
Containment of Data Graph Queries

Egor V. Kostylev
University of Edinburgh

ekostyle@inf.ed.ac.uk

Juan L. Reutter
PUC Chile

jreutter@ing.puc.cl

Domagoj Vrgoč
University of Edinburgh

domagoj.vrgoc@ed.ac.uk

ABSTRACT

The graph database model is currently one of the most pop-

ular paradigms for storing data, used in applications such

as social networks, biological databases and the Semantic

Web. Despite the popularity of this model, the develop-

ment of graph database management systems is still in its

infancy, and there are several fundamental issues regarding

graph databases that are not fully understood. Indeed, while

graph query languages that concentrate on topological prop-

erties are now well developed, not much is known about lan-

guages that can query both the topology of graphs and their

underlying data.

Our goal is to conduct a detailed study of static analysis

problems for such languages. In this paper we consider the

containment problem for several recently proposed classes

of queries that manipulate both topology and data: regu-

lar queries with memory, regular queries with data tests,

and graph XPath. Our results show that the problem is in

general undecidable for all of these classes. However, we

find natural fragments that enjoy much better static analy-

sis properties: the containment problem is decidable, and its

computational complexity ranges from PSPACE-complete

to EXPSPACE-complete. We also propose several exten-

sions of the classes and study containment for them.

1. INTRODUCTION

Managing graph-structured data is one of the most active

topics in the database community these days. Although first

introduced in the eighties [15, 14], the model has recently

gained popularity due to a high demand from services that

find the relational model too restrictive, such as Social Net-

works, Semantic Web, crime detection networks, biological

databases and many others. There are several vendors offer-

ing graph database systems [32, 17, 21] and a growing body

of literature on the subject (for a survey see e.g. [2, 7, 40]).

In such applications the data is usually modelled as a

graph, with each node describing one entity in the database,

for example a user in a social network, and the edges of the

graph representing various connections between nodes, such

as friends in a social network, supervisor connection in a

database modelling the structure of a company, etc. Nodes

can have multiple types of connections, so usually each edge

in the graph is labelled. Finally, nodes by themselves contain

the actual data, modelled as traditional relational data with

values coming from an infinite domain [2].

To query graph-structured data, one can, of course, use

traditional relational languages and treat the model as a re-

lational database. However, what makes graph databases

attractive in modern applications is the ability to query in-

tricate navigational patterns between objects, thus obtaining

more information about the topology of the structure of the

stored data, as well as the relations between the topology and

data. Earliest graph query languages, such as regular path

queries (RPQs) [15] and conjunctive regular path queries

(CRPQs) [11, 14], concentrate on retrieving the topology of

the graph and ignore the actual data stored. Such languages

have been well studied in the previous decades and many ex-

tensions such as backward navigation [11], branching [6], or

checks of nontrivial relations amongst paths [3] were defined

for them, allowing users to specify more complex patterns

connecting nodes in a graph.

But purely navigational languages such as RPQs or CR-

PQs cannot reason on the data stored in the nodes. Thus such

data was usually queried using relational languages, without

a way of specifying the interplay between the data stored and

various navigational patterns connecting the data.

This interplay is indeed a requirement in many applica-

tions using graph-structured data. For example, in a database

modelling the inner workings of a company one might be

interested in finding chains of people of the same age con-

nected by professional links, or in a social network one could

check if there is a sequence of friends, all of which like the

same type of music. Recently, several languages that can

handle such queries have been proposed [29, 28, 27] and

they were all built on the idea of extending RPQs, or some

variation thereof, with the ability to reason about data values

that appear along the navigated path.

Our goal is to study static analysis aspects of this new

generation of graph query languages. We concentrate on the

query containment problem, which is the problem of decid-

ing, given two queries in some graph language, whether the

answer set of the first query is contained in the answer set

of the second one. Deciding query containment is a fun-

damental problem in database theory, and it is relevant to

1

several complex database tasks such as data integration [26],

query optimisation [1], view definition and maintenance [22]

and query answering using views [13]. The importance of

this problem has motivated sustained research for relational

query languages (see e.g. [1]), XML query languages (see

e.g. [37]) and even extensions of RPQs and other graph

query languages [18, 11, 5, 3]. Although we primarily con-

centrate on containment, the techniques used here can easily

be adapted to deal with other similar problems, such as sat-

isfiability or equivalence of queries.

While query containment of navigational graph languages

is well understood by now [11, 3, 18], no detailed study has

been conducted for query languages that deal both with nav-

igational and data aspects of graph databases. In this work

we concentrate on three such languages. Namely, we con-

sider regular queries with memory (RQMs), regular queries

with data tests (RQDs) both introduced in [29], as well as

the recent adaptation [28] of the widely used XML query

language XPath to the graph setting, which is called graph

XPath (or, GXPath).

The intuition behind RQMs is that one can navigate

through a graph in the same way as with RPQs, but along

the path it is also possible to store a data value into a register

and later on compare it with another value encountered fur-

ther on the path. This idea is very similar to the one of regis-

ter automata [25, 33] and in fact one can show that these two

formalisms are equivalent [30]. RQDs operate in a similar

fashion, but storing and comparing values adheres to a more

strict stack-like discipline, so they enjoy much better eval-

uation properties. Lastly, the language of GXPath allows

one to define patterns in the graph that are not necessarily

just paths, as it is in the cases of RQMs and RQDs, and also

accommodates the ability to test some data values in these

patterns for equality and inequality.

Contributions By using equivalence of RQMs with regis-

ter automata, we obtain our first result: the problem of de-

ciding whether one RQM is contained in another RQM is

undecidable. This, of course, opens up the question of frag-

ments of the language that do have decidable containment

problem. The class of positive RQMs is one of such frag-

ments, in which we allow tests of data values only for equal-

ity, but not for inequality. We show, that the problem of

positive RQMs query containment is decidable, and, in fact,

EXPSPACE-complete.

Next we move onto the class of RQDs, which was shown

to be strictly contained in the class of RQMs [29]. The im-

posed restrictions to RQMs are quite heavy, and computa-

tional complexity of query evaluation drops by almost one

exponent when we consider RQDs instead of RQMs. For

this reason one may expect the containment problem to be

decidable for RQDs. On the contrary, as we show, it remains

undecidable even in this restricted scenario. However, this

changes once again when we consider positive RQDs, for

which a PSPACE algorithm for testing containment is ob-

tained. This is the best possible bound for any extension

of RPQs, since their query containment is already PSPACE-

hard [12].

A common assumption when considering graph lan-

guages is that edges can be traversed in both directions. In-

deed, the authors in [10, 11] argue that any practical query

mechanism for graphs should incorporate this functional-

ity, as there are many scenarios when backward navigation

is required. It is therefore natural to study what happens

when RQMs and RQDs are extended with the inverse oper-

ator. This gives rise to two new classes of languages, called

2RQMs and 2RQDs, respectively. Remarkably, we show

that adding this operator carries no extra computational cost

with respect to query evaluation. However, it does make a

big difference for containment, as even the subclass that al-

lows only positive data comparisons has undecidable query

containment problem.

Finally, we consider GXPath and its various dialects.

This language has recently attracted some attention because

it provides considerable expressive power while maintain-

ing good query evaluation properties (in particular, the com-

bined complexity is in polynomial time). However, with re-

spect to containment the story is different: even the navi-

gational fragment that uses no data value comparisons has

undecidable containment problem. Although this bound fol-

lows from some folklore results on satisfiability of the three

variable fragment of first order logic, we could not find a

formal proof of this fact and, hence, provide a self-contained

one by a reduction from the tiling problem.

The reason for the undecidability of GXPath is the pres-

ence of a powerful negation operator that allows comple-

mentation of binary relations. We show, that if one excludes

such negation from the language, then containment becomes

decidable (EXPSPACE-complete). Such a language is in fact

close to a propositional dynamic logic (PDL), whose con-

tainment is also known to be EXPSPACE-complete [24].

The classes above do not consider any means for data val-

ues tests in GXPath queries. Following [28], we consider

an extension of these classes with an operator to test whether

data values at the beginning and at the end of a path are same

or different. We arrive at a language that can simulate all

RQDs [28]. Thus, our previous results imply that allowing

for inequality tests immediately leads to undecidability of

the containment problem.

Hence, the possible way to reach decidability is to con-

sider GXPath queries that allow only equalities between

data values. Whether or not the containment problem is de-

cidable for this class, it promises to be a challenging task,

worthy of an its own research line. Indeed, even for the case

of trees with data, some similar problems are still open [8],

and the ones that have been solved usually require very in-

tricate techniques [31, 16].

Organization In Section 2 we formally define the data

model and the problem studied. In Sections 3 and 4 we in-

troduce RQMs and RQDs, respectively, and study their con-

tainment problems. In Section 5 we show how these classes

2

can be extended with inverses, and turn our attention to GX-
Path in Section 6. We conclude with some remarks about

future work in Section 7. Due to space limitations, most of

the proofs are only sketched, and complete versions can be

found in the appendix.

2. PRELIMINARIES

Data graphs Let Σ be a finite alphabet of labels and D be

an infinite set of data values. A data graph over labels Σ
and data values D is a triple 〈V,E, ρ〉, where:

- V is a finite set of nodes,

- E ⊆ V × Σ× V is a set of labelled edges, and

- ρ : V → D is a function that assigns a data value to

each node in the graph.

An example of a data graph is shown in Figure 1. If data

values are not important, we disregard ρ and only talk about

graphs 〈V,E〉 over Σ.

Regarding data values, this paper follows [29, 28] and the

standard convention for data trees (as a model for XML),

and assumes that data values are attached to nodes. There

are of course other possibilities, but they are all essentially

equivalent. We also assume that each node is assigned with a

single data value. This is not a real restriction, since tuples of

attributes can be modelled by a set of edges, each of which

is labeled with an attribute name and connects the current

node to a new node with a data value for the corresponding

attribute.

Paths A path π between nodes v1 and vn in a graph 〈V,E〉
is a sequence

v1a1v2a2v3 . . . vn−1an−1vn,

such that each (vi, ai, vi+1), for 1 ≤ i < n, is an edge in E.

The label of the path π is the word a1 . . . an−1 obtained

by reading the edge labels appearing along this path.

Queries The default core of each query language for graphs

are regular path queries (or RPQs) which are just regular

languages over Σ, usually defined by regular expressions.

The evaluation JeKG of an RPQ e over a graph G, is the set

of all pairs (v1, v2) of nodes in G for which there exists a

path from v1 to v2 with the label from the language of e.
There are a number of extensions of RPQs proposed in

the literature. In this paper we concentrate on those that are

capable of dealing with data values. Also, all of the queries

we study are binary queries, i.e. such that their answers are

sets of pairs of nodes. We denote by JeKG the answer of a

query e over a data graph G.

Containment A query e1 is contained in a query e2 (written

e1 ⊆ e2) if for every data graph G over Σ and D we have

that

Je1K
G ⊆ Je2K

G.

The queries e1 and e2 are equivalent (written e1 ≡ e2) iff

Je1K
G = Je2K

G for everyG.

1

v1

2

v2

1

v3

2

v4

3v5

3

v6

a
c

a
a

b c

ab

Figure 1: A data graph over labels {a, b, c} and natural num-

bers as data values, in which nodes are vi, 1 ≤ i ≤ 6.

The containment and equivalence are at the core of many

static analysis tasks, such as query optimisation. All the

classes of queries considered in this paper are closed un-

der union, so these two problems are easily interreducible:

e1 ≡ e2 iff they are contained in each other, and e1 ⊆ e2 iff

e1∪e2 ≡ e2. That is why we concentrate just on the first and

consider the following decision problem parametrized by a

class of queries Q.

CONTAINMENT (Q)

Input: Queries e1 and e2 from Q.

Question: Is e1 contained in e2?

The semantics of RPQs is defined for graphs, but it is

straightforward to see that for any two RPQs e1 and e2, we

have that e1 ⊆ e2 if and only if the language accepted by

the regular expression e1 is contained in the language ac-

cepted by e2 [12]. From this fact we obtain that contain-

ment of RPQs is PSPACE-complete, following the classic

result that containment of regular expressions is PSPACE-

complete. Since all of the classes of queries studied in this

paper are extensions of RPQs, this establishes a lower bound

for containment of any of these classes.

3. REGULAR QUERIES WITH MEMORY

Regular queries with memory, or RQMs for short,

were first introduced in [29] as a formalism for querying

data graphs that allows data comparisons while navigating

through the structure of the graph (where they were called

regular expressions with memory). They are based on regis-

ter automata, an extension of finite-state automata for words

over infinite alphabets (see, e.g. [33, 29] for a detailed de-

scription).

The idea of RQMs is the following. They can store data

values in a number of named registers, while parsing the in-

put graph according to a specified regular navigation pattern.

Also, they can compare the current data value with values

that had previously been stored. An example of an RQM is

the expression ↓x.a+[x=], which returns all pairs (v, v′) of

3

nodes in a graph that have the same data value and are con-

nected by a path labelled only with a’s. Intuitively the ex-

pression works as follows: it first stores the data value of

a node v into register x, and after navigating an a-labelled

path, it checks that the node v′ at the end of this path has the

same data value as the first node. This check is done via test

x= which makes sure that the data value of v′ is the same as

the one stored in register x.

The proposal of RQMs as a formalism for querying data

graphs was motivated not only by their ability to handle

data values, but also by the low computational complexity

of their evaluation: it is PSPACE-complete in general, and

NLOGSPACE-complete if the query is fixed (i.e., in data

complexity) [29]. Hence, their query evaluation is essentially

the same as for first-order or relational algebra queries.

3.1 Syntax and Semantics of RQMs

Let X be a countable set of registers. We will denote

them by letters x, y, z, etc. A condition over X is a positive

boolean combination of atoms of the form x= or x6=, for

x ∈ X .

DEFINITION 3.1. A regular query with memory (or

RQM) over an alphabet of labels Σ and registers X is an

expression satisfying the grammar

e := ε | a | e ∪ e | e · e | e+ | e[c] | ↓x.e (1)

where ε is the empty word, a ranges over labels, x over reg-

isters, and c over conditions.

Before formally defining the semantics, let us give some

examples of RQMs and explain their intuitive meaning.

EXAMPLE 3.2.

