database G over Σ is a pair
(V,E), where V is a finite set of nodes and E ⊆ V ×Σ×V . Thus, each edge in G is a triple
(v, a, v′) ∈ V ×Σ×V , whose interpretation is an a-labeled edge from v to v′ in G. We define
the finite alphabet Σ± = Σ∪{a− | a ∈ Σ}, that is, Σ± is the extension of Σ with the inverse
of each symbol. The completion G± of a graph database G over Σ, is a graph database over
Σ± that is obtained from G by adding the edge (v′, a−, v) for each edge (v, a, v′) in G.
Conjunctive Queries. We assume familiarity with relational schemas and relational
databases. A conjunctive query (CQ) is a formula in the ∃,∧-fragment of first-order logic.
We adopt a rule-based notation: A CQ θ(x1, . . . , xn) over the relational schema σ is a rule of
the form θ(x̄) ← R1(ȳ1), . . . , Rm(ȳm), where x̄ are the free variables, the variables in some
ȳi not mentioned in x̄ are the existential quantified variables and Ri is a predicate symbol

4 Regular Queries on Graph Databases

in σ, for each 1 ≤ i ≤ m. The answer of a CQ θ(x1, . . . , xn) over a relational database D
is the set θ(D) = {ā | D |= θ(ā))}, of tuples that satisfies θ in D. As usual, if θ is a boolean
CQ, that is, it has no free variables, we identify the answer false with the empty relation,
and true with the relation containing the 0-ary tuple.

We want to use CQs for querying graph databases over a finite alphabet Σ. In order
to do this, given an alphabet Σ, we define the schema σ(Σ) that consists of one binary
predicate symbol Ea, for each symbol a ∈ Σ. For readability purposes, we identify Ea with
a, for each symbol a ∈ Σ. Each graph database G = (V,E) over Σ can be represented as a
relational database D(G) over the schema σ(Σ): The database D(G) consists of all facts of
the form Ea(v, v′) such that (v, a, v′) is an edge in G.

A conjunctive query over Σ is simply a conjunctive query over σ(Σ±). The answer θ(G)
of a CQ θ over G is θ(D(G±)). A union of CQs (UCQ) Θ over Σ is a set {θ1(x̄), . . . , θk(x̄)} of
CQs over Σ with the same free variables. The answer Θ(G) is

⋃
1≤j≤k θj(G), for each graph

database G.
A (U)CQ with equality is a (U)CQ where equality atoms of the form y = y′ are al-

lowed. Although each CQ with equality can be transformed into an equivalent CQ (without
equality) via identification of variables, in some cases it will be useful to work directly with
CQs with equality. If ϕ is a CQ with equality, then its associated CQ (without equality) is
denoted by neq(ϕ).
C2RPQs. The basic mechanism for querying graph databases is the class of two-way
regular path queries, or 2RPQs [15]. A 2RPQ E over Σ is a regular expression over Σ±.
Intuitively, E computes the pairs of nodes connected by a path that conforms to the regular
language L(E) defined by E. Formally, the answer E(G) of a 2RPQ E over a graph database
G = (V,E) is the set of pairs (v, v′) of nodes in V for which there is a word r1 · · · rp ∈ L(E)
such that (v, v′) is in the answer of the CQ θ(x, y)← r1(x, z1), . . . , rp(zp−1, y) over G. Note
that, when p = 0, r1 · · · rp = ε and θ(x, y) becomes x = y.

The analogue of CQs in the context of graph databases is the class of conjunc-
tive 2RPQs, or C2RPQs [14]. A C2RPQ is a CQ where each atom is a 2RPQ, in-
stead of a symbol in σ(Σ±). Formally, a C2RPQ γ(x̄) over Σ is rule of the form
γ(x̄) ← E1(y1, y

′
1), . . . , Em(ym, y′m), where x̄ are the free variables, the variables in

{y1, y
′
1, . . . , ym, y

′
m} not mentioned in x̄ are the existential quantified variables and Ei is

a 2RPQ over Σ, for each 1 ≤ i ≤ m. The answer γ(G) of γ over a graph database G
is defined in the obvious way. A union of C2RPQs (UC2RPQ) Γ over Σ is a finite set
{γ1(x̄), . . . , γk(x̄)} of C2RPQs over Σ with the same free variables. We define Γ(G) to be⋃

1≤j≤k γj(G), for each graph database G.
Datalog. While UC2RPQs extends UCQs with a limited form of transitive closure,
Datalog extends UCQs with full recursion. A Datalog program Π consists of a finite set of
rules of the form S(x̄) ← R1(ȳ1), . . . , Rm(ȳm), where S,R1, . . . , Rm are predicate symbols
and x̄, ȳ1, . . . , ȳm are tuples of variables. A predicate that occurs in the head of a rule is
called intensional predicate. The rest of the predicates are called extensional predicates.
IDB(Π) and EDB(Π) denote the set of intensional and extensional predicates, respectively.
We assume that each program has a distinguished intensional predicate called Ans.

Let P be an intensional predicate of a Datalog program Π and D a database with schema
EDB(Π). For i ≥ 0, P iΠ(D) denote the collection of facts about the intensional predicate
P that can be deduced from D by at most i applications of the rules in Π. Let P∞Π (D) be⋃
i≥0 P

i
Π(D). Then, the answer Π(D) of Π over D is Ans∞Π (D).

A predicate P depends on a predicate Q in a Datalog program Π, if Q occurs in the body
of a rule ρ of Π and P is the predicate at the head of ρ. The dependence graph of Π is a

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 5

directed graph whose nodes are the predicates of Π and whose edges capture the dependence
relation: there is an edge from Q to P if P depends on Q. A program Π is nonrecursive
if its dependence graph is acyclic, that is, no predicate depends recursively on itself. It is
well known that each nonrecursive program can be expressed as a UCQ, via unfolding of
the program.

A (nonrecursive) Datalog program over a finite alphabet Σ is a (nonrecursive) Datalog
program Π such that EDB(Π) = σ(Σ±). The answer Π(G) of a (nonrecursive) Datalog
program Π over a graph database G over Σ is Π(D(G±)).

I Remark. Typically, when we analyze a problem involving 2RPQs over Σ, we shall assume
that 2RPQs are represented as one-way nondeterministic finite automata (1NFA) over al-
phabet Σ±. This does not affect the complexity of problems as we can translate a regular
expression to an equivalent automaton in polynomial time.

3 Regular Queries

We now introduce the class of Regular Queries (RQs) and establish some basic results
regarding the complexity of evaluation.

I Definition 1. (Regular query) A transitive closure rule is a rule of the form S(x, y)←
R+(x, y), where S,R are predicate symbols and x, y are variables. We extend the notions of
intensional predicate, extensional predicate and dependence graph to a finite set of Datalog
and transitive closure rules in the natural way. A regular query Ω over a finite alphabet Σ
is a finite set of Datalog and transitive closure rules such that:
1. The extensional predicates of Ω belongs to σ(Σ±).
2. There is a distinguished intensional predicate called Ans of arbitrary arity.
3. All intensional predicates, except maybe Ans, have arity 2.
4. The dependence graph of Ω is acyclic.

The semantics of regular queries is based on the semantics of Datalog. We define a
translation function λ that transforms a Datalog rule or a transitive closure rule into a set
of Datalog rules. If ρ is a Datalog rule then λ(ρ) = {ρ}. When ρ is a transitive closure rule of
the form ρ = S(x, y)← R+(x, y), then λ(ρ) contains the rules {S(x, y)← R(x, y), S(x, y)←
S(x, z), R(z, y)}. We translate each regular query Ω = {ρ1, . . . , ρk} into a Datalog program
λ(Ω) = λ(ρ1) ∪ · · · ∪ λ(ρk). Then, the answer Ω(G) of a regular query Ω over a graph
database G is the answer of λ(Ω) over G.

I Example 2. Suppose we have a graph database of persons and its relationships. We have
relations knows, is a friend and is a good friend, abbreviated k, f and g, respectively. Thus
our alphabet is Σ = {k, f, g}. The following query returns all the pairs of persons connected
by a chain of potential friends: p and p′ are potential friends, if either they are friends, or p
just knows p′, but they are connected with the same person by a chain of good friends.

G(x, y)← g(x, y) R(x, y)← f(x, y) Ans(x, y)← R+(x, y)
S(x, y)← G+(x, y) R(x, y)← k(x, y), S(x, z), S(y, z)

By using ideas from [11], it can be shown that this query cannot be expressed by any
UCN2RPQ. 2

6 Regular Queries on Graph Databases

Recall that the evaluation problem for regular queries asks, given a RQ Ω, a graph
database G and a tuple t̄, whether t̄ ∈ Ω(G). Each regular query can be translated to a
Datalog program, and in fact, this program is binary (all intensional predicates have arity 2,
except maybe by Ans) and linear (in the sense of [21]). As a consequence, we can derive tight
complexity bound for the evaluation problem [19, 21]. Interestingly, RQs are not harder to
evaluate than UCN2RPQs.

I Theorem 3. The evaluation problem for regular queries is NP-complete in combined
complexity and NLogspace-complete in data complexity.

4 Containment of Regular Queries

Given regular queries Ω and Ω′ over alphabet Σ, we say that Ω is contained in Ω′ if Ω(G) ⊆
Ω′(G), for each graph database G over Σ. The containment problem for regular queries asks,
given two RQs Ω and Ω′, whether Ω is contained in Ω′. We devote the rest of this paper
into proving the following theorem:

I Theorem 4. The containment problem for regular queries is 2Expspace-complete.

We attack this problem by considering an equivalent language, called nested UC2RPQs.
As mentioned in the Introduction, each regular query can be unfolded to construct an
equivalent exponentially-sized nested UC2RPQ. Thus by considering first nested UC2RPQs,
we study the impact of succinctness in the complexity of the containment problem.

4.1 Containment of Nested UC2RPQs
To define formally the class of nested UC2RPQs we introduce a special type of rule. An
extended C2RPQ rule is a rule of the form S(x1, . . . , xn) ← R1(y1, y

′
1), . . . , Rm(ym, y′m),

where, for each 1 ≤ i ≤ m, either Ri is a 2RPQ or Ri is of the form Ri = P+
i , where Pi is a

binary predicate symbol. For a finite set Γ of extended C2RPQ rules, we define intensional
predicates and the dependence graph in the obvious way; now the 2RPQs mentioned in Γ
play the role of extensional predicates.

I Definition 5. (Nested UC2RPQ) A nested UC2RPQ Γ over Σ is a finite set of extended
C2RPQ rules such that:
1. All 2RPQs mentioned in Γ are defined over Σ.
2. There is a distinguished intensional predicate called Ans of arbitrary arity.
3. All intensional predicates, except possibly for Ans, have arity 2.
4. The dependence graph of Γ is acyclic.
5. For each intensional predicate S, there is a unique occurrence of S over rule bodies of Γ.

Conditions (1)-(4) describe the basic structure of a nested UC2RPQ, and are analogous
to that of regular queries. The key condition is Condition (5). It disallows the use of a
predicate several times in different parts of the program. If the predicate S was already
defined, then S can be used in the body of only one rule, and in the body of that rule, it
can be used only once. It is important to note that S can occur several times in the head of
rules, that is, it can be defined by more than one rule.

The semantics of nested UC2RPQs is defined in terms of the semantics of regular queries.
For each 2RPQ E, let δ(E) be an equivalent regular query. We define a translation function
λ that maps an extended C2RPQ rule to a set of Datalog or transitive closure rules. Let ρ
be an extended C2RPQ rule of the form S(x1, . . . , xn)← R1(y1, y

′
1), . . . , Rm(ym, y′m), then

λ(ρ) contains the following rules:

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 7

One rule of the form S(x1, . . . , xn) ← P1(y1, y
′
1), . . . , Pm(ym, y′m), where P1, . . . , Pm are

distinct fresh predicate symbols.
For each 1 ≤ i ≤ m, if Ri = E is a 2RPQ, then we add rules in δ(E), where all the
predicate symbols in δ(E) expect by Ans are fresh symbols, and Ans is renamed to Pi.
If Ri = Q+, for a predicate symbol Q, then we add the rule Pi(x, y)← Q+(x, y).

We translate each nested UC2RPQ Γ = {ρ1, . . . , ρk} to a regular query λ(Γ) = λ(ρ1) ∪
· · · ∪ λ(ρk). Then, the answer Γ(G) of a nested UC2RPQ over a graph database G, is the
answer of λ(Γ) over G.

I Example 6. The following nested UC2RPQ corresponds to the unfolding of the query in
Example 2. Observe how the two occurrences of S now become two occurrences of distinct
predicates G1 and G2.

G1(x, y)← g(x, y) R(x, y)← f(x, y) Ans(x, y)← R+(x, y)
G2(x, y)← g(x, y) R(x, y)← k(x, y), G+

1 (x, z), G+
2 (y, z)

In this section, we provide tight complexity bounds for the containment problem for
nested UC2RPQs. As it turns out, checking containment of nested UC2RPQs is not harder
than checking containment of UC2RPQs.

I Theorem 7. The containment problem for nested UC2RPQs is Expspace-complete.

The lower bound holds trivially as containment of UC2RPQs is already Expspace-hard.
In order to prove the Expspace upper bound, we use the following approach:

1. We note that containment of nested UC2RPQs can be reduced to containment of boolean
nested UC2RPQs.

2. We show that containment of boolean nested UC2RPQs can be reduced to containment
of a boolean 2RPQ in a boolean nested UC2RPQ. The semantics of a boolean 2RPQ is
defined in the obvious way: the result is true if the answer of the 2RPQ is nonempty.

3. We prove an Expspace upper bound for containment of a boolean 2RPQ in a boolean
nested UC2RPQ.

Step (1) is straightforward (see the Appendix) and makes our subsequent arguments and
definitions significantly simpler. Thus, until the end of this section, we focus on boolean
queries. When it is clear from the context, we write 2RPQ and nested UC2RPQ, instead of
boolean 2RPQ and boolean nested UC2RPQ.

Step (2) is based on a novel serialization technique, where we represent expansions of
nested UC2RPQs as strings, and modify the original nested UC2RPQs accordingly. For
step (3) we combine automata-theoretic techniques [14] with a robust representation of the
partial mappings from a nested UC2RPQ to an expansion of a 2RPQ.

4.1.1 Reduction to Containment of 2RPQs in nested UC2RPQs
We now show that checking containment of two nested UC2RPQs Γ and Γ′ over Σ can be
reduced to checking containment of a 2RPQ Ẽ in a nested UC2RPQ Γ̃ over a larger alphabet
∆. We start by defining the notion of expansion, which is central in the analysis of nested
UC2RPQs.

8 Regular Queries on Graph Databases

Let Γ be a nested UC2RPQ over alphabet Σ and let S be an intensional predicate. We
denote by rules(S) the set of rules in Γ such that S occurs in the head of the rule. An
expansion ϕ of S is a CQ with equality over Σ of the form

ϕ(x1, . . . , xn)← ϕ1(y1, y
′
1), . . . , ϕm(ym, y′m)

such that there is a rule ρ ∈ rules(S) of the form S(x1, . . . , xn)← R1(y1, y
′
1), . . . , Rm(ym, y′m)

and the following two conditions hold (note that n = 0 if S = Ans; otherwise, n = 2):
1. For each 1 ≤ i ≤ m, if Ri = E is a 2RPQ, then ϕi(yi, y′i) is a CQ with equality of the

form
ϕi(yi, y′i)← r1(yi, z1), r2(z1, z2), . . . , rp(zp−1, y

′
i)

where, p ≥ 0, r1 · · · rp ∈ L(E), and the zj ’s are fresh variables. When p = 0, we have
that r1 · · · rp = ε, and ϕi(yi, y′i) becomes yi = y′i.

2. If Ri = Q+ for an intensional predicate Q, then ϕi(yi, y′i) is a CQ with equality of the
form

ϕi(yi, y′i)← φ1(w0, w1), φ2(w1, w2), . . . , φq(wq−1, wq)

where q ≥ 1, w0 = yi, wq = y′i, w1, . . . , wq−1 are fresh variables and, for each 1 ≤
j ≤ q, there is an expansion ζ(t1, t2) of Q such that φj(wj−1, wj) is the CQ obtained
from ζ(t1, t2) by renaming t1, t2 by wj−1, wj , respectively, and renaming the rest of the
variables by new fresh variables. In particular, the quantified variables of distinct φi and
φj are disjoint.

An expansion of a nested UC2RPQ is an expansion of its predicate Ans. In particular,
any expansion of a nested UC2RPQ is a boolean query. The intuition is that an expansion
of a nested UC2RPQ is simply an expansion of its associated Datalog program [19, 16].
Containment of nested UC2RPQs can be characterized in terms of containment of CQs.
This is an easy consequence of the semantics of CQs [17, 39] and the fact that each nested
UC2RPQ is equivalent to the union of its expansions.
I Proposition 8. Let Γ and Γ′ be two nested UC2RPQs. Then, Γ is contained in Γ′ if and
only if, for each expansion ϕ of Γ, there exists an expansion ϕ′ of Γ′ and a containment
mapping from neq(ϕ′) to neq(ϕ).

Here, the definition of containment mapping is slightly different to the usual definition
[17], due to the presence of inverses:

I Definition 9. If θ and θ′ are two boolean CQs over Σ, then a containment mapping µ
from θ′ to θ is a mapping from the variables of θ′ to the variables of θ such that, for each
atom r(y, y′) in θ′, with r ∈ Σ±, either r(µ(y), µ(y′)) is in θ or r−(µ(y′), µ(y)) is in θ.

Given two nested UC2RPQs Γ and Γ′ over Σ, we shall construct a 2RPQ Ẽ and a nested
UC2RPQ Γ̃ such that Γ is contained in Γ′ if and only if Ẽ is contained in Γ̃. Our reduction
is based on two ideas:
1. Expansions of Γ can be "serialized" and represented by serialized expansions, which are

strings over a larger alphabet ∆. More importantly, serialized expansions constitute a
regular language. Thus, we can construct a 2RPQ Ẽ such that L(Ẽ) is precisely the set
of serialized expansions of Γ. This technique has been already used before [14, 15].

