Query Languages for Data Exchange:
Beyond Unions of Conjunctive Queries

Marcelo Arenas
Dept. of Computer Science
PUC Chile
marenas@ing.puc.cl

ABSTRACT

The class of unions of conjunctive queries (UCQ) has beewrsho
to be particularly well-behaved for data exchange; itsaieran-
swers can be computed in polynomial time (in terms of data-com
plexity). However, this is not the only class with this pragethe
certain answers to any ADALOG program can also can be com-
puted in polynomial time. The problem is that both UCQ and

DATALOG do not allow negated atoms, as adding an unrestricted

form of negation to these languages yields to intractabilit

In this paper, we propose a language callesrR20G€#) that
extends DTALOG with a restricted form of negation, and study
some of its fundamental properties. In particular, we shoat t
the certain answers to aaaLoG€#) program can be computed
in polynomial time (in terms of data complexity), and that ev
ery union of conjunctive queries with at most one inequatity
negated relational atom per disjunct, can be efficientlyritesm as

a DaTAL0G©(#) program in the context of data exchange. Further-
more, we show that this is also the case for a syntactic ctistni
of the class of unions of conjunctive queries with at most imo
equalities per disjunct. This syntactic restriction isegivby two
conditions that are optimal, in the sense that computintairean-
swers becomes intractable if one removes any of them. e
provide a thorough analysis of the combined complexity ah€o
puting certain answers toA?aLocS*) programs and other re-
lated query languages. In particular, we show that this Iprob
is ExPTIME-complete for TALOGC(#), even if one restricts to
conjunctive queries with single inequalities, which is agiment
of DaTALOGC#) by the result mentioned above. Furthermore,
we show that the combined complexityd®NEXPTIME-complete
for the case of conjunctive queries wikhinequalities, for every
k> 2.

1. INTRODUCTION

Data exchange is the problem of computing an instancetaiget
schema, given an instance of@urceschema and a specification of
the relationship between source and target data. Althoatd ek-
change is considered to be an old database problem, itetiesdr
foundations have only been laid out very recently by the sami

Permission to copy without fee all or part of this materiagianted pro-
vided that the copies are not made or distributed for direntraercial ad-
vantage, the ACM copyright notice and the title of the pudtien and its
date appear, and notice is given that copying is by pernmssicthe ACM.
To copy otherwise, or to republish, to post on servers or distebute to
lists, requires a fee and/or special permissions from thigher, ACM.
ICDT 2009 March 23-25, 2009, Saint Petersburg, Russia.

Copyright 2009 ACM 978-1-60558-423-2/09/0003 ...$5.00

Pablo Barcel6
Dept. of Computer Science

Univ. of Chile
pbarcelo@dcc.uchile.cl

Juan Reutter
Dept. of Computer Science
~ PUC Chile
jlreutte@puc.cl

work of Fagin, Kolaitis, Miller and Popa [8]. Both the study o

data exchange and schema mappings have become an active area

of research during the last years in the database commusgty (
e.g.[8,9,4,7 16,12, 17, 11]).

In formal terms, a data exchange setting is a tripte = (S, T,
3st), whereS is asourceschemaT is atargetschema, an&: is

a mapping defined as a setsufurce-to-targetiependencies of the
form Vz(¢s(z) — Jyyvr(Z, 7)), wheregs andyr are conjunc-
tions of relational atoms ove3 andT, respectively (some studies
have also included target constraints, but here we focusata d
exchange settings without dependencies @gr Given a source
instancel, the goal in data exchange is to materialize a target in-
stanceJ that is asolutionfor I, that is, J together withI must
conform to the mapping:.:.

An important issue in data exchange is that the existingipac
tion languages usually do not completely determine theiosla
ship between source and target data and, thus, there mayre ma
solutions for a given source instance. This immediatelyasihe
question of which solution should be materialized. Initiairk on
data exchange [8] has identified a class of “good" soluticaked
universalsolutions. In formal terms, a solution is universal if it can
be homomorphically embedded into every other solution. ds w
proved in [8] that for the class of data exchange settingsiestkin

this paper, a particular universal solution called ¢aeonicaluni-
versal solution can be computed in polynomial time. It is@mant

to notice that in this result the complexity is measured rm&eof

the size of the source instance, and the data exchange spéaifi

Y s¢ Iis assumed to be fixed. Thus, this result is stated in terms of
datacomplexity [19].

A second important issue in data exchange is query answering
Queries in the data exchange context are posed over the targe
schema, and —given that there may be many solutions for aesour
instance— there is a general agreement in the literaturéthia se-
mantics should be defined in termsadrtain answers [13, 1, 14,

8]. More formally, given a data exchange settibg= (S, T, X.¢)

and a queny overT, a tuplet is said to be a certain answerd
over I under M, if ¢ belongs to the evaluation @ over every
possible solutiory for I underM.

The definition of certain answers is highly non-effectivs,itain-
volves computing the intersection of (potentially) infelit many
sets. Thus, it becomes particularly important to undedstzn
which classes of relevant queries, the certain answerseaom-
puted efficiently. In particular, it becomes relevant to erstiand
whether it is possible to compute the certain answers to ény o

these classes by using some materialized solution. Fagiaijtis,
Miller, and Popa [8] have shown that this is the case for ths<l
of union of conjunctive queries (UCQ); the certain answersach
union of conjunctive querie§) over a source instanck can be
computed in polynomial time by directly posiidgover the canon-
ical universal solution fof. Again, itis important to notice that this
result is stated in terms of data complexity, that is, the glewxity
is measured in terms of the size of the source instance, ahdhm
data exchange specificatidh: and the query) are assumed to be
fixed.