1. The RQM ↓x.(a[x=])+ returns all pairs of nodes con-

nected by a path, along which all edges are labelled

a and all data values are equal. The evaluation starts

with ↓x, which stores the first data value into regis-

ter x. The subexpression (a[x=])+ then checks that

each subsequent label along the path is a, and that the

data value of each node on this path is equal to the one

of the first node (this is done by comparison with the

value stored in register x). The fact that this subexpres-

sion is in the scope of + indicates that the length of the

sequence of checks is of arbitrary length.

2. The RQM ↓x.(a[x6=])+ returns all pairs of nodes con-

nected by a path where all edges are labelled with a
and the first data value is different from all other data

values. It works analogously as the expression above,

except that it checks for inequality.

3. The RQM ↓x.(abc)+[x6=] returns all pairs of nodes

connected by a path, whose label is of the form

abc . . . abc, and the first data value is different from the

last. Note that the order of + and condition is different

from the previous examples: the condition is checked

HG(ε) = {(s, s) | s is a state},

HG(a) = {((v, λ), (v′, λ)) | (v, a, v′) ∈ E},

HG(e1 ∪ e2) = HG(e1) ∪HG(e2),
HG(e1 · e2) = HG(e1) ◦ H

G(e2),
HG(e+) = HG(e) ∪HG(e · e) ∪ . . . ,
HG(e[c]) = {((v, λ), (v′, λ′)) |

((v, λ), (v′, λ′)) ∈ HG(e) and (ρ(v′), λ′) |= c},

HG(↓x.e) = {((v, λ), (v′, λ′)) |
((v, λ), (v′, λ′)) ∈ HG(e) and λ(x) = ρ(v)}.

Table 1: Definition of the functionHG with respect to a data

graph G.

only once, after verifying that the label is in (abc)+,

i.e. at the end of the path.

To define what it means for a data value to satisfy a con-

dition we need the following notion. An assignment of reg-

isters X is a partial function λ, from X to the set of data

values D. Intuitively, an assignment models the current state

of the registers at some point of computation, with some

registers containing stored data values, and some still being

empty. Formally, a data value d and an assignment λ satisfy

a condition x= (or x6=) iff λ(x) is defined and d = λ(x) (or

d 6= λ(x), correspondingly). This satisfaction relation is de-

noted |= and extended to general conditions in the straight-

forward way.

Given a data graph G and a set of registers X , a state is a

pair consisting of a node of G and an assignment of X .

The semantics of RQMs over a data graph G = 〈V,E, ρ〉
is defined in terms of function HG, which binds each RQM

with a set of pairs of states. The intuition of the set HG(e),
for some RQM e, is as follows. Given states s = (v, λ) and

s′ = (v′, λ′), the pair (s, s′) is in HG(e) if there exists a path

w from v to v′, such that the expression e can parsew assum-

ing that the registers are initialized according to λ, modified

and compared as dictated by e, and finished according to λ′.
Formally, given a data graph G = 〈V,E, ρ〉, the function

HG is constructed by the inductive definition in Table 1.

The symbol ◦ in the table refers to the usual composition

of binary relations:

HG(e1) ◦ H
G(e2) = {(s1, s3) |

∃s2 s.t. (s1, s2) ∈ HG(e1) and (s2, s3) ∈ HG(e2)}.

Finally, the evaluation JeKG of an RQM e over a data

graph G is the following set of pairs of nodes in G:

{(v, v′) | ∃λ′ s.t. ((v,⊥), (v′, λ′)) ∈ HG(e)},

where ⊥ is the empty assignment.

EXAMPLE 3.3. Consider the evaluations of expressions

from Example 3.2 over the data graph from Figure 1:

1. the evaluation of ↓x.(a[x=])+ is {(v6, v5)};

2. the evaluation of ↓x.(a[x6=])+ is {(v1, v2), (v1, v5),
(v2, v5), (v2, v3)};

4

d1

v

d2 d3 dn

v′

a1 a2 a3 an−1

Figure 2: The data graph Gw corresponding to the data

word w = d1a1d2 . . . an−1dn (some node identifiers are

omitted).

3. the evaluation of ↓x.(abc)+[x6=] contains

(v1, v6), (v6, v1), (v2, v1) and (v2, v6) (but not

(v6, v6)).

3.2 From Graphs to Words

As we mentioned in the preliminaries, standard algo-

rithms for containment of RPQs rely on a simple fact that

two RPQs are contained if and only if the regular languages

they define are contained [12]. In this section we exhibit a

similar behaviour for RQMs.

Data words are a widely studied extension of words over

finite alphabets [36], in which every position carries not only

a label from the finite alphabet Σ, but also a data value from

the infinite D. However, just for uniformity of presentation,

we follow [29] and opt to the following essentially equiva-

lent definition, by which data values are attached not to po-

sitions in a word, but “between” them.1

DEFINITION 3.4. A data word over a finite alphabet of

labels Σ and infinite set of data values D is a sequence

d1a1d2a2 . . . an−1dn, where n > 0, ai ∈ Σ, for each

1 ≤ i < n, and di ∈ D, for each 1 ≤ i ≤ n.

Every data word w = d1a1d2 . . . an−1dn can be eas-

ily transformed to a data graph Gw, consisting of n differ-

ent nodes with data values d1, . . . , dn, respectively, conse-

quently connected by edges labeled with a1, . . . , an−1, as

illustrated in Fig. 2.

The semantics of RQMs over data words is defined in the

straightforward way: a data word w is accepted by an RQM

e iff (v, v′) ∈ JeKGw , where v and v′ are the first and the

last nodes of Gw. The set of all data words, accepted by an

RQM e is denoted L(e).
Coming back to graphs, each path

v1a1v2a2v3 . . . vn−1an−1vn,

in a data graph 〈V,E, ρ〉 has the corresponding data word

ρ(v1)a1ρ(v2)a2ρ(v3) . . . ρ(vn−1)an−1ρ(vn).

As noted in [29], for each RQM e, data graph G, and

nodes v, v′ of G, it holds that (v, v′) ∈ JeKG iff there ex-

ists a path between v and v′ such that its corresponding data

word is accepted by e. From this we have the following

straightforward fact about containment of RQMs, similar to

the property of RPQs, mentioned in the preliminaries.

1In [29] to distinguish this notion from the original, the term “data
path” was used.

PROPOSITION 3.5. Given two RQMs e1 and e2, it holds

that e1 ⊆ e2 iff L(e1) ⊆ L(e2).

In the proposition above e1 ⊆ e2 is defined on data

graphs, but L(e1) and L(e2) are sets of data words.

3.3 Containment of RQMs

We now turn to the containment problem for RQMs.

Unfortunately, as the following theorem shows, the power

that RQMs gain through its data manipulation mechanism,

comes with a high price for static analysis tasks.

THEOREM 3.6. The problem CONTAINMENT (RQMs) is

undecidable.

This fact immediately follows from undecidability of the

containment problem for register automata ([33]), which are

known to be equivalent to RQMs evaluated on data words

([29, 30]), and Proposition 3.5.

The theorem above naturally leads to question of finding

decidable subclasses. It is known that testing containment

of an expression using at most one register in an expression

using at most two registers is decidable [33].

However, we concentrate on positive RQMs, i.e. those

RQMs, that use only atoms of the form x=i in the condi-

tions. In [38] it was shown that the containment of positive

RQMs is decidable, but no complexity bounds were given.

The following theorem fills this gap.

THEOREM 3.7. The problem CONTAINMENT (positive

RQMs) is EXPSPACE-complete.

PROOF SKETCH. Let e1 and e2 be two RQMs over Σ.

For the EXPSPACE upper bound, assume that e1 6⊆ e2. Then

by Proposition 3.5 there is a data wordw and graphGw such

that (v, v′) ∈ Je1K
Gw , v and v′ being the first and last nodes

of Gw. By definition of the semantics of RQDs, one can

assign to each node in Gw a particular assignment for the

registers in e1, according to the states of relation HGw(e1).
We can then show that one can always have such a graphGw

satisfying, in addition, the following: two nodes u and u′ of

Gw have the same data value d if and only if the assign-

ment for the registers in all nodes in the path from u to u′

assign d. Combining this property with the fact that RQMs

are equivalent to register automata [29], we show that, to

check whether there is a data word that belongs to L(e1)
but does not belong to L(e2), it suffices to guess a word w
with the above properties, and simulate the automata equiv-

alent to e1 and e2 without storing the precise information,

but rather storing which registers in e1 and e2 store the same

data values, and which one store different ones. In other

words, we can build a transition system whose set of states

store roughly the information of the current state of the au-

tomata equivalent to e1 and e2, plus the equality class formed

by the data values stored in the registers of e1 and e2. The

size of this system is double exponential in e1 and e2, but a

reachability test can be performed by a standard on-the-fly

procedure.

5

Hardness is by a reduction from the acceptance problem

of a Turing Machine that works in EXPSPACE. The reduc-

tion is similar as the one in [4] (see Theorem 6), except that

the gadgets in this proof are constructed by taking advan-

tage of registers, instead of the variable assignments used

there.

The proof relies on the fact, that the set of registers X is

unbounded. Moreover, for each class of n-bounded positive

RQMs, i.e. positive RQMs which can use at most n registers,

we have the following immediate corollary.

COROLLARY 3.8. Let n be a natural number. The

problem CONTAINMENT (n-bounded positive RQMs) is

PSPACE-complete.

Hence, positive RQMs are a natural subclass of RQMs

with decidable query containment. However, when compar-

ing the complexity with the one for RPQs, we see that allow-

ing positive data test comparisons results in an exponential

jump. In the following section we consider another class of

queries extending RPQs, which also allows data value com-

parisons, but in a more restricted way than RQMs. As we

will see, the positive subclass of this class has the same com-

plexity of query containment as RPQs.

4. REGULAR QUERIES WITH DATA TESTS

Looking for classes of queries handling data values, but

having better query answering properties than RQMs, the

authors of [29] introduced regular queries with data tests, or

RQDs for short (these were called regular expressions with

equality in the original paper). An example of such a query is

the expression a(b+)=c, whose intention is to return all pairs

of nodes connected by a path, such that its label is ab . . . bc
and the data values before and after the sequence of b’s are

the same.

All RQDs are RQMs, but the usage of registers is re-

stricted: each stored data value can be retrieved and com-

pared only once, and the order of these storing and retrieving

operations is not arbitrary, but on the “last in, first out” basis.

The data complexity of RQDs’ evaluation is the same as for

RQMs – in NLOGSPACE, but the combined complexity is

much better, and, if fact, even tractable, in PTIME [29].

4.1 Syntax and Semantics of RQDs

The syntax for RQDs can be defined in a direct, much sim-

pler way than for RQMs, without even mentioning registers

and conditions.

DEFINITION 4.1. A regular query with data tests (or

RQD) over an alphabet of labels Σ is an expression satis-

fying the grammar

e := ε | a | e ∪ e | e · e | e+ | e= | e 6= (2)

where a ranges over labels.

Again, before the formal definition of semantics we give

some examples of RQDs and their correspondence to RQMs.

JεKG = {(v, v) | v ∈ V },

JaKG = {(v, v′) | (v, a, v′) ∈ E},

Je1 · e2KG = Je1K
G ◦ Je2K

G,

Je1 ∪ e2K
G = Je1K

G ∪ Je2K
G,

Je+KG is the transitive closure of JeKG,

Je=KG = {(v, v′) | (v, v′) ∈ JeKG, ρ(v) = ρ(v′)},

Je 6=KG = {(v, v′) | (v, v′) ∈ JeKG, ρ(v) 6= ρ(v′)}.

Table 2: Semantics of RQDs with respect to a data graphG.

The composition of binary relations is again denoted ◦.

EXAMPLE 4.2. Recall RQMs from Example 3.3 (here

we consider the examples in different order for better un-

derstanding of the relation between RQMs and RQDs).

1. The RQM ↓x.(abc)+[x6=] can be written as the RQD

((abc)+)6=: the first data value is stored, then the se-

quence of abc’s is read, and then the value is retrieved

and compared for inequality with the current one. Note

that the stored value is used just once.

2. The RQM ↓x.(a[x=])+ can be written as the RQD

(a=)
+: the first data value is stored; then a is read;

then the stored data value is retrieved and compared

with the current one for equality; if successful, this

current value (equal to the original!) is stored again,

another a is read, and so on. If the parsing continues,

then the current data value is always equal to the orig-

inal one, even if we use each stored value just once.

3. Contrary to the previous case, it can be shown that the

RQM ↓x.(a[x6=])+ cannot be expressed as an RQD:

indeed, after the first comparison the original data

value is lost, and storing the current data value (dif-

ferent from the original) cannot help with correct com-

parison on the next step.

4. The RQM ↓x.a ↓y.b[y=]c[x=] can be written as the

RQD (ab=c)=. However, the very similar RQM

↓x.a ↓y.b[x=]c[y=] is not expressible as RQD, be-

cause the data values have now to be retrieved in an

order different from the reverse, which is the only one

possible for RQDs.

Due to the restrictions in the syntax of RQDs, their seman-

tics also can be defined in much simpler way, in comparison

with RQMs. The evaluation JeKG of an RQD e over a data

graph G = 〈V,E, ρ〉 is the set of all pairs (v1, v2) of nodes

in V defined recursively in Table 2.

As Example 4.2 suggests, and as it is formally shown in

[29], the class of RQDs is strictly contained in the class of

RQMs. Indeed, to transform an RQD to RQM we just need

to recursively replace each subexpression of the form e∼,

∼ ∈ {=, 6=}, with the subexpression ↓x.e[x∼], where x is a

previously unused register. However, there are RQMs which

cannot be transformed to RQDs, which is also justified by

the lower complexity of query evaluation.

6

Similarly to RQMs, each RQD also defines a language of

data words. A data word w is accepted by an RQD e iff

(v, v′) ∈ JeKGw , with Gw as in the Figure 2. The set of all

data words accepted by an RQD e is denoted L(e). It is easy

to see that for each RQD e, data graph G and nodes v, v′ in

G, it holds that (v, v′) ∈ JeKG iff there exists a path between

v and v′ such that its corresponding data word is accepted

by e. This allows us to show an analogue of Proposition 3.5,

thus reducing query containment to language containment.

PROPOSITION 4.3. Given two RQDs e1 and e2, it holds

that e1 ⊆ e2 iff L(e1) ⊆ L(e2).

