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Abstract
SPARQL has become the most popular language for querying RDF datasets, the standard data
model for representing information in the Web. This query language has received a good deal
of attention in the last few years: two versions of W3C standards have been issued, several
SPARQL query engines have been deployed, and important theoretical foundations have been
laid. However, many fundamental aspects of SPARQL queries are not yet fully understood. To
this end, it is crucial to understand the correspondence between SPARQL and well-developed
frameworks like relational algebra or first order logic. But one of the main obstacles on the way
to such understanding is the fact that the well-studied fragments of SPARQL do not produce
RDF as output.

In this paper we embark on the study of SPARQL queries with results in CONSTRUCT form,
that is, queries which output RDF graphs. This form takes rightful place in the standards and
implementations, but, contrary to other forms, has not yet attracted a worth-while theoretical
research. Under this framework we are able to establish a strong connection between SPARQL
and well-known logical and database formalisms. In particular, the general language can be re-
stated as a data transformation setting, the fragment which does not allow for blank nodes in
output templates corresponds to first order queries, and its well-designed sub-fragment corres-
ponds to positive first order queries. This correspondence allows us to conclude that the general
language is not composable, but the identified fragments are. Finally, we enrich the language
with a recursion operator, and establish fundamental properties of this extension.
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1 Introduction

The Resource Description Framework (RDF) [24] is the World Wide Web consortium (W3C)
standard for representing linked data on the Web. Intuitively, an RDF graph is set of triples
of internationalized resource identifiers (IRIs), where the first and last of them represent
entity resources, and the middle one relates these resources, just as is it done with graph
databases [3].

SPARQL is a language for querying RDF datasets. First introduced in [33], in 2008
SPARQL was officially made the recommended language to query RDF data by W3C [32],
and nowadays this language is recognised as one of the key standards of the Semantic Web
initiative. A recent version SPARQL 1.1 of the standard was issued in 2013 [38], and
currently there are several SPARQL engines available to industry (e.g., [11, 17,36]).

The theoretical foundations of SPARQL were laid by Pérez et al. in their seminal
work [27], and a body of research has followed, covering a variety of issues such as com-
plexity of query evaluation [5, 23, 29, 35], query optimisation [8, 9, 21, 30], federation [7],
expressive power [2,31], and provenance tracking [14,16]. The impact of these studies in the
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Figure 1 RDF graph Gex (a); answer of qsel over Gex is set of mappings (b); answer of qcons

over Gex is RDF graph (c).

Semantic Web community has been astonishing, including influence to the definition of the
SPARQL standards.

However, despite the key importance of SPARQL, the fundamental aspects of this lan-
guage are still not fully understood. Compared to the knowledge on other query languages
such as SQL, Datalog or even XPath, very little is known about SPARQL queries. To this
end, it is of particular importance to understand the correspondence between SPARQL and
other well-developed formalisms such as first order logic or relational algebra. But one of
the main obstacles on the way to such understanding is the fact that the queries from well-
studied fragments of SPARQL produce not RDF graphs as answers, but sets of mappings
(partial evaluations), which are quite different form for representing data.

I Example 1. As a classical example of SPARQL, let us consider the following query qsel:1

SELECT ?n, ?w, ?e
WHERE (
((?p, name, ?n) AND (?p, works_at, ?w))

OPT (?p, mbox, ?e)).

This query is intended to extract all names of people for which a working place is known,
together with their affiliations, and, optionally, append their emails, provided the RDF graph
contains this information. Thus, when evaluated on the RDF graph Gex from Figure 1(a),
it gives as result a set of partial mappings from the variables of qsel to IRIs in the RDF
graph, as depicted in Figure 1(b), where each row represents a mapping.

Returning mappings instead of tuples might appear just as a slight difference between
SPARQL and other query languages such as SQL. However, it is known to lead to several
complications (see, e.g., [27, 31]). For example, when studying the expressive power of
SPARQL in [2, 31], the authors need to use some rather technical machinery to be able to

1 In this paper we follow the adopted SPARQL syntax of [27], in particular, we shorten OPTIONAL to
OPT.
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even compare SPARQL with relational query languages. The result is that, even if we now
know that the SELECT fragment of SPARQL is equivalent in expressive power to relational
algebra, this is shown using proofs that are much more complicated than other similar results
in database theory, and it has been difficult to build upon this proofs to produce new results.

There are also practical consequences: while recursive queries have been part of SQL
for more than twenty years, we are still left without a comprehensive operator to define
recursive queries in SPARQL (in fact, the recent 1.1 version of SPARQL does include the
property paths primitive [38], but only as an additional feature, which is very restrictive in
expressing important recursive queries [22]).

However, this complication is relevant only to the SELECT queries of SPARQL, which
has been considered in the theoretical literature almost exclusively. Alas, this is not the
only form of the results in SPARQL, and there is a result form which outputs RDF graphs,
namely the CONSTRUCT result form. The following example illustrates how a user can
specify a query with CONSTRUCT result form, that is, a query that outputs an RDF graph.

I Example 2. Let qcons be the following SPARQL query with CONSTRUCT result form:

CONSTRUCT {(?n, works_at, ?w), (?n, mbox, ?e)}
WHERE (
((?p, name, ?n) AND (?p, works_at, ?w))

OPT (?p, mbox, ?e)).

Note that this query has the same WHERE clause as qsel, but the form of the output is
different. The RDF graph resulting from the evaluation of this query over the dataset Gex
is depicted in Figure 1(c).

CONSTRUCT queries in SPARQL shape the class of effective queries whose inputs and
answers are RDF graphs, so it is conceivable that much more insight can be obtained by
comparing them to well-established query languages. But rather surprisingly, despite being
an important part of the SPARQL standard, these queries have received almost no theoretical
attention, comparing to the queries in SELECT form. This can be partially explained by
the fact, that, as the examples above suggest, the difference between these classes of queries
might seem negligible. However, as we will see in this paper, this resemblance is often
deceptive, and in many cases the properties of these queries are different. For example,
CONSTRUCT queries allow for blank nodes in templates, specifying the answer triples,
which is a feature unavailable in SELECT queries. Trying to fill this gap, we conduct a
thorough study of SPARQL queries of the CONSTRUCT form. We concentrate on the
AND-UNION-OPT-FILTER fragment of SPARQL, which is the core of this language [27].

The first question studied in the paper is the expressive power of CONSTRUCT queries.
In particular, we show that if blank nodes are not allowed in the templates, then this
language is equivalent in expressive power to first order logic. If underlying graph patterns
are enforced to be well-designed, that is, to belong to a known fragment with intuitive
meaning and good properties ([27]), then the language essentially corresponds to positive
first order logic. If, in turn, the blank nodes in templates are allowed, then we establish the
equivalence of this full language to a certain data exchange setting.

This expressivity results lead to important conclusions on composability of these lan-
guages. In particular, the fragments without blank nodes are composable, that is, the
composition of two queries can be always expressed by another query, but if blank nodes
are allowed, then this important property is lost.

We also obtain results on computational complexity of evaluation of such queries: for the
blank-free language it is the same as for SELECT queries (PSPACE-complete), but for the
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well-designed sublanguage there is a surprising difference—it is Σp2-complete for the SELECT
case ([21]), but drops to NP-complete in CONSTRUCT case.

Finally, the properties of CONSTRUCT queries allow us to develop an extension of
SPARQL with a SQL form of recursion, which unifies several formalisms for querying RDF
data, such as SPARQL 1.1 property paths [38], c-query answering over OWL 2 RL entail-
ment regime [15, 19], navigational SPARQL [28], GraphLog [10], and TriAL [22]. For this
extension, we also find an expressively equivalent conventional language, namely, a fragment
of Datalog.

Due to the space limitations, only ideas of most important proofs are exposed in the
main body of this paper, but complete proofs are given in the appendix.

2 Preliminaries

RDF Graphs and Datasets

An RDF graph is a labeled graph where nodes can be edge labels by themselves, and an
RDF dataset is a collection of named RDF graphs.

Formally, let I and B be infinite pairwise disjoint sets of IRIs and blank nodes,2 cor-
respondingly, and T = I ∪ B be the set of terms. Then an RDF triple is a tuple (s, p, o)
from T × I × T, where s is called subject, p predicate, and o object. An RDF graph is a
finite set of RDF triples, and an RDF dataset is a set {G0, 〈u1, G1〉, . . . , 〈un, Gn〉}, where
G0, . . . , Gn are RDF graphs and u1, . . . , un are distinct IRIs, such that the graphs Gi use
pairwise disjoint sets of blank nodes. The graph G0 is called default graph, and G1, . . . , Gn
are called named graphs with names u1, . . . , un, correspondingly. For a dataset D and IRI
u we define grD(u) = G if 〈u,G〉 ∈ D and grD(u) = ∅ otherwise. We also use G and D
to denote the sets of all RDF graphs and datasets, correspondingly, as well as blank(S) to
denote the set of blank nodes appearing in S, which can be a triple, a graph, etc.