The good properties of UCQ for data exchange can be comypletel
explained by the fact that unions of conjunctive queries@ae
served under homomorphisms. But this is not the only languag
that satisfies this condition, as queries definable AaTADOG, the
recursive extension of UCQ, are also preserved under homomo
phisms. Thus, BTALOG is as good as UCQ for data exchange
purposes. In particular, the certain answers to:@ADOG program

IT over a source instande can be computed efficiently by first ma-
terializing the canonical universal solutionfor 7, and then evalu-
atingII over J (since the data complexity of aADALOG program

is polynomial).

Unfortunately, both UCQ and ArALOG keeps us in the realm of
the positive, while most database query languages are peeflip
with negation. Thus, the first goal of this paper is to inge
what forms of negation can be added taT@LOG while keeping
all the good properties of ErALOG, and UCQ, for data exchange.
It should be noticed that this is not a trivial problem, ag¢his a
trade-off between expressibility and complexity in thistExt. On
the one hand, one would like to have a query language expeessi
enough to be able to pose interesting queries in the dataergeh
context. But, on the other hand, it has been shown that adtding
unrestricted form of negation toADALOG (or even to conjunctive
queries) yields to intractability of the problem of compmgticertain
answers [1, 8]. In this respect, the following are our maintgbu-
tions.

e We introduce a query language calleaLoc <) that
extends ATALOG with a restricted form of negation, and

that has the same good properties for data exchange as

DATALOG. In particular, we prove that the certain answers to
a DaTALoG C#) programll over a source instandecan be
computed by evaluatingl over the canonical universal solu-
tion for I. As a corollary, we obtain that computing certain
answers to a BraLoG©(*) program can be done in polyno-
mial time (in terms of data complexity).

To show that BTAL0GS#) can be used to express interest-
ing queries in the data exchange context, we prove that every
union of conjunctive queries with at most one inequality or
negated relational atom per disjunct, can be efficiently ex-
pressed as a &¥aLoGS(#) program in the context of data
exchange.

It follows from the previous result that the certain answers
to every union of conjunctive queries with at most one in-
equality or negated relational atom per disjunct, can be-com
puted in polynomial time (in terms of data complexity). Al-
though this corollary is not new (it is a simple extension of
a result in [8]), the use of BraLoc©#) in the context of
data exchange opens the possibility of finding new tractable
classes of query languages with negation. In fact, we also

use DATALOGC™ to find a tractable fragment of the class
of conjunctive queries with two inequalities.

It is known that for the class of conjunctive queries with
inequalities, the problem of computing certain answers is
coNP-complete [1, 8] (in terms of data complexity). In fact,
it has been shown that the intractability holds even for the
case of two inequalities [18]. However, very little is known
about tractable fragments of these classes. In this pager, w
provide a syntactic restriction for the class of unions af-co
junctive queries with at most two inequalities per disjynct
and prove that every query conforming to it can be expressed
as a ATALOG C) program in the context of data exchange.
It immediately follows that the data complexity of comput-
ing certain answers to a query conforming to this restnictio
is polynomial.

The syntactic restriction mentioned above is given by two
conditions. We conclude this part of the investigation by
showing that these conditions are optimal for tractability
the sense that computing certain answers becomes intiactab
if one removes any of them. It should be noticed that this
gives a new proof of the fact that the problem of computing
certain answer to a conjunctive query with two inequalities
is CONP-complete.

The study of the complexity of computing certain answers to
DaTALOG ©(#) programs will not be complete if one does not con-
sider the notion otombinedcomplexity. Although the notion of
data complexity has shown to be very useful in understanttiag
complexity of evaluating a query language, one should dlsdys
the complexity of this problem when none of its parametecois
sidered to be fixed. This corresponds to the notion of conabine
complexity introduced in [19], and it means the followingthe
context of data exchange. Given a data exchange setinc
query@ over the target and a source instadicene considerg as
well as@ and M as part of the input when computing the certain
answers ta@) overI underM. In this paper, we study this problem
and establish the following results.

e We show that the combined complexity of the problem of
computing certain answers toADALOGS(*) programs is
ExpPTIME-complete, even if one restricts to the class of con-
junctive queries with single inequalities (which is a fragm
of DATALOGC#) by the result mentioned above). This re-
fines a result in [12] that shows that the combined complex-
ity of the problem of computing certain answersitdonsof
conjunctive queries with at most one inequality per disjunc
is EXPTIME-complete.

We also consider the class of conjunctive queries with an
arbitrary number of inequalities per disjunct. More specifi
cally, we show that the combined complexity of the problem
of computing certain answers@NEXPTIME-complete for
the case of conjunctive queries withinequalities, for every
k>2.

One of the reasons for the high combined complexity of the
previous problems is the fact that if data exchange settings
are not considered to be fixed, then one has to deal with
canonical universal solutions of exponential size. A natu-
ral way to reduce the size of these solutions is to focus on
the class of lav data exchange settings [14], which are fre-
quently used in practice.