4.2 Containment of RQDs

RQDs were originally introduced as a restriction of RQMs

that enjoys much better query evaluation properties. In light

of this result, one might also hope for good behaviour when

query containment is considered. Surprisingly, the following

theorem shows that this is not the case.

THEOREM 4.4. The problem CONTAINMENT (RQDs) is

undecidable.

PROOF SKETCH. The proof follows the idea of coding

the Post correspondence problem by data words from [33].

However, the expressions used there are RQMs and they rely

on the fact that one can store a data value and then compare

it with a value encountered later with no restrictions. This,

on the other hand, is not possible when dealing with RQDs,

since testing for (in)equality must adhere to the first-in-last-

out discipline. The trick used to circumvent this is based on

the observation that part of the coding from [33] can be re-

versed, thus allowing us to nest data value tests as dictated

by the syntax of RQDs.

This naturally opens the search for subclasses of RQDs

with decidable containment problem. Similarly to posi-

tive RQMs, we now consider the class of positive RQDs,

i.e. RQDs where subexpressions of the form e 6= are not al-

lowed. We can obtain a positive RQM from a positive RQD

by the described above procedure that transforms an RQD

into an RQM. Hence, we again have a strict containment of

the corresponding classes, and from Thm. 3.7 we conclude

that containment of RQDs is decidable and in EXPSPACE.

However, the following theorem says that we can perform

even better, in fact, the best possible in light of the PSPACE

lower bound for plain RPQs.

THEOREM 4.5. The problem CONTAINMENT (positive

RQDs) is PSPACE-complete.

PROOF SKETCH. The hardness follows from the bounds

for RPQs, so next we give an idea of an NPSPACE (and,

hence, PSPACE) algorithm which decides whether L(e′) ⊆
L(e) holds for positive RQDs e′ and e.

Let’s start with a simple NPSPACE algorithm for contain-

ment of RPQs: (1) transform the RPQs to NFAs A′ and A

without ε-transitions; (2) put a pebble to each of the ini-

tial states; (3) repeat moving randomly the single pebble in

A′ along transitions, in parallel moving all the pebbles in A
along the transitions labelled the same as the current transi-

tion in A′: if we have several options, the pebble multiplies,

if a pebble cannot move, it is removed, if several pebbles

meet, just one is left; (4) stop and fail if the pebble in A′ is

in a final state, but none of the pebbles in A are; stop and

succeed if the space is exhausted. Essentially, the set of peb-

bles in A is the state in a subset construction, done “on the

fly”.

A naive adaptation of this algorithm to deal with data val-

ues can be as follows.

(a) Before transforming to NFAs, normalise e and e′ such

that none of the equality checks ()= can be opened together

and none of them can be closed together on any run. This

can be done, essentially, by applying the rules

((e1)=e2)= (e1)=(e2)=, (e1(e2)=)= (e1)=(e2)=,

and some others. After this, RQDs can be transformed to

NFAs whose transitions have extra labels from the set R =
{∅, ↑, ↓, ↓↑}, where ↑ means that an equality is opening, and

↓ that an equality is closing.

(b) Attach a stack of reactions to all the pebbles in A, where

each reaction is a symbol from R. Then, during a run of

an algorithm, if the pebble in A′ moves along a transition

with ↑, then every moved pebble in A pushes into its stack

the extra label of the transition, but only if it is either ∅ or

↑; otherwise pebble does not pass (note, that the usual label

matching is still checked). In turn, if the pebble in A′ moves

along a transition with ↓, then only those pebble pass, which

popped extra label pairs with the label of the current transi-

tion: ↓ pairs with ↑, and ∅ pairs with itself. The extra label

↓↑ can be handled similarly.

By this, e.g. (ab=c)= is contained in (abc)= because the

only pebble in the second NFA when reading b has stack

(↑, ∅) and the current label is pairing ∅. The same (ab=c)= is

contained in ab=c, because, after b the stack is (∅, ↑) and the

label is pairing ↓, but it is not contained in (ab)=c, because

they are (↑, ∅) and not pairing ↓.

Such an adaptation would work, but it has space issues.

First, the normalisation step can cause an exponential

blow-up, if nested simultaneously opened or closed equal-

ities are combined with ∪ operation. So, a PSPACE algo-

rithm should not apply the rules above, but deal with such

situations on the fly: e.g. we may allow a pebble inA to pass

through opening an equality, but only with a condition that

this equality will be closed together with the previous one.

Second, and more serious problem is that even if the depth

of each stack is bounded by the depth of the equality tests

nesting in A′, the number of different stacks is exponential.

In fact, there are examples where exponentially big set of

pebbles with different stacks are on the same state in A at

some point of a run. However, such a set is never arbitrary,

and lots of information in the stacks can be shared: if a stack

7

can be seen as a unary tree, then every set of such trees which

appears on a run can be represented as a dag, whose width

is polynomial.

By carefully exploiting the ideas above we describe a de-

sired PSPACE algorithm in the appendix.

5. LANGUAGES WITH INVERSE

RQMs and RQDs are recent, but established extensions

of RPQs which manage data values. However, as noted in

[11], RPQs by themselves lack a very natural construction

for navigation through the structure of graphs—namely, the

inverse operator. Indeed, consider for example a genealogy

graph over a single parent label, such as the one presented

in Figure 3.

We assume that nodes represent people and data values

are their names. A natural query over this graph, which does

not deal with data values, would be to ask for all pairs of sib-

lings. This, however, is clearly not expressible as an RPQ.

On the other hand, it can be written as parent−parent,
where ‘−’ is the inverse operator, which traverses edges

backwards. This query will retrieve e.g. (v2, v4) from the

graph in Figure 3, since these nodes have a common par-

ent v1.

The class of queries enriching RPQs with inverse, called

2RPQs, was introduced in [11], where it was shown that

even with this extension query evaluation remains the same

as for RPQs (namely NLOGSPACE-complete). Moreover, in

[12] the authors also show that query containment is as effi-

cient as for plain RPQs (namely PSPACE-complete).

In this section we consider the extensions of RQMs and

RQDs with the inverse operator, called 2RQMs and 2RQDs

respectively. As far as we are aware, these languages

have never been formally investigated, but we believe that

they are natural and intuitive formalisms for querying data

graphs. For example, one query of interest in our genealogy

database might be to retrieve all pairs of (blood) relatives

with the same name. This can be easily done by the means

of 2RQD ((parent−)+parent+)=, which checks that two

people have a common ancestor and ensures that they also

have the same name. For example the pair (v3, v4) is an an-

swer to this query in our sample graph.

The main focus of this paper is query containment. But

since we introduce the languages of 2RQMs and 2RQDs

here, after the formal definitions we first explore the com-

plexity of query evaluation, and only after it proceed to the

containment problems.

5.1 Definition and Evaluation of 2RQMs and
2RQDs

The syntax and semantics of 2RQMs is just a union of

the syntax and semantics of 2RPQs and RQMs. The similar

holds for 2RQDs.

DEFINITION 5.1. A 2-way regular query with memory,

or 2RQM, over alphabet of labels Σ and registers X , is an

Mary

v1

Ianv2

Paulv3

Paulv4

Jo

v5

Laura v6

Michael v7

parent

parent

parent

parent

parent

parent

parent

Figure 3: A genealogy database over the parent label.

expression satisfying the grammar (1) in Definition 3.1 ex-

tended with a− alternative, where a ranges over Σ.

A 2-way regular query with data tests, or 2RQD, over la-

bels Σ is an expression satisfying (2) in Definition 4.1 ex-

tended with a−.

By this definition, 2RQDs restrict 2RQMs in the same

way as RQDs restrict RQMs. The semantics of these lan-

guages extends their one-way analogs in the intuitive way.

For 2RQMs, given a data graph G = 〈V,E, ρ〉, the func-

tion HG extends the definition from Table 1 to the inverse

construction as follows:

HG(a−) = {((v′, λ), (v, λ)) | (v, a, v′) ∈ E}.

Then, the evaluation JeKG of an 2RQM e over a data graph

G stays the same as for RQMs.

Similarly, the evaluation JeKG of a 2RQD e over a data

graph G = 〈V,E, ρ〉 is obtained by adding the following

rule to Table 2:

Ja−KG = {(v′, v) | (v, a, v′) ∈ E}.

As noted above, the complexity of 2RPQ evaluation is the

same as for plain RPQs. Next we show that the same also

holds for RQMs and RQDs with their two-way variants.

PROPOSITION 5.2. The problem of deciding whether a

pair of nodes belongs to JeKG for a 2RQM e and data graph

G is PSPACE-complete. The same problem is in PTIME if e
is a 2RQD. If we assume that e is fixed the problem becomes

NLOGSPACE-comlete.

The proof of this proposition follows from the evaluation

algorithms for RQMs and RQDs described in [29], and the

observation that such two-way query can be viewed as an

ordinary one-way query over the extended alphabet Σ′ =
Σ ∪ {a− | a ∈ Σ}. Then a pair (v, v′) is an answer of e as a

two-way query over a graph if and only if it is an answer of

e as an one-way query, but over extended graph, which has

(v′, a−, v) edge, for each edge (v, a, v′).

5.2 Containment of 2RQMs and 2RQDs

The classic result by Calvanese et al. [12] states that one

can add the inverse operator to RPQs and maintain not only

8

the same complexity of query evaluation, but also the same

complexity of query containment. The proposition above

gives a hope that the inverse functionality will not affect

the complexity of containment of 2RQMs and 2RQDs as

well. Of course, by the results of the previous sections,

containment is undecidable when full languages are consid-

ered. Unfortunately, as we show next, decidability for posi-

tive RQMs does not propagate to their two-way variant.

The class of positive 2RQMs is defined as a subclass of

2RQMs that use only conditions built from atoms of the form

x=, but not x6=. Note that for 2RQMs we can no longer use

language containment to check for query containment [12].

Indeed, it might be tempting to do the same as we did for

Proposition 5.2, and reduce containment checking of two-

way queries to containment of the same queries, but viewed

as one-way queries over the extended alphabet. However,

the second containment does not imply the first, because la-

bels of the form a− no longer denote only backward edges,

but act as arbitrary labels. This leads to the following an-

nounced result.

THEOREM 5.3. The problem CONTAINMENT (positive

2RQMs) is undecidable.

PROOF SKETCH. The proof is by a reduction from the

emptiness problem of stateless multihead automata, shown

to be undecidable in [41]. Two way register automata are

known to be able to simulate multihead automata [33], and

the same can be shown for 2RQMs. However, such simu-

lation requires both equalities and inequalities, so the proof

does not follow directly from this work.

We do not simulate a stateless multihead automaton A di-

rectly, but rather simulate only the accepting runs. We define

positive 2RQMs e1 and e2 such that A accepts no words if

and only if e1 ⊆ e2. In our coding, a witnessGw for e1 6⊆ e2
represents a word belonging to A.

This surprising negative result can be a serious obstacle

for using even positive 2RQMs in applications. A natu-

ral question here is whether containment becomes decidable

when less expressive class of positive 2RQDs is considered.

We leave a search for the answer for future work.

6. GRAPH XPATH

As we saw in the previous section, 2RQMs and 2RQDs

extend RPQs not only with the constructs for data values

comparisons, but also with an additional navigational fea-

ture. The language of Graph XPath, or GXPath for short,

which was introduced in [28] as an adaptation of the widely

used XML query language XPath to the graph setting, goes

further in this direction, extending the classes considered

above with even more elaborate navigational tools. For ex-

ample, the GXPath query a[〈b+〉]c retrieves all pairs (v, v′)
of nodes connected by a path labelled ac, such that the in-

termediate node on this path has an outgoing sequence of

b-labelled edges. The end point of that sequence can be ar-

v

v′

b b
a

c

. . .

Figure 4: A pattern for GXPath query a[〈b+〉]c.

bitrary, we are interested just in its existence. The pattern

described by this query is illustrated in Fig 4.

One consequence of this gain in navigational expressive-

ness is that we cannot always go from graphs to words as be-

fore: for instance, there are GXPath queries which are sat-

isfiable on graphs, but not on words (like the one above). It

means that we cannot hope for anything like Propositions 3.5

and 4.3, because query containment no longer corresponds

to containment of languages.

Contrary to 2RQMs and 2RQDs, static analysis aspects

of GXPath were not studied before even for purely naviga-

tional fragment GXPathreg without data comparisons. That

is why we start by exploring the containment problem for

this fragment, and only after it proceed to various extensions

with data tests.

Before proceeding to the formal details, it is worth to note,

that the aforementioned class GXPathreg essentially corre-

sponds to the well studied formalism of propositional dy-

namic logic, or PDL [24], with negation on paths.

6.1 Syntax and Semantics of GXPathreg

As in XPath, formulas of GXPathreg are divided into path

formulas, returning pairs of nodes, and node formulas, re-

turning single nodes. Since we are interested in extensions

of RPQs (which are binary), we concentrate on path formu-

las, and node ones will play just auxiliary role. The formulas

are defined by mutual recursion as follows.

DEFINITION 6.1. Node formulas of ϕ, ψ of GXPathreg

and path formulas α, β are expressions satisfying the gram-

mar

ϕ, ψ := ⊤ | ¬ϕ | ϕ ∧ ψ |ϕ ∨ ψ | 〈α〉,
α, β := ε | a | a− | [ϕ] | α ∪ β | α · β | α | α+.

(3)

Just by glancing the definition one immediately notices

that GXPathreg is a formalism much richer in navigational

properties than RPQs: it allows inverse traversal of edges

(the a− operator), non-existence of paths (the α operator),

and testing for existence of (boolean combinations of) paths

starting from the current node (the [ϕ] operator). The formal

semantics with respect to a graph G = 〈V,E〉 is given in

Table 3: a node formula ϕ defines the set JϕKG of nodes,

and a path formula α defines the set JαKG of pairs of nodes.