2. Now we need to serialize Γ′. Proposition 8 basically tell us that Γ is contained in Γ′ iff
Γ′ can be "mapped" to each expansion of Γ. We have replaced Γ by Ẽ. Thus, expansions
of Γ are replaced by serialized expansions. By modifying the 2RPQs mentioned in Γ′,
we construct a nested UC2RPQ Γ̃ such that Γ̃ can be mapped to a serialized expansion

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 9

W of Γ iff Γ′ can be mapped to the expansion of Γ represented by W . This is a novel
technique and constitutes the crux of the reduction.

Next we develop these two ideas. Due to space limitations, we only present the main
ideas and intuitions. Details can be found in the Appendix.

Serialization of Γ

We can represent each expansion ϕ of Γ, by a serialized expansion, that is, a string over
a suitable alphabet ∆. Suppose first that Γ is simply a C2RPQ, that is, a single rule of the
form Ans() ← E1(y1, y

′
1), . . . , Em(ym, y′m). Then, an expansion ϕ corresponds to choose a

string ri = ri1, . . . , r
i
pi
∈ L(Ei), for each 1 ≤ i ≤ m. This can be represented by the string

(a similar representation is used in [14])

$y1r
1
1 · · · r1

p1
y′1$y2r

2
1 · · · r2

p2
y′2$ · · · $ymrm1 · · · rmpm

y′m$

Thus, the alphabet ∆ contains Σ±, a separator $, and the variable set of Γ. Assume now
that Γ consists of two rules of the form

P (x, y)← F1(t1, t′1), . . . , Fn(tn, t′n) Ans()← P+(y1, y
′
1), E2(y2, y

′
2), . . . , Em(ym, y′m)

Suppose ϕ is the expansion of Γ resulting from choosing strings ri ∈ L(Ei), for each
2 ≤ i ≤ m, and for the atom P+(y1, y

′
1), choosing two intermediate variables z1 and z2, and

three expansions ϕ1, ϕ2, ϕ3 of P . Then, we represent ϕ by the string

$y1W1 ? $? W2 ? $? W3y
′
1$y2r

2y′2$ · · · $ymrmy′m$

where W1,W2,W3 are strings representing ϕ1, ϕ2, ϕ3, respectively, as defined before.
Now, the alphabet ∆ contains additionally the separator ? that represents fresh intermediate
variables that appear when we expand a transitive closure atom.

Applying this idea recursively, it is easy to define serialized expansions for a general nested
UC2RPQ Γ. Additionally, it can be shown that serialized expansions can be detected by a
1NFA Ẽ over ∆. Moreover, we can construct Ẽ such that its size is polynomial in the size
of Γ. We say that Ẽ is the serialization of Γ.

Serialization of Γ′

We replaced Γ by Ẽ. Thus we replaced expansions of Γ by expansions of Ẽ, which
are of the form θW () ← w1(x0, x1), w2(x1, x2), . . . , wn(xn−1, xn), for a serialized expansion
W = w1 · · ·wn. Suppose W represents an expansion ϕ of Γ. Our goal is to construct Γ̃ such
that Γ̃ can be mapped to θW iff Γ′ can be mapped to neq(ϕ). To construct Γ̃, we modify
Γ′ in order to translate mappings from Γ′ to neq(ϕ), into mappings from Γ̃ to θW (and vice
versa). Next we explain the main difficulties in the construction of Γ̃.

Let W be a serialized expansion representing an expansion ϕ of Γ. Each symbol in
W (except the separator $) represents a variable in ϕ. We denote by var(i) the variable
represented by the i-th symbol of W . On the other hand, equality atoms in ϕ define
equivalence classes over the variables of ϕ. We write y ≡ϕ y′ when the variables y, y′ belong
to the same equivalence class. Thus it could be possible that var(i) ≡ϕ var(j), or even that
var(i) = var(j), for two distinct positions i < j in W . This implies that var(i) and var(j) are
renamed exactly to the same variable in neq(ϕ). Thus, in order to simulate mappings from
Γ′ to neq(ϕ), we have to consider positions i and j as equivalent, that is, we must be able
to "jump" between positions i and j, whenever necessary.

10 Regular Queries on Graph Databases

To overcome this problem, we introduce the notion of equality string. Equality strings
are strings over ∆± with the following key property. For positions 1 ≤ i < j ≤ |W |,
var(i) ≡ϕ var(j) iff there is an equality string that can be "folded" into W from i to j.
Intuitively, a string α can be folded into W if α can be read in W by a two-way automaton
that outputs symbol r, each time it is read from left-to-right, and symbol r−, each time
it is read from right-to-left. For instance, consider the string W = $y1b

−ay2$. Then,
by−1 y1b

−aa− can be folded into W from 3 to 4, and b−aa−ay2$ can be folded into W from
3 to 6.

Next we give some intuition about equality strings (the precise definition is given in the
appendix). Equality strings are concatenations of basic equality strings. There are several
types of basic equality strings, each one detecting a particular type of connection between
variables. For example consider a serialized expansion of the form

$x · a · y$x · z$w · $t · b · s$ · z$w · aab · u$

where the alphabet is {a, b}. The substring $t · b · s$ is a "sub" serialized expansion
generated due to a transitive closure atom. Thus the first occurrence of x is equivalent to
the last occurrence of z. This is witnessed by an "horizontal" equality string x · a · y$x ·
z$w · $t · b · s$ · z, that is, a string satisfying the regular expression x∆∗xz∆∗z. If t is the
first variable of the serialized expansion $t · b · s$, then w and t are also equivalent. This
is witnessed by a "downward" equality string w$t. In these two examples, we need to know
that x and z are in the same "level" and that the level of t is the level of w minus 1. In order
to achieve this, we incorporate levels to the symbols in ∆, thus the actual definition of ∆ is
slightly more involved that the one presented here.

Now we are ready to serialize the nested UC2RPQ Γ′. Let w = w1 · · ·wp be a string
over Σ±. The serialization of w, denoted by serial(w), is the set of strings over ∆± of the
form α0w1α1w2α2 · · ·αp−1wpαp, where, for each 0 ≤ i ≤ p, the string αi is either ε or an
equality string. If L is a language over Σ±, then serial(L) is the language over ∆± defined
by serial(L) = {w′ | w′ ∈ serial(w), for some w ∈ L}. It can be shown that if A is a 1NFA
accepting the language L over Σ±, then there exists a 1NFA A′ over ∆± accepting precisely
serial(L). Moreover, the size of A′ is polynomial in the size of A and ∆.

The serialization Γ̃ of Γ′ is the nested UC2RPQ over ∆ obtained from Γ′ by replacing
each 2RPQ E in Γ′ by serial(E). It is important to note that the serialization Γ̃ of Γ′ depends
on both Γ and Γ′. This is because it depends on ∆ (which, at the same time, depends on Γ).
Observe also that the size of Γ̃ is polynomial in the size of ∆ and Γ′, and thus polynomial
in the size of Γ and Γ′. Furthermore, Ẽ and Γ̃ can be constructed in polynomial time from
Γ and Γ′. The following proposition concludes our reduction.
I Proposition 10. Let Ẽ and Γ̃ be the serialization of Γ and Γ′, respectively. Then, Γ is
contained in Γ′ if and only if Ẽ is contained in Γ̃.

The idea behind Proposition 10 is as follows. Suppose Γ is contained in Γ′. Let θW ()←
w1(x1, x2), w2(x3, x4), . . . , wn(xn, xn+1) be an expansion of Ẽ, where W = w1 · · ·wn is a
serialized expansion representing ϕ. We know that there is a containment mapping µ from
neq(ϕ′) to neq(ϕ), for some expansion ϕ′ of Γ′. We have to find an expansion ψ of Γ̃ and
a containment mapping ν from neq(ψ) to θW . The structure of neq(ψ) and neq(ϕ′) is the
same, except for the strings chosen when we expand 2RPQs. The internal variables of an
expansion are the fresh variables that appears when we expand 2RPQs (the zj ’s in the
definition of expansion). The rest of the variables are external variables. Thus, the idea is
that the external variables of neq(ψ) and neq(ϕ′) coincide, but the internal variables differ
according to the string chosen in both expansions. Now, for each external variable t in

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 11

neq(ψ) we define ν(t) as follows. Let s = µ(t) (we can apply µ to t as t is also an external
variable of neq(ϕ′)). Let y be a variable in ϕ that is renamed to s in the construction of
neq(ϕ). Then, we define ν(t) to be xj , for some 1 ≤ j ≤ n such that var(j) = y.

To conclude, we need to define the expansions of 2RPQs in neq(ψ) and extend ν to
the internal variables. Suppose that in neq(ϕ′) we expand a 2RPQ E, between external
variables t and t′, into the CQ a1(t, z2), a2(z2, z3), . . . , ak(zk, t′). We want to define an
expansion b1(t, o2), b2(o2, o3), . . . , b`(ok, t′) of serial(E) and extend ν to {o2, . . . , ok} (ν(t)
and ν(t′) are already defined). This amounts to finding a folding of B = b1 · · · b` into W
from i to j, where ν(t) = xi and ν(t′) = xj . We define B and this folding simultaneously.
We start with B = a1 · · · ak and analyze B from left to right. We examine the values
µ(t), µ(z2), . . . , µ(zk), µ(t′) in that order, and according to these values we fold B into W . If
all the values are internal variables, there is no problem: we can easily fold B into W . If we
see an external variable, we have a problem: we need to "jump" to an equivalent position in
order to continue our folding. Thus, we can interleave a suitable equality string α so we can
continue our folding into W . In this way, we end up with a string B ∈ L(serial(E)) (since
we only interleave equality strings with a1 · · · ak ∈ L(E)) and with a folding of B into W ,
as required. The other direction of the proposition is analogous.

4.1.2 Containment of 2RPQs in nested UC2RPQs: Upper Bound
Next we show that containment of a 2RPQ in a nested UC2RPQ is in Expspace. We exploit
automata-theoretic techniques along the lines of [14, 19, 16]. The main idea is to reduce
the complement of the containment problem of a 2RPQ E in a nested UC2RPQ Γ to the
non-emptiness of a suitable doubly exponential-sized 1NFA A. The crux of the construction
is an intermediate automaton AΓ that accepts all the (potential) expansions θ of E such
that there is a mapping from Γ to θ.

In [14], it is shown that checking containment of two UC2RPQs Γ′ and Γ is in Expspace.
To construct the automaton AΓ, that accepts expansions θ of Γ′ such that Γ can be mapped
to θ, the authors exploit two-way NFAs (2NFA). Moreover, they annotate the expansions
with variables of Γ, which indicate the potential mapping of Γ to the expansion. The number
of possible annotations is bounded, as the number of variables is bounded. It is by no means
obvious how to extend these techniques to the case when Γ is a nested UC2RPQ, as the
number of variables involved in a mapping from Γ to θ is not bounded anymore. Thus we
follow a different approach: We work directly with 1NFAs. We construct AΓ directly as a
1NFA. The automaton AΓ scans the input θ from left to right and in each step, it guesses
a "partial mapping" from Γ to θ. This is formalized with the notion of cut, which we define
next.

Note that the expansions for a 2RPQ E over Σ are CQs of a very particular form, that
we call linear CQs: they are sequences r1(z1, z2), . . . , rp(zp, zp+1) where r1 · · · rp ∈ L(E) and
each zj is distinct. Thus if we want to decide whether a 2RPQ E is contained in a nested
UC2RPQ Γ, we need only to look at those expansions of Γ that can be flattened into a linear
CQ, i.e., those that can actually be mapped to some linear CQ. Formally, given an expansion
ϕ of Γ, a linearization of ϕ is a linear CQ θ such that there is a containment mapping from
ϕ to θ. Furthermore, the set of linearizations of Γ is the union of all linearizations of all the
expansions of Γ. As we mentioned before, the idea of this proof is to show that the set of
linearizations of a nested UC2RPQ Γ can be characterized by an 1NFA AΓ.

The depth of a nested UC2RPQ is the maximum length of a directed path from some
2RPQ to the Ans predicate in its dependence graph, minus 1. For instance, the query in
Example 6 has depth 2.

12 Regular Queries on Graph Databases

Cuts. Let Γ be a nested UC2RPQ of depth 0, defined by the rules

Ans(x1, . . . , xn) ← Γ1
1(u1

1, v
1
1), . . . ,Γ1

m1
(u1
m1
, v1
m1

),
...

... (1)
Ans(x1, . . . , xn) ← Γ`1(u`1, v`1), . . . ,Γ`m`

(u`m`
, v`m`

),

Let Aij be a 1NFA associated with the 2RPQ Γij , for each 1 ≤ i ≤ ` and 1 ≤ j ≤ mi. Let
Vars(Γ, i) be the set of variables appearing in the i-th rule of query (1) above. A cut of Γ is an
`-tuple (C1, . . . , C`), where each of the Ci’s is either ⊥ or a triple of form (Previ, Samei,Si),
with Samei ⊆ Previ ⊆ Vars(Γ, i) and where Si is an mi-tuple Si = (si1, . . . , simi

) containing
a state of each of the Aijs, 1 ≤ j ≤ mi.

Using the definition of cuts for UC2RPQs, we can naturally extend the definition for
cuts of queries of depth > 0. Assume that the rules in Γ with the answer predicate in the
head follow form (1) above (note that now some of the Γijs might be predicates P+ instead
of RPQs). Then cuts for Γ are again `-tuples (C1, . . . , C`), the only thing that changes is
the definition of Si = (si1, . . . , simi

), for the cases when Γij is not a 2RPQ but a predicate
of form P+(x, y). In this case, sij is a cut of query P . Furthermore, initial cuts are those
in which each Previ is empty, and final cuts are those in which at least one of the Previs is
equal to Vars(Γ, i). A cut marks a variable x if in all Cis that are not ⊥ we have that x
belongs to Samei.

Let us now give some intuition on the notion of cuts. Suppose Γ is a C2RPQ and µ is
a mapping from Γ to a linearization θ of Γ. If we look at position k in θ, then the partial
mapping of µ until this position can be represented by a cut (Prev,Same,S): Prev are the
variables that are mapped to positions smaller than k and Same are the variables that are
mapped precisely to position k. The intuition of S is as follows. We know that 2RPQs of
the form F (y, y′) with y, y′ ∈ Prev∪Same are satisfied. The only information that is missed
is that of the 2RPQs that are "cut" by Prev∪Same, that is, the 2RPQs of the form F (y, y′)
such that y ∈ Prev ∪ Same and y′ 6∈ Prev ∪ Same (or vice versa). Suppose that µ expands
F in a string r1 · · · rp and let s1, . . . , sp+1 be an accepting run of F over r1 · · · rp. Consider
the mapping µ over r1 · · · rp and suppose rj is the last symbol to be mapped in positions
smaller that k. Then S contains the state sj , for each cut 2RPQ F (y, y′). Note that this is
the only information we need to extend this partial mapping to the one at position k + 1,
and eventually to the global mapping µ. Since we are dealing with UC2RPQs we also need
to account for the case when a certain disjunct of Γ cannot be mapped to a linearization:
in this case, the corresponding triple of the cut is set to ⊥.

The notion of cut is crucial for two reasons. First, transitions between cuts can be
captured by a 1NFA AΓ. Second, it is easy to see that the size of each cut is polynomial in
the size of Γ (here we use the fact that Γ is a nested UC2RPQ, instead of a regular query).
This implies that the set of all cuts, denoted by Cuts(Γ), is of exponential size in the size
Γ. This is important to obtain our desired Expspace upper bound.

Transition system based on cuts
Looking to characterize the set of linearizations of nested UC2RPQs, our next step is to

define a transition system T(Γ,w) defined over cuts of Γ and positions of a word w over Σ±,
i.e., over pairs from Cuts(Γ)× {1, . . . , p+ 1}.

For space reasons, we leave the definition of the system to the appendix. Instead, let us
shed light on the intuition behind the system. We note first that our transition system, while
non-deterministic, can only advance to configurations relating greater or equal positions in
w. The idea is that a run of T(Γ,w) should non-deterministically guess the greatest cuts, in

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 13

terms of variables in Prev, that can be mapped to each position in w. For the same reason,
the transition system can only move towards configurations in which Prev is not smaller
that previous configurations.

I Example 11. Consider query Γ(x, y) ← g+(x, z), g+(y, z), stating that there is a path
labeled with g+ between both x and z, and y and z. It is not difficult to see that the CQ
q = g(x, x′), g(x′, z), g(y′, z), g(y, y′) is a linearization of Γ. The string associated to q is
w = ggg−g−. A valid run for T(Γ,w) over w starts in the initial cut in position 1 . It moves
to cut ({x}, {x},S), where S only needs to store the state where the automaton for query g∗
is, after having read a g. We then advance to cut ({x, z}, {z},S) in position 3, ({x, z}, {},S)
in position 4, where now S again needs to store a state of the automaton for g+, and finally
to cut ({x, z, y}, {y},S) in position 5. Since this last cut is final, we determine that T(Γ,w)
can advance form an initial state to a final state.

There is a technicality when formally defining this intuition, as variables x and y of Γ
need not be mapped right at the start or the end of the the computation of T(Γ,w). Thus to
state the correctness of this system we need to define a special type of run. Formally, given
a nested UC2RPQ Γ(x, y) and a word w, then (C, p) and (C ′, p′) define an accepting run for
Γ over w if the following holds:

C marks x and C ′ marks y
There is an initial cut CI and a position pI of w such that one can go from (CI , pI) to
(C, p) by means of T(Γ,w).
There is a final cut CF and a position pF of w such that one can go from (C ′, p′) to
(CF , pF) by means of T(Γ,w).

The following lemma states the correctness of our system.

I Lemma 12. Let Γ(x, y) be a nested UC2RPQ and w = r1 · · · rp a string over Σ. There
are pairs (C, i) and (C ′, i′) over Cuts(Γ) × {1, . . . , p + 1} that define an accepting run for
Γ over w if and only if there is an expansion ϕ of Γ and a containment mapping from ϕ to
Qw = r1(z1, z2), . . . rp(zp, zp+1) that maps x and y to variables zi and zi′ of Qw.

Cut Automata. A straightforward idea to continue with the proof is to use the system
T(Γ,w) to create a deterministic finite automaton that accepts all strings that represent the
set of linearizations of Γ. However, after a careful analysis one realizes that doing this in
a straightforward way results in a much more expensive algorithm, so a little bit of extra
work has to be done to avoid an extra blowup in our algorithm. In a nutshell, given Γ
and w we have to extend the symbols of w with information about the cuts reachable from
configurations of the form (c, p) in T(Γ,w), where 1 ≤ p ≤ |w|.