For the case of BraLoc ©(*) programs, the combined com-
plexity is inherently exponential, and thus focusing ofvL
settings does not reduce the complexity of computing aertai
answers. However, we show in the paper that if one focus
on LAv settings, then the combined complexity is consider-
ably lower for the class of conjunctive queries with inegual
ities. More specifically, we show that the combined com-
plexity goes down to NP-complete for the case of conjunc-
tive queries with single inequalities, andIig-complete for
the case of conjunctive queries withinequalities, for every
k> 2.

Organization of the paper. In Section 2, we introduce the termi-
nology used in the paper. In Section 3, we define the syntasand
mantics of :TALoG C#) programs. In Section 4, we study some
of the fundamental properties of®aLoG ©#) programs concern-
ing complexity and expressiveness. In Section 5, we stugijtas-
tic restriction that leads to tractability of the problemcoimputing
certain answers for unions of conjunctive queries with mexual-
ities. In Section 6, we provide a thorough analysis of the lmioed
complexity of computing certain answers tosfALoG ©(#) pro-
grams and other related query languages. Concluding renaaek
in Section 7.

2. BACKGROUND

A schemaR is a finite se{ R4, . .., Ry} of relation symbols, with
eachR; having a fixed arityn; > 0. LetD be a countably infinite
domain. Aninstancel of R assigns to each relation symhBl|

of R a finite n;-ary relationR! C D™i. Thedomaindom(I) of
instancel is the set of all elements that occur in any of the relations
R!. We often define instances by simply listing the tuples atdc

to the corresponding relation symbols.

We assume familiarity with first-order logi@&'(Q) and DATALOG.

In this paper, CQ is the class of conjunctive queries and USxQe
class of unions of conjunctive queries. If we extend theassds
by allowing inequalities or negation (of relational atontsen we
use superscriptg and—, respectively. Thus, for example, CQs
the class of conjunctive queries with inequalities, and UG£the
class of unions of conjunctive queries with negation. Asalisu
the database literature, we assume that every q@enyUCQ”"~

is safe (1) if Q1 andQ- are disjuncts of), then@, andQ- have
the same free variables, (2)df; is a disjunct of@ andx # y is a
conjunct ofQ, thenz andy appear in some non-negated relational
atoms ofQ1, (3) if Q1 is a disjunct of@ and—R(Z) is a conjunct
of Q1, then every variable it appears in a non-negated relational
atom of Q1.

2.1 Data exchange settings and solutions

As is customary in the data exchange literature, we consider
stances with two types of values: constants and nulls [8\V@fe
precisely, letC andN be infinite and disjoint sets of constants and
nulls, respectively, and assume tiat= C U N. If we refer to a
schemaS as asourceschema, then we will assume that for every
instancel of S, it holds that domi/) C C. On the other hand, if
we refer to a schem® as atargetschema, then for every instance
J of T, it holds that doniJ) C C U N. Slightly abusing notation,
we also useC to denote a built-in unary predicate such i)
holds if and only ifa is a constant, that i € C.

A data exchange setting a tupleM = (S, T, %), whereS
is a source schem& is a target schem& and T do not have

predicate symbols in common abd: is a set of FO-dependencies
overS U T (in [8] and [9] a more general class of data exchange
settings is presented, that also includaget dependencies). As
usual in the data exchange literature (e.g., [8, 9]), weaintghe
study to data exchange settings in whick: consists of a set of
source-to-target tuple-generatirgpendencies. A source-to-target
tuple-generating dependency (st-tgd) is an FO-sentertte ébrm
vz (¢(Z) — g (T, 7)), wheregp(Z) is a conjunction of relational
atoms oveiS and(Z,) is a conjunction of relational atoms over
T. A source(resp. targed instanceK for M is an instance 08
(resp.T). We usually denote source instancesby’, I1, ..., and
target instances by, J', J1,

The class of data exchange settings considered in this mpsu-
ally called GQ.av (global-&-local-as-view) in the database litera-
ture [14]. One of the restricted forms of this class that hesnb
extensively studied for data integration and exchangeeisiiss of
LAv settings. Formally, a Av setting (local-as-view) [14] is a data
exchange settingt = (S, T, X,:), in which every st-tgd it is

of the formVvz (S(z) — v(z)), for someS € S.

An instanceJ of T is said to be @&olutionfor an instancd under
M = (S,T,X,), if the instanceK = (I, J) of S U T satisfies
Y., whereSK = 57 for everyS € S andT® = T for every
T € T. If M is clear from the context, we shall say thais a
solution forlI.

ExampLE 2.1. LetM = (S, T, X,:) be a data exchange setting.
Assume thasS consists of one binary relation symbgl, and T
consists of two binary relation symbai$ and R. Further, assume
that X,; consists of st-tgd$(z,y) — Q(z,y) and P(z,y) —
3zR(z, z). ThenM is also a lav setting.

Let I = {P(a,b), P(a,c)} be a source instance. Then
Ji = {Q(a> b)! Q(a> 0)7 R(avb)} and J2 = {Q(a> b)! Q(a> C),
R(a,n)}, wheren € N, are solutions fod. In fact, I has in-
finitely many solutions. m|

2.2 Universal solutions and canonical univer-

sal solution
It has been argued in [8] that the preferred solutions in data
change are theniversalsolutions. In order to define this notion, we
first have to revise the conceptlmdbmomorphisnn data exchange.
Let K; and K> be instances of the same scheRiaA homomor-
phismh from K to K> is a functionh : dom(K1) — dom(K>)
such that: (1)a(c) = c for everyc € C N dom(K), and (2) for
everyR € R and every tuplé = (ay,...,ar) € R¥1, it holds
thath(a) = (h(a1),...,h(ax)) € R*2. Notice that this defini-
tion of homomorphism slightly differs from the usual one,ths
additional constraint that homomorphisms are the idemtitythe
constants is imposed.