Note that negation over path formulas is usually not in-

cluded in the syntax of XPath when working on trees, since

9

J⊤KG = {v | v ∈ V },
J¬ϕKG = V − JϕKG,

Jϕ ∧ ψKG = JϕKG ∩ JψKG,
Jϕ ∨ ψKG = JϕKG ∪ JψKG,

J〈α〉KG = {v | ∃v′ (v, v′) ∈ JαKG};

JεKG = {(v, v) | v ∈ V },
JaKG = {(v, v′) | (v, a, v′) ∈ E},

Ja−KG = {(v′, v) | (v, a, v′) ∈ E},
J[ϕ]KG = {(v, v) ∈ G | v ∈ JϕKG},

Jα ∪ βKG = JαKG ∪ JβKG,
Jα · βKG = JαKG ◦ JβKG,

JαKG = V × V − JαKG,
Jα+KG is the transitive closure of JαKG.

Table 3: The semantics of GXPathreg. The symbol ‘−’

stands for set-theoretic difference.

one can show that this class is closed under negation. This,

however, is not the case for GXPath as shown in [28], so

complementation is added to preserve close connection be-

tween XPath and first-order logic.

6.2 Containment of GXPathreg Queries

Analysing the expressive power of GXPathreg reveals that

this class of queries is equivalent to the extension of first or-

der logic with three variables (FO3) with the transitive clo-

sure operator [28]. It is well known that satisfiability of

FO3 formulas is undecidable over arbitrary (possibly infi-

nite) graphs, and it is folklore to assume that this bound is

maintained for finite graphs, which we study in this paper.

Since containment is a more general problem, than satisfia-

bility, we have the following theorem.

THEOREM 6.2. The CONTAINMENT (GXPathreg) prob-

lem is undecidable.

PROOF SKETCH. Since we could not find a formal proof

of the aforementioned result about finite satisfiability of

FO3, we include a self contained proof in the appendix, as

for all other theorems of this paper. The proof shows that

even satisfiability problem for GXPathreg formulas is unde-

cidable. To obtain this result we give a reduction from a

variation of tiling problem from [23]. In particular we use

the fact that the set Snotiling , of all finite sets of tile that can

not tile the positive plane, and the set Speriod, of all finite

sets of tiles that can tile the plane periodically, are recur-

sively inseparable.

Following the ideas from [19], we then show how to con-

struct, for each finite set of tiles T , a GXPathreg node for-

mula γT such that satisfiability of γT implies that T can tile

the positive plane, while the fact that T can tile the plane pe-

riodically implies that γT is satisfiable. Note that this shows

that the set S = {ϕ : ∃Gs.t.JϕKG 6= ∅} contains the set

{γT : T ∈ Speriod} and is disjoint from {γT : T ∈ Snotiling}.

The fact that Snotiling and Speriod are recursively insepara-

ble then implies that S can not be recursive, so satisfiability,

and thus containment, of GXPathreg queries is undecidable.

To define the formula γT we heavily rely on the fact that

GXPathreg can force loops in a graph, thus allowing us to

check that that tiles are placed correctly and that the tiling

can proceed from any point in the positive plane.

By analysing the proof one can also observe that the usage

of the transitive closure operator + is restricted to edge labels

only. Thus, we actually show that the satisfiability problem

is already undecidable for the fragment of GXPathreg, called

GXPathcore by analogy with the core fragment of XPath,

which allows only a+ and (a−)+ instead of α+ in the gram-

mar for path queries in (3). Note, that GXPathcore does not

contain RPQs any more, and in fact these two classes are

incomparable [28].

Due to the before mentioned connection to PDL, we have

a result on satisfiability of PDL with negation over finite

models.

COROLLARY 6.3. The satisfiability problem for PDL

with negation on paths is undecidable over finite models,

even in the absence of propositional variables.

In fact, by carefully examining the proof, one can check

that the use of negation is quite limited and that we only use

intersection and the fact that GXPathreg can define the set of

all pairs of mutually different nodes via the expression ε. We

are hoping that further adaptations of the proof could lead to

solving the well know open problem of finite satisfiablity for

PDL formulas with intersection [20].

As in the previous sections, we have the following ques-

tion: what are the restrictions on GXPathreg that make con-

tainment decidable? The most natural candidates are of

course the ones that forbid negation. Since we have two

forms of negation, one on node formulas and another on path

formulas, we consider two positive subclasses of GXPathreg.

DEFINITION 6.4. The positive GXPathreg, denoted

GXPath
pos
reg , does not allow node formulas of the form ¬ϕ

and path formulas of the form α in the grammar (3) of

GXPathreg.

The path-positive GXPathreg, denoted GXPath
path-pos
reg ,

does not allow α, but keeps ¬ϕ in the grammar.

Note that, as opposed to the classes from previous sec-

tions, the word “positive” refers here to restrictions of navi-

gational queries, but not for data manipulation.

A PSPACE upper bound for complexity of containment

problem for GXPath
pos
reg queries is shown in [35]. Hence,

this complexity is the same as for RPQs. Exploiting con-

nections with PDL, we obtain the following result for the

second, bigger class defined above.

THEOREM 6.5. The decision problem CONTAINMENT

(GXPath
path-pos
reg) is EXPTIME-complete.

10

Data comparisions RQD RQM 2RQD 2RQM GXPath
pos
reg GXPath

path-pos
reg GXPathreg

none PSPACE-c∗ PSPACE-c∗ PSPACE-c∗ EXPTIME-c und.

positive PSPACE-c EXPSPACE-c ? und. ? ? und.

full und. und. und. und. und. und. und.

Table 4: Summary of results. Results, known before, are marked with an asterisk. Some classes have synonyms, not given for

clarity: i.e. RQDs and RQMs with no data comparisons are RPQs.

Note that this result gives us an upper bound of con-

tainment for path-positive GXPathcore, i.e. the intersection

of GXPathcore and GXPath
path-pos
reg . We leave the precise

bounds for core fragments for future work, as our focus in

this paper is on queries extending RPQs.

6.3 Adding Data Values

Since GXPathreg formulas are two-sorted, generally, there

are two approaches to add data value comparisons. As we

concentrate on path queries in this paper, next we consider

the one which is in line with RQDs, studied in Sec. 4. The

syntax of this new class GXPathreg(∼) extends the grammar

(3) of GXPathreg with path formulas of the form α= and α6=.

The semantics over a data graph G = 〈V,E, ρ〉 enriches

Table 3 in a way similar to semantics of RQDs:

Jα=KG = {(v, v′) ∈ JαKG | ρ(v) = ρ(v′)},
Jα6=KG = {(v, v′) ∈ JαKG | ρ(v) 6= ρ(v′)}.

Similarly to previous sections, we also consider subclasses

GXPath
pos
reg (∼) and GXPath

path-pos
reg (∼) of GXPathreg(∼),

the first of which does not allow node negations ¬ϕ and

path negations α, and the second one does not allow just

path negations.

Another way to add data values tests would be to follow

usual XPath and add node formulas 〈α = β〉 to the syn-

tax. The semantics of such a formula is all the nodes in the

graph from which one can reach two nodes v′ and v′′ by

following paths satisfying α and β respectively, such that

ρ(v′) = ρ(v′′). In [28] it was shown that such an exten-

sion of GXPathreg is strictly contained in the defined above

GXPathreg(∼).
Next we come to query containment for GXPathreg(∼)

and its fragments. However, it is shown in [28], that even

GXPath
pos
reg (∼), i.e. the smallest subclass defined above,

contains the class of RQDs. That is why we have the fol-

lowing corollary of Theorem 4.4.

COROLLARY 6.6. The problems

- CONTAINMENT (GXPath
pos
reg (∼)),

- CONTAINMENT (GXPath
path-pos
reg (∼)) and

- CONTAINMENT (GXPathreg(∼))

are undecidable.

The next step in the search for decidable fragments of

GXPath would be to restrict data tests to equality tests of

the form α= only (i.e. forbid the form α6=). We did such a

restriction for RQDs and RQMs before.

From Theorem 6.2 we already know that containment for

GXPathreg(∼) with such restriction is undecidable. How-

ever, results for similar fragments of RQDs give some hope

that containment for GXPath
path-pos
reg (∼) and GXPath

pos
reg (∼)

with such restrictions might be decidable. In future work we

would like to extend our research in this direction, as well as

study what happens in core fragments, where one might even

be allowed to use inequality tests and still retain decidability

of basic static analysis tasks.

7. CONCLUSION AND FUTURE WORK

After conducting a detailed study of main classes of

queries for graphs with data we can conclude that the pic-

ture here is quite different than when static analysis of tra-

ditional navigational languages is considered. In particular,

there is a sharp contrast between RPQs and CRPQs, which

became a staple for navigational queries on graphs, where

containment is decidable, and any of the proposed extension

of RPQs that handle data values. Although undecidability

for a class of RQMs comes as a no surprise, due to high com-

plexity of query evaluation and powerful data manipulation

mechanism, we have seen that even languages with good

query evaluation properties can lead to undecidable query

containment.

In particular the presence of inequality tests seems to be

one of the major detractors here, although the ability to de-

fine complex navigational patterns can lead to undecidability

as well. Thus to obtain decidable fragments, it is necessary

to limit attention to purely positive variants of the language.

The situation further complicates in the presence of inverse

operator. We summarise all of the results in Table 4.

All of this shows that, although most of graph query lan-

guages are well established, there is still some fine tun-

ing needed to define languages with desirable static anal-

ysis properties. In particular, we would like to fully under-

stand the containment problem for all fragments of GXPath.

Some results in this section give us hope that decidability

could be obtained for positive fragments using only equal-

ity tests and for core fragments we did not consider here.

Another approach is to weaken data tests and allow only

standard XPath-like tests of the form 〈α = β〉, which were

shown to be weaker than the equality tests used here [28].

8. REFERENCES

11

[1] S. Abiteboul, R. Hull, V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] R. Angles, C. Gutierrez. Survey of graph database

models. ACM Computing Surveys, 40(1), 2008.

[3] P. Barceló, L. Libkin, A.W. Lin, P. Wood. Expressive

languages for path queries over graph-structured data.

ACM TODS 38(4) (2012).

[4] P. Barceló, J. Reutter, L. Libkin. Parameterized regular

expressions and their languages.. TCS 474: 21–45

(2013).

[5] P. Barceló, L. Libkin, J. Reutter. Querying graph

patterns. In PODS’11, pages 199–210.

[6] P. Barceló, J. Pérez, J. L. Reutter. Relative

expressiveness of nested regular expressions. In

AMW’12, pages 180–195.

[7] P. Barceló. Querying Graph Databases. In PODS’13.

[8] M. Benedikt, W. Fan, F. Geerts. XPath satisfiability in

the presence of DTDs. In J. ACM, 55(2) (2008).

[9] Egon Börger, Erich Grädel, Y. Gurevich The Classical

Decision Problem. Perspectives in Mathematical

Logic, Springer, 2001.

[10] P. Buneman, S. B. Davidson, G. G. Hillebrand, D.

Suciu A Query Language and Optimization

Techniques for Unstructured Data. In SIGMOD

Conference 1996, pages 505–516

[11] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y.

Vardi. Containment of conjunctive regular path

queries with inverse. In KR’2000, pages 176–185.

[12] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y.

Vardi. Reasoning on regular path queries. ACM

SIGMOD Record, 32(4):83–92, 2003.

[13] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y.

Vardi. View-Based query answering and query

containment over semistructured data. In DBPL 2001,

pages 176–185.

[14] M. Consens, A. Mendelzon. GraphLog: a visual

formalism for real life recursion. In PODS’90, pages

404–416.

[15] I. Cruz, A.O. Mendelzon, P. Wood. A graphical query

language supporting recursion. In SIGMOD’87, pages

323–330.

[16] C. David, A. Gheerbrant, L. Libkin, W. Martens.

Containment of pattern-based queries over data trees.

ICDT 2013, pages 201–212.

[17] DEX query language.

http://www.sparsity-technologies.com/dex.php.

[18] D. Florescu, A. Y. Levy, D. Suciu. Query Containment

for Conjunctive Queries with Regular Expressions.

PODS’98, pages 139–148.

[19] R. Goldblatt, M. Jackson. Well structured program

equivalence is highly undecidable. ACM Trans.

Comput. Log., 13(3):26, 2012.

[20] S. Göller, M. Lohrey, C. Lutz. PDL with intersection

and converse: satisfiability and infinite-state model

checking. In J. Symb. Log., 74(1): 279-314 (2009).

[21] The Gremlin graph traversal language.

http://gremlin.tinkerpop.com.

[22] A. Gupta, I.S. Mumick. Maintenance of Materialized

Views: Problems, Techniques, and Applications. IEEE

Data Eng. Bull., 18(2): 3–18, 1995.

[23] Y. Gurevich, I. Koryakov. Remarks on Berger’s paper

on the domino problem. In Siberian Math. Journal,

1972.

[24] D. Harel, D. Kozen, J. Tiuryn. Dynamic Logic. MIT

Press, 2000.

[25] M. Kaminski, N. Francez. Finite memory automata.

TCS, 134(2):329–363, 1994.

[26] M. Lenzerini. Data integration: a theoretical

perspective. In PODS, 2002.

[27] L. Libkin, J. L. Reutter, D. Vrgoč. TriAL for RDF:

Adapting Graph Query Languages for RDF Data. In

PODS, 2013.

[28] L. Libkin, W. Martens, D. Vrgoč. Querying graph

databases with XPath. In ICDT, 2013.

[29] L. Libkin, D. Vrgoč. Regular path queries on graphs

with data. In ICDT’12, pages 74–85.

[30] L. Libkin, D. Vrgoč. Regular expressions for data

words. LPAR’12, pages 274–288.

[31] G. Miklau, D. Suciu. Containment and equivalence for

a fragment of XPath. J. ACM, 51(1): 2-45 (2004).

[32] The Neo4j Manual. http://docs.neo4j.org.

[33] F. Neven, T. Schwentick, V. Vianu. Finite state

machines for strings over infinite alphabets. ACM

TOCL 5(3): 403–435 (2004).

[34] J. Pérez, M. Arenas, C. Gutierrez. nSPARQL: A

navigational language for RDF. J. Web Sem.,

8(4):255–270, 2010.

[35] J. L. Reutter. Containment of Nested Regular

Expressions. CoRR abs/1304.2637 , (2013).

[36] L. Segoufin. Automata and logics for words and trees

over an infinite alphabet. In CSL’06, pages 41-57.

[37] T. Schwentick. XPath query containment. ACM

SIGMOD Record, 33(1):101–109, 2004.

[38] A. Tal. Decidability of Inclusion for Unification Based

Automata. M.Sc. thesis (in Hebrew), Technion, 1999.