Formally, from Σ± we construct the extended alphabet Σ(Γ) × Σ± as follows. Assume
that Cuts(Γ) contains a number N of cuts. Then

If Γ is a nested UC2RPQ of depth 0, Σ(Γ) is an N + 2 tuple of subsets of Cuts(Γ), i.e.,
Σ(Γ) = (2Cuts(Γ))N+2.
In other words, Σ(Γ) contains a subset of Cuts(Γ) for each cut in Cuts(Γ).
Otherwise assume that Γ is of form (1), and that P is the set of predicates occurring in
the rules of Γ that are not 2RPQs. Then Σ(Γ) = (2Cuts(Γ))N+2 × XP∈P Σ(P). In other
words, it is the cartesian product of the set (2Cuts(Γ))N+2 with each Σ(P), for every
predicate P that is a subquery of Γ.

Let us now give some intuition regarding this construction. Let w be a string from
Σ(Γ) × Σ±, and let τ(w) be its projection over Σ±. Each symbol (up, ap), for up ∈ Σ(Γ)

14 Regular Queries on Graph Databases

contains, in particular, N + 2 subsets of Cuts(Γ), where N = |Cuts(Γ)|. The first subset of
Cuts(Γ) represent all those cuts C such that there is a position p̂ in w and an initial cut Ĉ
of Γ such that (C, p) is reachable from (ĉ, p̂) using T(Γ,τ(w)). The second subset of Cuts(Γ)
contains all those cuts C such that there is a final cut Ĉ and a position p̂ so that (Ĉ, p̂) can
be reached from (C, p) using T(Γ,τ(w)). We have N subsets remaining, namely one for each
cut C of Γ. For each such cut C, its corresponding subset C contains all those cuts Ĉ for
which the configuration (Ĉ, p) is reachable from (C, p) using T(Γ,τ(w)).

If a string w from Σ(Γ) × Σ± satisfies the above conditions, we say that w has valid
annotations w.r.t. Γ. We show:

I Lemma 13. Let Γ be a nested U2CRPQ. Then the number of different symbols in Σ(Γ)
is double exponential w.r.t. the size of Γ. Furthermore, each symbol in Σ(Γ) is of size
exponential w.r.t. Γ.

I Lemma 14. Let Γ be a nested U2CRPQ. Then the language of all strings over Σ(Γ)×Σ±
that have valid annotations w.r.t. Γ is regular. Furthermore, one can build an 1NFA that
checks this language of size double-exponential in the size of Γ.

We can finally proceed to build the desired 1NFA AΓ that gives the strings corresponding
to the linearizations of a nested UC2RPQ Γ. This 1NFA needs to simulate the system T(Γ,w),
from an initial cut of a nested UC2RPQ Γ to a final cut in which all variables have already
been mapped. Of course, we have to check, for every subquery Γij(uij , vij) of Γ, whether this
query is indeed satisfied when starting in the position assigned to variable uij and finishing
on the position assigned to vij . Since we might need to check for more than one such query
at any given point, synchronizing all these checks is non-trivial. We do it by relying on the
annotations added to strings, as explained above.

I Lemma 15. Given a nested UC2RPQ Γ over Σ, one can construct, in exponential time,
a 1NFA AΓ over alphabet Σ(Γ) × Σ± such that AΓ accepts a string w = r1, . . . , rp with
valid annotations w.r.t. Γ if and only if there are pairs (C, i) and (C ′, i′) over Cuts(Γ) ×
{1, . . . , p+ 1} that define an accepting run for Γ over w.

Main Proof. To decide containment of a 2RPQ E in a nested UC2RPQ Γ, we proceed as
follows:

Build an 1NFA AE for E, extended so that it works with the alphabet Σ(Γ)× Σ±.
Build the 1NFA AΣ(Γ) that checks for strings over Σ(Γ)× Σ± that are valid w.r.t. Γ.
Build the 1NFA AΓ, and complement it, obtaining the automaton (AΓ)C .

The language of (AΓ)C intersected with the language of AΣ(Γ) is precisely those strings
w with valid annotations such that its projection τ(w) over Σ± does not correspond to any
linearization of Γ. Thus, if we intersect this language with the one of AE , we have that the
resulting intersection is nonempty if and only if there is an expansion q for E that does not
correspond to any of the linearizations of Γ, i.e., if E is not contained in Γ.

Even though some of these automata can be of doubly exponential size w.r.t. E and Γ,
we can perform this algorithm in Expspace using a standard on-the-fly implementation.

4.2 Containment of Regular Queries: upper and lower bounds
Expressing a regular query as a nested UC2RPQ may involve an exponential blow up in size.
Next we formalize this. Analogous to the case of nested UC2RPQs, the depth of a RQ is
the maximum length of a directed path from an extensional predicate to the Ans predicate

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 15

in its dependence graph, minus 1. For instance, the query in Example 2 has depth 2. The
height of a RQ or a nested UC2RPQ is the maximum size of rules(S) over all intensional
predicates S. Recall that rules(S) is the set of rules whose heads mention the predicate S.
Finally, the width of a RQ or a nested UC2RPQ is the maximum size of a rule body.

I Proposition 16. Let Ω be a regular query. Let h,w and d be the height, the width and the
depth of Ω, respectively. Then, Ω is equivalent to a nested UC2RPQ Γ of height at most
hO(wd), width at most wd+1, and depth at most d. In particular, the number of rules in Γ
is double-exponential in the size of Ω.

In view of this result, we cannot use Theorem 7 directly to show a 2Expspace upper
bound for the containment problem of two regular queries, as unfolding a regular query Ω
may result in a nested UC2RPQ Γ that is of double-exponential size with respect to Ω, and
thus the number of cuts in Γ might be of triple-exponential size with respect to Ω.

However, we can further refine the construction we have shown so that the number of
cuts depends exponentially only in the width and depth of Γ, but not on the height. The
idea is to define cuts of nested UC2RPQs not as a tuple (C1, . . . , C`) for each of the ` rules
in rules(Ans), but rather as a single triple (Prev, Same,S). Intuitively, this corresponds to
guessing a priori which disjunct or rule is to be used when witnessing linearizations of Γ.
Using this modified construction and Proposition 16 we can then show that the number of
cuts is again double-exponential in the size of Ω, which immediately leads to a 2Expspace
algorithm, following the ideas of the proof of Theorem 7.

Moreover, by combining techniques from [19, 14], we can show a matching lower bound
for containment of regular queries.

I Theorem 17. The containment problem for regular queries is 2Expspace-hard.

5 Conclusions

The results in this paper show that regular queries achieve a good balance between ex-
pressiveness and complexity: they are sufficiently expressive to subsume UC2RPQs and
UCN2RPQs, and they are not harder to evaluate than UCN2RPQs. While checking con-
tainment of regular queries is harder than checking containment of UC2RPQs, it is still
elementary. Moreover, all generalizations of regular queries known to date worsen the com-
plexity of the containment problem to non-elementary or even undecidable. Thus we believe
that regular queries constitutes a well-behaved class that deserve further investigation.

There are several realistic restrictions on regular queries that lead to better complexity
bounds. For instance, it is easy to see that RQs of bounded treewidth [20, 25] can be evaluated
in polynomial time in the size of the query and the database. For k ≥ 1, a RQ has treewidth
at most k, if the underlying graph of each rule has treewidth at most k. Thus the good
behavior of bounded treewidth C2RPQs [6] extends to regular queries. Another natural
restriction is that of bounded depth. As a corollary of our results in Section 4, we have that
containment for RQs of bounded depth is Expspace-complete. This is very interesting, as
in many situations it may be natural to express regular queries as nested UC2RPQs or to
consider regular queries of small depth. In these cases, checking containment is Expspace-
complete, the same as for UC2RPQs. Note also that from Theorem 7, it follows that
containment of UCN2RPQs is Expspace-complete, which was not known to date.

An interesting research direction is to study the containment problem of a Datalog
program in a regular query. Decidability of this problem follows from [22, 23], nevertheless
the precise complexity is open. Although it is not clear how to extend the techniques

16 Regular Queries on Graph Databases

presented in this paper to containment of Datalog in RQs, we conjecture that this problem
is elementary.

References

1 R. Angles, C. Gutierrez. Survey of graph database models. In ACM Comput. Surv., 40(1):1–
39, 2008.

2 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

3 M. Arenas, J. Peréz. Querying semantic web data with SPARQL. In PODS 2011, pages
305–316.

4 M. Arenas, C. Gutierrez, D. Miranker, J. Peréz, J. Sequeda. Querying Semantic Data on
the Web? SIGMOD Record, 41(4): 6–17 (2012).

5 P. Barceló. Querying graph databases. In PODS 2013, pages 175–188.

6 P. Barceló, L. Libkin, A. Lin, P. Wood. Expressive languages for path queries over graph-
structured data. In ACM TODS 38(4), 2012.

7 P. Barceló, J. Pérez, J. Reutter. Relative Expressiveness of Nested Regular Expressions. In
AMW 2012, pages 180–195.

8 M. Bienvenu, D. Calvanese, M. Ortiz, M. Simkus. Nested regular path queries in description
logics. In KR 2014.

9 M. Bienvenu, M. Ortiz, M. Simkus. Conjunctive regular path queries in lightweight de-
scription logics. In IJCAI 2013, pages 761–767.

10 P. Bourhis, M. Krotzsch, S. Rudolph. Query containment for highly expressive datalog
fragments. CoRR abs/1406.7801 (2014).

11 P. Bourhis, M. Krotzsch, S. Rudolph. How to Best Nest Regular Path Queries. In DL 2014,
Poster.

12 P. Buneman. Semistructured data. In PODS 1997, pages 117–121.

13 P. Buneman, S. B. Davidson, G. G. Hillebrand, D. Suciu. A query language and optimiza-
tion techniques for unstructured data. In SIGMOD 1996, pages 505-516.

14 D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Containment of conjunctive
regular path queries with inverse. In KR’00, pages 176–185.

15 D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Rewriting of regular expressions
and regular path queries. JCSS, 64(3):443–465, 2002.

16 D. Calvanese, G. de Giacomo, M. Y. Vardi. Decidable containment of recursive queries.
Theor. Comput. Sci. 336(1), pages 33–56, 2005.

17 A. Chandra, Ph. Merlin. Optimal implementation of conjunctive queries in relational data
bases. In STOC 1977, pp. 77–90.

18 S. Chaudhuri, R. Krishnamurthy, S. Potamianos, K. Shim. Optimizing queries with mate-
rialized views. In ICDE 1995, pages 190-200.

19 S. Chaudhuri, M. Y. Vardi. On the equivalence of recursive and nonrecursive Datalog
programs. J. Comput. Syst. Sci. 54(1), pages 61–78, 1997.

20 C. Chekuri, A. Rajaraman. Conjunctive query containment revisited. Theor. Comput. Sci.
239(2), pages 211–229, 2000.

21 M. Consens, A. Mendelzon. GraphLog: a visual formalism for real life recursion. In PODS
1990, pages 404–416.

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 17

22 B. Courcelle. The monadic second-order theory of graphs I – Recognizable sets of finite
graphs. Inform. and Comput., 85 (1972), pp. 263–267.

23 B. Courcelle. Recursive queries and context-free graph grammars Theoret. Comput. Sci.,
78 (1991), pp. 217–244.

24 I. Cruz, A. Mendelzon, P. Wood. A graphical query language supporting recursion. In
SIGMOD Record, 16(3):323–330, 1987.

25 V. Dalmau, P. Kolaitis, M. Vardi. Constraint satisfaction, bounded treewidth, and finite-
variable logics. In CP 2002, pp. 310–326.

26 R. Fagin, M. Y. Vardi. The theory of data dependencies - An overview. In ICALP 1984,
pages 1–22.

27 W. Fan. Graph pattern matching revised for social network analysis. In ICDT 2012, pages
8–21.

28 M. F. Fernández, D. Florescu, A. Y. Levy, D. Suciu. Verifying integrity constraints on web
sites. In IJCAI 1999, pages 614–619.

29 G. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren,
Y. Wu. Relative expressive power of navigational querying on graphs. In ICDT 2011, pages
197–207.

30 D. Florescu, A. Levy, A. Mendelzon. Database techniques for the World-Wide-Web: A
survey. In SIGMOD Record, 27(3):59–74, 1998.

31 M. Friedman, A. Y. Levy, T. D. Millstein. Navigational plans For data integration. In
AAAI/IAAI 1999, pages 67–73.

32 T. Imielinski, W. Lipski Jr. Incomplete information in relational databases. J. of the ACM
31(4), pages 761–791, 1984.

33 E. Kostylev, J. Reutter, D. Vrgoc. Containment of Data Graph Queries. In ICDT 2014,
pages 131–142.

34 Z. Lacroix, H. Murthy, F. Naumann, L. Raschid. Links and paths through life sciences data
Sources. In DILS 2004, pages 203–211.

35 L. Libkin, W. Martens, D. Vrgoc. Querying graph databases with XPath. In ICDT 2013,
pages 129–140.

36 L. Libkin, J. Reutter, D. Vrgoc. Trial for RDF: adapting graph query languages for RDF
data. In PODS 2013, pages 201–212.

37 J. Perez, M. Arenas, C. Gutierrez. nSPARQL: A navigational language for RDF. In J. of
Web Semantics 8, 255–270 (2010).

38 S. Rudolph, M. Krotzsch. Flag & check: data access with monadically defined queries. In
PODS 2013, pages 151–162.

39 Y. Sagiv and M. Yannakakis. Equivalences among relational expressions with the union
and difference operator. In J. of the ACM 27(4), 1980, pages 633–655.

18 Regular Queries on Graph Databases

A Proofs and Intermediate Results

A.1 Reduction to boolean nested UC2RPQs
I Theorem 18. There is a polynomial time reduction from the containment problem for
nested UC2RPQs to the containment problem for boolean nested UC2RPQs.

Proof: Let Γ and Γ′ be two nested UC2RPQs over alphabet Σ. Suppose Γ and
Γ′ have free variables x1, . . . xn, with n ≥ 1. Let $1, . . . , $n be n fresh sym-
bols that are not in Σ and consider the alphabet Σ′ = Σ ∪ {$1, . . . , $n}. We
define the boolean nested UC2RPQ b(Γ) as follows: Start with Γ and replace
each rule of the form Ans(x1, . . . , xn) ← R1(y1, y

′
1), . . . , Rm(ym, y′m), by a rule

Ans() ← R1(y1, y
′
1), . . . , Rm(ym, y′m), $1(x1, x1), . . . , $n(xn, xn). Similarly, we define

b(Γ′). It is straightforward to show that Γ is contained in Γ′ iff b(Γ) is contained in b(Γ′). 2

A.2 Reduction to Containment of 2RPQs in nested UC2RPQs
We now show that checking containment of two nested UC2RPQs Γ and Γ′ over Σ can be
reduced to checking containment of a 2RPQ Ẽ in a nested UC2RPQ Γ̃ over a larger alphabet
∆. We start by defining the notion of expansion, which is central in the analysis of nested
UC2RPQs.

Let Γ be a nested UC2RPQ over alphabet Σ and let S be an intensional predicate. We
denote by rules(S) the set of rules in Γ such that S occurs in the head of the rule. An
expansion ϕ of S is a CQ with equality over Σ of the form

ϕ(x1, . . . , xn)← ϕ1(y1, y
′
1), . . . , ϕm(ym, y′m)

such that there is a rule ρ ∈ rules(S) of the form S(x1, . . . , xn)← R1(y1, y
′
1), . . . , Rm(ym, y′m)

and the following two conditions hold (note that n = 0 if S = Ans; otherwise, n = 2):
1. For each 1 ≤ i ≤ m, if Ri = E is a 2RPQ, then ϕi(yi, y′i) is a CQ with equality of the

form
ϕi(yi, y′i)← r1(yi, z1), r2(z1, z2), . . . , rp(zp−1, y

′
i)

where, p ≥ 0, r1 · · · rp ∈ L(E), and the zj ’s are fresh variables. When p = 0, we have
that r1 · · · rp = ε, and ϕi(yi, y′i) becomes yi = y′i.

2. If Ri = Q+ for an intensional predicate Q, then ϕi(yi, y′i) is a CQ with equality of the
form

ϕi(yi, y′i)← φ1(w0, w1), φ2(w1, w2), . . . , φq(wq−1, wq)

where q ≥ 1, w0 = yi, wq = y′i, w1, . . . , wq−1 are fresh variables and, for each 1 ≤
j ≤ q, there is an expansion ζ(t1, t2) of Q such that φj(wj−1, wj) is the CQ obtained
from ζ(t1, t2) by renaming t1, t2 by wj−1, wj , respectively, and renaming the rest of the
variables by new fresh variables. In particular, the quantified variables of distinct φi and
φj are disjoint.

An expansion of a nested UC2RPQ is an expansion of its predicate Ans. In particular,
any expansion of a nested UC2RPQ is a boolean query. The intuition is that an expansion of
a nested UC2RPQ is simply an expansion of its associated Datalog program [19, 16]. Each
time we expand a 2RPQ in the case (1) of the definition of expansion, we generate new fresh
variables zj ’s. We call these variables the internal variables of the expansion. The rest of
the variables are the external variables. Example 19 illustrates these concepts.

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 19

I Example 19. Consider a boolean nested UC2RPQ over Σ = {f, k, g}:

R(x, y)← f + ε(x, y)
R(x, y)← k(x, y), gg∗g−(g−)∗(x, y)
Ans()← R+(x, y)

A possible expansion of this query is given by a chain x,w1, w2, w3, y from x to y:

f(x,w1),
k(w1, w2), g(w1, z1), g−(z1, z2), g−(z2, w2),
w2 = w3,

k(w3, y), g(w3, t1), g(t1, t2), g(t2, t3), g−(t3, y).