Let M be a data exchange settinga source instance antla so-
lution for I under M. ThenJ is auniversal solutiorfor I under
M, if for every solutionJ’ for I under.M, there exists a homo-
morphism fromJ to .J’.

EXAMPLE 2.2 (EXAMPLE 2.1 CONTINUED). Solution J> is a
universal solution forZ, while J; is not since there is no homo-
morphism fromJ; to Ja. m|

It follows from [8] that for the class of data exchange sefsistud-
ied in this paper, every source instance has universaligofutin
particular, one of these solutions - called tenonical universal
solution- can be constructed in polynomial time from the given
source instance (assuming the setting to be fixed), usinghhse
procedure [5]. We shall define canonical universal solstidia
rectly as in [4, 16].

In the following, we show how to compute the canonical uni-
versal solution of a source instanédn a data exchange setting
(S, T, Ss:). For each st-tgd i, of the form:

(%, 9) ATy (Zk, W),

wherez = z; U---UZ, andw = w; U -- - U Wy, and for each
tuplea from dom(7) of length ||, find all tuplesbs, . . ., b, such
that7 = ¢(a,b;), i € [1,m]. Then choosen tuplesfy, . .., Am
of length |w| of fresh distinct null values oveN. RelationT;
(¢ € [1, k]) in the canonical universal solution fércontains tuples
(73, (@), 7w, (7)), for eachj € [1,m], whererz, (a) refers to the
components ofi that occur in the positions af;. Furthermore,
relationT; in the canonical universal solution fdronly contains
tuples that are obtained by applying this algorithm.

— HU_)(T1(f'1,’u_)1) A -

This definition differs from the one given in [8], where a caiRo
cal universal solution is obtained by using the classicaketpro-
cedure. Since the result of the chase used in [8] is not necess
ily unique (it depends on the order in which the chase steps ar
applied), there may be multiple non-isomorphic canonicaVer-
sal solutions. Clearly, under our definition, the canonigaiver-

complexity of the problem of computing certain answersekah
Section 6, we also study tlkembinedcomplexity of this problem.

3. EXTENDING QUERY LANGUAGES
FOR DATA EXCHANGE: DATALOGC®®
PROGRAMS

The class of unions of conjunctive queries is particularkgilw
behaved for data exchange; the certain answers of each ahion
conjunctive queries) can be computed by directly posidgover

an arbitrary universal solution [8]. More formally, giverdata ex-
change setting\1, a source instancg, a universal solutiorn/ for

I underM, and a tuplée of constants{ € certaina (Q, I) if and
only if £ € Q(J). This implies that for each data exchange set-
ting M, the problem ERTAIN-ANSWERSM, Q) can be solved
in polynomial time ifQ is a union of conjunctive queries (because
the canonical universal solution fércan be computed in polyno-
mial time and@ has polynomial time data complexity).

The fact that the certain answers of a union of conjunctiverigs

Q) can be computed by posin@ over a universal solution, can be
fully explained by the fact thaf) is preservedunder homomor-
phisms, that is, for every pair of instancésJ’, homomorphism
h from J to J', and tuplea of elements inJ, if a € Q(J), then
h(a) € Q(J'). But UCQ is not the only class of queries that
is preserved under homomorphisms; alserBLoG, therecursive
extension of the class UCQ, has this property. SinegADOG
has polynomial time data complexity, we have that the cerar
swers of each BTALOG query Q can be obtained efficiently by

sal solution is unique up to isomorphism and can be computed first computing a universal solutiof, and then evaluating over

in polynomial time fromI. For a fixed data exchange setting
M = (S,T,X.), we denote by @N the transformation from
source instances to target instances, such that(C) is the canon-
ical universal solution fof underM.

2.3 Certain answers

Queries in a data exchange settivg = (S, T, X,) are posed
over the target scheniB. Given that there may be (even infinitely)
many solutions for a given source instant&ith respect taM,
the standard approach in the data exchange literature isfioed
the semantics of the query based on the notion of certainemsw
[13, 1, 14, 8].

Let I be a source instance. For a quépyof arity n > 0, in
any of our logical formalisms, we denote byrtain (@, I) the
set of certain answerof (Q over I under M, that is, the set of
n-tuplest such thatt € Q(J), for every J that is a solution
for I under M. If n = 0, then we say thaf) is Boolean and
certainap (Q, I) = true iff @ holds for everyJ that is a solution
for I underM. We writecertain o (@, I) = false if it is not the
case thatertainy((Q, I) = true.

Let M = (S, T, X,:) be a data exchange setting afda query
overT. The main problem studied in this paper is:

PROBLEM CERTAIN-ANSWERSM, Q).

INPUT A source instancd and a tuplet of con-
stants from/.

QUESTION Ist € certainpm (Q, I)?

Since in the above definition both the setting and the queey ar
fixed, it corresponds (in terms of Vardi's taxonomy [19]) he tlata

J. Thus, DA\TALOG preserves all the good properties of UCQ for
data exchange.

Unfortunately, both UCQ and AYALOG keep us in the realm of the
positive (i.e. negated atoms are not allowed in queriesijewmost
database query languages are equipped with negation. ritssee
then natural to extend UCQ (orADALOG) in the context of data
exchange with some form of negation. Indeed, query language
with different forms of negation have been considered indaia
exchange context [3, 6], as they can be used to expressstiteye
queries. Next, we show an example of this fact.