[39] B. ten Cate, C. Lutz. The complexity of query

containment in expressive fragments of XPath 2.0. In

J. ACM, 56(6), 2009.

[40] P. Wood. Query languages for graph databases.

Sigmod Record, 41(1):50–60, 2012.

[41] L. Yang, Z. Dang, O. H. Ibarra. On stateless automata

and P systems. In International Journal of

Foundations of Computer Science, 19(05),

1259–1276, 2008.

12

APPENDIX
In this appendix we give full proofs for all the propositions and theorems of the paper.

Proofs for Section 3

PROPOSITION 3.5. Given two RQMs e1 and e2, it holds that e1 ⊆ e2 iff L(e1) ⊆ L(e2).

PROOF. In this proof we will use the following result from [28]: a pair of nodes (u, v) of a data graph G belongs to JeKG if

and only if there is a path from u to v such that its corresponding data word belongs to L(e).
Assume first that e1 ⊆ e2. By definition it means that Je1K

G ⊆ Je2K
G, for every data graph G. Consider any data word

w = d1a1d2a2 . . . ak−1dk such that w ∈ L(e1). By definition this means that (v, v′) ∈ Je1K
Gw , where Gw is the data graph

corresponding to w, as denoted in Figure 2. Then by our assumption we have (v, v′) ∈ Je2K
Gw . From this and definition of

L(e2), it follows that w ∈ L(e2), as desired.

On the other hand, suppose that L(e1) ⊆ L(e2) and take any data graph G and two nodes (v, v′) ∈ Je1K
G. By aforemen-

tioned fact there is a path from v to v′ in G whose corresponding data word w belongs to L(e1). Then by our assumption we

have that w ∈ L(e2), so using the same fact we get that (v, v′) ∈ Je2K
G.

THEOREM 3.6. The problem CONTAINMENT (RQMs) is undecidable.

PROOF. Since the class of RQDs, considered in Section 4 is a subclass of RQMs, this theorem is an immediate corollary of

Theorem 4.4, which proof is given below.

THEOREM 3.7. The problem CONTAINMENT (positive RQMs) is EXPSPACE-complete.

PROOF. We start with the upper bound. We need some auxiliary definitions and lemmas.

Register Data Word Automata It is more convenient to show the upper bound for register automata over data words, that we

now define. Note that since we are using data words as in [29], we draw from their definition of register automata.

DEFINITION 8.1 (REGISTER DATA WORD AUTOMATA). Let Σ be a finite alphabet, and k a natural number. A k-register

data path automaton is a tuple A = (Q, q0, F, λ0, δ), where:

• Q = Qw ∪Qd, where Qw and Qd are two finite disjoint sets of word states and data states;

• q0 ∈ Qd is the initial state;

• F ⊆ Qw is the set of final states;

• λ0 ∈ Dk is the initial configuration of the registers;

• δ = (δw, δd) is a pair of transition relations:

– δw ⊆ Qw × Σ×Qd is the word transition relation;

– δd ⊆ Qd × Ck × 2[k] ×Qw is the data transition relation.

The intuition behind this definition is that since we alternate between data values and word symbols in data words, we also

alternate between data states (which expect data value as the next symbol) and word states (which expect alphabet letters as

the next symbol). We start with a data value, so q0 is a data state, end with a data value, so final states, seen after reading that

value, are word states.

In a word state the automaton behaves like the usual NFA (but moves to a data state). In a data state, the automaton checks

if the current data value and the configuration of the registers satisfy a condition, and if they do, moves to a word state and

updates some of the registers with the read data value.

Given a data word w = d0a0d1a1 . . . an−1dn, where each di is a data value and each al is a letter, a configuration of A
on w is a tuple (j, q, λ), where j is the current position of the symbol in w that A reads, q is the current state and λ ∈ Dk is

the current state of the registers. The initial configuration is (0, q0, λ0) and any configuration (j, q, λ) with q ∈ F is a final

configuration.

From a configurationC = (j, q, λ) we can move to a configuration C′ = (j + 1, q′, λ′) if one of the following holds:

• the jth symbol is a letter a, there is a transition (q, a, q′) ∈ δw, and λ′ = λ; or

13

• the current symbol is a data value d, and there is a transition (q, c, I, q′) ∈ δd such that d, λ |= c and λ′ coincides with λ
except that the ith component of λ′ is set to d whenever i ∈ I .

A data word w is accepted by A if A can move from the initial configuration to a final configuration after reading w. We

then say that the sequence of configuration forms an accepting run for A on input w. The language of data paths accepted by

A is denoted by L(A).
Equivalence with RQMs, problem definition

It was shown in [29] that for every RQM e once can construct in polynomial time a register data word automatonAe such that

L(e) = L(A2). Let then e1 and e2 be RQMs. To show that e1 ⊆ e2 we can, by Lemma 3.5, show instead that L(e1) ⊆ L(e2).
Moreover, by the aforementioned equivalence with automata, it suffices to show that L(Ae1) ⊆ L(Ae2).

The reminder of the proof is devoted to showing that such decision problem belongs to EXPSPACE, assuming both A1 and

A2 use only equalities.

A special family of data words

Let A1 and A2 be two register automata that only use equalities on the conditions, and assume that L(A1) 6⊆ L(A2). Then

there is a data word w = d1a1d2a2 · · ·andn+1 that belongs to L(A1) but it does not belong to L(A2). Further, there is an

accepting run τ that associates to each data value di in w a change of configuration, going from a configuration of the form

(2i− 1, q, λ) to one of the form (2i, q′, λ′).
Set w1 = w and τ1 = τ . Starting from i = 2 up to i = n+ 1, we repeatedly perform the following operations on wi.

Let wi−1 and τ i−1 be the resulting word and accepting run after performing the i − 1-th operation, and assume that τi−1

changes from a configuration (2i − 1, q, λ) to (2i, q′, λ′). If all data values in λ are also in λ′, then let wi = wi−1 and

τ i = τ i−1. Otherwise, assume that d1, . . . , dk are in λ but not in λ′. Then let p1, . . . , pk be fresh, new data values. Construct

wi as follows. For each j = 1, . . . , k, replace all appearances of dj in wi−1, only after position 2i − 2 of wi−1, for the data

value pj . Moreover, construct τ i by replacing as well d1, . . . , dk for p1, . . . , pk in all the register values of the remaining

configurations, from position 2i− 1 onwards.

Given arbitrary automaton A1, word w ∈ L(()A1) and run τ witnessing the acceptance of w, let us denote by uw,τ the

resulting word wn+1 after performing all transformations above, and by σw,τ the resulting run τn+1. Note that the constructed

run remains a valid run, so that A1 accepts as well the word uw,τ . Moreover, the following can be shown about uw,τ (the proof

follows by construction):

CLAIM 8.2. Assume that there are positions j1 and j2 of uw,τ such that both j1 and j2 contain the same data value. Then

such data value is present in at least one register in all configurations of σw,τ starting from position j1 and ending in position

j2.

Moreover, it is easy to see:

CLAIM 8.3. If any other automaton A2 does not accept w, then it does not accept uw,τ .

This follows simply because we are only using automata with equalities, and our transformation actually introduce additional

inequalities on the data values of words. From the above claims we obtain the following

LEMMA 8.4. Given automata A1 and A2, we have that L(()A1) ⊆ L(()A2) if and only if there is a word w ∈ L(()A1),
accepted by run τ , and such that uw,τ belongs to L(()A1) but does not belong to L(()A2)

All that remains now is to show that the existence of such a word can be decided in EXPSPACE.

Let now A1 = (Q1, q
0
1 , F1, λ

0
1, δ1) and A1 = (Q2, q

0
2 , F2, λ

0
2, δ2). furthermore, assume that REG(λ1) and REG(λ2) are

all possible valuations of registers in A1 and A2, respectively, using elements from D (obviously these are infinite sets).

Consider the following transition system. Its states areQ1×REG(λ1)2Q2×REG(λ2). The initial state is (q01 , λ
0
1), {(q

0
2 , λ

0
2)},

the set of final states are all those states that contain a state in F1 and does not contain any state in F2 (i.e. if at any point we

are in a final state, we know that a given word is accepted by A1 but it is not accepted by A2)

The transition is defined as follows: there is a transition between state (q1, λ1), {(q12 , λ
1
2), . . . , (q

n
2 , λ

n
2)} and state

(q′1, λ
′
1), {(q

′1
2, λ

′1
2), . . . , (q

′m
2 , λ

′m
2)} by letter a or data value d if one can go from (q1, λ1) to (q′1, λ

′
1) using δ1 over a or

d, and {(q′12, λ
′1
2), . . . , (q

′m
2 , λ

′m
2)} is the set of all states that are reachable from any state in {(q12 , λ

1
2), . . . , (q

n
2 , λ

n
2)}, using δ2

and a or d.

Now, obviously the size of this transition system is infinite. However, we proceed as follows.

We guess, symbol by symbol, the word uw,τ and its run σw,τ , and only pick those moves in the transition system where q1
and λ1 move as in σw,τ . Then by the properties of uw,τ and σw,τ we know that any state (q1, λ1), {(q12 , λ

1
2), . . . , (q

n
2 , λ

n
2)}

14

can be simplified into a state in which all values in λ12, . . . , λ
n
2 that are not in λ1 are mapped to a single fresh value d. This is

because such data values will never appear again in uw,τ , and thus from the equality point it is just as good as any data value

which is different to all the remaining values in uw,τ .

But we can do even better, as here it suffices to store only the equivalence classes of the registers, i.e., whether the registers

store, at any given point, the same data value as in other register, or a different one. If the next symbol we are guessing

corresponds to a data value that was in one of the registers of λ1, then we guess, instead of the particular data value, the

following information ”the incoming data value is the one stored in register x”. The system then updates the equivalence

classes according to the registers. If, on the contrary, the incoming data value is a data value different from all λ1, we just guess

”the incoming data value is not stored in any register”, and then updates the information as before.

Thus, for our simulation of A1 it suffices to store, at any given point, the equivalence class formed by the registers in A1,

and to simulate all possible runs of A2 we need to store, besides the equivalence classes of its registers, a pointer indicating

whether it is storing a value also stored in a register of A1, or whether it is storing a data value not currently stored in A1

(that will never show up again in our word). This amounts to a total of Q1 × 2|A1| × 2Q2×2|A2|×|A1|

states, which is doubly

exponential in A1 and A2. We can therefore decide whether there is a valid run fo this system (that ends in a final state) using

a standard on-the-fly EXPSPACE algorithm.

Hardness. The proof of EXPSPACE-hardness is by reduction from the complement of the acceptance problem of a Turing

machine.

LetL be a language that belongs to EXPSPACE over some alphabetΓ, M be a deterministic Turing machine that decidesL in

EXPSPACE, andw be a word (plain, without data values) over Γ. Next we show how to construct RQDs e′ and e (in polynomial

time in the size of M and w) such that L(e′) ⊆ L(e) if and only if M does not accept the input w. By Proposition 3.5 this is

enough for the proof of the hardness.

Let M = (Q,Γ, q0, {qf}, δ), whereQ = {q0, . . . , qf} is the set of states, Γ is the tape alphabet, containing the distinguished

blank symbol B, q0 and qm are the unique initial and final states, and δ : (Q \ {qf})× Γ → Q × Γ× {L,R} is the transition

function. Notice, that without loss of generality we assume that no transition is defined on the unique final state qf . Since M
decides L in EXPSPACE, there exists a polynomial P (which does not depend on w) such that M decides w using space 2n,

where n = P (|w|). Let also w = a0a1 · · · ak.

In the following find convenient to introduce the following abusing of notation. For an alphabet ∆ = {b1, . . . , bm} of

symbols, we denote by the same ∆ the regular expression (b1 ∪ · · · ∪ bm).

Let Σ = {#,&,%,△} ∪ Γ ∪ (Γ×Q) be the alphabet of the constructing expressions e′ and e.
Let 〈i〉 denote the binary representation of the number i as a data word on n labels # such that its data values represent

the string representation of i as a binary number. That is, the data word dn#dn−1# . . .#d1 such that dndn−1d1 is precisely

the string representation of i as a binary number. For example, 〈0〉 is the data word (0#)n−10, and 〈2〉 is the data word

(0#)n−21#0.

We represent configurations of the Turing machine by data words satisfying

〈0〉 (Γ∪ (Γ×Q)) d & 〈1〉 (Γ∪ (Γ×Q)) d & 〈2〉 (Γ∪ (Γ×Q)) d & . . . 〈2n − 1〉 (Γ∪ (Γ×Q)) d& d% d, (4)

where d stands for any data value. Intuitively, the words 〈0〉, 〈1〉, 〈2〉, 〈2n − 1〉 indicate each of the 2n cells of M, and the

symbol following such a word represents either the content of the cell (which means that the head does not point here), or the

content of the cell plus the state of M (if M is pointing at that particular cell at a given point of the computation).

Since every configuration of M can be represented as a data word of form (4), a run of M on the input w can be seen as a

sequence (i.e. concatenation) of words of form (4).

The idea of the reduction is the following. The expression e′ is such that it accepts all data words in each of which every data

value is equal to one of the first two data values of the word. Without loss of generality we can then denote the first data value

of each of these words by 0 and the second data value by 1. In turn, the expression e shall represent all those words that belong

to L(e′) that are either not valid concatenations of words of form (4), or that the sequence of configurations is not a valid run

of M on input w (in both cases, followed by some initialisation). This way, if there is a valid run for M on w, we have that

there is a data word in L(e′) that is not in L(e), i.e. L(e′) 6⊆ L(e).
Formally, the first of these expressions e′ is defined as following:

e′ = ↓x.△↓y.(△[x=] ∪△[y=])
(

Σ[x=] ∪Σ[y=]
)∗
.

We split the definition of the second expression into six parts e = e0 ∪ e1 ∪ e2 ∪ e3 ∪ e4 ∪ e5, such that

- e0 describes all words that use a single data value (instead of two);

- e1 describes all data words that are not concatenations of words of form (4);

15

- e2 describes all words that, even if they are concatenations of words of form (4), some of them do not represent valid

configurations for M;

- e3 describes words in which the first configuration does not correctly describe the initial configuration of M on input w;

- e4 describes those words in which the last sub word of form (4) does not represent an accepting configuration of M;

- e5 describes words that contain two consecutive sub words of form (4) that represent configurations forMwhich, however,

do not agree on δ.