SPARQL Syntax

SPARQL is the standard pattern-matching language for querying RDF datasets.
Formally, let V be an infinite set {?x, ?y, . . .} of variables, disjoint from T. Similarly to

blank(S), var(S) denotes the set of variables appearing in S.
SPARQL graph patterns are recursively defined as follows:

1. a triple in (I ∪V)× (I ∪V)× (I ∪V) is a graph pattern, called a triple pattern;
2. if P1 and P2 are graph patterns, then (P1 ANDP2), (P1 OPTP2), and (P1 UNIONP2) are

graph patterns, called AND-, OPT-, and UNION-patterns, correspondingly;
3. if P is a graph pattern and g ∈ I ∪ V then (g GRAPH P ) is a graph pattern, called

GRAPH-pattern;
4. if P is a graph pattern and R is a filter condition, then (P FILTERR) is a graph pattern,

called FILTER-pattern, where SPARQL filter conditions are constraints of the form:
– ?x = u, ?x =?y, isBlank(?x) or bound(?x) for ?x, ?y ∈ V and u ∈ I (called atomic

constraints3),
– ¬R, R1 ∧R2, or R1 ∨R2 for filter conditions R, R1 and R2.

2 For the sake of simplicity we do not consider literals, but all the results in this paper hold if we introduce
them explicitly.

3 We use a simplified list of SPARQL atomic constraints, for the complete one see [38].
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The fragment of SPARQL graph patterns has drawn most of the attention in the Semantic
Web community. In this paper we concentrate on another class of queries, formalized next.

A SPARQL query with construct result form, or c-query for short, is an expression

CONSTRUCT H WHERE P,

where H is a set of triples from (T∪V)×(I∪V)×(T∪V), called template, and P is a graph
pattern. We also distinguish c-queries without blank nodes in templates, called blank-free,
and c-queries without GRAPH-subpatterns called graph-free. We use c-SPARQL to denote
the class of all c-queries, and specify this notation with subscripts bf and gf for the blank-
and graph-free subclasses, like c-SPARQLbf,gf .

SPARQL Semantics

The semantics of graph patterns is defined in terms of mappings; that is, partial functions
from variables V to terms T. The domain dom(µ) of a mapping µ is the set of variables
on which µ is defined. Two mappings µ1 and µ2 are compatible (written as µ1 ∼ µ2) if
µ1(?x) = µ2(?x) for all variables ?x which are in both dom(µ1) and dom(µ2). If µ1 ∼ µ2,
then we write µ1 ∪ µ2 for the mapping obtained by extending µ1 according to µ2 on all the
variables in dom(µ2) \ dom(µ1).

Given two sets of mappings M1 and M2, the join, union and difference between M1 and
M2 are defined respectively as follows:

M1 1M2 = {µ1 ∪ µ2 | µ1 ∈M1 and µ2 ∈M2 such that µ1 ∼ µ2},
M1 ∪M2 = {µ | µ ∈M1 or µ ∈M2},
M1 \M2 = {µ1 | µ1 ∈M1, there is no µ2 ∈M2 such that µ1 ∼ µ2}.

Based on these, the left outer join operation is defined as

M1 1M2 = (M1 1M2) ∪ (M1 \M2).

Given a dataset D = {G0, 〈u1, G1〉, . . . , 〈un, Gn〉}, and a graph G among G0, . . . , Gn, the
evaluation JP KDG of a graph pattern P over D with respect to G is defined as follows:
1. if P is a triple pattern, then JP KDG = {µ : var(P )→ T | µ(P ) ∈ G},
2. if P = (P1 AND P2), then JP KDG = JP1KDG 1 JP2KDG ,
3. if P = (P1 OPT P2), then JP KDG = JP1KDG 1 JP2KDG ,
4. if P = (P1 UNION P2), then JP KDG = JP1KDG ∪ JP2KDG ,
5. if P = (g GRAPH P ′), then either JP KDG = JP ′KDgrD(g) in case of g ∈ I, or JP KDG =⋃

u∈I

(
JP ′KDgrD(u) 1 {g 7→ u}

)
in case of g ∈ V,

6. if P = (P ′ FILTER R), then JP KDG = {µ | µ ∈ JP ′KDG and µ |= R}, where a mapping µ
satisfies a built-in condition R, denoted by µ |= R, if one of the following holds:
– R is ?x = u, ?x ∈ dom(µ) and µ(?x) = u; or
– R is ?x =?y, ?x ∈ dom(µ), ?y ∈ dom(µ) and µ(?x) = µ(?y); or
– R is isBlank(?x) and ?x ∈ dom(µ) and µ(?x) ∈ B; or
– R is bound(?x) and ?x ∈ dom(µ); or
– R is an evaluating to true Boolean combination of other filter conditions.

The evaluation JP KD of a pattern P over a dataset D with default graph G0 is JP KDG0
.

To define semantics of c-queries, we fix, for every template H and dataset D, a family
F (H,D) of renaming functions fµ : blank(H)→ B \ blank(D) parametrised by mapping µ,
which are injective (i.e., there are no different b, b′ such that fµ(b) = fµ(b′)), and have pair-
wise disjoint ranges (i.e., there are no b, b′ such that fµ1(b) = fµ2(b′) for different µ1 and µ2).
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Finally, the answer ans(q, D) to a c-query q = CONSTRUCT H WHERE P over an input
dataset D is the RDF graph consisting of all triples in µ(fµ(H)), for all µ ∈ JP KD, which are
well-formed RDF triples (i.e., have neither blank nodes on predicate positions nor variables).

3 Blank-free c-Queries

We start our study with c-SPARQLbf , that is, the language of c-queries which contain no
blank nodes in their templates. This fragment is of fundamental importance, because it has
simple syntax and clear intuitive semantics. All the blank nodes in the answer graph of a
c-SPARQLbf query appear in the input dataset, and, as it can be seen by careful inspection
of the semantics, are treated in the same way as IRIs, with the only exception that candidate
triples with blank nodes on predicate position are rejected from the answer.

The first problem we consider is the expressive power of such c-queries. As it is usually
done in databases, our yardstick is first order logic (FO) with safe negation. However,
since we are dealing with c-queries that input RDF graphs and datasets, it is only fair to
compare them with FO over a signature that corresponds to these entities. Formally, we
specify the following query language. Its input domain is the set of all finite first-order
structures over elements T and predicates Default, Named, and IsBlank of arities 3, 4,
and 1, correspondingly, such that IsBlank(b) holds for some b if and only if b ∈ B, and
IsBlank(b) implies that none of Default(a, b, c), Named(b, a, c, d) and Named(d, a, b, c)
hold for any a, c, and d. The answers for this language are sets of triples from T × I × T,
that is, essentially, RDF graphs. The set FOrdf of queries of this language consists of all
well-formed FO formulas over the signature given above. Finally, the evaluation function of
FOrdf is the usual FO entailment |=adom over active domain semantics, that is, in particular,
the quantification is realised over the finite set of all the terms from T appearing in the
input database and query (see [1] for formal definitions).

Note that the set of input databases of FOrdf have a straightforward one-to-one cor-
respondence with the set of input datasets of c-SPARQLbf queries, and the same holds
for answers of these languages. Having this correspondence, we may compare their ex-
pressive power. To make such comparisons formal, we need the following definitions. A
query language Q1 is contained in a language Q2 iff there are bijections transI : I1 → I2,
transO : O1 → O2 between their input sets Ii and answer sets Oi, and a function
transQ : Q1 → Q2 such that transO(eval1(q, I)) = eval2(transQ(q), transI(I)) holds for any
q ∈ Q1 and I ∈ I1, where evali are evaluation functions of the languages. Two languages
are equivalent iff they contain each other.

We are ready to present our first result, claiming that the language of blank-free construct
queries is subsumed by first order logic.

I Lemma 3. The language c-SPARQLbf is contained in the language FOrdf .

This lemma can be shown using the ideas similar to the ones in the reductions from
the language of SPARQL queries with result in the SELECT form, that is, the language of
graph patterns described above, enriched with projection to non-recursive Datalog with safe
negation, which are developed in [2] and [31]. The idea of these reductions is to assemble
an extensional predicate for each sub-pattern, such that the evaluation of that predicate
contains all the tuples corresponding to mappings in the evaluation of the sub-pattern.
Since these mappings have different domains, the undefined value is modelled by a special
constant Null. However, we present another reduction, where Null is not used, but instead
all the mappings in the result of a sub-pattern evaluation with the same domain have their
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own predicate. We believe that such construction has several advantages over the first one,
being simpler and intuitively more clear, so it has its own right to be given explicitly.

Proof (idea). First, we establish an equivalence between graph patterns and FOrdf . Once
it is done, the only remaining step is to project out the non-relevant variables and generate
the desired triples. We do it as follows.

Given a graph pattern P , for every X ⊆ var(P ) we construct a formula ϕPX with X as
free variables, such that a mapping µ is in JP KD for a dataset D if and only if the variable
assignment defined by µ satisfies ϕPdom(µ) in the FOrdf structure corresponding to D. Having
such a formula for each set of variables allows us to easily perform an inductive construction.
We illustrate it by the translation for patterns P of the form (P1 AND P2). Consider, for
every subset X of var(P ), the formula

ϕPX =
∨

X1⊆var(P1),X2⊆var(P2),X1∪X2=X

ϕP1
X1
∧ ϕP2

X2
,

where ϕPi

Xi
are the formulas constructed on the previous inductive step.