ExampPLE 3.1. Consider a data exchange setting wgh =
{E(v)vA()7B()}1 T = {G(7)7P()7R()} and 2575 =
{E(z,y) — G(z,y),A(z) — P(z),B(z) — R(z)}. Notice
that if I is a source instance, then the canonical universal solution
CAN(I) for I is such thatE! = G Al = peAnd) gnd

BI — RCAN(I).

Let Q(z) be the following UCQ query overT: Jz3y (P(z) A
R(y) A G(z,y)) Vv 3a3y3z (G(x,2) A G(z,y) A ~G(z,y)).
It is not hard to prove that for every source instanée
certainpm(Q,I) = true iff there exist elementsa,b €
dom(CAN(I)) such that belongs taP“*" (D) p belongs taR“ ()
and(a, b) belongs to the transitive closure of the relatigf*"(?).
That is, certainp (Q, I) = true iff there exist elements, b €
dom(I) such thatz belongs toA’, b belongs toB” and(a, b) be-
longs to the transitive closure of the relatigH. a

Itis well-known (see e.g. [15]) that there is no union of corgtive
queries (indeed, not even an FO-query) that defines theitivens

closure of a graph. Thus, & and M are as in the previous ex-
ample, then there is no union of conjunctive queri¥ssuch that
Q'(CAN(I)) = certainpm(Q’,I) = certainpm(Q, I), for every

source instancé. It immediately follows that negated relational

Assume thatl is a DaTALoGC#) program and is a database in-
stance of the relational scherfaed (II). Then7 (1) is an instance
of Pred(IT) such that for even? € Pred(II) and every tuple,
it holds thatt € R7?) if and only if there exists a rul&(z) «—

atoms add expressive power to the class UCQ in the context of Ry (z1),..., Re(Ze), C(y1), .-, C(¥m), U1 # V1,...,Un # Un

data exchange (see also [4]). And not only that, it follovesfii8]
that inequalities also add expressive power to UCQ in theéexbn
of data exchange.

in II and a variable assignmeant such that (a(z) = ¢, (b)
o(Z;) € RI, for everyi € [1,4], (c) o(y:) is a constant, for every
i € [1,m], and (d)o(u;) # o(v;), for everyi € [1,n]. Operator
T is used to define the semantics of constant-inequality Dgtal

In this section, we propose a language that can be used to poseyrograms. More precisely, defirg? (1) to be I and 77! (I) to

queries with negation, and that has all the good properfiek30
for data exchange.

3.1 DATALOG S programs
Unfortunately,

homomorphisms, but also easily yields to intractabilitytef prob-

lem of computing certain answers [1, 8]. More preciselyréhe
is a settingM and a queryQ in UCQ” such that the problem
CERTAIN-ANSWERS.M, Q) cannot be solved in polynomial time

(unless RIME = NP). In particular, the set of certain answers

of @ cannot be computed by evaluati@gover a polynomial-time
computable universal solution. Next we show that there taral
way of adding negation to &raLoG while keeping all of the good
properties of this language for data exchange. In Sectioned,
show that such a restricted form of negation can be used teexp
many relevant queries (some including negation) for dath@xge.

DEFINITION 3.2 (DaTALOGS(#) PROGRAMS. A constant-

inequality Datalog rulés a rule of the form:
S(CE) — 51(551)7 ey Sg(f’(), C(yl)7 Cey
C(ym),u1 #v1,...,un #vn, (1)
where

(a.) S, Sl, ..
bols,

., S¢ are (non necessarily distingtpredicate sym-

(b) every variable irx is mentioned in some tupie (i € [1, ¢]),

(c) every variabley; (5 € [1,m]) is mentioned in some tupig
(i € [1,4]), and

(d) every variableu; (j € [1,n]), and every variabley;, is
equal to some variablg; (i € [1,m]).

Moreover, aconstant-inequality Datalog prOgl’a(r@ATALOGC(#)
program) I1 is a finite set of constant-inequality Datalog rules.

For example, the following is a constant-inequality Dagafwo-
gram:

R(z,y) «
S(x)

T(z,z),5(z,y),C(z),C(z),x # =
U(z,u,v,w),C(z),C(u),
C(v),C(w),u # v,u #w

For a rule of the form (1), we say that(z) is its head. The set of
predicates of a BTAL0G(*) programIl, denoted byPred (IT),
is the set of predicate symbols mentionedlinwhile the set of
intensional predicates difl, denoted by/Pred(II), is the set of
predicates symbol& € Pred(II) such thatR(z) appears as the
head of some rule dfl.

adding an unrestricted form of negation to
DATALOG (or even to CQ) not only destroys preservation under

beT (Ti7 (1)) U Ty (1), for everyn > 0. Then the evaluation dft
over[is defined agi7° (1) = U,,> 7t (1)-

A constant-inequality Datalog prograiii is said to be defined
over a relational schemR if R = Pred(II) \ IPred(II) and
ANSWER € IPred(II). Given an instancé of R and a tuple in
dom(I)", wheren is the arity of ANSWER we say that € TI([)
if £ € ANswer'T (o) wherel) is an extension of defined as:
R = RIfor R € RandR™ = (for R € IPred(II).