Expression e0 is straightforward to define. Next we give the remaining ones.

Expression e1. Most of this expression is not really related to data values, but instead can be defined by an NFA in a standard

way (see [4] Theorem 6). The only interesting part is the one which accepts all words with a “configuration” in which “cells”

are concatenated not in the only proper order, from 〈0〉 to 〈2n−1〉. To do this we include in e1 the a disjunction of the following

expressions:

- the expressions

↓x.△↓y.△Σ∗ (#[x=])n(Σ \ {%})∗ (#[x=])n Σ∗,
↓x.△↓y.△Σ∗ (#[y=])n(Σ \ {%})∗ (#[y=])n Σ∗,

which look for two words of form 〈0〉 within one configuration, and likewise for 〈2n − 1〉;

- the expressions

↓x.△↓y.△Σ∗ %(#[x=])i #[y=] Σ∗, for each 0 ≤ i ≤ n− 1,
↓x.△↓y.△Σ∗ #[x=] (#[y=])i (Γ ∪ (Γ×Q))%Σ∗, for each 0 ≤ i ≤ n− 1,

which look for a configuration starting with something different from 〈0〉, and likewise ending with something different

from 〈2n − 1〉;

- the expression

↓x.△↓y.△Σ∗ #n−1 #[x=] (Γ ∪ (Γ×Q))&#n−1 #[x=] Σ∗,

looking for a configuration where an even number follows with another even number;

- the expressions

↓x.△↓y.△Σ∗ #i #[x=] #n−i−2 #[x=] (Γ ∪ (Γ×Q))&#i#[y=] #n−i−1 Σ∗, for each 0 ≤ i ≤ n− 2,
↓x.△↓y.△Σ∗ #i #[y=] #n−i−2 #[x=] (Γ ∪ (Γ×Q))&#i#[x=] #n−i−1 Σ∗, for each 0 ≤ i ≤ n− 2,

looking for a configuration where an even number follows with a number where some of the digits are different from the

onces in the previous number (except the last).

Note that last 2 cases cover all configurations in which even position numbers are not followed by their successors. It is also

possible, but rather cumbersome and lengthy, to define expressions which cover the even – odd cases. We omit such definition,

and refer the reader to [4] for very similar constructions.

Expression e2. Similarly to the next expressions e3 and e4, it can be described with standard NFA’s. In particular, e2 is the

union of expressions stating the following:

- between two symbols % there is no symbol in (Γ×Q), which means that in some configuration the machine dos not point

to any cell;

- between two neighbouring symbols % there are two symbols in (Γ×Q), which means that the machine is pointing at two

cells.

Expression e3. It is the union of expressions stating the following:

- the first configuration does not contain the initial state in the first position of the tape, reading the first symbol of the input;

- the following k − 1 cells do not contain the remainder of the input;

- any of the remaining cells does not contain the blank symbol.

Expression e4. It can be dfined in the similar way as e3.

Expression e5. It is defined as the union of the following expressions:

16

- a cell not pointed by the head changed its content from one configuration to the subsequent one:

⋃

a∈Γ

↓x.△↓y.△Σ∗ # ↓x1.# s↓xn−1.# ↓xn.a (Σ \ {%})∗ %

(Σ \ {%})∗ #[x=1] #[x=2] s#[x=n]
(

(Γ \ {a}) ∪ ((Γ \ {a})×Q)
)

Σ∗;

- a configuration which is not final features a pair in Γ×Q for which no transition is defined

⋃

{(a,q)|δ(q,a) is not defined}

Σ∗ (a, q)Σ∗ %Σ+;

- the change of state does not agree with δ:

⋃

{(a,q)|δ(q,a)=(a′,q′,{L,R})}

Σ∗ (a, q) (Σ \ {%})∗ %(Σ \ {%})∗
(

Γ× (Q \ {q′})
)

Σ∗;

- the symbol written in a given step does not agree with δ:

⋃

{(a,q)|δ(q,a)=(a′,q′,{L,R})}

↓x.△↓y.△Σ∗ # ↓x1.# s↓xn−1.# ↓xn.(a, q) (Σ \ {%})∗ %

(Σ \ {%})∗#[x=1] #[x=2] s#[x=n] (Γ \ {a′})Σ∗;

- the movement of the head does not agree with δ:

⋃

{(a,q)|δ(q,a)=(a′,q′,R)}

↓x.△↓y.△Σ∗ # ↓x1.# s↓xn−1.# ↓xn.(a, q) (Σ \ {%})∗ %

(Σ \ {%})∗#[x=1] #[x=2] s#[x=n] a
′ &(ε ∪

(

#n Γ (Σ \ {%})∗
)

)%Σ∗,

⋃

{(a,q)|δ(q,a)=(a′,q′,L)}

↓x.△↓y.△Σ∗ # ↓x1.# s↓xn−1.# ↓xn.(a, q) (Σ \ {%})∗ %

(ε ∪
(

(Σ \ {%})∗ #n Γ&
)

)#[x=1] #[x=2] s#[x=n] Σ
∗.

With these definitions in hand, it is now straightforward to show that L(e′) ⊆ L(e) if and only if M does not accept on input

w. This finishes the proof of the EXPSPACE lower bound.

Proofs for Section 4

PROPOSITION 4.3. Given two RQDs e1 and e2, it holds that e1 ⊆ e2 iff L(e1) ⊆ L(e2).

PROOF. Proof of the proposition is analogous to the proof of Proposition 3.5. but this time using the fact [29] that for RQDs

a pair of nodes (u, v) belongs to JeKG if and only if there is a path from u to v such that its corresponding data word belongs to

L(e).

THEOREM 4.4. The problem CONTAINMENT (RQDs) is undecidable.

PROOF. Next we will prove a stronger result that the universality problem for RQDs, defined below, is undecidable. Let

Σ[D]∗ denote the set of all data words over the alphabet Σ and set of data values D.

UNIVERSALITY OF RQDS

Input: An RQD e.
Qestion: Does L(e) = Σ[D]∗?

17

The undecidability of this problem immediately implies that given two RQDs e1 and e2, checking whether L(e1) ⊆ L(e2)
is undecidable. The latter then implies undecidability of query containment over graphs by Proposition 4.3.

The proof of undecidability of universality problem for RQDs is similar to the proof of the universality of register automata

in [33]. The reduction is from Post correspondence problem (PCP), which is well-known to be undecidable.

An instance of PCP is a set of pairs of words

{(u1, v1), . . . , (un, vn)}, (5)

over a finite alphabet Γ. A solution for an instance I is a sequence k1, . . . , km of numbers from {1, . . . , n} such that

uk1
· · ·ukm

= vk1
· · · vkm

. The question is whether an instance has a solution.

Throughout the reduction we will use the following notation for every data word w = d1a1d2 . . . ak−1dk . Let REV(w)
be the reversal of w, that is REV(w) = dkak−1 . . . d2a1d1. Also, let Proj(w) be its projection to the labels, i.e. the word

a1 . . . ak−1.

Let $,# be two special symbols not in Γ, let Σ′ = Γ ∪ {$,#}, and let Σ = Γ ∪ {$}. A solution k1, . . . , km of a PCP

instance I of the form (5) can be encoded as a data word w1#REV(w2) over Σ, where

w1 =
0 $c1 a1d1 · · · aℓ1dℓ1 $c2 aℓ1+1dℓ1+1 · · · aℓ1+ℓ2dℓ1+ℓ2 · · · · · · $cm aℓ1+···+ℓm−1+1dℓ1+···+ℓm−1+1 · · · aℓ1+···+ℓmdℓ1+···+ℓm ,
w2 =
0 $g1 b1f1 · · · bℓ1fℓ1 $g2 bℓ1+1fℓ1+1 · · · bℓ1+ℓ2fℓ1+ℓ2 · · · · · · $gm bℓ1+···+ℓm−1+1fℓ1+···+ℓm−1+1 · · · bℓ1+···+ℓmfℓ1+···+ℓm ,

such that a’s and b’s are labels from Σ, c’s, g’s, d’s, f ’s, and 0 are data values, and, for a shortcut ℓ = ℓ1 + · · · + ℓm, the

following conditions hold:

(C1) the symbol # appears only once;

(C2) Proj(w1) ∈ ($u1 ∪ · · · ∪ $un)
∗;

(C3) Proj(w2) ∈ ($v1 ∪ · · · ∪ $vn)
∗;

(C4) the data values ci’s and di’s are pairwise different;

(C5) the data values gi’s and fi’s are pairwise different;

(C6) c1 = g1 and cm = gm;

(C7) d1 = f1 and dℓ = fℓ;

(C8) for each i, j ∈ {1, . . . ,m− 1} if ci = gj then ci+1 = gj+1;

(C9) for each i, j ∈ {1, . . . , ℓ− 1}, if di = fj then di+1 = fj+1;

(C10) for each i, j ∈ {1, . . . , ℓ}, if di = fj , then ai = bj ;

(C11) for each i, j ∈ {1, . . . ,m}, if ci = gj , then (aℓ1+...+ℓi−1+1 · · · aℓ1+...+ℓi , bℓ1+...+ℓj−1+1 · · · bℓ1+...+ℓj) ∈ I .

Note that e.g. Conditions (C4–C6, C8) forces the sequence of c’s in w1 to be equal to the sequence of g’s in w2.

It is straightforward to show that there exists a solution to the PCP instance I if and only if there exists a data word of the

form w1#REV(w2) over Σ′ that satisfies Conditions (C1–C11) above. The word w1 is meant to encode the u-part of I and

w2 the v-part. The idea is that the equality ci = gi codes a position ki in a solution by a unique data value, and in (C11) it is

checked that the pair on this position belongs to I . Also, d’s and f ’s code the actual pairs (ui, vi) in I and since we check that

d’s equal f ’s in Conditions (C4–C9) and that the letter after each d equals the corresponding one before the appropriate f in

Condition (C10). Note that we require the word w2 to be reversed in order to nest equality tests according to the semantics of

RQDs.

We now construct an RQD e over Σ′ that accepts a data word w such that it is either not of the form w1#REV(w2), or

at least one of the Conditions (C1–C11) above is not satisfied. Thus, if e is universal (i.e. accepts all data words) then in

particular there is no data word coding a solution to the PCP instance, and, hence there is no solution by itself. The RQD e is

obtained by taking the union of the following, using the usual shortcut ∆ for the expression b1 ∪ . . . ∪ bp over any alphabet

∆ = {b1, . . . , bp}:

- RQDs recognising the negations of Conditions (C1–C3), which can be written as standard regular expressions without

equality tests;

- the RQD
(

Σ∗$(ΓΣ∗$)=Σ
∗ ∪ Σ∗$ΓΓ∗(Σ∗Γ)=

)

#Σ∗,

which recognises the negation of (C4); here the left part of ∪ finds equal c’s, while the right one finds equal d’s; note that

for equal ds we take care that we don’t incidentally compare with some c;

18

- an RQD which recognises the negation of (C5), which is very similar to the previous one, but takes into account that w2

is reversed;

- the RQD

$(Σ∗)6=$ ∪ Σ∗$(Γ∗#Γ∗)6=$Σ
∗,

which recognises the negation of (C6); note, that here we use the fact that w2 is reversed, so in particular g1 appears as the

second last data value (and right before the final $), which is covered by the left disjunct; similarly cm is the value after

the last $ in w1, so after that we can only advance by means of Γ before reaching # and then we proceed in w2 to the first

$ in front of which gm is located;

- an RQD which recognises the negation of (C7), which is very similar to the previous one;

- the RQD

Σ∗$(Γ∗$(Σ∗#Σ∗$)6=Γ
∗$)=Σ

∗,

which recognises the negation of (C8);

- RQDs which recognise the negation of (C9–11), which are very similar to the previous one.

It is straightforward to see that the PCP instance I has no solution if and only if L(e) = Σ[D]∗. This concludes our proof of

Theorem 4.4.

THEOREM 4.5. The problem CONTAINMENT (positive RQDs) is PSPACE-complete.

PROOF. The hardness immediately follows from the PSPACE-completeness of the containment problem of RPQs, so next

we concentrate on the algorithm. Before its description we introduce a monoid Λ which domain is a set of pairs of nonnegative

numbers and which operation ◦ is defined as follows:

〈ℓ′1, ℓ
′
2〉 ◦ 〈ℓ

′′
1 , ℓ

′′
2〉 =

{

〈ℓ′1, ℓ
′
2 − ℓ′′1 + ℓ′′2〉, if ℓ′2 ≥ ℓ′′1 ,

〈ℓ′1 − ℓ′2 + ℓ′′1 , ℓ
′′
2〉, otherwise.

An NFA with positive data tests is a tuple (Q,Σ, δ, q0, qf , γ), where

- 〈Q,Σ, δ, q0, qf 〉 is a usual NFA without ε-transitions, such that every node is on a path from q0 to qf ,

- γ is a partial function γ : Q×Q ⇀ Λ, defined for all pairs q1, q2 for which there exists a transition from q1 to q2 by some

symbol in Σ, and

- for any loop along transitions in this automata, as well as for any path from q0 to qf the composition of values of γ is

〈0, 0〉.

Such an NFA is essentially a register automata restricted by a special policy for manipulation of registers:

1. only tests for equality are allowed,

2. the registers are arranged in a stack,

3. data values can be stored only in the currently unused register just above the top of the stack (i.e., pushed), and

4. (positive) comparisons of current data value can be performed with only the value stored in the register on top of the stack,

and, moreover, after such a comparison the stored value is lost and the register becomes unused (i.e., the value is popped).

Having this policy, we do not need to name the registers, and the function γ represents the number of values which are popped

from the stack as the first component, and the number of times the current data value is pushed as the second component. Note,

that the last requirement of NFA with positive data tests guarantees that the number of registers used (i.e. the size of the stack)

is bounded by a number which does not depend on the particular input and run. The semantics of NFA with positive data tests

is inherited from register automata.

Given an RQD which last symbol is from Σ, the corresponding NFA with positive data tests is as following. The NFA part

is as the standard transformation from the regular expression to NFA (without ε-transitions). For each transition in this NFA

there is a corresponding sequence of openings and closings of data values equality checks in the RQD, which is done before

reading the symbol; however, without loss of generality we may assume, that there are no openings after any closings, i.e. this

sequence can be represented as a pair of nonnegative numbers. This pair will be the value of γ for the states from the transition.