Finally, the ternary formula ϕq producing, for every dataset D, the set of triples which
correspond to the answer graph to the c-query q = CONSTRUCT H WHERE P over D
can be simply obtained from all ϕPX by means of disjunction, existential quantification and
checking that all the second arguments are IRIs. J

We illustrate this proof by means of the following example.

I Example 4. Recall the query qcons from Example 2. By simple inspection, we see that
the domain of every mapping in the evaluation of the graph pattern is either {?p, ?n, ?w}
or {?p, ?n, ?w, ?e}. Hence, we only need to construct a formula for each of these sets, as the
formulas corresponding to other subsets of var(qcons) will be contradictions. Following the
construction process, we obtain

ϕ{?p,?n,?w}(p, n, w) = Def(p, name, n) ∧Def(p,works_at, w) ∧ ¬∃e Def(p,mbox, e),
ϕ{?p,?n,?w,?e}(p, n, w, e) = Def(p, name, n) ∧Def(p,works_at, w) ∧Def(p,mbox, e),

where Def stays for Default for brevity and ‘?’ is omitted before variables to resemble
the conventional FO notation. Having these, we need to create the formula ϕqcons that
always outputs exactly the same graph as qcons. As discussed above, this formula can be
constructed by projecting out the non-relevant variables and checking that the triples are
well-formed. In partiular, we obtain

ϕqcons(x, y, z) = ¬isBlank(y) ∧(
∃p, n, w

[
ϕ{?p,?n,?w}(p, n, w) ∧ (x = n ∧ y = works_at ∧ z = w)

]
∨

∃p, n, w, e
[
ϕ{?p,?n,?w,?e}(p, n, w, e) ∧ (x = n ∧ y = mbox ∧ z = e)

] )
.

Our next result is the inclusion in the other direction.

I Lemma 5. The language FOrdf is contained in the language c-SPARQLbf .

Proof (idea). The proof of this lemma is an inductive construction that exploits the known
idea that the difference operation on mappings can be expressed in SPARQL by means of
the following application of optional matching [27]. Let

P1 MINUS P2 = (P1 OPT (P2 AND (?x1, ?x2, ?x3))) FILTER ¬bound(?x1),

ICDT’15



8 Expressiveness of CONSTRUCT Queries in SPARQL

where ?x1, ?x2 and ?x3 are mentioned neither in P1 nor in P2. It is readily verified that
JP1 MINUS P2KDG = JP1KDG \ JP2KDG for any dataset D and its graph G. The construction in
the proof is similar to the one in [2], where a reduction from non-recursive Datalog with
safe negation to SPARQL graph patterns is provided. Note, however, that the reduction
in that work is of limited applicability, because its translation function for answers is not
surjective. J

Having these lemmas at hand, we conclude the following theorem.

I Theorem 6. The languages c-SPARQLbf and FOrdf are equivalent in expressive power.

This result (and its proof) has a couple of immediate important consequences. First,
of them, obtained by straightforward inspection of the proofs of the previous lemmas, is
that the language c-SPARQLbf,gf of graph-free and blank-free c-queries which inputs are
RDF datasets with only default graphs, is also equivalent to a fragment of first order logic,
in particular, to the fragment of FOrdf which does not allow for the quaternary predicate
Named (we use FOternary

rdf to denote this fragment).

I Corollary 7. The languages c-SPARQLbf,gf and FOternary
rdf are equivalent in expressive

power.

Having this corollary and the preceding theorem, we may conclude, in particular, that
even if the syntax of manipulating graph names in SPARQL is very different from the syntax
for manipulating subjects, predicates and objects, semantically the values are treated very
similarly; moreover, in terms of expressivity, everything which can be done with the first,
can be done with the others, and vice versa.

The second important fact we can conclude from the established reductions is that the
blank-free construct fragment of SPARQL is composable. Formally, a query language Q with
the same input and answer sets I, and evaluation function eval is composable iff for every pair
q1, q2 ∈ Q of queries there is another query q ∈ Q such that eval(q1, eval(q2, I)) = eval(q, I)
for any input database I ∈ I. Of course, according to this definition, there is no sense to talk
about composability of the general language c-SPARQLbf of blank-free c-queries, because
it does not satisfy the condition that the sets of inputs and answers coincide: the former is
datasets and the latter is graphs. Contrary, graph-free c-queries from c-SPARQLbf,gf enjoy
such a property, so we may conclude composability of c-SPARQLbf,gf from composability of
FOternary

rdf .

I Corollary 8. The language c-SPARQLbf,gf is composable.

We conclude this section with the complexity of blank-free c-queries evaluation. The
lower bounds of the following result carries almost verbatim from the lower bounds in [27].
The upper bound is also very similar, the only additional initialization step is guessing the
values of all the variables which are not mentioned in the template.

I Proposition 9. The problem of checking whether a triple is in the answer to a c-query
from c-SPARQLbf over a dataset is PSPACE-complete in general and in NLOGSPACE if the
c-query is fixed.4 The bounds hold also for c-queries from c-SPARQLbf,gf .

Hence, the complexity of blank-free c-queries evaluation is the same as complexity of
evaluation of graph patterns, as well as of SPARQL queries with SELECT result form.

4 The last setting is known as data complexity of the problem (see [37]).
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4 OPT-free and Well-designed CONSTRUCT queries

The Semantic Web community has adopted the fragment of unions of well-designed graph
patterns as a good practice for writing SPARQL queries. This is mainly because enforcing
this property prevents users from writing graph patterns that do not agree with the open-
world nature of the Semantic Web (see [27] for discussion). Furthermore, restricting to
unions of well-designed graph patterns drops the (combined) complexity of evaluation from
PSPACE-complete to coNP-complete, and to Σp2-complete if projection is allowed. Also,
several optimization techniques have been developed for the evaluation of well-designed
queries (see [21,27]). In this section we study the properties of c-queries which graph patterns
are unions of well-designed patterns. We concentrate on the sublanguages of c-SPARQLbf,gf ,
leaving c-queries with blank nodes in templates for the next section, and restricting to graph-
free c-queries for brevity. Note, however, that all the relevant results in this section hold
also for c-queries with GRAPH-patterns.

We start the formal part of this section with the definition of well-designed graph pat-
terns, which are graph patterns with
1. no UNION-subpatterns,
2. only FILTER-subpatterns (P FILTERR) such that all variables in R are mentioned in P ,
3. only OPT-subpatterns (P1 OPT P2) such that all variables in P2 which appear outside

this subpattern are mentioned in P1.

If the graph pattern of a c-query is a union of well-designed patterns, then the c-query
is union-well-designed. In this section we also consider c-queries without OPT-subpatterns,
called opt-free. We will use superscripts uwd and of to specify sublanguages satisfying
these restrictions, like c-SPARQLuwd

bf,gf . Note, however, that even if opt-free c-queries are not
union-well-designed per se, they can be easily transformed to such by applying distributivity
rules to push UNION outside and techniques of [2] to enforce the condition on FILTER
subpatterns. Hence, c-SPARQLuwd

bf,gf contains c-SPARQLof
bf,gf . The next lemma shows that,

somehow surprisingly, the containment holds in other direction as well, which means that
well-designed OPT does not increase the expressive power of c-queries.

I Lemma 10. The language c-SPARQLuwd
bf,gf is contained in the language c-SPARQLof

bf,gf .

This result heavily relies on the fact that those mappings from the evaluation of the graph
pattern which have undefined variables from the template of c-query do not contribute to
the overall answer of the c-query. This is different from the evaluation of graph patterns by
themselves and SPARQL queries in SELECT result form, so such a result does not hold for
those query languages.

An important corollary from the proof of the previous lemma is that the translation
from a union-well-designed c-query to an opt-free c-query can be done very efficiently. This
means that, under c-queries, well-designed OPT is not just dispensable, but syntactic sugar.

I Corollary 11. Every c-query from c-SPARQLuwd
bf,gf can be transformed to an equivalent

c-query from c-SPARQLof
bf,gf in LOGSPACE.

We also relate the described languages to a fragment of first order logic, defined next.
A formula ϕ ∈ FOternary

rdf is ∃-positive if it is in the {∃,¬,∨} fragment of FO and every
occurrence of the predicate Default is under an even number of negations. The language
of all ∃-positive formulas is denoted ∃pos-FOternary

rdf .
The following result comes from a straightforward inspection of the reduction from

c-SPARQLbf to FOrdf (Lemma 3), as the only way to generate negation over the Default
predicate is by means of OPT patterns.
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10 Expressiveness of CONSTRUCT Queries in SPARQL

I Lemma 12. The language c-SPARQLof
bf,gf is contained in the language ∃pos-FOternary

rdf .

Quite similarly, an inspection of the proof of Lemma 5 shows that a transformation of
a formula in which the predicate Default appears only positively gives us a c-query which
does not use the OPT operator. Note, however, that this c-query can have negations in the
filter expressions.

I Lemma 13. The language ∃pos-FOternary
rdf is contained in the language c-SPARQLuwd

bf,gf .