As we mentioned before, the homomorphisms in data exchaege a
not arbitrary; they are the identity on the constants. Tigisen

that inequalities are witnessed by constants iTA.0G) pro-
grams, we have that these programs are preserved under homo-
morphisms. From this we conclude that the certain answeess to
DATALOG €(#) programlI can be computed by directly evaluating

IT over a universal solution.

ProPOSITION 3.3. Let M = (S, T, 3,) be a data exchange set-
ting, I a source instance/ a universal solution fo under M,
andIl a DATALOG ©#) program overT. Then for every tuplé of
constantsy € certain (I, 1) iff ¢ € TI(J).

This proposition will be used in Section 4 to show that
DATALOG ©#) programs preserve the good properties of conjunc-
tive queries for data exchange.

4. ON THE COMPLEXITY AND EX-
PRESSIVENESS OF DATALOG S PRO-
GRAMS

We start this section by studying the expressive power of
DATALOG®(#) programs. In particular, we show that these pro-
grams are expressive enough to capture the class of uniawmof
junctive queries with at most one negated atom per disjuRicis
class has proved to be relevant for data exchange, as itgtiest
with inequalities not only can express relevant queriesatad is
one of the few known extensions of the class UCQ for which the
problem of computing certain answers is tractable [8].

THEOREM 4.1. Let@ be aUCQ query over a schem@, with at
most one inequality or negated relational atom per disjufidien
there exists aDATALOGE) program I, over T such that for
every data exchange settiolgt = (S, T, X,:) and instancel of
S, certainap (@, I) = certaina (Ilg, I). Moreover,Ilg can be
effectively constructed fro@ in polynomial time.

In the following example, we sketch the proof of Theorem 4.1.

ExAMPLE 4.2. LetM be a data exchange setting such tBat
{E£C), A} T ={G(,),P()}and

et = {E(z,y) — F2(G(z,2) ANG(2,y)), Alz) — P(x)}.
Also, letQ(z) be the following query in UC® ™:

(P(z) NG(z,x)) V Jy (G(z,y) ANz #y)
V Jy3z (G(z,2) A G(z,y) A ~G(z,y)).

We construct a BraLoc®®) program II, such that
certainap (Q, I) = certaina(Ilg, I). The set of intensional
predicates of the BraLoc®®) program Ilg is {U:(,, "),
Uz(-,-), dom(-), EQUAL(-,-,-), ANSWER(-)}. The programilg
over T is defined as follows.

e First, the program collects in dgm) all the elements that
belong to the active domain of the instancelbfvherellg

is evaluated:
domz) « G(z,2) (2
domz) « G(z,x) (3)
dom(z) «— P(z) (4)

Second, the prograrflg includes the following rules that
formalize the idea that ®AL (z,y, z) holds if z andy are
the same elements:

EQUAL(z, z, z) « dom(x), dom(z) (5)

EQUAL(z,y, z) «+— EQUAL(y,,2) (6)

EQUAL(z,y, 2) «— EQUAL(z,w, z), EQUAL(w,y,2) (7)
Predicate BUAL includes an extra argument that keeps track
of the element where the query is being evaluated. Notice
that we cannot simply use the ruleQBAL(z,x,z) < to
say that FyUAL is reflexive, as BTALOG(#) programs are

safg i.e. every variable that appears in the head of a rule also
has to appear in its body.

Third, T1g includes the rules:

Ui(e,9,2) — Gla,y),dom(z) ®)

Us(z,z) < P(x),dom(z) 9)
Ui(z,y,2) «— Ui(u,v,2), EQUAL(u, z, 2),

EQUAL(v, y,) (10)

Us(z,z) «— Usz(u,z), EQUAL(u,z,2) (11)

Intuitively, the first two rules create iti; andU- a copy of

G and P, respectively, but again with an extra argument for
keeping track of the element whefk, is being evaluated.
The last two rules allow to replace equal elements in the in-
terpretation of/; andUs.

Fourth,IIq includes the following rule for the third disjunct
of Q(x):

Ul(x7y7x)

Intuitively, this rule expresses thatdfis an element that does
not belong to the set of certain answergxr), then for ev-
ery pair of elements andc such tha{a, b) and(b, ¢) belong
to the interpretation of7, it must be the case thét, ¢) also
belongs to it.

— Ul(xyzvx)7U1(Zvyvx) (12)

e Fifth, I includes the following rule for the second disjunct
of Q(z):

EQUAL(‘T:yvx) — Ul(:I},y,LE) (13)

Intuitively, this rule expresses thatifis an element that does
not belong to the set of certain answergxr), then for ev-
ery element such that the paifa, b) belongs to the inter-
pretation ofG, it must be the case that= b.

Finally, TIg includes two rules for collecting the certain an-
swers toQ(z):

ANSWER(z) < Uz(z,z), Ui (z, z,x), C(z) (14)
ANSWER(z) < EQUAL(y, z,z),C(y),C(z),y # z (15)

Intuitively, rule (14) says that if a constaatbelongs to the
interpretation ofP and (a, a) belongs to the interpretation
of G, thena belongs to the set of certain answersQér).
Indeed, this means that.fis an arbitrary solution where the
program is being evaluated, therbelongs to the evaluation
of the first disjunct ol (z) overJ.