Note, that such a pair is unique for any two states, regardless which valid transition symbol we take for these states.

19

The transformation above is straightforward and can be done in polynomial time. Moreover, the language L(A) of the NFA

with positive data tests corresponding to an RQD e is the same as the language L(e). The size of a stack required for such an

automata (which does not depend on input, as noted above) equals the maximal depth of nesting of ()= in e.

Let e′ and e be positive RQDs. Without loss of generality we assume that the last symbol of each of them is from Σ. Next

we describe a PSPACE algorithm which decides whether L(A′) ⊆ L(A), where A′ andA are the NFAs with positive data tests

which correspond to e′ and e. By the observation above and Proposition 4.3 it is enough for the proof of the theorem.

In the algorithm the following data structures are used.

- A state q′ in A′; it is used to represent the current state which moves on each step non-deterministically according to a

transition of A′.

- A stack P of positive natural numbers; the sum of all numbers in this stack always equals to the nesting depth of q′, so

we can always use only polynomial space to store it; we denote |P| the number of positions in P ; we assume that the

positions in the stack are enumerated from 1 and refer to those numbers by just positions; this stack essentially splits all

the currently open equality checks in the automataA′ into consecutive groups for each of which we know that the opening

data values of all the checks in this group are the same.

- A set G of quadruples of the form (q1, q2, n, λ), where q1, q2 ∈ Q, n is a position in P , and λ is a pair from Λ; during the

run of the algorithm the following always hold for each (q1, q2, n, λ) in G:

if n = 1 then q1 = q0,

if 1 < n ≤ |P| then there exists a quadruple (q′1, q1, n− 1, λ′) in G for some q′1 and λ′;

as an exception, it will be convenient to have the quadruple (∗, q0, 0, ∗) (for a special symbol ∗, which is however never

used) in G during all the run of the algorithm; this set represents the history of reactions in A to the transitions inA′ which

open equality checks.

- A set F of pairs of states from Q; this set represents the reactions in A inside the current equality check in A′: the first

component stores the second component of the ”parent” quadruple in G (i.e., one of the quadruples for which the third

component is |P|), and the second is (one of) the current states in A.

The stack P and the set G are highly related, so we often consider them as a pair (P ,G). Given a positive numberm, which

is less than the sum of all numbers in P , a trace of depthm in (P ,G) is a tuple (q1, q2, n, k, λ) where q1, q2 ∈ Q, n is a position

in P , k is a number, and λ ∈ Λ, such that

- n is the position in P such that the sum s of all numbers in the positions greater than n is less than m, but if we add the

number r in the position n, it is greater or equal;

- k = s+ r −m;

- there is a sequence (qi1, q
i
2, i, λ

i), n ≤ i ≤ |P|, of quadruples from G such that qn1 = q1 and q
|P|
2 = q2;

- λ = λn ◦ . . . ◦ λ|P|.

Note, that even if the number of sequences above can be exponential in the size of G, the number of traces is polynomial. Also,

all the traces of depth m in (P ,G) depend only on P , so they have the same n and k. If k = 0 we say that the level of depth

m in P is exact. We also define an operation trim up to depth m on (P ,G) which is removing all the elements with positions

greater or equal than n from P , and all the quadruples from G which refer to those positions (where n is computed as above).

In turn, we define an operation flash of F which first empties F and then add there a pair (q2, q2) for each (q1, q2, |P|, λ) in

G.

The algorithm works as follows.

1. Initialize q′ := q′0, P := ∅, G := (∗, q0, 0, ∗), F := {(q0, q0)}.

2. Repeat until the space is exhausted

- pick randomly a symbol a ∈ Σ and a state q′′ ∈ δ(q′, a);

- if γ(q′, q′′) = 〈0, 0〉 then

form F ′ as a set of all pairs (q1, q3) such that

there exists a state q2 with (q1, q2) ∈ F and q3 ∈ δ(q2, a) for which γ(q2, q3) = 〈0, 0〉,

F := F ′;

- else if γ(q′, q′′) = 〈0,m2〉 then

append m2 to P ,

add to G all quadruples (q1, q3, n, λ) such that

20

there exists a state q2 for which (q1, q2) ∈ F and q3 ∈ δ(q2, a), and

n = |P|, and

λ = γ(q2, q3),

flash F ;

- else if γ(q′, q′′) = 〈m1, 0〉 such that the level of depth m1 in P is exact then

form F ′ as a set of all pairs (q1, q4) such that

there exists a trace (q1, q2, n, 0, λ) in (P ,G) of depth m1 (for some q2, λ, and irrelevant number n) and

there exists a state q3 with (q2, q3) ∈ F and q4 ∈ δ(q3, a) for which λ ◦ γ(q3, q4) = 〈0, 0〉,

F := F ′;

trim (P ,G) up to depth m1;

- else let γ(q′, q′′) = 〈m1,m2〉 and

form G′ as the set of all quadruples (q1, q4, n, λ) such that

there exists a trace (q1, q2, n, k, λ
′) in (P ,G) of depth m1 (for some q2, n, k and λ′), and

there exists a state q3 with (q2, q3) ∈ F and q4 ∈ δ(q3, a),

λ = λ′ ◦ γ(q3, q4),

trim (P ,G) up to depth m1,

append k +m2 to P ,

add G′ to G,

flash F ;

- q′ := q′′;

- if q′ = q′f and (q0, qf) /∈ F then return false.

3. Return true.

*

Proofs for Section 5

PROPOSITION 5.2. The problem of deciding whether a pair of nodes belongs to JeKG for a 2RQM e and data graph G
is PSPACE-complete. The same problem is in PTIME if e is a 2RQD. If we assume that e is fixed the problem becomes

NLOGSPACE-comlete.

PROOF. Take any 2RQM or 2RQD e over Σ and a data graphG. Let Σ′ = Σ∪{a− : a ∈ Σ} and let G′ = 〈V,E′, ρ〉, where

V and ρ are as in G, while E′ = E ∪ {(v′, a−, v) : (v, a, v′) ∈ E}. Note that we can view e as an ordinary one-way RQM(or

RQD) over this extended alphabet. A straightforward induction on expressions shows that (v, v′) ∈ JeKG, where e is viewed

as an two-way query over Σ, if and only if (v, v′) ∈ JeKG
′

, where e is now a (one-way)query over Σ′.

The desired upper bounds now follow from query evaluation algorithms for RQMs and RQDs from [29], since both the

alphabet and the graph grow only linearly in size.

THEOREM 5.3. The problem CONTAINMENT (positive 2RQMs) is undecidable.

PROOF. The proof is by reduction from the problem of non-emptiness of deterministic, stateless 2-way 3-head automata,

which is proven to be undecidable in (Yang, L., Dang, Z., and Ibarra, O. H. (2008). On stateless automata and P systems.

International Journal of Foundations of Computer Science, 19(05), 1259-1276).

Formally, a deterministic stateless 2-way 3-head automaton (or, DS23A) over a finite alphabet Γ is given by a transition

partial function δ : Σ × Σ × Σ ⇀ {−1, 0, 1}3, where Σ = Γ ∪ {⊢,⊣}, the latter symbols assumed not to be in Γ. These

automata accept language of words of form ⊢ σ ⊣, with σ a word over Γ. The automaton starts with its 3 heads reading the ⊢
symbol of just before σ, moves its heads according to δ (−1 denotes “move one cell back”, 0 – “no move”, and 1 – “move one

cell forward”), and accepts σ if at any step of computation over this word all 3 heads point at the symbol ⊣.

Let A be a DS23A. We now construct 2RQMs e′ and e over Σ such that the language of A is empty if and only if e′ ⊆ e.
The definition of e′ is defined as follows:

e′ = ⊢ Γ∗ ⊣ .

As expected, the definition if e is much more intricate. But before it we present a crucial claim.

21

CLAIM 8.5. Let e′ be the RPQ defined as above, and let e be a 2RQM. Then e′ (e is and only if there exists a graph Gw

corresponding to a data word w with start and end nodes u and v, respectively, such that (u, v) ∈ Je′KGw but (u, v) /∈ JeKGw .

PROOF. The if direction is obvious, so we only show the only if direction. Assume then that e′ (e. Then there is a graph

G and a pair (u′, v′) of nodes in G such that (u′, v′) ∈ Je′KG but (u′, v′) /∈ JeKG. Consider a data word w which is a projection

of labels and data values of a path in G witnessing e′. Then let us consider the graph Gw corresponding to w, with start and

end nodes u and v, respectively. Clearly, (u, v) ∈ Je′KGw . Now assume for the sake of contradiction that (u, v) ∈ JeKGw . By

examining the definition of 2RQMs one immediately obtains that (u, v) ∈ JeKG, which results in a contradiction. This implies

that (u, v) /∈ JeKG, which was to be shown.

Next we continue with the definition of e. The idea is the following. Since A is deterministic, if A accepts some word σ
then there exists a single run that leads to this acceptance. We can take advantage of this determinism, and code with e all

computations of A that end up failing at some point. This way, if there is a data word with a corresponding data graph accepting

by e′, which is not accepted by e, then the language of A is nonempty, as A really accepts this word.

The definition of e is split into three parts as follows:

e = eeq ∪ ecrash ∪ enotdef.

Intuitively, eeq accepts all graphs corresponding to data words that have two equal data values (data values shall be used

as placeholders for the positions of the heads of A, as will be explained shortly); ecrash corresponds to words for which the

computation of A crashes, and enotdef corresponds to all words for which the computation of A ends up in a position that is not

defined.

The part eeq is straightforward to define. For definitions of the other parts of e we first need to describe the 2RQM evalid, that

simulates the computation of A on its input.

For each (a, b, c) in Σ3 for which δ is defined, assume that δ(a, b, c) = (t1, t2, t3), where each ti is either −1, 0 or 1. Then

let e(a,b,c) be the following expression:

(Σ−)∗ ⊢ Σ∗[x=1] a (Σ
−)∗ ⊢ Σ∗[x=2] b (Σ

−)∗ ⊢ Σ∗[x=3] c

(Σ−)∗ ⊢ Σ∗[x=1] r1 (Σ
−)∗ ⊢ Σ∗[x=2] r2 (Σ

−)∗ ⊢ Σ∗[x=3] r3,

where, as usual, Σ stands for the union of all symbols in the alphabet Σ, Σ− stands for the union of inverses of all symbols in

Σ, and for each i, 1 ≤ i ≤ 3,

ri =







Σ− ↓xi. , if ti = −1,
ε, if ti = 0,
Σ ↓xi. , if ti = 1.

Having this construction in hands, let

evalid = # ↓x1.↓x2.↓x3.





⋃

(a,b,c) s.t. δ(a,b,c) is defined

e(a,b,c)





∗

.

This expression, so far, describes valid computations, up to some step. In order to make sure that we represent all words not

accepted by A, we need to accept all words in which this route of valid computation leads to either a crash (by moving out of

the word), or to a transition that is not defined.

Specifically, to describe that a run goes out from the computation space, we define

ecrash = evalid





⋃

i=1,2,3

(

(

(Σ−)∗[x=i] ⊢
)

∪
(

Σ∗[x=i] ⊣−
)

)



 .

Furthermore, for each (a, b, c) such that δ(a, b, c) is not defined, except (⊣,⊣,⊣) (because this is the final step of an accepting

computation), define

e¬(a,b,c) = (Σ−)∗ ⊢ Σ∗[x=1] a (Σ
−)∗ ⊢ Σ∗[x=2] b (Σ

−)∗ ⊢ Σ∗[x=3] c,

and then

enotdef = evalid





⋃

(a,b,c) s.t. δ(a,b,c) is not defined, and (a,b,c) 6=(⊣,⊣,⊣)

e¬(a,b,c)



 .

22

It is now straightforward to show that the language of A is nonempty if and only if there exists a graph Gw corresponding

to a data word w with start and end nodes u and v, respectively, such that (u, v) ∈ Je′KGw but (u, v) /∈ JeKGw . Application of

Claim 8.5 finishes the proof of the theorem.

Proofs for Section 6

THEOREM 6.2. The CONTAINMENT (GXPathreg) problem is undecidable.

PROOF. The proof follows the main lines of the proof of undecidability of PDL with extras from [19]. To deduce undecid-

ability we do a reduction from a variant of the tiling problem shown to be undecidable in [23] and [9].

First we define the terminology needed to state the problem precisely.

A finite set of tiles is a collection T = {T1, . . . , Tk} of square tiles, together with two edge relations ∼h and ∼v. The fact

that Ti ∼h Tj means that the tile Tj can be placed to the right of the tile Ti in a horizontal row, while Ti ∼v Tj means that Ti
can be placed below Tj in a vertical column.

A tiling of the non-negative grid N× N is a function from t : N× N → T such that for all i, j:

• t(i, j) ∼h t(i + 1, j) and,

• t(i, j) ∼v t(i, j + 1).

Tilings of integer grid Z×Z are defined analogously. We say that a set of tiles can tile Z×Z periodically if there is a tiling

of Zn ×Zm for some positive integers n andm that can be used to tile the entire grid by repeating this segment both vertically

and horizontally. One can imagine this tiling as forming a torus since the bottom row can be ”glued” to the top one and the

same for left and right edge of this finite grid.

Let now Snotiling denote the set of all finite sets of tiles that can not tile N×N and let Speriod be the set of all finite sets of tiles

that can tile Z× Z periodically.

To prove undecideability we will use the following fact:

FACT 8.6. Tiling [23, 9] Sets Snotiling and Speriod are recursively inseparable. In particular there is no recursive set S such

that Speriod ⊆ S and Snotiling ∩ S = ∅.

Fix the finite alphabet of edge labels Σ = {U,D,L,R, a}. In what follows U is meant to interpret ”up”,D ”down”, L ”left”

and R ”right”, while a will be used to code the tiles. Note that we can work with only {U,R, a}, since we can use U− instead

of D ans R− instead of L, but we opted for the extended alphabet to make the formulas easier to understand.

Let now T = {T1, . . . , Tk} be a finite set of tiles. For i = 1 . . . k define αi = 〈ai∩ε〉. In what follows αi is meant to denote

the placement of the tile Ti at some position in the grid. E.g. 〈aaa ∩ ε〉 will denote the placement of the tile T3 and so on.