Here, the internal variables are {z1, z2, t1, t2, t3} and the external variables are
{x, y, w1, w2, w3}. 2

Containment of nested UC2RPQs can be characterized in terms of containment of CQs.
This is an easy consequence of the semantics of CQs [17, 39] and the fact that each nested
UC2RPQ is equivalent to the union of its expansions.
I Proposition 20. Let Γ and Γ′ be two nested UC2RPQs. Then, Γ is contained in Γ′ if and
only if, for each expansion ϕ of Γ, there exists an expansion ϕ′ of Γ′ and a containment
mapping from neq(ϕ′) to neq(ϕ).

Here, the definition of containment mapping is slightly different to the usual definition
[17], due to the presence of inverses:

I Definition 21. If θ and θ′ are two boolean CQs over Σ, then a containment mapping µ
from θ′ to θ is a mapping from the variables of θ′ to the variables of θ such that, for each
atom r(y, y′) in θ′, with r ∈ Σ±, either r(µ(y), µ(y′)) is in θ or r−(µ(y′), µ(y)) is in θ.

Given two nested UC2RPQs Γ and Γ′ over Σ, we shall construct a 2RPQ Ẽ and a nested
UC2RPQ Γ̃ such that Γ is contained in Γ′ if and only if Ẽ is contained in Γ̃. Our reduction
is based on two ideas:
1. Expansions of Γ can be "serialized" and represented by serialized expansions, which are

strings over a larger alphabet ∆. More importantly, serialized expansions constitute a
regular language. Thus, we can construct a 2RPQ Ẽ such that L(Ẽ) is precisely the set
of serialized expansions of Γ. This technique has been already used before [14, 15].

2. Now we need to serialize Γ′. Proposition 20 basically tell us that Γ is contained in Γ′ iff
Γ′ can be "mapped" to each expansion of Γ. We have replaced Γ by Ẽ. Thus, expansions
of Γ are replaced by serialized expansions. By modifying the 2RPQs mentioned in Γ′,
we construct a nested UC2RPQ Γ̃ such that Γ̃ can be mapped to a serialized expansion
W of Γ iff Γ′ can be mapped to the expansion of Γ represented by W . This is a novel
technique and constitutes the crux of the reduction.

Serialization of Γ

Let M be the maximum number of atoms in the body of a rule in Γ. Let d be the depth
of Γ. Recall that the depth of Γ is the maximum length of a directed path from some 2RPQ
to the Ans predicate in its dependence graph, minus 1. For each 0 ≤ i ≤ d, we define
the set Vi = {hi1, . . . , hi2M} × {1, 2,∃} and Si = {$i, ?i, 1i, 2i}. Let V = V0 ∪ · · · ∪ Vd and

20 Regular Queries on Graph Databases

S = S0∪· · ·∪Sd. We define the alphabet ∆ as ∆ = Σ±∪V∪S. The level of a symbol r ∈ V∪S
is j iff r ∈ Sj ∪Vj . For readability, sometimes we omit the superscripts of symbols in V ∪S
and refer to them using levels. For a string U in ∆ and k ≥ 0, we define U+k as the string
over ∆ (if well-defined) obtained from U by replacing $j , ?j , 1j , 2j by $j+k, ?j+k, 1j+k, 2j+k,
respectively, and (hji , s) by (hj+ki , s), for 1 ≤ i ≤ 2M and s ∈ {1, 2,∃}.

Intuitively, each (hji , f) represent a variable: the index j indicates the level of nesting
of the variable and f indicates whether is the first free variable (f = 1), the second free
variable (f = 2) or an existential quantified variable (f = ∃). S contains auxiliary symbols
and symbols in Σ± appears in the base case, when we expand 2RPQs.

Let ϕ be an expansion of an intensional predicate S of Γ of the form

ϕ(x1, . . . , xn)← ϕ1(y1, y
′
1), . . . , ϕm(ym, y′m)

defined by a rule ρ ∈ rules(S) of the form

S(x1, . . . , xn)← R1(y1, y
′
1), . . . , Rm(ym, y′m)

The depth of the expansion ϕ is the number of unfoldings that we need to reach the
base case, when all atoms are 2RPQs. Formally, the depth of ϕ can be defined recursively as
follows. Let I ⊆ {1, . . . ,m} be the set of indices i such that Ri = Q+ for some predicate Q.
If I = ∅, then the depth of ϕ is 0. If I 6= ∅, consider an index i ∈ I and assume that Ri = Q+

and that ϕi(yi, y′i) is of the form ϕi(yi, y′i) ← φ1(w0, w1), φ2(w1, w2), . . . , φq(wq−1, wq), for
q ≥ 1, w0 = yi and wq = y′i. For each 1 ≤ j ≤ q, let ζj(tj1, t

j
2) be the expansion of Q defining

φj(wj−1, wj). We denote by di the maximum depth of ζj(tj1, t
j
2) over all j ∈ {1, . . . , q}. The

depth of ϕ is defined as 1 + max{di | i ∈ I}. Note that the depth of any expansion is at
most the depth of Γ.

Now we define the notion of serialized expansion. Again, let ϕ be an expansion of
predicate S of the form

ϕ(x1, . . . , xn)← ϕ1(y1, y
′
1), . . . , ϕm(ym, y′m)

defined by a rule ρ ∈ rules(S) of the form

S(x1, . . . , xn)← R1(y1, y
′
1), . . . , Rm(ym, y′m)

Let v1, . . . , vN be an enumeration of the variables in {y1, y
′
1, . . . , ym, y

′
m} according to the

order of appearance in the body of ρ, from left to right. Let dϕ be the depth of ϕ. Let Φ be
a function from {v1, . . . , vN} to V such that, for each 1 ≤ i ≤ N , Φ(vi) = (hdϕ

i , 1) if vi is the
first free variable of ϕ; Φ(vi) = (hdϕ

i , 2) if vi is the second free variable; or Φ(vi) = (hdϕ

i ,∃)
if vi is not a free variable in ϕ. Note that, when S = Ans, then the latter case holds for
each vi. Observe also that Φ is well-defined as dϕ ≤ d and N ≤ 2M , where d is the depth
of Γ and M is the maximum number of atoms in a rule body.

The serialized expansion W associated with ϕ is a string over ∆ of the form

$Φ(y1) ·W1 · Φ(y′1)$Φ(y2) ·W2 · Φ(y′2)$ · · · $Φ(ym) ·Wm · Φ(y′m)$

where the level of $ is dϕ and, for each 1 ≤ i ≤ m, Wi is defined as follows:
1. If Ri = E is a 2RPQ, and ϕi(yi, yi) is of the form ϕi(yi, y′i) ←

r1(yi, z1), r2(z1, z2), . . . , rp(zp−1, y
′
i), for p ≥ 0 and r1 · · · rp ∈ L(E), then Wi = r1 · · · rp.

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 21

2. Suppose Ri = Q+ for a predicate Q and ϕi(yi, y′i) is of the form

ϕi(yi, y′i)← φ1(w0, w1), φ2(w1, w2), . . . , φq(wq−1, wq)

for q ≥ 1, w0 = yi and wq = y′i. Let ζj(t
j
1, t

j
2) be the expansion of Q defining φj(wj−1, wj),

for each 1 ≤ j ≤ q. Then, Wi is of the form

1 ·W ′1 · 2 ? $? 1 ·W ′2 · 2 ? $ · · · $? 1 ·W ′q · 2

where the level of 1, 2, ?, $ is dϕ and W ′j = (W ′′j)+(dϕ−dj−1), where W ′′j is the serialized
expansion associated with ζj(tj1, t

j
2) and dj is the depth of ζj , for each 1 ≤ j ≤ q.

We say that a string over ∆ is a serialized expansion of Γ if it is the serialized expansion
associated with some expansion of Γ. Note that the mapping from expansions to its asso-
ciated serialized expansion is a bijection: each serialized expansion W represents a unique
(modulo renaming) expansion ϕ of Γ.

I Example 22. This is the serialized expansion associated with the expansion of Example
19:

$1(h1
1,∃)11 $0(h0

1, 1)f(h0
2, 2)$0 21?1

$1 ?1 11 $0(h0
1, 1)k(h0

2, 2)$0(h0
1, 1)gg−g−(h0

2, 2)$0 21?1

$1 ?1 11 $0(h0
1, 1)(h0

2, 2)$0 21?1

$1 ?1 11 $0(h0
1, 1)k(h0

2, 2)$0(h0
1, 1)gggg−(h0

2, 2)$0 21(h1
2,∃)$1

2

Intuitively, a serialized expansion represents an expansion by reusing variables in V.
Intermediate variables that appears when we expand a predicate Q+ are represented by
the symbol ?. The level of symbols indicates the level of nesting. This is why we have to
normalize the levels of W ′′j in the case (2) of the definition of serialized expansion.

Let W be a serialized expansion representing an expansion ϕ. It is clear from the
definition, that each occurrence of a variable in V represents a variable in ϕ. We formalize
this as a partial mapping var from {1, . . . , |W |} to V ar(ϕ), where V ar(ϕ) is the set of
variables in ϕ. Thus, if an occurrence in W of a variable in V represents the variable y in
ϕ, and this occurrence corresponds to the symbol at position i ∈ {1, . . . , |W |} in W , then
we define var(i) = y. Note that distinct positions in W can represent the same variable
in ϕ. For instance, in Example 22, the occurrences of (h0

2, 2) and ?1 in the first row, and
the occurrence of ?1 with the two occurrences (h0

1, 1) in the second row, represent the same
variable w1 in the expansion of Example 19.

At this point, only external variables are being represented by positions in W . To rep-
resent internal variables we do the following. Each time we expand a 2RPQ to a string
r1 · · · rp in the case (1) of the definition of serialized expansion, then a variable zj is rep-
resented by the occurrence of rj+1, for each j ∈ {1, . . . , p − 1}. If this occurrence of rj+1
appears at position i in W , then we define var(i) = zj . Observe that each internal variable
is represented by a unique position. For instance, in Example 22, the two occurrence of g−
represent z1 and z2, respectively (the first occurrence of g do not represent any variable).

Interestingly, serialized expansions of Γ constitute a regular language, and then, they
can be represented by a 2RPQ Ẽ. We say that Ẽ is the serialization of Γ.

22 Regular Queries on Graph Databases

I Proposition 23. Let Γ be a nested UC2RPQ over Σ. There exists a 2RPQ Ẽ over alphabet
∆, such that W ∈ L(Ẽ) if and only if W is a serialized expansion of Γ. Moreover, the size
of Ẽ is polynomial in the size of Γ.

Proof: We can construct Ẽ bottom-up in the program Γ. We start with intensional pred-
icates S such that S does not depend on any other predicate (formally, the in-degree is
0 in the dependence graph). We consider a rule ρ in rules(S). The rule is of the form
S(x, y)← E1(y1, y

′
1), . . . , Em(ym, y′m), where each Ei is a 2RPQ. We define a 1NFA Aρ that

accepts the serialized expansions of S that corresponds to rule ρ, ignoring the levels of the
symbols, that is, any occurrence of a symbol could have any level. The construction of Aρ
is straightforward (see [14] for example). Moreover, the size of Aρ is polynomial in ρ and ∆.
We do this for all ρ ∈ rules(S). Let {ρ1, . . . , ρk} = rules(S). Then we define the union 1NFA
AS = Aρ1 ∪ · · · ∪ Aρk

. Thus AS accepts all the serialized expansions of S, ignoring levels.
Note that the size of AS is polynomial in Γ. Now we define a 1NFA (AS)+ that accepts all
the string of the form

1 ·W ′1 · 2 ? $? 1 ·W ′2 · 2 ? $? · · · ? 1 ·W ′q · 2

where 1, 2, ?, $ are of any level, and each W ′i is a serialized expansion of S modulo levels,
that is, it is accepted by AS . It is straightforward to construct (AS)+ and, moreover, its
size is polynomial in Γ.

We continue in a bottom-up fashion in the dependence graph of Γ. Consider an in-
tensional predicate R such that only depends on predicates S, whose automaton (AS)+ is
already constructed. Consider a rule ρ ∈ rules(R). Suppose ρ is of the form R(x, y) ←
R1(y1, y

′
1), . . . , Rm(ym, y′m). It is clear that we can construct a 1NFA Aρ that accepts all

serialized expansions of R associated with rule ρ, ignoring levels. Again, the construction is
similar of that in [14], but each time Ri = S+ we use our automaton (AS)+. The automaton
Aρ is of polynomial size in the size of Γ. As before, we define AR = Aρ1 ∪ · · · ∪ Aρk

, where
{ρ1, . . . , ρk} = rules(R) and we define (AR)+. Again, the automaton (AR)+ is of polynomial
size in the size of Γ.

We continue this process until we construct AAns. It is easy to see, that we can construct
a 1NFA A` of polynomial size in Γ, that accepts serialized expansions such that the levels of
the symbols are correct. The final 1NFA Ẽ is the product automaton AAns ×A`. Clearly,
Ẽ accepts all serialized expansion of Γ and the size of Ẽ is polynomial in the size of Γ.

2

Serialization of Γ′

We need to introduce some notation and concepts. Let w = w1w2 · · ·wk and u =
u1u2 · · ·u` be strings over ∆± = {a− | a ∈ ∆}. A folding F from u into w is a sequence
F = i0, i1, . . . , i` of positions in the set {0, . . . , k} such that, for each 1 ≤ j ≤ `, it is the
case that ij = ij−1 + 1 and uj = wij , or ij = ij−1− 1 and uj = w−ij−1

. The notion of folding
has been very useful to analyze 2RPQs [15].

The first and last position of the folding are denoted by first(F) and last(F), respec-
tively. Intuitively, if there is a folding from u into w, then u can be read in w by a two-way
automaton that outputs symbol r, each time it is read from left-to-right, and symbol r−,
each time it is read from right-to-left. If the first symbol that is read in w is the j1-th sym-
bol, with j1 ∈ {1, . . . , k}, and similarly, the last symbol that is read is the j2-symbol, with
j2 ∈ {1, . . . , k}, then we say that F is a (j1, j2)-folding from u into w. Note that the first or
last symbol can be read in w either from left-to-right or from right-to-left. In other words, if

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 23

F is a (j1, j2)-folding from u into w, then first(F) ∈ {j1− 1, j1} and last(F) ∈ {j2− 1, j2}.
For instance, consider the string w = $y1b

−ay2$. Then, 3, 2, 1, 2, 3, 4, 3 is a (3, 4)-folding
from by−1 y1b

−aa− into w, and 2, 3, 4, 3, 4, 5, 6 is a (3, 6)-folding of b−aa−ay2$ into w.

I Observation 1. A convenient way to think of a folding is the following. Suppose we have
strings w = w1 · · ·wk and u = u1 · · ·u` over ∆±. Let θw and θu be boolean CQs over ∆ of
the form

θw()← w1(x0, x1), w2(x1, x2), . . . , wk(xk−1, xk)
θu()← u1(y1, y2), u2(y2, y3), . . . , u`(y`−1, y`),

representing the strings w and u, respectively. Then, a folding F from u into w represents
a containment mapping from θu to θw (and viceversa). This connection between foldings
and containment mappings will be useful later.

Let ϕ be an expansion of the nested UC2RPQ Γ. Equality atoms in ϕ define equivalent
classes over the variables of ϕ. We write y ≡ϕ y′ when two variables y and y′ in ϕ belong to
the same equivalent class. Recall that neq(ϕ) denotes the CQ without equality associated
to ϕ. The query neq(ϕ) is obtained from ϕ by eliminating, iteratively, an equality atom
y1 = y2 and renaming y1 and y2 by a fresh variable z. This defines a renaming function
Φϕ from the variables of ϕ to the variables of neq(ϕ). It is easy to see that y ≡ϕ y′ iff
Φϕ(y) = Φϕ(y′), where y, y′ are variables in ϕ.

We replaced Γ by Ẽ. Thus we replaced expansions of Γ by expansions of Ẽ, which
are of the form θW () ← w1(x0, x1), w2(x1, x2), . . . , wn(xn−1, xn), for a serialized expansion
W = w1 · · ·wn. Suppose W represents an expansion ϕ of Γ. Our goal is to construct Γ̃ such
that Γ̃ can be mapped to θW iff Γ′ can be mapped to neq(ϕ). To construct Γ̃, we modify
Γ′ in order to translate mappings from Γ′ to neq(ϕ), into mappings from Γ̃ to θW (and
viceversa). The main difficulty is the following: It could be possible that var(i) ≡ϕ var(j)
for two distinct positions i < j in W . This implies that Φϕ(var(i)) = Φϕ(var(j)), and thus
positions i and j corresponds to the same variable in neq(ϕ). Hence, in order to simulate
mappings from Γ′ to neq(ϕ), we have to consider positions i and j as equivalent, that is, we
must be able to "jump" between positions i and j, whenever necessary.

To overcome this problem, we introduce the notion of equality string. Equality strings
are string over ∆± with the following key property: For positions 1 ≤ i < j ≤ |W |,
var(i) ≡ϕ var(j) iff there is a (i, j)-folding of some equality string into W . There are four
types of basic equality strings:

1. An horizontal equality string α is a string over ∆± for which there is a sequence of
variables ϑ1, . . . , ϑ` ∈ V, for ` ≥ 1, of the same level j such that α satisfies the regular
expression

V1G
∗
jV1V2G

∗
j · · ·V`−1V`G

∗
jV`

+ V1V2G
∗
jV2V3G

∗
j · · ·V`−1V`G

∗
jV`

+ V1G
∗
jV1V2G

∗
j · · ·V`−2V`−1G

∗
jV`−1V`

+ V1V2G
∗
jV2V3G

∗
j · · ·V`−2V`−1G

∗
jV`−1V`

where Vi is the regular expression ϑi + ϑ−i , for each 1 ≤ i ≤ `, and Gj is the alphabet
∆±≤j , where ∆≤j = Σ±∪

⋃j
k=0 Vk∪

⋃j
k=0 Sk. Note that, when ` = 1, then the expression

24 Regular Queries on Graph Databases

becomes simply V1G
∗
jV1 +V1. Horizontal equality strings detect equalities between vari-

ables in V, in the higher level j of a “sub" serialized expansionW ′. This equalities can be
produced either by the repetition of the same variable in different atoms, or by equality
atoms. We have four terms in the regular expression, one for each pattern we could see.
The use of G∗j forces the equality string to be folded inside W ′: if we go outside W ′ we
must see a symbol of level j + 1 (specifically, we must see 1j+1 or 2j+1).