Rule (15) says that if in the process of evaluatliig with
parameter, two distinct constant$ and ¢ are declared to
be equal (BUAL(b, ¢, a) holds), thena belongs to the set
of certain answers t@(x). We show the application of this
rule with an example. Lef be a source instance, and assume
that(a,n) and(n, b) belong toG in the canonical universal
solution forI, wheren is a null value. By applying rule (2),
we have that dorfa) holds in CaN(7). Thus, we conclude
by applying rule (8) that/(a,n,a) and Ui (n,b,a) hold

in CAN(T) and, therefore, we obtain by using rule (13) that
EQUAL(a,n,a) holds in CaN(I). Notice that this rule is
trying to prove that: is not in the certain answers @(z)
and, hence, it forces to be equal taz. Now by using rule
(6), we obtain that BUAL (n, a, a) holds in CaN(I). But we
also have that BUAL (b, b, a) holds in CaN(I) (by applying
rules (3) and (5)). Thus, by applying rule (10), we obtairt tha
Ui(a,b,a) holds in GaN(T). Therefore, by applying rule
(13) again, we obtain that@AL(a, b, a) holds in CaN(T).
This time, rule (13) tries to prove thatis not in the certain
answers t@)(z) by forcing constants andb to be the same
value. But this cannot be the case siacandb are distinct
constants and, thus, rule (15) is used to concludedigtn
the certain answers @(x). It is important to notice that this
conclusion is correct. I is an arbitrary solution fof, then
we have that there exists a homomorphism CAN(I) —

J. Given thata andb are distinct constants, we have that
a # h(n) orb # h(n). It follows that there is an element
cin J such thata # ¢ and the pair(a, ¢) belongs to the
interpretation ofG. Thus, we conclude thatbelongs to the
evaluation of the second disjunct@f(x) over.J.

It is now an easy exercise to show that the set of certain asswe
to Q(x) coincide with the set of certain answersllg), for every
source instancé. |

At this point, a natural question aboutabrLoGS*) programs
is whether the different components of this language arblyrea
needed, that is, whether inequalities and recursion aengakfor
this language. Next, we show that this is indeed the caseiand,
particular, we conclude that both inequalities and reoursire es-
sential for Theorem 4.1.

It was shown in [8] that there exist a data exchange seftihgnd

a conjunctive queny with one inequality for which there is no
first-order queryQ* such thatcertainam (@, 1) = Q*(CAN(I))
holds, for every source instanée Thus, given that a non-recursive
DaTALOG €(#) program is equivalent to a first-order query, we con-
clude from Proposition 3.3 that recursion is necessarydpturing
the class of unions of conjunctive queries with at most oz tes
atom per disjunct.

PropPosITION4.3 ([8]). There exist a data exchange settifg
and a Boolean conjunctive quety with a single inequality such
that for every non-recursiv®ataLocC#) program1l, it holds
that certainaq (Q, I) # certain g (IL, ') for some source instance
1.

In the following proposition, we show that the use of inedfies

is also necessary for capturing the class of unions of catijten
queries with at most one negated atom per disjunct. We nate th
this cannot be obtained from the result in [8] mentioned abov
as there are BraLoc®(#) programs without inequalities that are
not expressible in first-order logic. The proof of this prejion
follows from the fact that BTaLoc<*) programs without in-
equalities are preserved under homomorphisms, while ootije
queries with inequalities are only preserved under oneq®-ho-
momorphisms.

PROPOSITION 4.4. There exist a data exchange setting and

a Boolean conjunctive querg) with a single inequality such
that for every DATALOGS#) program II without inequalities,
certainap (Q, I) # certainaq (11, I) for some source instande

Notice that as a corollary of Proposition 4.4 and Theorem wel
obtain that TALOGC#) programs are strictly more expressive
than DataLoGC(#) programs without inequalities.

We conclude this section by studying the complexity of thebpr
lem of computing certain answers toatALoGS*) programs.

It was shown in Proposition 3.3 that the certain answers of a
DATALOG € programII can be computed by directly posiiify
over CAN(I). This implies that for each data exchange setiirg

the problem @RTAIN-ANSWERS.M, II) can be solved in poly-
nomial time if I is a DaTaLoG ©(#) program (since @N(I) can

be computed in polynomial time arld has polynomial time data
complexity).

PROPOSITION 4.5. The problem CERTAIN-ANSWERSM,II)
can be solved in polynomial time, for every data exchanginget
M and DATALOGC#) programIl.

From the previous proposition and Theorem 4.1, we conclode t
the certain answers to a union of conjunctive queries witim@st
one negated atom per disjunct can also be computed in polghom
time. We note that this slightly generalizes one of the poiyral
time results in [8], which is stated for the class of unionomn-
junctive queries with at most one inequality per disjundte proof

of the result in [8] uses different techniques, based on tiese
procedure. In Section 5, we show tharidLoGC#) programs
can also be used to express (some) unions of conjunctivéeguer
with two inequalities per disjunct.

A natural question at this point is whether the problem
CERTAIN-ANSWERS M, II) is PTIME-complete for some data ex-
change settingW! and DaTaLoG) programll. It is easy to see
that this is the case given that the data complexity of theuatian
problem for DXTALOG programs is PIME-complete. But more
interestingly, from Theorem 4.1 we have that this results® @
corollary of a stronger result for UC®Qqueries, namely that there
exist a data exchange settirlg and a conjunctive quer§) with
one inequality such that the problenERTAIN-ANSWERS M, Q)

is PTIME-complete.