We also define the following node formulas of GXPath that will be used throughout the proof. First, for every path formula

β we define

loop(β) := 〈β ∩ ε〉 ∧ ¬〈β ∩ ε〉.

This formula extracts all nodes v from the graph that have an outgoing β path and such that every such path ends at v itself.

It is easy to check that for any graph database G:

Jloop(β)KG = {v ∈ G : (∃v′) s.t. (v, v′) ∈ JβKG and (∀v′) If (v, v′) ∈ JβKG then v = v′}.

Second, for every path expression β and every node test ϕ we define the following formula:

when(β, ϕ) := ¬〈β[¬ϕ]〉.

The intended meaning of this node formula is to extract all nodes v from a graph such after every β-path starting in v ends

with a node belonging to JϕKG. Again, it is easy to check that for any graph database G:

Jwhen(β, ϕ)KG = {v ∈ G : (∀v′) If (v, v′) ∈ JβKG then v′ ∈ JϕKG}.

Associated with the set of tiles T we define the formula γT = γ1 ∧ γ2.

To define our formula γ1 we need to be able to force a ”square” at any position in our model, both in a clockwise and in

anticlockwise direction. This is done by the means of formula square which is defined as the conjunction of the following

two formulas:

23

clockwise := loop(U ·D) ∧ when(U,loop(R · L)) ∧ when(U · R,loop(D · U)) ∧

when(U ·R ·D,loop(L · R)) ∧ loop(U · R ·D · L)

anticlockwise := loop(R · L) ∧ when(R,loop(U ·D)) ∧ when(R · U,loop(L ·R)) ∧

when(R · U · L,loop(D · U)) ∧ loop(R · U · L ·D)

Intuitively clockwise allows us to define a square starting at some point in our graph and going ”up”, then ”right”, then

”down” and finally ”left”, finishing at the same point. It also forces the point to be able to complete the square whenever it has

an outgoing ”up” arrow U . Similarly anticlockwise forces a square starting with ”right” and completing it in an obvious

way.

Now γ1 simply states that we can make a square at any point.

γ1 := when(U∗,when(R∗,square)).

Formula γ2 is going to be responsible for forcing a tiling and is defined next. First, let

α =
∨

i=1...k

αi ∧
∧

i=1...k

(αi →
∧

j 6=i

¬αj).

Note that α simply states that precisely one αi is true. Here and in the remainder of the proof we use the node formula

ϕ→ ψ as a shorthand for ¬ϕ ∨ ψ.

Next for each i, define βi as the disjunction of all the αj such that Ti ∼h Tj . That is βi is a disjunction of all the tiles that

can be placed to the right of the tile i. Similarly, define βi to be the disjunction of all αj such that Ti ∼v Tj .

Now let tile be the formula denoting that a tile is placed correctly in the grid. Formally:

tile := α ∧
∧

i=1...k

(αi → (when(R, βi) ∧ when(U, βj))).

Finally define

γ2 := when(U∗,when(R∗,tile)).

We now show how to deduce the wanted reduction. More formally we show that the set {ϕ : ∃Gs.t.JϕKG 6= ∅} contains the

set {γT : T ∈ Speriod} and is disjoint from {γT : T ∈ Snotiling}. Note that Fact 8.6 now implies that {ϕ : ∃Gs.t.JϕKG 6= ∅}
can not be recursive.

First we show that if JγT KG 6= ∅ for some graph G, then T can tile the positive plane N× N. Take any node a0,0 ∈ JγT KG.

By γ1 the proposition square has to be true at a0,0, so in particular loop(U · D) is true. This means that there is a point

which we label a0,1 that can be reached from a0,0 by an U -labelled edge. (Note that we can also get from a0,1 to a0,0 by and

D-labelled edge.) Now since when(U,loop(R ·L)) is also true at a0,0, there must be a node which we label a1,1, reached by

an R-labelled edge from a0,1 (and with the corresponding L-labelled edge in the other direction). Again, this time using the

fact that when(U ·R,loop(D · U)) is true at a0,0, we get a node labelled a1,0, connected to a1,1 by an D-labelled edge (and

with an U -labelled edge connecting it back with a1,1). Next, we use the fact that when(U ·R ·D,loop(L ·R)) is true at a0,0
to get a node a′0,0 to the left of a1,0. Finally, since loop(U · R ·D · L) is true at a0,0, it must be that a′0,0 = a0,0. Again we

note that each edge has a dual edge with the appropriate label, connecting the node in reverse direction.

Similarly, since square is true at a1,1 (as we can reach it from a0,0 by traversing U and then R-labelled edge), we can

also find points a1,2, a2,2 and a2,1 in an analogous way. This process is illustrated by the following image (note that we do not

claim that nodes ai,j are in fact mutually distinct nodes from our model).

a0,0

a0,1

a1,0

a1,1

a2,1

a2,2a1,2

U

U

R

R

D

D

L

L

24

Note now that since square is also true at a0,1, then a0,1 must satisfy anticlockwise. Since goingR and then U from

a0,1 takes us to a1,2 and since when(R ·U,loop(L ·R)) is true at a0,1, there is some node which we label a0,2, that is reached

by traversing an L-labelled edge from a1,2. Note that this also implies that there is anR-labelled edge from a0,2 to a1,2. Again,

since when(R · U · L,loop(D · U)) is true at a0,1 and a0,2 can be reached by R · U · L we have that there is a point a′0,1
connected to a0,2 by an D-labelled edge (and in the other direction by an U -labelled one). But now since a0,1 also satisfies

loop(R ·U ·L ·D) and a′0,1 is reached from a0,1 by a path labelledR ·U ·L ·D,we have that a′0,1 = a0,1. Thus we can draw

a square starting in a0,1, going in anticlockwise direction. This is illustrated in the following image:

a0,0

a0,1

a1,0

a1,1

a2,1

a2,2a1,2a0,2

U

U

R

R

D

D

L

L

L

D

We now note that with each edge there is a corresponding edge in the other direction with the appropriate label (e.g. L and

R). To see this observe that in e.d. a0,0 we have that loop(U ·D)is true. This means that there is an U -edge from a0,0 to a0,1
and also an D-edge from a0,1 to a0,0 and analogously for all other edges.

In particular there is anR-edge from a0,0 to a1,0, so we can also complete the clockwise square started at a1,0 and continuing

through a1,1 and a2,1. This is done by the means of formula clockwise.

It is straightforward to see that this process can be continued for any number of steps, starting from the main diagonal and

completing the squares above the diagonal in an anticlockwise direction, while completing the ones below the diagonal in a

clockwise direction. Thus we showed that we can force a square grid by our formula.

Define now t(i, j) = Tl, where αl is the unique formula of the form 〈al ∩ ε〉 that is true at any point ai,j by means of γ2.

Note that γ2 also forces the tiling t to be proper, since the formula tile assures that the tile t(i+1, j) and t(i, j+1) can only

come from the set of tiles compatible with t(i, j) in the appropriate direction.

Thus we have shown that if formula γT is satisfiable, then T can tile the positive plane N × N. This implies that the set

{ϕ : ∃Gs.t.JϕKG 6= ∅} is disjoint from Snotiling .

On the other hand, suppose that T = {T1, . . . , Tk} can tile the plane periodically, that is it can tile the torus Zn × Zm for

some integers n and m. Let t be the tiling function t : Zn × Zm → T that witnesses this periodic tiling. We define the graph

database G containing at most (n+ 1) · (m+ 1) + (k − 2) nodes and satisfying γT as follows.

First, let

V = {ai,j : i = 1, . . . , n+ 1 and j = 1, . . . ,m+ 1} ∪ {T2, . . . , Tk}.

Next add the following edges to our graph:

• For vertical edges:

– For i = 1 . . . n + 1 and j = 1 . . .m put an U -edge between ai,j and ai,j+1 and an D-labelled one in the other

direction.

– For i = 1 . . . n+ 1 put an U -labelled edge between ai,m+1 and ai,1 and an D-labelled one in the other direction.

• Analogously for horizontal edges:

– For i = 1 . . . n and j = 1 . . .m+1 put anR-edge between ai,j and ai+1,j and an L-labelled one in the other direction.

– For j = 1 . . .m+ 1 put an R-labelled edge between an+1,j and a1,j and an L-labelled one in the other direction.

Also, define T2, T3, . . . , Tk to form an a-labelled chain. That is we add an a-edge between Ti and Ti+1, for i = 2, . . . k− 1.

Next, for each ai,j ,where i 6= n + 1 and j 6= m + 1 let Tl be the unique tile given by the tiling t(i, j). If l = 1 we add an

a-edge from ai,j to itself. If l > 1 we add an a-labelled edge from ai,j to T2 and another a-labelled edge from Tl to ai,j . This

will allow us to satisfy the formula αi = 〈al ∩ ε〉 as illustrated in the following image.

25

T2 T3 T4 T5

ai,j

a a a

a a

Finally, for i = n + 1 and j 6= m + 1 let Tl = t(1, j) and define the outgoing a-edges from an+1,j to T2 and from Tl as

above. Similarly, for i 6= n + 1 and j = m + 1 do the same for Tl = t(i, 1). Lastly, repeat the procedure for an+1,m+1 and

Tl = t(1, 1).
Consider now formula γ1. Note that we can reach any point by using U andR transitions, so we have to check that square

is true at any point. But this is straightforward to check, since our graph G is a simple finite grid that folds onto itself (that is

from each point on the edge we can continue in the appropriate direction). The fact that γ2 is true follows from the fact that t
is a periodic tiling. Namely, at any point in the graph G, precisely one αi is true (note that we require the a-path to loop over

the node, so only one such path exists by our construction). After that, any R or U step we take will take us to a node where

the appropriate βj or βj is true since t is a tiling.

This shows that the set S = {ϕ : ∃Gs.t.JϕKG 6= ∅} contains the set {γT : T ∈ Speriod}. As mentioned above, Fact 8.6

implies that the set of all satisfiable GXPath node formulas S, is not recursive.

In particular this implies that query containment for GXPath is not decidable, since the latter would entail recursivity of the

set S by simply checking does the containment [ϕ] ⊆ [¬⊤] hold.

Thus we proved that query containment for GXPath is undecidable, even with a fixed alphabet Σ of edge labels.

THEOREM 6.5. The decision problem CONTAINMENT (GXPath
path-pos
reg) is EXPTIME-complete.

PROOF. To show the upper bound we first prove that the problem of query containment for GXPath
path-pos
reg path formulas

can be polynomially reduced to the problem of satisfiability of GXPath
path-pos
reg node formulas. The idea is similar to the one

used in [39] to show that the two problems are inter-reducible for XPath queries on trees.

Let α and β be two GXPath
path-pos
reg path formulas and let Γ denote the alphabet of all symbols occurring in α and β plus

one additional symbol b. It is straightforward to see that if α is not contained in β, then there is a graph G witnessing this

non-containment that uses labels from Γ only. (The idea here is that only labels appearing in α and β are relevant, and all the

other labels can be replaced by the new label.)

Let now Γ′ := Γ× {0, 1}. That is, Γ′ contains copies of each label decorated with either 0 or 1. We define α′ as a formula

obtained from α by replacing each occurrence of a label a by (a, 0)∪ (a, 1) and likewise for β′. Finally, let out be the formula
⋃

a∈Γ(a, 1). We show that α is contained in β if and only if the formula

ϕ := 〈α′[out]〉 ∧ ¬〈β′[out]〉

is not satisfiable.

Assume first that α is not contained in β. Then there is a graph databaseG and two nodes v, v′ ∈ G such that (v, v′) ∈ JαKG,

but (v, v′) /∈ JβKG. As mentioned above, we can assume, without the loss of generality, that G uses only labels from Γ. Define

now G′ to be a Γ′ labelled graph where each label a is replaced by (a, 0). In addition, we also add a loop from v′ to v′ labelled

(b, 1). Since v′ is the only node with an outgoing edge whose label has second component equal to 1 we get that v ∈ JϕKG
′

, as

required.

On the other hand, assume that ϕ is satisfiable. Let G′ be any graph such that there is v ∈ G′ with v ∈ JϕKG
′

. Let G be

a graph obtained from G′ be replacing every edge labelled (a, 0) or (a, 1) by a (note that the b-edges can be thrown away,

since neither α, nor β can access them). Since v ∈ JϕKG
′

, there is some v′ ∈ G′ such that (v, v′) ∈ Jα′[out]KG
′

. It is

then straightforward to see that (v, v′) ∈ JαKG. On the other hand, if we had that (v, v′) is in JβKG , then we would also

get that (v, v′) ∈ Jβ′[out]KG
′

(since v′ must have an outgoing edge with second component equal to 1 to satisfy α′[out]),

which contradicts the fact that v ∈ JϕKG
′

. Thus α is not contained in β, as required. (Note that it could still be the case that

v ∈ J〈α〉KG and v ∈ J〈β〉KG, but we are interested in binary containment.)

26

We have thus shown that query containment for GXPath
path-pos
reg path formulas is polynomially reducible to (un)satisfiability

of node formulas of the same language. Using this and the fact that GXPath
path-pos
reg is contained in Propositional Dynamic

Logic (in fact GXPath
path-pos
reg is the same as PDL without variables) we can use the decision procedure for PDL to solve

GXPath
path-pos
reg query containment. Since the former is in EXPTIME (see [24], Theorem 8.4.), we obtain the desired result.

The lower bound follows from adapting known EXPTIME-complete results regarding the satisfiability of PDL versions close

to XPath (see e.g. Section 4.4 of Alechina, N., Demri, S., & De Rijke, M. (2003). A modal perspective on path constraints.

Journal of Logic and Computation, 13(6), 939-956.; or Theorem 8.4 in [24]). These results present reductions from the

acceptance problem of a Turing Machine that decides a language in EXPTIME. The only difficulty in the adaptation of these

proofs is dealing with a bounded alphabet, since the natural adaptation of these results would result in a reduction needing an

unbounded alphabet. But this can be done by coding the symbols of the alphabet as binary strings– of unbounded length but

now using a bounded alphabet–, as is repeatedly done in [4] (see the EXPSPACE-hardness proof). For example, if Σ contains

4 characters, then we treat them as strings 00, 01, 10 and 11.

27