Having the previous three lemmas at hand and knowing that c-SPARQLof
bf,gf is contained

in c-SPARQLuwd
bf,gf , we state the main theorem of this section.

I Theorem 14. The languages c-SPARQLuwd
bf,gf , c-SPARQLof

bf,gf and ∃pos-FO
ternary
rdf are equi-

valent in expressive power.

We obtain as a corollary is the composability of c-SPARQLuwd
bf,gf .

I Corollary 15. The language c-SPARQLuwd
bf,gf is composable.

We conclude this section with the complexity of evaluation of union-well-designed c-
queries. As with it expressive power, the complexity of evaluation for this fragment is lower
than the complexity of evaluation of SELECT queries with well-designed patterns, which is,
as already mentioned, Σp2-complete.

I Proposition 16. The problem of checking whether a triple is in the answer to a c-query
from c-SPARQLuwd

bf,gf over a dataset is NP-complete.

5 c-Queries with Blank Nodes in Templates

As mentioned, the specification of SPARQL allows for blank nodes in the definition of
templates in c-queries. The idea of these blank nodes is to create fresh placeholders in the
answer to a c-query which are local for every instantiation of the template.

I Example 17. Recall again the dataset from Figure 1. The c-query

CONSTRUCT {(_:b, manages, ?n), (?n, mbox, ?e)}
WHERE (
((?p, name, ?n) AND (?p, works_at, ?w))

OPT (?p, mbox, ?e)),

where _:b is a blank node, is intended to create a new blank node for each person, represent-
ing his manager. However, one must be cautious: the semantics of blank nodes in c-queries
creates one blank node per each of the solutions of the query, and thus two blank nodes are
created for Cristian, since there are two different solutions that assign Cristian to ?w.

In this section we study the properties of c-queries with blank nodes in templates. Sim-
ilarly to the previous section, we concentrate on c-SPARQLgf queries, that is, the c-queries
that do not use GRAPH operator and work, essentially, with RDF graphs but not datasets.
However, all relevant results of this section transfer easily to the full class of c-SPARQL
queries.

In order to understand the properties of c-SPARQLgf , we start with the study of its
expressive power. Since queries from this class can create values from scratch, it does not
make much sense to compare them with FO queries. Instead, we focus on the resemblance
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of the semantics of blank nodes in template of c-SPARQLgf queries with the one of nulls
in universal solutions for data exchange problems (see [4] for a good introduction to the
topic). In the following we show that this resemblance is not a coincidence, since all c-
patterns from c-SPARQLgf can be simulated by source-to-target dependencies in the context
of data exchange; that is, informally, we may look at evaluating c-patterns as exchanging
input graphs into the answer graphs. Furthermore, from our results on expressive power
we obtain that c-SPARQLgf captures the whole space of a certain family of source-to-target
dependencies, establishing, in essence, that these two formalisms are equivalent in expressive
power. One of the most important consequences of this result is non-composability of full
c-queries, in contrast to the blank-free c-queries from previous sections.

To formally state and prove these results we need to recall some terminology on data-
exchange. We begin by adapting the definitions of [4, 12] to our context. A dependency is
an expression of the form

∀x̄ ∀ȳ (ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)) , (1)

where x̄, ȳ, and z̄ are disjoint tuples of variables, while ϕ and ψ are first-order formulas. We
concentrate on the restricted class of such dependencies, called source-to-target dependencies
(or st-dependencies), which are the dependencies with ϕ being from FOternary

rdf (i.e., formulas
over Default and IsBlank relations), and ψ being a conjunction of atoms over a single
ternary relation OTriple. In data exchange terminology, sets of st-dependencies are usually
known as “mappings”, but since we already use this term for solutions of graph patterns,
we call them de-mappings, and denote DErdf the language of de-mappings.

The semantics of a de-mapping Σ can be defined as follows. A first-order structure over
OTriple and the set of terms T (called target) is a solution under Σ for a structure over
Default, IsBlank and T (called source), if every st-dependency from Σ holds in first-order
sense for the union of the source and the target.

In data exchange one is usually interested in computing universal solutions for a source
and a de-mapping Σ, that is, solutions with homomorphic images to all solutions. A typical
way to do so is by means of the chase procedure. In traditional data exchange settings,
this procedure instantiates each existential variable in z̄ with a fresh null value for every
application of a dependency. These nulls, essentially, have very similar semantics as blank
nodes in SPARQL settings, so we define chase directly in these terms.

Formally, for our purposes, the chase of a source S under a de-mapping Σ is a target,
constructed as follows. For every st-dependency of form (1) in Σ and every assignment π :
x̄∪ȳ → T, such that S |=adom ϕ(π(x̄), π(ȳ)), extend π to the variables z̄ by π(z) = bz for each
z from z̄, where bz is a fresh blank node from B; and add the factOTriple(π(v1), π(v2), π(v3))
for each conjunct OTriple(v1, v2, v3) in ψ to the target, as long as π(v2) is not a blank node.
The result of the chase is deterministic up to renaming of the introduced blank nodes, so
we can consider DErdf as a query language with answers being the results of the chase.

We are now ready to compare the expressive power of c-queries and de-mappings.

I Theorem 18. The languages c-SPARQLgf and DErdf are equivalent in expressive power.

It is known that de-mappings are not composable in the data exchange scenario [13]. We
can adapt this argument into our context to obtain the following important negative result.

I Proposition 19. The language c-SPARQLgf is not composable.

Having the expressive power of the general language established, next we refine the results
above for its sublanguage c-SPARQLuwd

gf of graph-free c-queries with union-well-designed
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12 Expressiveness of CONSTRUCT Queries in SPARQL

graph patterns. Since we have shown that such queries are equivalent to positive FO, it
would be reasonable to guess that c-SPARQLuwd

gf is equivalent to the query language given
by de-mappings where every dependency (1) in it has the formula ϕ being a conjunction
of atoms. This language is an important subclass of de-mappings, called GLAV-mappings
(see, e.g., [12, 20]), denoted by GLAVrdf in this paper.

Unfortunately, the following example shows that such a guess in not true.

I Example 20. Consider the c-query

CONSTRUCT {(_:b, p, ?x), (_:b, p, ?y)}
WHERE ((?x, p, a) OPT (?x, p, ?y)).

Note that here the same blank needs to be added to both of the triples in the template
whenever a mapping that bounds both ?x and ?y exists. However, we also need to account
for mappings that bind only ?x. Hence, this c-query is not equivalent to the de-mapping

∀x∀y
(
Default(x, p, a) ∧Default(x, p, y) → ∃z (OTriple(z, p, x) ∧OTriple(z, p, y))

)
,

∀x
(
Default(x, p, a) → ∃z OTriple(z, p, x)

)
,

because it creates additional blank nodes whenever the same pair of IRIs witnesses both
dependencies. In fact, one can show that this c-query is not equivalent to any query in
GLAVrdf .

In the above example both the chase of the de-mapping and the answer to the
CONSTRUCT query are homomorphically equivalent, in the sense of [18]. It can be
shown that this correspondence is not accidental, and an equivalence between GLAVrdf and
c-SPARQLwd

gf can be shown under this relaxed notion of equivalence between RDF graphs.
Nevertheless, the following containment holds for the equivalence defined in this paper.

I Proposition 21. The language GLAVrdf is contained in c-SPARQLwd
gf .

Regardless, the following corollary is a consequence of the proof of Proposition 19.

I Corollary 22. The language c-SPARQLwd
gf is not composable.

We conclude this section with the following observation. Example 20 is problematic as
we use the same blank in two triples in the CONSTRUCT template. If we disallow blanks,
we can show that c-SPARQLuwd

bf,gf is equivalent to the setting given by GAV-mappings, that
is, GLAV-mappings with empty tuple z̄ of existential variables in every st-dependency (1).

6 Adding Recursion to SPARQL

Recursion is an integral part of most of the practical query languages, such as SQL99 [34].
The very recent version 1.1 of SPARQL also allows for some form of recursion, namely,
property paths [38]. However, such recursion is of very limited form, in particular, it concen-
trates on (minor extensions of) two way regular path queries, a well known query language
for graph databases [6]. It is possible to partially overcome this restriction by exploiting
the power of entailment regimes like OWL 2 RL [15]. However, this formalism is also quite
limited and, more important, not part of SPARQL 1.1 itself. The aim of this section is to
develop syntax and semantics of a recursion operator in SPARQL and study its properties.

Before starting the formal development, we discuss what are the difficulties of introducing
recursion in SPARQL and motivate it by an example. In the majority of query languages
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prov:wa
sDerive
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prov:wasDerivedFrom

prov:wasDerivedFrom

prov:wasDerivedFrom

Figure 2 RDF graph storing provenance history of Wikipedia articles A, A2, B, B2, C and C2.

that allow for recursion, the semantics is defined in terms of a fixed point operator. However,
to have such operator one needs to be able to pose a query over the result of another query,
that is, the query language must have the same input and answer domains. Hence, it is not
possible to introduce recursion based on SPARQL queries with the SELECT result form:
its inputs are datasets, while its answers are sets of mappings. On the contrary, we can do
it for queries with CONSTRUCT result form, since they possess this property.