2. A downward equality string α is a string over ∆± for which there exists variables ϑ ∈
V ∪ {?i | 0 ≤ i ≤ d} and ξ ∈ V of level j and j − 1, respectively, such that, either
ξ is of the form (hj−1

i , 1), and α satisfies the regular expression ϑ · 1j ·G∗j−1 · ξ, or
ξ is of the form (hj−1

i , 2) and α satisfies the regular expression ϑ− · (2j)− ·G∗j−1 · ξ.
Each time we decrease a level in a serialized expansion, that is, each time we see a
substring of the form $y1W ′2y′$, where y, y′ ∈ V ∪ {?i | 0 ≤ i ≤ d} and W ′ is a sub
serialized expansion, then y and y′ corresponds to the first and second free variables in
W ′, respectively. These connections are detected using downward equality strings.

3. An upward equality string α is a string over ∆± for which there exists variables ϑ ∈
V ∪ {?i | 0 ≤ i ≤ d} and ξ ∈ V of level j and j − 1, respectively, such that, either
ξ is of the form (hj−1

i , 1), and α satisfies the regular expression ξ ·G∗j−1 · (1j)− ·ϑ−, or
ξ is of the form (hj−1

i , 2) and α satisfies the regular expression ξ ·G∗j−1 · 2j · ϑ.
The intuition is analogous to that of downward equality strings, but now we increase the
level of variables.

4. An star equality string α is a string over ∆±, either of the form ?j , (?j)−, ?j$j?j or
(?j)−($j)−(?j)−, for some j ∈ {0, . . . , d}. These strings connect equivalent occurrences
of the ? symbol.

An equality string is a string α of the form α = α1 · α2 · · ·αk, where αi is either an
horizontal, downward, upward or star equality string, for each 1 ≤ i ≤ k.

I Example 24. Consider the expansion in Example 19 and its serialized expansion in Ex-
ample 22. Consider the first occurrence of (h0

1, 2) in the second row, and the last occurrence
of (h0

1, 1) in the last row. These two occurrence represents the variables w2 and w3 in the ex-
pansion, respectively, which are equivalent. This is witnessed, for example, by the following
equality string:

(Upward) (h0
2, 2)$0(h0

1, 1)gg−g−(h0
2, 2)$021 ?1 ·

(Star× 3) (?1)− · ?1$1 ?1 ·(?1)−·
(Downward) ?1 11$0(h0

1, 1)·
(Horizontal) (h0

1, 1)−(h0
1, 1)(h0

2, 2)(h0
2, 2)−·

(Upward) (h0
2, 2)$021 ?1 ·

(Star× 3) (?1)− · ?1$1 ?1 ·(?1)−·
(Downward) ?1 11$0(h0

1, 1)k(h0
2, 2)$0(h0

1, 1)

2

I Lemma 25. Let W be a serialized expansion representing an expansion ϕ. Let i, j be two
positions in {1, . . . , |W |}. Then, the following are equivalent:
1. var(i) ≡ϕ var(j).
2. there is an equality string α and a (i, j)-folding from α into W .

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 25

Moreover, if (2) holds, then for any choice (k, k′) ∈ {i− 1, i} × {j − 1, j}, we can choose α
and the (i, j)-folding F such that first(F) = k and last(F) = k′.

Proof: Suppose var(i) ≡ϕ var(j). It is easy to see that we can find a sequence of positions
k0, . . . , k` in {1, . . . , |W |}, with k0 = i and k` = j such that, for each 0 ≤ p ≤ ` − 1,
var(kp) ≡ϕ var(kp+1), and either
1. if var(kp) = y and var(kp+1) = y′, then y, y′ ∈ {y1, y

′
1, . . . , ym, y

′
m} for a sub expansion

θ = θ1(y1, y
′
1), . . . , θm(ym, y′m) of ϕ and y and y′ are equivalent due to repetitions of

variables or equality atoms between variables in {y1, y
′
1, . . . , ym, y

′
m}. In particular the

symbols at positions kp and kp+1 have the same level.
2. There is a substring in W of the form $h1W ′2h′$, and either h is at position kp and

some occurrence representing the first free variable in W ′ is in position kp+1, or h′ is at
position kp and some occurrence representing the second free variable inW ′ is in position
kp+1,

3. There is a substring in W of the form $h1W ′2h′$, and either some occurrence repre-
senting the first free variable in W ′ is in position kp and h is at position kp+1, or some
occurrence representing the second free variable in W ′ is in position kp and h′ is at
position kp+1,

4. There is a substring ?j$j?j in W , for some 0 ≤ j ≤ d, and kp and kp+1 are the positions
of the first ?j and the second ?j , or the positions of the second ?j and the first ?j .

For each case, it is easy to find an equality string αp and a (kp, kp+1)-folding of αp to W .
For example, for case (1), as y and y′ are equivalent, there must exist a sequence of variables
x1, . . . , xt ∈ {y1, y

′
1, . . . , ym, y

′
m}, with x1 = y and xt = y′, where xi = xi+1 is an equality

atom in θ, for each 1 ≤ i ≤ t − 1. This translates directly in an horizontal equality string
αp, and a (kp, kp+1)-folding from αp to W . All the other cases translate to a downward,
upward and star equality string, respectively.

We can define α = α0 · · ·α`−1. By definition α is an equality string. Observe also
that there is a (i, j)-folding from α to W . Indeed, the only problem is that for some
0 ≤ p ≤ ` − 1, the folding Fp associated with αp and the folding Fp+1 associated with
αp+1 satisfies last(Fp) 6= first(Fp+1). This can be easily fixed by adding a suitable equality
string between αp and αp+1 of the form ϑ or ϑ− for ϑ ∈ V ∪ {?j : 0 ≤ j ≤ d}.

Now assume that there is an equality string α = α0 · · ·α`−1 and a (i, j)-folding from α to
W . In particular, there exists a sequence of positions k0, . . . , k` with k0 = i and k` = j such
that there is a (kp, kp+1)-folding from αp to W , for each 0 ≤ p ≤ `− 1. By the definition of
the basic equality strings it is clear that var(kp) ≡ϕ var(kp+1), for each 0 ≤ p ≤ `− 1. This
implies that var(i) ≡ϕ var(j).

Finally, note that we can choose where this (i, j)-folding starts and ends, since we can
add suitable equality strings at the beginning or at the end of α, of the form ϑ or ϑ− for
ϑ ∈ V ∪ {?j : 0 ≤ j ≤ d}.

2

Now we are ready to serialize the nested UC2RPQ Γ′. Let w = w1 · · ·wp be a string over
Σ±. The serialization of w, denoted by serial(w), is the set of strings over ∆± of the form

α0w1α1w2α2 · · ·αp−1wpαp

where, for each 0 ≤ i ≤ p, the string αi is either ε or an equality string. If L is a
language over Σ±, then serial(L) is the language over ∆± defined by serial(L) = {w′ | w′ ∈
serial(w), for some w ∈ L}. As it turns out, if L is regular, then serial(L) is also regular.

26 Regular Queries on Graph Databases

I Lemma 26. For each 1NFA A over Σ±, there is an 1NFA A′ over ∆± such that L(A′) =
serial(L(A)). Moreover, the size of A′ is polynomial in the size of A and ∆.

Proof: For each of the four types of basic equality string, we can easily construct a 1NFA
Ai (i ∈ {1, 2, 3, 4}) such that Ai accepts precisely the basic equality strings of type i. It
is not hard to see that we only need to remember a finite number of variables in V, thus
the size of Ai is polynomial in ∆. Let A∪ be the union automaton A1 ∪ A2 ∪ A3 ∪ A4.
Let Aeq be the 1NFA that accept string of the form α1 · · ·αk, where k ≥ 1 and each
αi ∈ L(A∪). The automaton Aeq accepts precisely the set of equality strings and its size
is polynomial in ∆. The automaton A′ can be now easily defined. The intuition is that
A′ on an input S = s1 · · · sn guesses the positions i1 < · · · < i` that corresponds to the
string si1si2 · · · si` that belongs to L(A) and it checks that each intermediate substring
s1 · · · si1−1, si1+1 · · · si2−1, . . . , si`+1 · · · sn is an equality string, that is, it is accepted by Aeq.
Note that we can construct A′ such that its size is polynomial in the size of A and Aeq, that
is polynomial in the size of A and ∆.

2

Consider our initial nested UC2RPQs Γ and Γ′. The serialization Γ̃ of Γ′ is the nested
UC2RPQ over ∆ obtained from Γ′ by replacing each 2RPQ E in Γ′ by serial(E). It is
important to note that the serialization Γ̃ of Γ′ depends on both Γ and Γ′. This is because
it depends on ∆ (which, at the same time, depends on Γ). Observe also that the size of Γ̃
is polynomial in the size of ∆ and Γ′, and thus, polynomial in the size of Γ and Γ′.

I Proposition 27. Let Γ and Γ′ be two nested UC2RPQs over Σ. Let Ẽ and Γ̃ be the
serialization of Γ and Γ′, respectively. Then, Γ is contained in Γ′ if and only if Ẽ is contained
in Γ̃.

Proof: Consider an expansion ϕ of a nested UC2RPQ. In the construction of ϕ, when we
reach the base case (1) in the definition of expansion, we expand a 2RPQ E by choosing
a string in L(E). We call this a basic expansion. We identify basic expansions with a
set of natural numbers BEϕ = {1, . . . , e(ϕ)}, where e(ϕ) is number of times we have to
expand a 2RPQ in the whole construction of ϕ. Associated with the expansion ϕ, we
have two functions Aϕ and Bϕ. The function Aϕ maps a basic expansion i ∈ BEϕ to the
associated 2RPQ Aϕ(i) that we are expanding. The function Bϕ maps i ∈ BEϕ to the string
Bϕ(i) ∈ L(Aϕ(i)) that we choose in the expansion. Note that the internal variables are
those that appear exactly when we apply a basic expansion.

Recall that neq(ϕ) denotes the CQ without equality associated to ϕ. The query neq(ϕ)
is obtained from ϕ by eliminating, iteratively, an equality atom y = y′ and renaming y

and y′ by a fresh variable z. This defines a renaming function Φϕ from the variables of ϕ
to the variables of neq(ϕ). Let V ext and V int be the external and internal variables of ϕ,
respectively. Then, we define the external and internal variables of neq(ϕ) as Φϕ(V ext) and
Φϕ(V int), respectively. Note that internal variables of ϕ and neq(ϕ) coincide, since Φϕ is
the identity over V int. Now we are ready to prove the proposition.
(⇒) Suppose that Γ is contained in Γ′. Let % be an expansion of Ẽ of the form

%()← w1(z1, z2), . . . , wp(zp, zp+1)

where p ≥ 0 and W = w1 · · ·wp ∈ L(Ẽ). We shall prove that there is an expansion %′ of Γ̃
and a containment mapping ν from neq(%′) to neq(%). By Proposition 20, this implies that
Ẽ is contained in Γ̃, as required.

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 27

Let ϕ be the expansion of Γ associated with W . Since Γ is contained in Γ′, there is
an expansion ϕ′ of Γ′ and a containment mapping from neq(ϕ′) to neq(ϕ). To construct
the expansion %′ of Γ̃ we start with the expansion ϕ′. Thus, we have BE%′ = BEϕ′ . Note
that, by definition, A%′(i) = serial(Aϕ′(i)), for each i ∈ BE%′ . The important step in the
construction of %′ is to choose appropriately the function B%′ . We construct B%′ as follows.
If Bϕ′(i) = ε, for some i ∈ BE%′ , then B%′(i) = ε. Note that B%′(i) ∈ A%′(i), since ε ∈ Aϕ′(i)
implies ε ∈ serial(Aϕ′(i)) = A%′(i). If Bϕ′(i) 6= ε, for some i ∈ BE%′ , then B%′(i) 6= ε. We
shall define B%′(i) later, together with the containment mapping ν. Note that the external
variables in ϕ′ and %′ coincide. We denote by V ext this set of external variables. Moreover,
if Φϕ′ and Φ%′ are the renaming from ϕ′ to neq(ϕ′), and from %′ to neq(%′), respectively,
then, by construction, we can choose Φϕ′ and Φ%′ to coincide over V ext. Thus, the external
variables of neq(ϕ′) and neq(%′) also coincide. We denote by Uext this set of external
variables.

Now we define the function B%′ and the containment mapping ν from neq(%′) to neq(%).
We start by defining ν over Uext, that is, the external variables of neq(%′). Let µ be the
containment mapping from neq(ϕ′) to neq(ϕ), and Φϕ the renaming from ϕ to neq(ϕ). Let
t be a variable in Uext. Suppose µ(t) is an external variable y in neq(ϕ). Then, we choose
j ∈ {1, . . . , p} such that Φϕ(var(j)) = y. In other words, j is a position in W representing y.
Then, we define ν(t) = zj . Suppose now that µ(t) is an internal variable z in neq(ϕ). Then,
we pick j ∈ {1, . . . , p} such that Φϕ(var(j)) = z = var(j). Note that there is a unique such
j. We define ν(t) = zj . At this point, ν is well-defined over Uext.

Now we define simultaneously B%′(i) and the extension of ν to B%′(i), for each i ∈
BE%′ . Let i ∈ BE%′ . Suppose i is a basic expansion between external variables t and
t′. Note that ν(t), ν(t′) are already defined. Observe also that, by Observation 1, the
extension of ν to B%′(i) is simply a folding F of B%′(i) into W such that first(F) =
ν(t) and last(F) = ν(t′). Let Bϕ′(i) = s1 · · · sn and let o2 . . . on be the internal variables
associated with the basic expansion i in ϕ′, and let o1 = t and on+1 = t′. We examine
the values µ(o1), µ(o2), . . . , µ(on), µ(on+1). Let j1 < j2 < · · · < jm be all the positions j in
{1, . . . , n + 1}, such that µ(oj) is an external variable in neq(ϕ). We define B%′(i) as the
string of the form

s1 · · · sj1−1α1sj1 · · · sj2−1α2 · · · sjm−1 · · · sjm−1αmsjm · · · sn

where the αk’s are equality strings defined next, together with the folding F from B%′(i)
to W . The folding F starts at ν(o1) = ν(t). We iterate from q = 1 to q = n + 1.
While q ≤ j1 − 1, we can extend F simulating the mapping µ. When q = j1 − 1, since µ
is a containment mapping, there exists two positions p1, p2 such that var(p1) ≡ϕ var(p2),
Φϕ(var(p1)) = Φϕ(var(p2)) = µ(oj1). By Lemma 25 we can choose a suitable equality string
α1 and extend our folding F appropriately. We continue extending our folding F and defining
our equality strings until q = n + 1. Observe that at the end, last(F) = ν(on+1) = ν(t′),
and B%′(i) ∈ L(serial(Aϕ′(i)), as required.
(⇐) Suppose Ẽ is contained in Γ̃. Let ϕ be an expansion of Γ. We want to show that there
is an expansion ϕ′ of Γ′ and a containment mapping µ from neq(ϕ) to neq(ϕ′). Let W =
w1 · · ·wp be the serialized expansion associated with ϕ and %()← w1(z1, z2), . . . , wp(zp, zp+1)
be the expansion of Ẽ associated with W . There is an expansion %′ of Γ̃ and a containment
mapping from neq(%′) to neq(%). Without loss of generality we can choose %′ to satisfy the
following property: Let i ∈ BE%′ . If B%′(i) 6= ε, then we can choose the corresponding string
u ∈ Aϕ′(i) with B%′(i) ∈ serial(w) to be also not empty. This avoid B%′(i) to be an equality
string. We impose B%′(i) to be ε instead, in this case. It is easy to see that by choosing

28 Regular Queries on Graph Databases

suitable equality string in the other basic expansions, we can modify %′ such that there still
is a containment mapping from neq(%′) to neq(%). We define ϕ′ to be exactly like %′ but for
each i ∈ BEϕ′ = BE%′ , we choose Bϕ′(i) to be the associated string with B%′(i), that is, a
string such that B%′(i) ∈ serial(Bϕ′(i)). By the previous property, B%′(i) = ε iff Bϕ′(i) = ε.
This implies that the external variables of neq(ϕ′) and neq(%′) coincide.

It remains to define the containment mapping µ from neq(ϕ′) to neq(ϕ). Let ν be the
containment mapping from neq(%′) to neq(%). Let t be an external variable of neq(ϕ′). We
define µ(t) to be the variable Φϕ(var(ν(t))). Now we need to define µ over the internal
variables of neq(ϕ′). If Bϕ′(i) = s1 · · · sn, this amounts to define a containment mapping τ
from the CQ s1(t, o2), · · · sn(on, t′) to neq(ϕ) such that τ(t) = µ(t) and τ(t′) = µ(t′). We
know that there is a folding F from B%′(i) to W such that first(F) = ν(t) and last(F) =
ν(t′). By following this folding and ignoring the equality strings in B%′(i), we can easily
define τ , for each i ∈ BEϕ′ . This implies that Γ is contained in Γ′.

2

Since the construction of Ẽ and Γ̃ can be carried out in polynomial time from Γ and Γ′,
we have shown the following theorem.

I Theorem 28. There is a polynomial time reduction from the containment problem of
nested UC2RPQs to the containment problem of a 2RPQ in a nested UC2RPQ.

A.3 Containment of 2RPQs in nested UC2RPQs: Upper Bound
Cuts. Let γ be a nested UC2RPQ of nesting depth 0, defined by the rules

γ(x1, . . . , xn) ← γ1
1(y1

1 , y
1′
1), . . . , γ1

m1
(y1
m1
, y1′

m1
),

...
... (2)

γ(x1, . . . , xn) ← γ`1(y`1, y`
′
1), . . . , γ`m`

(y`m`
, y`m`

′),

and assume that each 2RPQ γij is given by an automaton Aij = (Qij ,Σ, q0
i
j , F

i
j , δ

i
j). For

clarity, hereon we refer to the answer predicate of nested UC2RPQs using the same name
as the query, in this case γ, instead of the usual Ans. We always denote nested UC2RPQs
by the name of their answer predicate.

A cut of γ is an `-tuple (C1, . . . , C`), where each of the Ci’s is either ⊥ or a triple of
form (Previ,Samei,Si), where for each 1 ≤ i ≤ `, Samei and Previ are subsets of the set
of variables appearing in the i-th rule of query (2) above such that Samei ⊆ Previ, and Si
is an mi-tuple Si = (si1, . . . , simi

) of states from Qi1 × · · · ×Qimi
, i,e, containing one state of

each of the Aijs, 1 ≤ j ≤ mi.
Before continuing, let us now give some intuition behind the notion of cuts for the

simplest case of C2RPQs. Consider for a moment a C2RPQ Q, and expansion q of Q
and a linearization q′ = r1(z1, z2), . . . , rp(zp, zp+1) of q. If we concentrate on the string
s = r1 · · · rp, the flattening can be seen as a mapping from the variables of q to different
positions of s: variable y in q is assigned position i in s iff the image of y in q′ is zi. Note that
in this way, variables in Q are therefore given a particular position in s as well. Furthermore,
it is easy to see that the following holds: for each 2RPQ φ(y, y′) in Q, if y and y′ are mapped
to positions n and m, respectively, of s, then there is a string u and a folding of u into s
that starts in position n and ends in m, or in other words, if the automaton corresponding
to φ must accept s, when starting in position n and ending in position m.

Given a particular position n in s, a cut (Prev, Same,S) of a C2RPQ Q contains all the
information that we need to show that q′ is a linearization of Q: which variables of Q have

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 29

been mapped to previous positions in s (this is the set Prev), which ones are mapped to the
position n (the set Same), and, for those cases in which only one variable of an 2RPQ φ in
Q has been mapped to a position n′ ≤ n in λ, the set S contains a state of the automaton
for φ, representing a run of this automaton that starts in position n′ of s and ends in n.
Once this automaton reaches a final state, say in a position n′′, the remaining variable of φ
can be included in the set Prev.

I Example 29. Consider query Q ← g+(x, z), g+(z, y) over alphabet {g, f}, stating that
there is a path labeled with g+ between both x and y, and y and z. It is not difficult
to see that the CQ q = g(x, x′), g(x′, z), g(z, y′), g(y′, y) is a linearization of Q. The string
associated to q is s = ggg−g−. The cut for Q in position 3 of s that represents the expansion
q contains variables x and z in Prev, and variable z in Same, since z is mapped to position 3
of s. The cut on position 4 of s contains again x and z in Prev, no variable in position Same.
Furthermore, since y is to be mapped to position 5, it is also important to store a state of
the automaton representing the 2RPQ g+, to check that it accepts the string ggg−g− when
starting in position 3 and ending in position 5.

Since we are dealing with unions of C2RPQs we also need to account for the case when
a certain disjunct of γ cannot be mapped to a certain linearization: in this case, the corre-
sponding triple of the cut is set to ⊥. Using the definition of cuts for UC2RPQs, we can
now define cuts for queries of nesting depth > 0:

I Definition 30. (Cuts of nested UC2RPQs) Let γ be a nested UC2RPQ, and assume
that the rules in γ with the answer predicate in the head follow form (2) above (note that
now some of the γijs might be predicates P+ instead of RPQs).

Then a cut of γ is an `-tuple (C1, . . . , C`), where each Ci is either ⊥, or a triple
(Previ,Samei,Si), where for each 1 ≤ i ≤ `, Samei and Previ are subsets of the set of
variables appearing in the i-th rule of query (2) above such that Samei ⊆ Previ, and Si is
an mi-tuple Si = (si1, . . . , simi

) defined as follows:
If γij is an RPQ given by automaton A, then sij is a state of A.
Otherwise γj is the the transitive closure P+ of a nested UC2RPQ whose answer predicate
is P and with nesting depth strictly lower than γ. Then sij is a cut of P .

Furthermore, initial cuts are those in which each Previ is empty, and final cuts are those
in which at least one of the Ois is empty. A cut marks a variable x if in all Cis that are not
⊥ x belongs to Samei.

The same intuition in the previous example can be now extended to nested C2RPQ, and
to nested UC2RPQs, by taking the cuts of the subqueries under transitive closure (instead
of the state of the automata for the 2RPQs), and by considering tuples of cuts for each
union of queries.

I Example 31. Consider again query

G1(a, b) ← g(a, b)
G2(c, d) ← g(c, d)
R(p, q) ← f(p, q)
R(u, v) ← k(u, v), G+

1 (u, z), G+
2 (v, z)

Ans(x, y) ← R+(x, y)

The cuts from Q are of form (Prev, Same,S), where Prev and Same are subsets of {x, y},
and S is itself a cut of R. In turn, those are of form (C1, C2), where cuts C1 are of

30 Regular Queries on Graph Databases

form (Prev1, Same1,S1), where Prev1 and Same1 are subsets of {p, q} and S1 contains a
state of the NFA that checks for foldings of the 2RPQ f(p, q); and cuts C2 are of form
(Prev2,Same2,S2), where Prev2 and Same2 are subsets of {u, v, z} and S1 is the tuple
(s2

1, s
2
2, s

2
3), with s2

1 a state of the NFA that checks for foldings of the 2RPQ f(p, q), s2
2 a cut

of G1 and s2
3 a cut of G2

Let Cuts(γ) be the set of all cuts of a query γ of form (2). We first note the following
size bound:

I Lemma 32. For every k ≥ 0 and γ a nested UC2RPQ, the size of Cuts(γ) belongs to
O(2|γ|). Furthermore, the size of each cut in Cuts(γ) is polynomial in the size of γ.

Proof: Let us first count the number of cuts of a nested UC2RPQs γ of depth 0. As usual,
assume that γ is of form

γ(x1, . . . , xn) ← γ1
1(y1

1 , y
1′
1), . . . , γ1

m1
(y1
m1
, y1′

m1
),

...
... (3)

γ(x1, . . . , xn) ← γ`1(y`1, y`
′
1), . . . , γ`m`

(y`m`
, y`m`

′),

where for now each γij is a 2RPQ. Let Vars(γ) be the set of variables used in γ
For each 1 ≤ i ≤ `, the number of different sets Previ, Samei ⊆ Vars(γ) is obviously

of order 2|Vars(γ)|. Furthermore, for each different choice of Previ, Samei, one could have
potentially any combination of states from each of the automata defining γij . Thus, the
number of cuts is of order 2|Vars(γ)| · |γi1| · · · · · γimi

. Combining for all 1 ≤ i ≤ m, we easily
obtain the O(2|vars(γ)|·2|γ|), or O(2|γ|) upper bound. Moreover, Previ and Samei are clearly
linear in γ, and so is each state of γij . Thus the size of each cut is of order |γ| + mi · |γ|,
which is clearly polynomial.

If γ is a nested UC2RPQ of depth k, then assume that all the rules mentioning γ are
of form (3). Assume also for simplicity that all such γij is itself a nested UC2RPQ of lower
depth. Using the same argument as above, we obtain that the number of different choices
for Previ and Samei is of order 2|Vars(γ|. the difference now is the choice of the number of
cuts. If |Cuts(γij)| denotes the number of cuts of γij , we have that the number of cuts of γ
corresponds roughly to ∏

1≤i≤`

(
2|Vars(γ| · |Cuts(γi1)| · · · · · |Cuts(γimi

)|
)
.

Now if we apply an inductive argument, and assume that |Cuts(γi1)| is itself of order
2|γ|

i
j |, we have that the above equation is of order

2`·|Vars(γ| · 2`·(|γ|
i
1+···+|γ|imi

|),

which is roughly equivalent to
2`·|Vars(γ| · 2`·|γ|.

Note that for this argument only works for the case of nested UC2RPQs, in which we
assume all γij to be different. When speaking about regular queries this argument is lost,
and thus the bound on number of cuts is exponentially bigger. That each cut is polynomial
in size can be shown using a similar argument. 2

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 31

Transition system based on cuts
Looking to characterize the set of linearizations of nested UC2RPQs, it is best if we start

by defining a transition system T(γ,w) defined over cuts of γ and positions of a word w over
Σ±.

Given a nested UC2RPQ and a string w = w1, . . . , wk of size k from Σ±, a configuration
of T(γ,w) is just a pair from Cuts(γ)× {1, . . . , k}. Intuitively, this means that a certain cut
is assigned to a certain position of w. The system T(γ,w) relates configurations according to
a transition relation ⇒(γ,w) ranging over(

Cuts(γ)× {1, . . . , k}
)
×
(
Cuts(γ)× {1, . . . , k}

)
We note first that our transition system, while non-deterministic, can only advance to

configurations relating greater or equal positions in w. The idea is that a run of T(γ,w)
should non-deterministically guess the greatest cuts, in terms of variables in Prev, that can
be mapped to each position in w. For the same reason, the transition system can only move
towards configurations in which Prev is not smaller that previous configurations.

We now proceed to define this relation. We begin with the set of transitions that relates
configurations in subsequent positions. Assume that γ is of form (2), and that function
⇒(γ′,w) is defined for all nested UC2RPQ of nesting depth lower than γ. Then for a cut
C = (C1, . . . , C`) of γ and a position p of w, we let (C, p) ⇒(γ,w) (C ′, p + 1) for all cuts
C ′ = (C1′, . . . , C`

′) of γ such that the following holds:
Let L contain all indexes from {1, . . . , `} such that Ci is not ⊥ and L′ contain all indexes

from {1, . . . , `} such that Ci′ is not ⊥.
Furthermore, assume that each Ci, i ∈ L is of form

(
Previ, Samei, (si1, . . . , simi

)
)
and

each Ci′, i ∈ L′ is of form
(
Previ′, Samei′, (si1

′
, . . . , simi

′)
)
). Then

1. L′ ⊆ L and Previ = Previ′ for each i ∈ L′;
2. Samei′ = ∅ for each i ∈ L′.
3. For every i ∈ L′ and 1 ≤ j ≤ mi such that both yij and yij

′ are in Previ, or both are not
in Previ, it holds that sij = sij

′;
4. For every i ∈ L′ and 1 ≤ j ≤ mi such that yij ∈ Previ and yij

′
/∈ Previ, then

If γij is a 2RPQ, then sij
′ ∈ δij(sij , wp), or

If γij is itself a nested UC2RPQ, then (sij , p)⇒(γi
j
,w) (sij

′
, p+ 1)

5. For every i ∈ L′ and 1 ≤ j ≤ mi such that yij /∈ Previ and yij
′ ∈ Previ, then

If γij is a 2RPQ, then sij
′ ∈ δij(sij , wp−), or

If γij is itself a nested UC2RPQ, then (sij , p)⇒(γi
j
,w) (sij

′
, p+ 1)

The first and second condition specifies that by reading symbols there are two possibili-
ties: either Ci becomes ⊥, or if it does not, one can not add extra variables to Previ so, for
now, no new variables are added when advancing to a greater position. The third condition
specifies that the condition of Si is not altered if both variables are in Previ or none are.
The last two conditions state that one can advance to cut C ′ only if the information in each
sij
′ corresponds to a valid transition of the atom γij , be it a 2RPQ or a nested UC2RPQ

with lower nesting depth.
Thus, (C, p) ⇒(γ,w) (C ′, p + 1) is defined only for those cuts C and C ′ where Previ =

Previ′ for each i ∈ L′. Thus, no new variables can be added to cuts when advancing in the
position of w. Instead, we just need to make sure that C ′ contains the correct transitions of
all subqueries, with respect to C and w. For the same reason, note that we do not need the

32 Regular Queries on Graph Databases

whole information of w to compute all cuts related to (C, p) via ⇒(γ,w), but rather only the
information of the p-th symbol of w. We use this important property later on in this proof.

So far we have not described how to change to cuts where more variables are added to
Prev. Furthermore, we also need to define transitions that do not advance when reading the
symbol, to allow for synchronization between the different components of γ. It is best if we
start defining those for the case of nested UC2RPQs of depth 0. Assume then that γ has
nesting depth 0.

For a cut C = (C1, . . . , C`) of γ, define (C, p) ⇒(γ,w) (C ′, p) for all cuts C ′ =
(C1′, . . . , C`

′) of γ such that the following holds.
Assume that each Ci is of form (Previ, Samei, (si1, . . . , simi

) and each Ci
′ is of form

(Previ′, Samei′, (si1
′
, . . . , simi

′). Then for every 1 ≤ i ≤ ` and 1 ≤ j ≤ mi, either Ci
′ is ⊥ or

else one of the following holds:

The sets Previ and Previ′ contain both variables in {yij , yij
′}

The sets Previ and Previ′ do not contain any of {yij , yij
′}

The set Previ does not contain any of {yij , yij
′}, and exactly one of {yij , yij

′} is in both
Samei′ and Previ′, and sij = sij

′ is an initial state.
The set Previ contains exactly one variable in {yij , yij

′}, the remaining variable belong to
the set Samei′, both of them are in Previ′, and sij = sij

′ is a final state.
Both Previ and to Previ′ contain yij but not yij

′, and there is a computation of the
automata for γij that starts in state sij and ends in state sij

′, with the head pointed at
the same position p of the string w.
Both Previ and to Previ′ contain yij

′ but not yij , and there is a computation of the
automata for the inverse of γij that starts in state sij and ends in state sij

′, with the head
pointed at the same position p of the string w.

The first conditions states that one can always add the first variable of a given atom
γij(yij , yij

′) to Previ. The second states that the remaining variable can be added as long as
sij is a final state. Furthermore, the last three condition state that, for the remaining atoms,
either both variables are in our out of the cut, or sij represents a loop in the computation of
the automata for γij (or its inverse).

Intuitively, if we move from (C, p) to (C ′, p′), it must be the case that, for each cut Ci
of C that is not ⊥ and each subquery γij(yij , yij

′) of Ci, one of the following holds:
this subquery is not important (because none or both of {yij , yij

′} are in Previ and Previ′,
formalized in the first two conditions
we can add the first variable of {yij , yij

′} to Previ, as long as the information about
γij(yij , yij

′) in Si is an initial state (third condition),
we can add the remaining variable in {yij , yij

′}, as long as the information about γij(yij , yij
′)

in Si is a final state (fourth condition),
we can change the information about γij(yij , yij

′) in Si as long as there is a computation
in the automaton for γij(yij , yij

′) that starts and ends in the same position p.

I Example 33. Consider the CRPQ γ defined as a+(x, y), aa−a(x, y), and the word w = a.
When defining ⇒(γ,w), consider the cut C in which variable x is in Prev but y is not.
Clearly, we can advance for (C, 1) to (C ′, 2), where C ′ has the same information about x
and y, but where the states of the automata in the tuple S ′ of C ′ are updated according
to their transitions using symbol a. However. For the subquery a+(x, y) we have that this
automata is already in a final state. But we cannot add variable y to Prev yet because the

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 33

automaton corresponding to aa−a(x, y) is not in a final state. So first we need to advance
from (C ′, 2) to another configuration (C ′′, 2) where both of the automaton in S ′′ are in a
final state, and afterwards we shall be able to move to a final cut where both x and y are
in Prev. This reflects, of course, that there is a containment mapping from γ to the CQ
(x, a, y).

When defining⇒(γ,w) for queries with higher nesting depth, there is an additional detail
that needs to be taken care of: For symbols of form P+(x, y), the intuition is that one should
be able to move from a final cut of P to an initial cut of P , reflecting the computation of
the transitive closure of P . However, the important cut is not the final or the initial one,
but rather the cut (and the position) where x and / or y was mapped: we can move from a
cut and a position where y was just mapped, to a cut and a position where x has just been
mapped (and y is still not in Prev).

We now finish the definition of ⇒(γ,w) for queries of higher depth. For a cut C =
(C1, . . . , C`) of γ, define (C, p)⇒(γ,w) (C ′, p) for all cuts C ′ = (C1′, . . . , C`

′) of γ such that
the following holds. Assume that each Ci is of form (Previ,Samei, (si1, . . . , simi

) and each
Ci
′ is of form (Previ′, Samei′, (si1

′
, . . . , simi

′). Then for every 1 ≤ i ≤ ` and 1 ≤ j ≤ mi,
where γij is a 2RPQ, either Ci′ is ⊥ or else one of the following holds:

The sets Previ and Previ′ contain both variables in {yij , yij
′}

The sets Previ and Previ′ do not contain any of {yij , yij
′}

The set Previ does not contain any of {yij , yij
′}, and exactly one of {yij , yij

′} is in both
Samei′ and Previ′, and sij = sij

′ is an initial state.
The set Previ contains exactly one variable in {yij , yij

′}, the remaining variable belong to
the set Samei′, both of them are in Previ′, and sij = sij

′ is a final state.
Both Previ and to Previ′ contain yij but not yij

′, and there is a computation of the
automata for γij that starts in state sij and ends in state sij

′, with the head pointed at
the same position p of the string w.
Both Previ and to Previ′ contain yij

′ but not yij , and there is a computation of the
automata for the inverse of γij that starts in state sij and ends in state sij

′, with the head
pointed at the same position p of the string w.

This is, of course, the same as before. Furthermore, for every 1 ≤ i ≤ ` and 1 ≤ j ≤ mi,
where Ci′ is not ⊥ and γij is a nested UC2RPQ, assume that each sij is a cut of form
(Previj , Sameij ,Sij) and sij

′ is a cut of form (Previj
′
,Sameij

′
,Sij)

′. Then one of the following
holds:

The sets Previ and Previ′ contain both variables in {yij , yij
′}

The sets Previ and Previ′ do not contain any of {yij , yij
′}

The set Previ does not contain any of {yij , yij
′}, exactly one variable y ∈ {yij , yij

′} is in
both Samei′ and Previ′, and (1) Variable y also belongs to the set Sameij

′, (2) there is
an initial cut ĉ and a position p̂ of w such that one can advance from (ĉ, p̂) to (sij , p)
using ⇒(γi

j
,w); and (3) (sij , p)⇒(γi

j
,w) (sij

′
, p).

The set Previ contains exactly one variable y ∈ {yij , yij
′}, the remaining variable y′

belongs to the set Samei′, both of them are in Previ′, and (1) Sameij
′ contains y′, (2)

(sij , p)⇒(γi
j
,w) (sij

′
, p), and (3) there is a final cut c of γij and a position p′ of w such that

one can advance from (sij
′
, p) to (c, p′) using ⇒(γi

j
,w).

34 Regular Queries on Graph Databases

Previ and Previ′ both contain one of yij or yij
′, and one can advance from (sij , p) to (sij

′
, p)

using ⇒(γi
j
,w).