In this section we show how to apply our study of c-queries in the development of a
recursive operator for SPARQL. Our proposal resembles the syntax and semantics of such
an operator in the SQL-99 standard. As promised, we motivate it by means of an example.

I Example 23. Consider the RDF graph in Figure 2, where a piece of the provenance
information about the history of Wikipedia pages is depicted, according to PROV data
model ([25]). When inspecting this graph, one of the things we may be interested in is to
find all the articles that have been produced via a chain of revisions of an original article
A (note that one can actually generate two different articles from a single one, and both
of them would count as revisions). In SPARQL we propose to obtain all such articles by
means of the following query:

WITH RECURSIVE http://db.ing.puc.cl/temp AS
{

CONSTRUCT {(?x, temp:revision, A)}
WHERE

(?x, prov:wasDerivedFrom, A)
UNION
((?x, prov:wasDerivedFrom, ?y) AND

(http://db.ing.puc.cl/temp GRAPH (?y, temp:revision, A)))
}
SELECT ?x
WHERE (http://db.ing.puc.cl/temp GRAPH (?x, temp:revision, A)).

The intentional meaning of this query is as follows. The first line is the actual fixed point
operator: it specifies that the RDF graph http://db.ing.puc.cl/temp is a temporal
graph, which is iteratively computed until the least fixed point of the subsequent query
is reached. In this example, the iterated query in braces essentially states that all the triples
in http://db.ing.puc.cl/temp are of the form (X, temp:revision, A), where every X
is either a revision of A or linked to A via a chain of revisions of arbitrary length. Finally,
the SELECT part of the query in the end extracts the desired information from the computed
temporal graph http://db.ing.puc.cl/temp.
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14 Expressiveness of CONSTRUCT Queries in SPARQL

In this example the main query has SELECT result form, which is, in fact, not defined
in this paper. In the formal exposition below, all the queries (including subqueries) have
CONSTRUCT form for uniformity, but of course nothing prevents the main subquery in the
end to be of any other form. We also concentrate on blank-free c-queries and leave the study
of recursive c-queries with blank nodes in the templates for future work. Finally, for brevity
we assume that our datasets are also blank-free, since we can handle blank nodes in exactly
the same way as in the previous sections.

I Definition 24. A recursive c-query is either a blank-free c-query from c-SPARQLbf or an
expression of the form

WITH RECURSIVE t AS {q1} q2, (2)

where t is an IRI from I, q1 is a c-query from c-SPARQLbf , and q2 is a recursive c-query.
The set of all recursive c-queries is denoted rec-c-SPARQLbf .

We reinforce the idea that in this definition q1 is non-recursive, but q2 could be recursive
by itself, which allows us to compose recursive definitions.

Having the syntax at hand we define the semantic of recursive c-queries.

I Definition 25. Let D be a dataset, and assume that D = D′ ∪ {〈t, G〉}, that is, that
the named graph t exists in D (if t does not exists in D then let G = ∅). Then the
answer ans(q, D) of a recursive query q from rec-c-SPARQLbf of the form (2) is equal to
ans(q2, Dlfp), where Dlfp is the least fixed point of the sequence D0, D1, . . . , where

D0 = D′ ∪ {〈t, G〉};
Di+1 = D′ ∪ {〈t, G ∪ ans(q1, Di)〉}, for i ≥ 0.

Naturally, the above definition makes sense only when the sequence D0, D1, . . . has a
(finite) fixed point. In this case, we say that the answer ans(q, D) is well-defined. By our
results on expressive power, one way to guarantee this is to require the c-query q1 to be
a union of well-designed patterns, since this implies that the operator G ∪ ans(q, Di) is
monotone. However, we can partially relax this condition and concentrate on the following
fragment of rec-c-SPARQLbf . A recursive c-query q is semi-positive iff it is either a simple
c-query, or it is of the form (2), such that q2 is semi-positive and every subpattern P in q1
satisfies the following conditions:
1. if P is (g GRAPH P ′) with g ∈ V ∪ {t} then P ′ is well-designed, and
2. if P is (P1 OPT P2) then all subpatterns (g GRAPH P ′) of P2 are such that g ∈ I \ {t}.
The language of all semi-positive recursive c-queries is denoted by rec-c-SPARQLsemi

bf . They
always have fixed points, as desired.

I Proposition 26. For every recursive c-query q in rec-c-SPARQLsemi
bf and dataset D the

answer ans(q, D) is well-defined.

Having this language defined, next we study its expressive power and, in particular, show
that it is equivalent to a class of Datalog programs that we call Datalog with rule-by-rule
stratification (see [1] for a good introduction on Datalog).

Let V be a vocabulary of predicates, which does not contain the predicates Default,
Named (which are called extensional predicates) and OTriple (which is called answer pre-
dicate). A rule is an expression of the form

Pr(x̄)← ϕ(x̄, ȳ),
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where x̄ and ȳ are tuples of variables, Pr is a predicate from V ∪{OTriple}, and ϕ is a con-
junction of positive and negated atoms (considering equalities) over V ∪{Default,Named}
and IRIs from I as constants, such that every variable from x̄ appears in ϕ. In such a rule,
Pr(x̄) is the head and ϕ(x̄, ȳ) is the body.

A Datalog program with rule-by-rule stratification is a sequence Π1, . . . ,Πn of sets of rules
for which there exist a set V = {Pr1, . . . , P rn} such that the following holds:
1. the head of each rule in Πi is the predicate Pri;
2. each Πi does not mention any Prj with j > i;
3. each Πi does not mention Pri in negated atoms.

We adopt the convention that predicate Prn is the answer predicate of these programs,
that is, Prn = OTriple. The language of all such Datalog programs is denoted Datalogrbr

rdf .
The semantics of these programs for first order structures over predicates Default and
Named and constants I is the standard fixed point semantics (see, e.g., [1] for definition).
We have the following result which links recursive SPARQL with this known formalism.

I Theorem 27. The languages rec-c-SPARQLsemi
bf and Datalogrbr

rdf are equivalent in expressive
power.

We conclude this section with some discussion on the relationship of the semi-positive
recursive SPARQL with other known formalisms. First, from the last theorem and the results
of [10] we may conclude that rec-c-SPARQLsemi

bf contains first order logic with transitive
closure. Second, it is a technicality to check that this query formalism contains SPARQL 1.1
property paths [38], c-query answering over OWL 2 RL entailment regime [15], navigational
SPARQL [28], as well as GraphLog [10] and TriAL [22] query languages. Also, it is possible
to show that none of these formalisms can express all rec-c-SPARQLsemi

bf queries, that is, the
containment is strict in all the cases. Hence, we may conclude that rec-c-SPARQLsemi

bf is a
clean unification of all these languages, and, as we believe, it deserves a further dedicated
studies, both theoretical and applied.

7 Conclusions and Future Work

We have presented a thorough study of the expressive power and complexity of evaluation
of SPARQL queries that output RDF graphs, that is, queries of CONSTRUCT form. By
studying these queries we provide a strong bridge between SPARQL and well-developed
frameworks like first-order logic and Datalog. In particular, we give a clean proof of the
equivalence between CONSTRUCT queries and first-order logic, we characterize well-designed
CONSTRUCT queries by a reduction into a positive fragment of first-order logic, and present
a translation between the full fragment of CONSTRUCT queries and a specific setting for
data exchange. Finally, having a good understanding of these queries we are able to present a
proposal for extending SPARQL with recursion, which we prove to be equivalent in expressive
power to Datalog with rule-by-rule stratification.

Queries of CONSTRUCT form are an important fragment of SPARQL provided they are
the standard language to query RDF producing RDF as output. Query languages with this
property have several advantages, like allowing for composability and recursion. The results
in this paper present a first formal study of this fragment, and we believe the Semantic Web
community will take good advantage of them. As future work we would like to extend the
presented results to advance in our understanding of more expressive versions of SPARQL.
There is still a good deal of research to be done in characterizing CONSTRUCT queries
allowing for blank nodes in the template, as well as studying queries allowing for the GRAPH
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operator. Moreover, we think our results can be extended to increase our understanding of
the full-featured SPARQL, for example the expressive power of the well-designed fragment.
It is also left as future work to implement the defined the recursive fragment, as well as
developing and applying techniques for its optimization.
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APPENDIX: Proofs and Intermediate Results

Proof of Lemma 3
The definition of transI and transO are straightforward, so we concentrate on the translation
transQ for queries.

We assume an arbitrary order ≤ in V. Given X ⊆ V, we denote by X̄ the tuple
containing the variables in X ordered under ≤. Furthermore, for every mapping µ, if
X ⊆ dom(µ) we denote by µ(X̄) the tuple that results from replacing every component
of X̄ by its image under µ. We abuse notation by indistinctly using FO and SPARQL
variables.

I Lemma 28. For every graph pattern P there is a set of formulae {ϕX(X̄)}PX⊆var(P )
such that, for every mapping µ and dataset D, it is the case that µ ∈ JP KD if and only if
transI(D) |= ϕPX(µ(X̄)) with X = dom(µ).