Previ and Previ′ both contain yij , and (1) Sameij contains yij
′, (2) there is a position p̂

and a final cut ĉ of γij such that (sij , p) ⇒ (γij , w)(ĉ, p̂), (3) Sameij
′ contains yij and (4)

there is a position p̂′ and an initial cut ĉ′ of γij such that (ĉ′, p̂′)⇒ (γij , w)(sij
′
, p).

Symmetrical to the previous condition where instead Previ and Previ′ both contain yij
′.

The first two conditions are the same as before, i.e., this subquery is of not importance
for now. The intuition for the remaining conditions is as follows. If we move from (C, p) to
(C ′, p′), it must be the case that, for each cut Ci of C and each subquery γij(yij , yij

′) of Ci,
one of the following holds:

we can add the first variable of {yij , yij
′} to Previ. In this case it must be true that there

is a previous initial cut of γij and a path from this initial cut to another cut in which the
variable to be added is mapped precisely to position p.
we can add the remaining variable in {yij , yij

′} to Previ. In this case it must be true
that there is a path from the current cut of γij in Si to a final cut of γij , and that the
remaining variable is added to the cut of γij in Si.
we can change the information about γij(yij , yij

′) in Si as long as it is dictated by⇒(γi
j
,w)

The last two possibilities account for the computation of the transitive closure operator,
going from a final cut of γij to an initial cut of γij . In this cae we can also change the
information about γij(yij , yij

′) in Si, to reflect that we are taking a new recursive step
while computing the transitive closure of this predicate. We need to be able to move
from the previous cut in Sij to a final state, and also from an initial state to the state in
Sij , satisfying similar conditions as when one adds one of the variables {yij , yij

′} to Prev.

To state the correctness of this system, we define a special type of run. Formally, given
a nested UC2RPQ γ(x, y) and a word w, then (C, p) and (C ′, p′) define an accepting run for
γ over w if the following holds:

C marks x and C ′ marks y
There is an initial cut CI and a position pI such that one can go from (CI , pI) to (C, p)
by means of ⇒(γ,w).
There is a final cut CF and a position pF such that one can go from (C ′, p′) to (CF , pF)
by means of ⇒(γ,w).

I Lemma 34. Let γ(x, y) be a nested UC2RPQ and w a string over Σ with valid annotations
w.r.t. γ. There are pairs (C, p) and (C ′, p′) over Cuts(γ)×{1, . . . , |w|+ 1} such that (C, p)
and (C ′, p′) define an accepting run for γ over w if and only if there is an expansion q of
γ and a containment mapping from q to the linear CQ Qw = A1(z1, z2), . . . Ak(zk, zk) given
by the projection τ(w) of w over Σ that maps x and y to variables zpx

and zpy
of Qw.

Proof: The proof is by induction. We begin with the If direction. Let γ be a nested UC2RPQ
and w a string over Σ(γ) × Σ± with valid annotations w.r.t. γ. Furthermore, assume that
there is an expansion q of γ and a containment mapping from q to the linear CQ Qw given
by the projection τ(w) of w over Σ.

Assume also for the sake of simplicity that all rules mentioning γ are of the following
form, in which all subrules are itself the transitive closure of a nested UC2RPQ.

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 35

γ(x1, . . . , xn) ← γ1
1(y1

1 , y
1′
1), . . . , γ1

m1
(y1
m1
, y1′

m1
),

...
... (4)

γ(x1, . . . , xn) ← γ`1(y`1, y`
′
1), . . . , γ`m`

(y`m`
, y`m`

′),

Let Vars(γ) be the variables in γ. It is clear from the definition of expansion that
there must be an expansion for each subquery γij(yij , yij

′) that can be mapped via a con-
tainment mapping to Qw, sending yij and yij

′ to positions, say pij and p̂ij
′
, and thus that

the hypothesis holds for γij(yij , yij
′). Using the information from the containment mapping

and the information of all the cuts from the hypothesis of each γij(yij , yij
′), it is straight-

forward to show that there are cuts CI = (PrevI , SameI ,SI), CF = (PrevF ,SameF ,SF) ,
Cx = (Prevx,Samex,Sx), Cy = (Prevy, Samey,Sy) be cuts of γ, where CI is an initial cut,
CF is a final cut, Cx is a cut where x ∈ Samex and y /∈ Samex and Cy is a cut with y ∈ Samey
and x ∈ Prevy, with (CI , pI) ⇒(γ,τ(w) (Cx, px) ⇒(γ,τ(w) (Cy, py) ⇒(γ,τ(w) (CF , pF). The
construction of these cuts depends of how the variables are mapped according to the con-
tainment mapping.

For the only if direction, assume that there are cuts CI = (PrevI ,SameI ,SI), CF =
(PrevF , SameF ,SF) , Cx = (Prevx, Samex,Sx), Cy = (Prevy, Samey,Sy) be cuts of γ, where
CI is an initial cut, CF is a final cut, Cx is a cut where x ∈ Samex and y /∈ Samex
and Cy is a cut with y ∈ Samey and x ∈ Prevy, with (CI , pI) ⇒(γ,τ(w) (Cx, px) ⇒(γ,τ(w)
(Cy, py)⇒(γ,τ(w) (CF , pF).

Now considering a run that witness the fact that (CI , pI) ⇒(γ,τ(w) (Cx, px) ⇒(γ,τ(w)
(Cy, py)⇒(γ,τ(w) (CF , pF), for each position p in w we let Cp be the greatest cut (in terms
of the size of Prev and Same) that was used in such run. Moreover, consider the sequence
C1, . . . , C |w|+1 of cuts, and choose an 1 ≤ i ≤ ` such that the i-th component of C |w|+1 is
not ⊥.

We focus on the triples (Previ,Samei,Si) of each such cut Cp. For simplicity let us
abuse notation and denote the i-th component of each Cp by (Prevp, Samep,Sp)

From the definition of ⇒(γ,τ(w) we have that each variable in γ must be contained
to only one of Same1, . . . ,Same|w|+1. Let then σ be the containment mapping that
sends each x in γ to the position p such that x ∈ Samep. Using an inductive argu-
ment and the fact that (CI , pI) ⇒(γ,τ(w) (Cx, px) ⇒(γ,τ(w) (Cy, py) ⇒(γ,τ(w) (CF , pF),
it is not not difficult, although cumbersome, to show that there is an expansion q of
γ and a containment mapping from q to the linear CQ Qw = A1(z1, z2), . . . Ak(zk, zk)
given by the projection τ(w) of w over Σ that maps x and y to variables zpx

and zpy
of Qw. 2

Extending the alphabet to account for computations of T(γ,w)
A straightforward idea to continue with the proof is to use the system T(γ,w) to create

an automaton that accepts all strings that represent the set of flinearizations of γ. However,
after a careful analysis one realizes that doing this in a straightforward way results in a
much more expensive algorithm. So a little bit of extra work has to be done.

In a nutshell, given γ and w we have to extend the symbols of w with information about
the cuts reachable from configurations of form (c, p) in T(γ,w), where 1 ≤ p ≤ |w|.

Formally, from Σ± we construct the extended alphabet Σ(γ) × Σ± as follows. Assume
that Cuts(γ) contains a number N of cuts. Then

If γ is a nested UC2RPQ of depth 0, Σ(γ) is an N + 2 tuple of subsets of Cuts(γ), i.e.,
Σ(γ) = (2Cuts(γ))N+2.

36 Regular Queries on Graph Databases

In other words, Σ± contains a subset of Cuts(γ) for each cut in Cuts(γ).
Otherwise assume that γ is of form (2), and that P is the set of predicates occurring in
the rules of γ that are not 2RPQs. Then

Σ(γ) = (2Cuts(γ))N+2 × X
P∈P

Σ(P),

In other words, it is the cartesian product of the set (2Cuts(γ))N+2 with each Σ(P), for
every predicate P that is a subquery of γ.

Let us now give the intuition of this extension to Σ. We first need some notation. From
Σ(γ) we construct a function f that assigns to each symbol u ∈ Σ(γ) and each cut of γ, the
subset C of cuts assigned to C, i.e., if C is the M -th cut of γ, then f(u,C) corresponds to
the subset given by the M +2-th set in the first tuple in the symbol u of Σ(γ). The function
is extended to those cuts of subqueris in γ in a natural way.

Now, let w be a string from Σ(γ)×Σ±, and let τ(w) be its projection over Σ±. Then note
that each symbol (up, ap), for up ∈ Σ(γ) contains, in particular, N + 2 subsets of Cuts(γ),
where N = |Cuts(γ)|. The first subset of Cuts(γ) represent all those cuts C such that there
is a position p̂ in w and an initial cut Ĉ of γ such that (C, p) is reachable from (ĉ, p̂) using
⇒(γ,τ(w)). Moreover, the second subset of Cuts(γ) contains all those cuts C such that there
is a final cut Ĉ and a position p̂ so that (Ĉ, p̂) can be reached from (C, p) using ⇒(γ,τ(w)).
For the remaining N subsets, note that there is one subset of Cuts(γ) remaining for each cut
C of γ, namely the subset C returned by f(up, C). For each such cut C, its corresponding
subset C contains all those cuts Ĉ for which the configuration (Ĉ, p) is reachable from (C, p)
using ⇒(γ,τ(w)).

If a string w from Σ(γ) × Σ± satisfies the above conditions, we say that w has valid
annotations w.r.t. γ.

I Example 35. Consider again query

G1(a, b) ← g(a, b)
G2(c, d) ← g(c, d)
R(p, q) ← f(p, q)
R(u, v) ← k(u, v), G+

1 (u, z), G+
2 (v, z)

Ans(x, y) ← R+(x, y)

over alphabet Σ = {g, f, k}. Then, assuming NG1 = |Cuts(G1)|,

Σ(G1) = {(a1, . . . , aNG1 +2) | ai ⊆ Cuts(G1)},

and likewise for Σ(G2). If NR = |Cuts(R)|, then

Σ(R) = {(a1, . . . , aNR+2, c1, . . . , bNG1 +2, c1, . . . , cNG2 +2) | ai ⊆ Cuts(R), bj ⊆ Cuts(G1), ck ⊆ Cuts(G2)}.

Finally, Σ(γ) can be defined in a similar way.

The following follows directly from Lemma 32.

I Lemma 36. Let γ be a nested U2CRPQ. Then the number of different symbols in Σ(γ)
is double exponential w.r.t. the size of γ. Furthermore, each symbol in Σ(γ) is of size
exponential w.r.t. γ

Furthermore, we show

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 37

I Lemma 37. Let γ be a nested U2CRPQ. Then the language of all strings over Σ(γ)×Σ±
that have valid annotations w.r.t. γ is regular. Furthermore, one can build an NFA that
checks this language of size double-exponential in the size of γ.

Proof: Let γ be a nested U2CRPQ. Then the language of all strings over Σ(γ) × Σ± that
have valid annotations w.r.t. γ is regular. Furthermore, one can build an NFA that checks
this language of size double-exponential in the size of γ.

It suffices to build the desired NFA. As usual, we define it in an inductive fashion.
Assume first γ is a UC2RPQ of depth 0, following the form

γ(x1, . . . , xn) ← γ1
1(y1

1 , y
1′
1), . . . , γ1

m1
(y1
m1
, y1′

m1
),

...
... (5)

γ(x1, . . . , xn) ← γ`1(y`1, y`
′
1), . . . , γ`m`

(y`m`
, y`m`

′),

Then notice that Σ(γ) just relates the automaton that checks for for γij with all the
states they could reach from a given point. The desired automaton can be obtained using
standard tools to transform two way automata into deterministic one way automata (c.f.
J.C. Shepherdson, The reduction of two-way automata to one-way automata, IBM J Res.,
3(1959), pp. 198-200). To be more precise, for each 2RPQ γij that appears in γ, one needs
to construct three NFAs: A→

γi
j
, A←

γi
j
and A↔

γi
j
. Intuitively, A→

γi
j
checks all pairs of states q, q′

for which there is a computation of γij that goes to the left and comes back to the same
point, starting in q and ending in q′. A←

γi
j
checks for computation that only go backwards

and then return. Finally, A↔
γi

j
integrates both the information of both automata to compute

precisely those computations in which we can start in state q, end in state q′, but by going
into any possible direction. Note that these automaton are of exponential size w.r.t. γ.

Next, if γ is a UC2RPQ of depth k > 0. Assume that for all UC2RPQs γ′ of depth
< k that appear in γ, automata A↔ represents the product of all such A↔γ . For simplicity,
assume that all subqueries are UC2RPQs (so that none is a 2RPQ).

Then the NFA that checks if a string from Σ(γ) × Σ has valid annotations w.r.t. γ is
defined as A∗Σ(γ) = (q,Σ(γ) × Σ, q, {q}, δ) is an automaton with a single state, that just
filters the admitted symbols in Σ(γ)× Σ, assuming they are already valid w.r.t. queries of
lower depth.

More precisely, let (u, a) be a symbol from Σ(γ) × Σ. Then a symbol (u, a) is valid if
and only if the following holds:

For every cut C = (C1, . . . , C`) of γ, where each Ci is of form (Previ, Samei, (si1, . . . , simi
),

a cut C ′ = (C1′, . . . , C`
′), each Ci′ is of form (Previ′, Samei′, (si1

′
, . . . , simi

′), is in f(u,C) if
and only if the following holds

For every 1 ≤ i ≤ ` and 1 ≤ j ≤ mi, assume that γij is a nested UC2RPQ and each sij is
a cut of form (Previj ,Sameij ,Sij) and sij

′ is a cut of form (Previj
′
, Sameij

′
,Sij)

′ (the case when
γ is a nested UC2RPQ is analogous). Then one of the following holds:

The sets Previ and Previ′ contain both variables in {yij , yij
′}

The sets Previ and Previ′ do not contain any of {yij , yij
′}

The set Previ does not contain any of {yij , yij
′}, exactly one variable y ∈ {yij , yij

′} is in both
Samei′ and Previ′, and (1) Variable y also belongs to the set Sameij

′, (2) fγi
j
(u, initial)

contains sij ; and (3) fγi
j
(u, sij) contains sij

′.

38 Regular Queries on Graph Databases

The set Previ contains exactly one variable y ∈ {yij , yij
′}, the remaining variable y′

belongs to the set Samei′, both of them are in Previ′, and (1) Sameij
′ contains y′, (2)

fγi
j
(u, sij) contains sij

′, and (3) fγi
j
(u, final) contains sij

′.

Previ and Previ′ both contain one of yij or yij
′, and fγi

j
(u, sij) contains sij

′.

Previ and Previ′ both contain yij , and (1) Sameij contains yij
′, (2) fγi

j
(u, final) contains

sij , (3) Sameij
′ contains yij and (4) fγi

j
(u, initial) contains sij

′.

Symmetrical to the previous condition where instead Previ and Previ′ both contain yij
′.

In other words, valid symbols contain all the information regarding ⇒(γ,w). Then δ just
ensure that all read symbols are valid. Note that we can check for validity without actually
checking the word since everything has already been coded into the cuts of the γij ’s that are
queries of depth 0.

Thus, by defining the desired automaton AΣ(γ) as the product of A↔γ and A∗Σ(γ), we get
the desired information.

Regarding the size of A∗Σ(γ), observe that δ is essentially a list of which symbols are
allowed and which aren’t, and the number of symbols is double exponential size w.r.t. γ,
clearly AΣ(γ) is doubly-exponential. Furthermore, it is clear from the definition that it can
be computed in exponential space. 2

Cut Automata. Finally, we proceed to build the desired NFA that gives the strings
corresponding to the linearizations of nested UC2RPQs. This NFA needs to simulate the
relation ⇒γ , from an initial cut of a nested UC2RPQ γ to a final cut in which all variables
have already been mapped. Of course, we have to check, for every subquery γij(yij , yij

′) of γ,
whether this query is indeed satisfied when starting in the position assigned to variable yij
and finishing on the position assigned to yij

′. Since we might need to check for more than
one such query at any given point, synchronizing all these checks is non-trivial. To overcome
this problem, we use the information stored in strings of the extended alphabet that have
valid annotations.

Let then γ be a nested UC2RPQ for form 2, and consider alphabet Σ(γ) as above. For
simplicity, and without incidence in our results, we assume for now that NFAs can decide
not to move to the following symbol of the string they are reading, i.e., we assume that the
transition function for an NFA A = (Q,Σ, q0, F, δ) is defined from Q×Σ to subsets of pairs
of form Q× {1, 0}, where 1 stands for move the head and 0 stand for stay.

The cut automata for γ is an NFA Aγ = (Q,Σ(γ)× Σ±, q0, qf , δ), where Q = {q0, qf} ∪
{qC | C ∈ Cuts(γ)} is the set of states, F contains all final cuts of Γ, and δ is defined as
follows:

For each C ∈ Cuts(γ) and (u, a) ∈ Γ × Σ±, δ(qC , (u, a)) contains all pairs (qC′ , 1) such
that (C, 1)⇒(γ,a) (C ′, 2)
For each C ∈ Cuts(γ) and (u, a) ∈ Γ × Σ±, δ(q0, (u, a)) = {(q0, 1)} and δ(qf , (u, a)) =
{(qf , 1)}.
For each final cut C of γ, and (u, a) ∈ Γ× Σ±, δ(qC , (u, a)) contains (qf , 1)
For each C ∈ Cuts(γ) and (u, a) ∈ Γ × Σ±, δ(qC , (u, a)) contains all pairs (qC′ , 0) such
that cut C ′ is in the set f(u,C), i.e., in the subset corresponding to C in u.

It is clear that Aγ is of size at most exponential w.r.t. γ. The following proposition
shows its correctness. It follows from Lemma 34 and the fact that Aγ accepts w iff there are

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 39

pairs (C, p) and (C ′, p′) over Cuts(γ)× {1, . . . , |w|+ 1} such that (C, p) and (C ′, p′) define
an accepting run for γ over w.

I Proposition 38. Let γ be a nested UC2RPQ and w a string over Σ(γ) × Σ± with valid
annotations w.r.t. γ. Then Aγ accepts w if and only if there is an expansion q of γ and a
containment mapping from q to the linear CQ Qw = A1(z1, z2), . . . Ak(zk, zk) given by the
projection τ(w) of w over Σ that maps x and y to variables zpx and zpy of Qw.