Proof. Let P be a SPARQL pattern. We proceed by induction on the structure of P .
Let P be a triple pattern. Since for every dataset D and mapping µ ∈ JP KD we have
var(P ) = dom(µ), define ϕPX(X̄) as a contradiction for every X ( var(P ). For X =
var(P ) define ϕPX(X̄) as Default(P ), where P is considered as a first order tuple. As
usual, we are assuming that every IRI can be referred to as a constant. It readily follows
that a mapping µ belongs to JP KG if and only if transI(D) |= ϕPdom(µ)(µ(X̄)).
Let P = P1 UNION P2. For every X ⊆ var(P ) define the formula ϕPX(X̄) as

ϕPX(X̄) = ϕP1
X (X̄) ∨ ϕP2

X (X̄).

Let µ be a mapping and X = dom(µ). By semantics, µ ∈ JP KD if and only if µ ∈
JP1KD ∪ JP2KD. Hence, by hypothesis we have µ ∈ JP KD if and only if transI(D) |=
ϕP1
X (µ(X̄)) or transI(D) |= ϕP2

X (µ(X̄)), which is the semantic definition of transI(D) |=
ϕP1
X (µ(X̄)) ∨ ϕP2

X (µ(X̄)).
Let P = P1 AND P2. For every X ⊆ var(P ) define the formula ϕPX(X̄) as

ϕPX(X̄) =
∨

X1∪X2=X

[
ϕP1
X1

(X̄1) ∧ ϕP2
X2

(X̄2)
]
.

Let D and µ be a dataset and a mapping, respectively, and let X = dom(µ). If µ
belongs to JP KD, then there are two compatible mappings µ1 ∈ JP1KD and µ2 ∈ JP2KD

such that µ = µ1 ∪ µ2. Let X1 = dom(µ1) and X2 = dom(µ2). By hypothesis, we
know that transI(D) |= ϕP1

X1
(µ1(X̄1)) and transI(D) |= ϕP2

X2
(µ2(X̄2)) which is equivalent

to transI(D) |= ϕP1
X1

(µ1(X̄1)) ∧ ϕP2
X2

(µ2(X̄2)). As X1 ∪ X2 = X we have transI(D) |=
ϕPX(µ(X̄)).
For the converse, if transI(D) |= ϕPdom(µ)(µ(X̄)) then there are two sets X1 and X2 such
that X1∪X2 = dom(µ) and both transI(D) |= ϕP1

X1
(µ(X̄1)) and transI(D) |= ϕP1

X2
(µ(X̄2))

hold. Define µi as µ restricted to Xi (i ∈ {1, 2}). It follows from the hypothesis that
µ1 ∈ JP1KD and µ2 ∈ JP2KD. Since µ1 and µ2 are compatible and µ = µ1 ∪ µ2, this
implies µ ∈ JP KD.
Let P = P1 OPT P2. For every X ⊆ var(P ) define the formula ϕPX(X̄) as

ϕPX(X̄) = ϕP1ANDP2
X (X̄) ∨ ϕPMINUS,X(X̄)

Where

ϕPMINUS,X(X̄) =

ϕP1
X (X̄) ∧ ¬

∨
X′⊆var(P2)

∃(X ′ \X)ϕP2
X′(X̄ ′)

 .
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Let D and µ be a dataset and a mapping, respectively, and let X = dom(µ). By
definition, µ belongs to JP1 AND P2KD or to JP1KD \ JP2KD. In the first case, we know
that transI(D) |= ϕP1ANDP2

X (µ(X̄)). Next we show that if µ ∈ JP1KD \ JP2KD then
transI(D) |= ϕPMINUS,X(µ(X̄)). As µ ∈ JP1KD, we know transI(D) |= ϕP1

X (µ(X̄)), so we
only need to prove that there is no set X ′ ⊆ var(P2) such that transI(D) |= ϕP2

X′(µ′(X̄ ′))
for some µ′ compatible with µ. But if this was the case then µ′ would be in JP2KD, which
contradicts the fact that µ ∈ JP1KD \ JP2KD (since µ′ and µ are compatible).
For the converse, assume transI(D) |= ϕPX(µ(X̄)) where X = dom(µ). If transI(D) |=
ϕP1ANDP2
X (µ(X̄)), we know by the AND case that µ ∈ JP1 AND P2KD and hence µ ∈

JP KD. The remaining case is when transI(D) |= ϕPMINUS,X(µ(X̄)). If this is the case,
by hypothesis it readily follows that µ ∈ JP1KD. Now we have to prove that µ is not
compatible with any mapping in JP2KD. Proceed now by contrapositive. Assume there
is a mapping µ′ ∈ JP2KD compatible with µ. We know transI(D) |= ϕP2

X′(µ′(X̄ ′)) where
X ′ = dom(µ′). Since µ and µ′ are compatible, the assignments in µ′ can be obtained by
extending those in µ, and thus transI(D) would not satisfy ϕPMINUS,X(µ(X̄)).
Let P = P1 FILTERR. For every X ⊆ var(P ) define ϕPX(X̄) as

ϕPX(X̄) = ϕP1
X (X̄) ∧ ϕR(X̄)

where ϕR(X̄) is inductively defined as follows:
If R is an equality and var(R) 6⊆ X, then ϕR = False.
If R is an equality and var(R) ⊆ X, then ϕR = R.
If R = isBlank(x) then ϕR = Blank(x).
If R = bound(x) and x 6∈ X then ϕR = False.
If R = bound(x) and x ∈ X then ϕR = True.
If R is of the form ¬R1, R1 ∧R2, or R1 ∨R2 for filter conditions R1 and R2, then ϕR
is the corresponding boolean combination of ϕR1 and ϕR2 .

Let D and µ be a dataset and a mapping, respectively, and let X = dom(µ). It is easy
to see from the definition of ϕR that transI(D) |= ϕR(µ(X̄)) if and only if µ |= R. By
hypothesis we have µ ∈ JP1KD if and only if transI(D) |= ϕP1

X (µ(X̄)), and hence it readily
follows that transI(D) |= ϕP1

X (µ(X̄)) ∧ ϕR(X̄) if and only if µ ∈ JP1KD and µ |= R.
Let P = g GRAPH P1. We distinguish two cases: g ∈ V or g ∈ I. If g ∈ I, for
every X ⊆ var(P ) define ϕPX(X̄) as the result of replacing in ϕP1

X (X̄) every occurence of
Default(t1, t2, t3) by Named(g, t1, t2, t3). In the other case, if g ∈ V, we know that g
will be in the domain of every mapping in JP KD. Hence, for every X ⊆ var(P ) define
ϕPX∪{g} as the result of replacing in ϕP1

X (X̄) every occurence of Default(t1, t2, t3) by
Named(g, t1, t2, t3). The result readily follows from the induction hypothesis and the
semantic definition of the GRAPH operator.

J

Now we are ready to prove our main result. Let

Q = CONSTRUCT {t1, . . . , tn} WHERE P,

and let {ϕPX(X̄)}X⊆var(P ) be the formulas obtained by the previous lemma. Let x, y, z be
three variables not mentioned in any ϕPX . We construct a formula ϕQ(x, y, z) which is the
exact translation of Q, this is, for every dataset D, ans(Q,D) is the set of triples (a, b, c)
such that transI(D) |= ϕQ(a, b, c). We first do this separately for every ti, and then gather
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them by means of disjunction. Let t ∈ {t1, . . . , tn}. We denote the i-th entry of t by t[i].
For every X ⊆ var(P ) define the formula ψPX,t as

ψPX,t(x, y, z) =
{
∃X(ϕPX ∧ x = t[1] ∧ y = t[2] ∧ z = t[3]) if var(t) ⊆ X
x 6= x otherwise.

It is easy to see that this formula outputs every triple generated by t and a mapping which
domain is X, including those containing blank nodes as properties. Finally, we construct
the promised formula as

ϕq(x, y, z) = ¬isBlank(y) ∧
∨

t∈{t1...,tn}

∨
X⊆var(P )

ψPX,t.

This formula outputs every well-formed triple in Q generated by some t and some mapping
in the answer to P , which concludes our proof.

Proof of Lemma 5
The definition of transI and transO are straightforward, so we concentrate on the translation
transQ for queries. We first inductively define a translation from formulas ϕ, which satisfy
all the conditions of FOrdf , except, maybe, that it can be of arbitrary arity, to graph patterns
Pϕ. Since IsBlank(b) holds for and only for b in B, we may assume that ϕ does not contain
atoms of the form IsBlank(u) for u ∈ T. Having

ADom1(?x) = ((?x, ?x2
1, ?x3

1) UNION (?x1
2, ?x, ?x3

2) UNION (?x1
3, ?x2

3, ?x) UNION
(?x GRAPH (?x2

4, ?x3
4, ?x4

4)) UNION (?x1
5 GRAPH (?x, ?x3

5, ?x4
5)) UNION

(?x1
6 GRAPH (?x2

6, ?x, ?x4
6)) UNION (?x1

7 GRAPH (?x2
7, ?x3

7, ?x4
7)))

for fresh variables ?xji , and ADom(?x1, . . . , ?xn) = (?y1, ?y2, ?y3) AND ADom1(?x1) AND
. . . ANDADom1(?xn) for fresh ?yi, we define
1. if ϕ is Default(t1, t2, t3) then Pϕ = (t1, t2, t3);
2. if ϕ is Named(t, t1, t2, t3) then Pϕ = (t GRAPH (t1, t2, t3));
3. if ϕ is IsBlank(?x) then Pϕ = (ADom(?x) FILTER isBlank(?x));
4. if ϕ is ?x =?y then Pϕ = (ADom(?x, ?y) FILTER ?x =?y);
5. if ϕ is ?x = u then Pϕ = (ADom(?x) FILTER ?x = u);
6. if ϕ is ϕ1 ∧ ϕ2 then Pϕ = (Pϕ1 AND Pϕ2);
7. if ϕ is ϕ1 ∨ ϕ2 then Pϕ = (Pϕ1 UNION Pϕ2);
8. if ϕ is ¬ϕ′ then Pϕ = (ADom(free(ϕ′)) MINUS Pϕ′);
9. if ϕ is ∃?x ϕ′ then Pϕ = Pϕ′ ,
where free(ϕ) is the set of free variables of ϕ. Then we define transQ(ϕ) for an FOrdf formula
ϕ(?x, ?y, ?z) as CONSTRUCT {(?x, ?y, ?z)}WHERE (Pϕ FILTER ¬isBlank(?y)).

Proof of Proposition 9
The PSPACE lower bound follows directly from the PSPACE lower bound for graph patterns
using only AND, FILTER and OPT presented in [27]. In that reduction, given a quantified
boolean formula ϕ they construct a SPARQL graph pattern Pϕ, an RDF graph Gϕ and
a mapping µ such that ϕ is valid if and only if µ ∈ JPϕKGϕ

. The key facts are that the
mapping µ is independent of ϕ and, moreover, if µ ∈ JPϕKGϕ

then µ is the only mapping in
JPϕKGϕ

assigning µ(?x) to ?x. Hence, given a quantified boolean formula ϕ, we create the
c-query

Qϕ = CONSTRUCT {(?x, ?x, ?x)} WHERE Pϕ
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22 Expressiveness of CONSTRUCT Queries in SPARQL

where ?x ∈ dom(µ). Then it readily follows that ϕ is valid if and only if the triple
(µ(?x), µ(?x), µ(?x)) belongs to ans(Qϕ, 〈Gϕ〉).

For the PSPACE upper bound, we extend the well-known fact that evaluation of SPARQL
graph patterns is in PSPACE. Let T be a triple, Q = CONSTRUCT H WHERE P a c-query
in c-SPARQLbf and D a dataset. To know if T belongs to ans(Q,D), we simply choose a
triple t ∈ H and a mapping µ such that µ(t) = T . Then, we verify that µ ∈ JP KD. All of
the previous steps can be done in NPSPACE and hence in PSPACE [27].

For the NLOGSPACE upper bound let Q = CONSTRUCT H WHERE P be a fixed c-
query. Given an RDF cataset D and a triple T , to know if T ∈ ans(Q,D) we choose a triple
t ∈ H and a mapping µ such that µ(t) = T and then we check if µ ∈ JP KD. Since the query
Q is fixed, all the previous steps can be done in NLOGSPACE [27].

Proof of Lemma 10
We consider every pattern in this proof to be GRAPH-free. We need to prove that for every
c-query Q in c-SPARQLuwd

bf,gf there is a c-query in c-SPARQLof
bf,gf which is equivalent to Q.

To do so, we recall some definitions from [27]. Given two graph patterns P and P ′, P ′ is
said to be a direct reduction of P if P ′ can be obtained from P by replacing a subformula
P1 OPT P2 by P1. The reflexive and transitive closure of this relation is denoted by �. For
every pattern P , and(P ) is the result of replacing in P every OPT by AND. Given a pattern
P and an RDF graph G, a mapping µ is said to be a partial solution to P over G if there
is a graph pattern P ′ such that P ′ � P and µ ∈ Jand(P ′)KG.

We need to introduce some further notation. For every pattern P , define Pof as the result
of replacing in P every subpattern P1 OPT P2 by P1 UNION (P1 AND P2).

I Proposition 29. For every RDF graph G and graph pattern P , JPofKG is the set of partial
solutions to P over G.

Proof. We start by showing that every partial solution to P over G is in JPofKG. Let µ be
a partial solution to P over G. We proceed by induction over P .

If P = P1 UNION P2, then without loss of generality we can assume that µ is a partial
solution to P1 over G. Then µ belongs to JP1ofKG, and hence to JP1of UNION P2ofKG =
JPofKG.
If P = P1 AND P2, then there are two mappings µ1 and µ2, with µ = µ1 ∪ µ2, which are
partial solutions to P1 and to P2 over G, respectively. By hypothesis, µ1 ∈ JP1ofKG and
µ2 ∈ JP2ofKG. Hence, µ ∈ JP1of AND P2ofKG = JPofKG.
If P = P1 FILTERR, then µ is a partial solution to P1 which satisfies R. Hence, µ belongs
to JP1of FILTERRKG = JPofKG.
If P = P1 OPT P2, either µ is a partial solution to P1 over G or µ is a partial solution
to P1 AND P2 over G. Then, we know by hypothesis that µ ∈ JP1ofKG or µ ∈ JP1of AND
P2ofKG. In either case we have µ ∈ JP1of UNION (P1of AND P2of)KG = JPofKG.

Next we prove that every mapping µ ∈ JPofKG is a partial solution to P over G. Again
we proceed by induction on P . If P is a triple, UNION-, AND- or FILTER-pattern, the result
readily follows by the induction hypothesis as in the previous case. If P = P1 OPT P2, then
we know that Pof = P1of UNION (P1of AND P2of). Therefore, µ may either be in JP1ofKG or
in JP1of ANDP2ofKG. Hence, we know µ is a partial result to P1 over G or to P1 ANDP2 over
G. In both cases, by definition it is a partial solution to P1 OPT P2 over G.

J
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We recall a proposition from [27], for which we need the next definition. Given two
mappings µ and µ′, µ′ is said to be subsumed by µ if both dom(µ′) ⊆ dom(µ) and µ1 ∼ µ2
hold. Given a set of mappings M , a mapping µ ∈M is said to be maximal (in M) if there
is no µ′ ∈M \ {µ} subsuming µ.

I Proposition 30 (Pérez, Arenas, Gutiérrez [27]). Given a UNION-free well-designed pattern
P and an RDF graph G, for every mapping µ it is the case that µ ∈ JP KG if and only if µ
is a maximal partial solution for P over G.

I Lemma 31. For every well-designed pattern P and every RDF graph G, the maximal
mappings in JP KG are the same as the maximal mappings in JPofKG.

Proof. Let µ be a maximal mapping in JP KG. In particular it is a maximal mapping in
JP ′KG for some UNION-free disjunct P ′ of P . By Proposition 30, µ is a partial solution to
P ′ over G, and hence it is a partial solution to P over G. We conclude by Proposition 29
that µ ∈ JPofKG.

Let µ be a maximal mapping in JPofKG. Since JPofKG is the set of partial solutions to P
over G (Proposition 29), we know µ is a maximal partial solution to P over G. Hence, it must
be a maximal partial solution to P ′ over G for some disjunct P ′ of P . By Proposition 30
we conclude that µ ∈ JP ′KG and hence µ ∈ JP KG. J

Now we have all the necessary ingredients to prove the main result. Let
Q = CONSTRUCT H WHERE P be a c-query in c-SPARQLuwd

bf,gf . Define Qof as
CONSTRUCT H WHERE Pof . We prove that for every rdf graph G it is the case that
ans(Q,G) = ans(Qof , G).

Let T be a triple in ans(Qof , G). We know there is a mapping µ ∈ JPofKG and a triple
t ∈ H such that (1) var(t) ⊆ dom(µ), (2) µ(t) = T , and (3) µ(t) does not contain a blank
node as second component. It is easy to see that every mapping µ′ subsuming µ satisfies
the previous three properties. But by Lemma 31 there must be a mapping µ′ subsuming µ
in µ ∈ JP KG, and hence T = µ′(t) ∈ ans(Q,G). The other direction is obtained by the exact
same analysis but changing ans(Q,G) by ans(Qof , G).

Proof of Proposition 16
Since we can translate between c-SPARQLuwd

bf,gf and c-SPARQLof
bf,gf in LOGSPACE, we prove

the property for c-queries in c-SPARQLof
bf,gf . We rely on the well-known fact that the problem

of, given an RDF dataset D, a mapping µ and an OPT-free graph pattern P , determiing
if µ ∈ JP KD, is NP-complete [26]. Let T be a triple, Q = CONSTRUCT H WHERE P a
c-query in c-SPARQLof

bf,gf and D a dataset. To know if T belongs to ans(Q,D), we simply
choose a triple t ∈ H and a mapping µ such that µ(t) = T . Then, we verify that µ ∈ JP KD.
By the previously mentioned result, all of the previous steps can be done in NP.