Main Proof. We now show how to decide containment of a 2RPQ in a nested UC2RPQ.
Let φ and γ be boolean RPQ and nested UC2RPQ, respectively.

In light of this result, we can decide whether φ is contained in γ in the following way:
Build an NFA Aφ for φ, extended so that it works with the alphabet Σ(γ)× Σ±.
Build the NFA AΣ(γ) that checks for strings over Σ(γ)× Σ± that are valid w.r.t. γ.
Build the NFA Aγ , and complement it, obtaining the automaton (Aγ)C .

The language of (Aγ)C intersected with the language of AΣ(γ) is precisely those strings
w with valid annotations such that its projection τ(w) over Σ does not correspond to any
linearization of γ. Thus, if we intersect this language with the one of (AE), we have that the
resulting intersection is nonempty if and only if there is an expansion q for E that does not
correspond to any of the linearizations of γ can be mapped into q, i.e., if E is not contained
in γ.

Even though some of these automata can be of double exponential size w.r.t. φ and γ,
We can perform this algorithm in Expspace using a standard on-the-fly implementation.

A.4 Proof of Proposition 16
Let Ω be a regular query and let d, h, w be its depth, height and width, respectively. We
translate Ω to a nested UC2RPQ in the natural way: we unfold Ω and if it is necessary we
rename intensional predicates. At the beginning, our equivalent nested UC2RPQ Γ is the
empty set. We start with rules of the form Ans(x1, . . . , xn) ← ρ. Pick a rule in Ω of this
form. For each atom in ρ of the form P (x, y), with P an intensional predicate, we choose
any rule P (x, y)← ρ′ ∈ rules(P), rename all the variables in ρ′, except by x, y, by new fresh
variables, and substitute P (x, y) by ρ′ in the body ρ. After we do this for each atom in ρ,
we end up with a rule of the form Ans(x1, . . . , xn)← ρ1. The size of ρ1 is at most w2. We
continue the process with Ans(x1, . . . , xn) ← ρ1. For each atom R(x, y) in ρ1, we perform
a substitution as before. We end up with a rule Ans(x1, . . . , xn)← ρ2, where the size of ρ2
is at most w3. We continue this process until we end up with a rule Ans(x1, . . . , xn)← ρk,
where each atom in ρk is either an EDB or a transitive closure atom S+(x, y) (thus the rule
is an extended C2RPQ rule). Observe that the number of iteration in this process cannot
exceed the depth of the program Ω. Thus we have that k ≤ d and the size of ρk is at most
wd+1.

Observe we have many choices to generate the rule Ans(x1, . . . , xn) ← ρk according to
the different choices in rules(P) when we substitute an atom P (x, y). A simple count-
ing argument shows that we have at most hwhw2 · · ·hwd = hO(wd) choices to generate
Ans(x1, . . . , xn) ← ρk. We add to Γ all the rules of the form Ans(x1, . . . , xn) ← ρk. We
repeat this for each rule of the form Ans(x1, . . . , xn)← ρ in Ω (there is at most h of these).
Summing up, we add at most h · hO(wd) = hO(wd) rules to Γ, and the size of the body of
each rule is at most wd+1. In particular, |rules(Ans)| in Γ is hO(wd).

Now, pick any rule Ans(x1, . . . , xn) ← η ∈ rules(Ans) in Γ. Let P1, . . . , Pk be all the
intensional predicates in η. We rename these predicates with fresh names P ′1, . . . , P ′k to

40 Regular Queries on Graph Databases

ensure that they are all distinct (and ensure condition (5) of nested UC2RPQs). Now, for
each 1 ≤ i ≤ k, we rename Pi by P ′i in the set rules(Pi) of Ω. We repeat the process described
before, but instead of considering the predicate Ans, we consider the predicate P ′i . Observe
that the same bounds apply: We add at most hO(wd) rules to rules(P ′i) in Γ and the size
of the body of these rules is at most wd+1. We repeat this process iteratively until all the
atoms in our rules are EDBs.

Clearly, the resulting query Γ is an equivalent nested UC2RPQ. Moreover, |rules(P ′)| is
at most hO(wd), for all predicates in Γ, which implies that the height of Γ is at most hO(wd).
The size of the rules body is always bounded by wd+1, thus the width of Γ is at most wd+1.
Finally, note that we never increase the depth, thus the depth of Γ is at most d. This proves
the proposition.

A.5 Proof of Theorem 17

The proof is based on ideas from [19]. We reduce from the following 2Expspace-complete
problem: Given a deterministic Turing machine M and a positive integer n, decide whether
M accepts the empty tape using 22n space. A configuration of M can be described by
a string of length 22n. The symbols of the string are either symbols of the alphabet or
composite symbols. A composite symbol is a pair (s, a), where s is a state of M and a is in
M ’s alphabet. Intuitively, a symbol (s, a) indicates that M is in state s and is scanning the
symbol a. It is well known that the successor relation between configurations depends only
in local constraints: we can associate with the transition function δ two ternary relations
IM , FM and a 4-ary relation BM on symbols that characterizes the successor relation. If
ā = a1 · · · am and b̄ = b1, · · · , bm are two configurations, then b̄ is a successor of ā iff
(a1, a2, b1) ∈ IM , (am−1, am, bm) ∈ FM and (ai−1, ai, ai+1, bi) ∈ BM , for each 1 < i < m.

We construct two regular queries Ω and Ω′ that encode accepting computations of M .
An expansion of Ω represents a sequence of configurations. The role of Ω′ is to detect
errors that prevent this sequence from being an accepting computation. Thus, accepting
computations are identified with expansion of Ω without errors, that is, such that Ω′ cannot
be mapped to it. Hence, we shall have that M accepts the empty tape iff Ω is not contained
in Ω′. This implies that the containment problem is 2Expspace-hard.

To detect errors, we need to compare corresponding positions in successive configura-
tions. To do this, we address each position with a 2n-bit address. Thus, each position in
a configuration will be encoded by 2n rule unfoldings. As in [19], we encode carry bits
in addition to address bits, so the successor relation becomes local. If ā = a1 · · · a2n and
b̄ = b1 · · · b2n are two 2n-bit address, then b̄ = ā + 1 iff there is a 2n-carry bit c̄ = c1 · · · c2n

such that c2n = 1, ci = 1 iff ai+1 = 1 and ci+1 = 1, for 1 ≤ i < 2n, and bi = 0 iff ai = ci, for
1 ≤ i ≤ 2n.

Now we define Ω. We have extensional predicates E,$, Start, IsAddress, IsSymbol,
Zero, One, Carry0 and Carry1. For each configuration symbol a, we also have an exten-
sional predicate Qa. The intensional predicates are Bit, ConfAddress, ConfSymbol, Comp
and Final. The query is boolean, so Ans is a 0-ary predicate. We have rules

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 41

Bit(x, y)← IsAddress(x, x), Zero(x, x), Carry0(x, x), E(x, y).
Bit(x, y)← IsAddress(x, x), Zero(x, x), Carry1(x, x), E(x, y).
Bit(x, y)← IsAddress(x, x), One(x, x), Carry0(x, x), E(x, y).
Bit(x, y)← IsAddress(x, x), One(x, x), Carry1(x, x), E(x, y).

ConfAddress(x, y)← Bit+(x, y).

In the first four rules, the variable x represents a position in an address. We have to
consider the four possible values for the address bit and carry bit. The atom E(x, y) connects
adjacent positions. The predicate ConfAddress describes sequences of address and carry
bits. We also have rules

ConfSymbol(x, y)← ConfAddress(x, z), IsSymbol(z, z), Qa(z, z), E(z, y).
ConfSymbol(x, y)← ConfAddress(x, z), IsSymbol(z, z), Qa(z, z), $(z, y).

(for each symbol a)
Comp(x, y)← ConfSymbol+(x, y).

The predicate ConfSymbol describes an address, followed by a symbol a. The atom
E(z, y) connects symbols in the same configuration. The atom $(z, y) connects symbols in
successive configurations. The predicate Comp encodes sequences of “blocks" of the form
address-symbol. To encode the end of the computation, we put in Ω rules of the form

Final(x, y)← ConfAddress(x, y), IsSymbol(y, y), Qa(y, y).

for symbols a of the form a = (s, a′), where s is an accepting state. Finally, to encode a
computation we use the following rule

Ans()← Start(x, x), Comp(x, z), F inal(z, y).

The intuition is that each expansion of Ω corresponds to a potential accepting compu-
tation of M , that is, a sequence of address-symbol blocks, ending in an address-accepting
symbol block.

Now we construct Ω′ to detect errors in expansions of Ω. For each 0 ≤ i ≤ n, we have
intensional predicates disti, dist≤i, dist<i and equali. For each 0 < i ≤ n, we have rules

disti(x, y)← disti−1(x, z), disti−1(z, y).

and the rule

dist0(x, y)← E(x, y).
dist0(x, y)← $(x, y).

Clearly, the predicate disti(x, y) holds precisely when there is a path of length 2i from
x to y, consisting of E-labeled or $-labeled edges. For each 0 < i ≤ n, we also have rules

42 Regular Queries on Graph Databases

dist≤i(x, y)← dist≤i−1(x, z), dist≤i−1(z, y).
dist<i(x, y)← dist<i−1(x, z), dist≤i−1(z, y).

and the rules

dist≤0(x, y)← E(x, y).
dist≤0(x, y)← $(x, y).
dist≤0(x, x)← true.
dist<0(x, x)← true.

Here, dist≤i hold precisely when there is a path of length at most 2i from x to y, and
dist<i(x, y) holds precisely when there is a path of length at most 2i− 1 from x to y (again,
the paths consist of E-labeled or $-labeled edges). Rules of the form S(x, x)← true. can be
easily simulated by Datalog rules. Now we define the equali predicates. For each 0 < i ≤ n,
we have rules

equali(x, y)← equali−1(x, y), equali−1(x′, y′), disti−1(x, x′), disti−1(y, y′).

and the rules

equal0(x, y)← E(x, x′), E(y, y′), Zero(x, x), Zero(y, y).
equal0(x, y)← E(x, x′), $(y, y′), Zero(x, x), Zero(y, y).
equal0(x, y)← $(x, x′), E(y, y′), Zero(x, x), Zero(y, y).
equal0(x, y)← $(x, x′), $(y, y′), Zero(x, x), Zero(y, y).
equal0(x, y)← E(x, x′), E(y, y′), One(x, x), One(y, y).
equal0(x, y)← E(x, x′), $(y, y′), One(x, x), One(y, y).
equal0(x, y)← $(x, x′), E(y, y′), One(x, x), One(y, y).
equal0(x, y)← $(x, x′), $(y, y′), One(x, x), One(y, y).

We are only interested in the behavior of equali over expansions of Ω. If an atom of the
form S(x, x) appears in an expansion, we say that the variable x is labeled with S. Hence,
expansions of Ω are basically directed paths whose edges are labeled by E or $, and whose
variables (or nodes) are labeled with symbols in

{Start, IsAddress, IsSymbol, Zero, One, Carry0, Carry1}∪{Qa | for each symbol a}

It is easy to see that in such a models, equali(x, y) holds precisely when the directed paths
of length 2i starting at x and y have the same variable labels, with the possible exception
of the last variable.

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 43

To detect errors and “filter out" expansions of Ω, we use ideas from [19]. First, we need
to verify that the first block of the expansion corresponds an address of length 2n followed
by a symbol. We do this by putting in Ω′ the rules

Ans()← Start(x, x), dist<n(x, y), $(y, z).
Ans()← Start(x, x), dist<n(x, y), IsSymbol(y, y).
Ans()← Start(x, x), distn(x, y), IsAddress(y, y).

The first rule finds expansions where one of the first 2n edges is a $-labeled edge. The
second rule finds expansions where one of the first 2n variables is a symbol variable, that is,
a variable labeled with IsSymbol. The last rule detects expansions where the (2n + 1)-th
variable is an address variable, that is, a variable labeled with IsAddress. We also add rules

Ans()← IsSymbol(x, x), E(x, y), dist<n(y, z), $(z, z′).
Ans()← IsSymbol(x, x), $(x, y), dist<n(y, z), $(z, z′).
Ans()← IsSymbol(x, x), E(x, y), dist<n(y, z), IsSymbol(z, z).
Ans()← IsSymbol(x, x), $(x, y), dist<n(y, z), IsSymbol(z, z).
Ans()← IsSymbol(x, x), E(x, y), distn(y, z), IsAddress(z, z).
Ans()← IsSymbol(x, x), $(x, y), distn(y, z), IsAddress(z, z).

Similarly, the first and second rule find expansions where one of the first 2n + 1 (except
by the first one) edges, after a symbol variable, is a $-labeled edge. The third and fourth
rules find expansions where one of the first 2n variable, after a symbol variable, is a symbol
variable. The two last rules find expansions where the (2n + 1)-th variable, after a symbol
variable, is an address variable.

So far we have ensured that we have filtered out all expansions that do not correspond
to sequences of blocks of 2n address variables followed by a symbol variable. Now, we need
to check that the address bits indeed act as 2n-bit counter. That is, the first address is
0, . . . , 0 and two adjacent addresses are successive. For example, a possible error is that the
first address is not 0, . . . , 0. Such an error can be found by the following rule

Ans()← Start(x, x), dist<n(x, y), One(y, y).

Another possible error is when the i-th carry bit is 0, but the (i+1)-th carry and address
bit are 1. This can be detected by the rule

Ans()← IsAddress(x, x), E(x, y), Carry0(x, x), One(y, y), Carry1(y, y).

A more interesting case is when the i-th carry and address bit are the same but the i-th
address bit in the next address is 1, instead of 0. This is detected by the following rules

44 Regular Queries on Graph Databases

Ans()← IsAddress(x, x), Zero(x, x), Carry0(x, x), distn(x, y), E(y, z), One(z, z).
Ans()← IsAddress(x, x), One(x, x), Carry1(x, x), distn(x, y), E(y, z), One(z, z).

Note that corresponding address variables in successive addresses are exactly at distance
2n + 1. The rest of the cases can be easily detected by similar rules.

We now have to ensure that every sequence of addresses starting with 0, . . . , 0 describe
a single configuration; that is, configurations change exactly when the address is 1, . . . , 1.
Thus, there are two types of error here: (1) a configuration changes when the address is not
1, . . . , 1, or (2) a configuration does not change when the address is 1, . . . , 1. Recall that
changes of configuration are detected by the symbol $. Errors of type (1) can be detected
by the rule

Ans()← IsAddress(x, x), Zero(x, x), dist≤n(x, y), IsSymbol(y, y), $(y, z).

To detect errors of type (2), we need to introduce new intensional predicates AllOnesi,
for each 0 ≤ i ≤ n, such that AllOnesi(x, y) holds precisely when there is a directed path
from x to y of length 2i such that all the variables in the path are labeled with One, with
the possible exception of the last variable y. These predicates can be defined as follows

AllOnesi(x, y)← AllOnesi−1(x, z), AllOnesi−1(z, y). (for each 0 < i ≤ n)
AllOnes0(x, y)← E(x, y), One(x, x)

Now we can detect errors of type (2) as follows

Ans()← AllOnesn(x, y), E(y, z).

We have ensured so far that we have a sequence of configurations of length 22n with
the proper sequence of addresses. We now have to ensure that this sequence of config-
urations indeed represents a legal computation of the machine M . In order to do this,
we need to introduce new intensional predicates SameConf and NextConf . Intuitively,
SameConf(x, y) will be true exactly when x and y are variables in the same configuration.
Similary, NextConf(x, y) holds exactly when x and y are in adjacent configurations. These
predicates can be defined as follows

SameConfBase(x, y)← E(x, y).
SameConf(x, y)← SameConfBase+(x, y).
NextConf(x, y)← SameConf(x, z), $(z, z′), SameConf(z′, y).

Now we can verify that the first configuration is actually the initial configuration. Sup-
pose that ⊥ correspond to the blank symbol and s0 to the initial state, so the initial config-
uration is (s0,⊥)· ⊥22n

−1. Then, we can use the following rules

Juan Reutter, Miguel Romero, and Moshe Y. Vardi 45

Ans()← Start(x, x), distn(x, y), IsSymbol(y, y), Qa(y, y).
(for each symbol a 6= (s0,⊥))

Ans()← Start(x, x), distn(x, y), SameConf(y, z), IsSymbol(z, z), Qa(z, z).
(for each symbol a 6=⊥)

Finally, we have to detect errors between corresponding symbols in two successive con-
figurations, that is, when such symbols do not obey the restrictions imposed by the relations
IM , FM and BM . For example, a violation of BM , that is, a tuple (a, b, c, d) 6∈ BM , can be
found by rules in Ω′ of the form

Ans()← IsSymbol(x1, x1), Qa(x1, x1), E(x1, z2),
distn(z2, x2), IsSymbol(x2, x2), Qb(x2, x2), E(x2, z3),
distn(z3, x3), IsSymbol(x3, x3), Qc(x3, x3),
distn(z, x), IsSymbol(x, x), Qd(x, x),
NextConf(z2, z), equaln(z2, z).

Here, the variables x1, x2 and x3 point to three consecutive symbols a, b and c in the
same configuration. The variable z2 points to the beginning of the address preceding x2.
Similarly, x points to the symbol d and z to the beginning of the address preceding x. The
atom NextConf(z2, z) guarantees that a, b, c and d appears in successive configurations,
and equaln(z2, z) guarantees that the addresses starting at z2 and z are the same, so b and
d appears in corresponding positions. We add this set of rules for each (a, b, c, d) 6∈ BM . We
can easily define rules that detect violations of the relations IM and FM . Finally, observe
that the construction of Ω and Ω′ can be carried out in polynomial time in n and the size
of M .

	Introduction
	Preliminaries
	Regular Queries
	Containment of Regular Queries
	Containment of Nested UC2RPQs
	Reduction to Containment of 2RPQs in nested UC2RPQs
	Containment of 2RPQs in nested UC2RPQs: Upper Bound

	Containment of Regular Queries: upper and lower bounds

	Conclusions
	Proofs and Intermediate Results
	Reduction to boolean nested UC2RPQs
	Reduction to Containment of 2RPQs in nested UC2RPQs
	Containment of 2RPQs in nested UC2RPQs: Upper Bound
	Proof of Proposition 16
	Proof of Theorem 17