For the lower bound, we inspect the reduction used in [26]. In that reduction, given a
propositional formula ϕ they construct an OPT-free SPARQL graph pattern Pϕ, an RDF
graph Gϕ and a mapping µϕ such that ϕ is satisfiable if and only if µϕ ∈ JPϕKGϕ

. The key
fact is that if µϕ ∈ JP KGϕ

then JP KGϕ
= {µϕ}, and if µϕ 6∈ JP KGϕ

then JP KGϕ
= ∅. Hence,

given a propositional formula ϕ, we create the c-query

Qϕ = CONSTRUCT {(?x, ?x, ?x)} WHERE Pϕ

where ?x ∈ dom(µϕ). Then it readily follows that ϕ is satisfiable if and only if the triple
(µϕ(?x), µϕ(?x), µϕ(?x)) belongs to ans(Qϕ, 〈Gϕ〉).
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Proof of Proposition 18
Assume we have a query of form C = CONSTRUCT {t1, . . . , tn}WHEREP . For each V =
{x1, . . . , xn} ⊆ var(P ), let var(P ) \ V = {y1, . . . , ym}, and TV all triples mentioning only
blanks and variables from V . Furthermore, let CV be the following pattern:

CV = CONSTRUCT TV WHERE P FILTER
?x1 =?x1 AND · · ·?xn =?xn ANDNotBound(y1) AND · · · ANDNotBound(ym) (3)

We now claim

I Lemma 32. For all RDF graph G, the graph ans(C,G) is equivalent to the union of
{ans(CV , G) | V ⊆ var(P )}, up to renaming of blanks

Proof. If a triple (a, b, c) belongs to ans(C,G), then there is a mapping µ ∈ JP KG and a
triple t ∈ {t1, . . . , tn} such that var(t) ⊆ dom(µ) and µ(t) = (a, b, c). Let V = dom(µ).
Notice that t must belong to TV , and µ satisfies the filter condition of CV . Hence, (a, b, c)
also belongs to ans(CV , G).

The other direction is analogous: every mapping µ witnesses at most one such CV , and
all mappings witnessing any of the CV ’s must also witness C. J

For each such CV , construct FO formula ϕPV (V̄ ) as shown in Lemma 3. Furthermore, let
fV : B∪V→ V be a function that is the identity on V and that replaces each blank in TV
for a fresh variable in V.

Let φTV
be the conjunction of Default(f(a), f(b), f(c)) for each triple (a, b, c) in TV .

Then Σ contains, for each V = {x1, . . . , xn} ⊆ var(P ), the dependency

∀x1 · · · ∀xn
(
ϕPV (X̄)→ ∃z̄φTV

)
,

where z̄ is the tuple of all variables created by fV .
From Lemma 32 and Lemma 3, it is easy to see that ans(C,G) is equivalent to the chase

of Σ over G, for every RDF graph G.
For the other direction, we assume that no dependency in Σ has any variable in common.

From each dependency d in Σ of form

∀x̄ ∀ȳ (ϕ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)) , (4)

We create a c-query Cd as follows. Replace each variable z in ψ for a fresh blank node,
and let Tψ be a set of triples containing a triple (a, b, c) for each conjunct OTriple(a, b, c)
of ψ. Moreover, let Pφ be the pattern corresponding to φ, albeit without the existential
quantification of the variables, as described in the proof of Lemma 5. Then note that from
Lemma 5 and the definition of chase, the query CONSTRUCT TψWHERE Pφ is actually
equivalent to the mapping Σd containing only d.

Once again from Lemma 32 it is easy to see that the union of all graphs in {ans(Cd, G) |
d ∈ Σ} corresponds to the chase of Σ over G, as we have shown that each Cd actually
corresponds to the chase of d over G. Since none of these Cds have variables in common, we
can merge all of them into a single pattern without altering their semantics.

Proof of Proposition 19
From Proposition 18 and a simple observation of the chase algorithm, we know that the
number of triples that contain a particular blank node in the result of a c-pattern C over a
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graph G does not depend on the size of the graph, but rather on the amount of triples in
the CONSTRUCT statement of C.

However, the following example shows construct patterns C1 and C2 and a family of RDF
graphs {Gi | i > 1} so that the number of triples connected to a blank node in C2(C1(Gi))
increases as we increase i. We should note that the example is heavily inspired in a classical
result about composition of st-tgds in data exchange ([12]).

C-pattern C1 is

CONSTRUCT{(?n, course, ?c), (?n, student, _:s)}
WHERE {(?n, takes, ?c)}

And C2 is

CONSTRUCT{(?s, enrollment, ?c)}
WHERE{(?n, course, ?s) AND (?n, student, ?c)}

Intuitively, C1 assigns, for each course ?n that the student takes, a new identifier for this
student. Then, afterwards, C2 takes the RDF graph constructed by C1, and links each of
the identifiers created for this student with each of the courses he’s taking.

Thus, if one defines Gi as the RDF graph containing triples
{(A, takes,B1), . . . , (A, takes,Bi)}, then C1(Gi) is the graph containing
{(A, course,B1), . . . , (A, course,Bi)} ∪ {(A, student,_ : n1), . . . , (A, student,_ : ni)}.
A simple inspection then reveals that each such blank _ : nj forms part of triples
{(B1, enrollment,_ : nj), . . . , (Bi, enrollment,_ : nj)} in the graph C2(C1(Gi)).

Clearly, it is not possible to build a set of st-tgds Σ that when chasing over Gi produces
precisely C2(C1(Gi)). The proof then follows from Proposition 18.

Proof of Proposition 21
Follows from Theorem 14 and an inspection of the proof of Proposition 18, because the
constructed mapping is in this case an OPT-free mapping.

Proof of Proposition 26
For the proof it suffices to show the following.

I Lemma 33. Let D and D′ be two datasets that differ only on the graph named T , and
if 〈T,G〉 belongs to D and 〈T,G′〉 belongs to D′, then T ⊆ T ′. Moreover, consider a semi-
positive recursive query of form WITH RECURSIVE T AS {q1}q2. Then ans((, q)1, D) ⊆
ans((, q)1, D

′).

The proof of this lemma follows immediately from the proof of Lemma 5, since the semi-
positiveness of q1 guarantees that T appears only positively in the translation of q1 over
FOrdf , and that no predicate Named(a, b, c, d) appears negated if a is not a constant.

This establishes again that the operator that we are considering is monotone, and there-
fore a unique fixed point exists (c.f. [1]).

Proof of Theorem 27
Let Π = {Π1, . . . ,Πn} be a program in Datalogrbr

rdf .
For each rule R of Πi of form

Pi(x̄i)← ∗Ri1(z̄i1), . . . , ∗Rim(z̄im)
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where each ∗Rj(z̄j) is either P`, with ` ≤ i, or an EDB of the program, or the negation of a
P` with ` < i; let T1, . . . , Tn be fresh IRIs, and let τ(R) be the result of replacing each IDB
of form P`(z̄) for Named(T`, z̄) in both the body and head of Pi.

Construct a c-queryQΠi whose set of mappings corresponds to the union of query φ(x̄i) =
∗Ri1(z̄i1) ∧ · · · ∧ ∗Rim(z̄im), according to Lemma 5, of all such τ(R), for each rule in Πi.

Further, note that such query can be actually stated as query that satisfies the conditions
of semi-positiveness, as it does not use predicates Named(a, b, c, d) where a is a variable, and
all instances of Named(Ti, z̄) appear positive, meaning that negation shall not be needed
for anything mentioning Named(Ti, z̄).

By induction on the length of the proof it is immediate to show that the graph computed
by the query

WITH RECURSIVET1 AS{CONSTRUCT(x̄1) FROMQP1}
{WITH RECURSIVET2 AS{CONSTRUCT(x̄1) FROMQP1}

{· · · {WITH RECURSIVETn AS{QPn
}CONSTRUCT(x̄) FROM NAMEDTn} · · · }}

(5)

corresponds to the answer of the rule Pn.
For the other direction, consider a semi-positive recursive SPARQL of form 5. We are

assuming that the objective is to output the constructed graph, but without loss of generality
the following argument can be extended to a query of the above form where the final non
recursive query is any c-query.

We then have that none of QP1 , . . . , QPn
is recursive, and that they satisfy the restric-

tions of semi-positiveness. From the proof of Lemma 5 we have that each of QPi can
be transformed into an FO query over FOrdf that is of the following form: no predicate
Named(a, b, c, d), where a is a variable or a Ti, appears under negation.

In order to convert this into a datalog program with rule-by-rule stratified negation,
there are some technicalities:

First, every instance of Named(a, b, c, d), where a is a variable, must be transformed into
the disjunction of Named(a, b, c, d)∧a 6= T1∧· · ·∧Tn and Named(a, b, c, d)∧a = Ti, for each
Ti. Afterwards we can replace all instances of Named(a, b, c, d)∧a = Ti or Named(Ti, b, c, d)
for a new predicate Ti(b, c, d).

Now converting the resulting FO queries into Datalog (as done, for instance, in [1]), yields
that their negation is stratified, because no Named(Ti, b, c, d) or Named(a, b, c, d), with a a
variable, was under the scope of a negation in the previous query (this is guaranteed by the
semi-positiveness). The union of each of the programs gives us a datalog program that has
rule-by-rule stratified negation, and is equivalent to the original query.
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