PROPOSITION 4.6. There exist d_Av data exchange setting1
and a Boolean conjunctive quefy with one inequality such that
CERTAIN-ANSWERS M, Q) is PTIME-complete.

It is worth mentioning that it follows from Proposition 3.4 [12]
that there exist a data exchange settivgcontaining somearget
dependencies and a conjunctive quéryvith one inequality such
that CERTAIN-ANSWERSM, @) is PTIME-complete. Proposition
4.6 shows that this result holds even when no target depereden
are provided.

5. CONJUNCTIVE QUERIES WITH TWO
INEQUALITIES

As we mentioned before, computing certain answers to ceonjun
tive queries with more than just one inequality is an inthtz
problem. Indeed, there is aak setting.M and a Boolean con-
junctive query @ with two inequalities such that the problem
CERTAIN-ANSWERSM, @) is cCONP-complete [18]. Therefore,
unless RIME = NP, Theorem 4.1 is no longer valid if we remove
the restriction that every disjunct @ must contain at most one
inequality.

The intractability for conjunctive queries with two inedjtias is
tightly related with the use of null values when joining telas
and checking inequalities. In this section, we investighie rela-
tionship, and provide a syntactic condition on the type of§and
inequalities allowed in queries. This restriction lead#raotability
of the problem of computing certain answers. Indeed, thistabil-
ity is a corollary of a stronger result, namely that for eveon-
junctive query@ with two inequalities, ifQ) satisfies the syntactic
condition, then one can construct aALoGC™) programIl
such thatcertaina (Q, I) = certainag(Ilg, I) for every source
instance!. It should be noticed that in this casextALoG S
programs are used as a tool for finding a tractable class ofegue
for the problem of computing certain answers.

To define the syntactic restriction mentioned above, we teat
troduce some terminology. Le! = (S, T, X,;) be a data ex-
change setting. Then for everyary relation symboll” in T, we
say that the-th attribute ofT" (1 < ¢ < n) can be nullifiedunder
M, if there is an st-tgdv in X,; such that the-th attribute ofT’
is existentially quantified in the right hand side @f Notice that
for each setting\ and source instancg if the i-th attribute ofT’
cannot be nullified undeM, then for every tupléc, . . ., c,) that
belongs tdI" in the canonical universal solution fér it holds that
¢; is a constant. Moreover, if) is a UCQ” query overT andz
is a variable inQ, then we say that can be nullifiedunder@ and
M, if x appears irQ) as thei-th attribute of a target relatiofi, and
thei-th attribute ofT" can be nullified undeM.

Let M be a data exchange setting a@da conjunctive query

with two inequalities, and assume thatuif appears as a vari-
able in the inequalities ofY, then z cannot be nullified un-
der @ and M. In this case, it is straightforward to prove that
CERTAIN-ANSWERSM, Q) is tractable. Indeed, the previous
condition implies that for every source instanteif @ holds in
CAN(I), then all the witnesses fap in CAN(I) make compar-
isons of the formec # ¢/, wherec and¢’ are constants. Thus, we
have thatcertain (@, I) can be computed by simply evaluating
Q over CaN(I). Here we are interested in finding less obvious
conditions that lead to tractability. In particular, we valike to
find queries that do not restrict the use of null values in sustrict
way.

Let @Q be a conjunctive query with two inequalities over a target
schemdT'. Assume that the quantifier free part@fis of the form
d(x1,...,Tm) Au1r # v1 A uz # v2, Whereg is a conjunction of
relational atoms oveT andu1, v1, u2 andvs are all mentioned in
the set of variables, . . ., z., (Q is a safe query [2]). We are now
ready to define the two components of the syntactic resiridtiat
leads to tractability of the problem of computing certais\aars.
We say that) hasalmost constant inequalitiasnder M, if u, or

v1 cannot be nullified undef) and M, andus or v2 cannot be
nullified under@ and M. Intuitively, this means that to satisty

in the canonical universal solution of a source instance, can
only make comparisons of the form# L andc # ¢, where

c, ¢ are constants andl is a null value. Moreover, we say théx
hasconstant joinsinder M, if for every variabler that appears at
least twice ing, x cannot be nullified undef and M. Intuitively,
this means that to satisf9 in the canonical universal solution of
a source instance, one can only use constant values whemngjoin
relations.

ExampPLE 5.1. LetM be a data exchange setting specified by st-
tgds:
P(z,y)
P(z,y)
The first and second attribute @%, as well as the first attribute of

U, cannot be nullified undeMm. On the other hand, the second
attribute ofU can be nullified undeM.

- T(:E7 y)7
— Fz2U(z,2).

Let Q(x) be query3y3z(T (y,z) NU(z,z) Nz # y Az # z).
Then we have thaf) has almost constant inequalities undet
because variablegandz cannot be nullified unde® and M, but
Q does not have constant joins because variabéppears twice
in T'(y,z) A U(z,z) and it can be nullified undep and M. On
the other hand, query/ (z,y) AU(x,2) ANz # z Ay # z has
constant joins but does not have almost constant inecesliéind
queryU(z,y) AT (x,z) Ax # z Ay # z has both constant joins
and almost constant inequalities. ad

Although the notions of constant joins and almost consteaqual-
ities were defined for C® queries with two inequalities, they can
be easily extended to the case of conjunctive queries witirlain
trary number of inequalities. In fact, the notion of constains
does not change in the case of an arbitrary number of inequali
ties, while to define the notion of almost constant ineqigsitn

the general case, one has to say that each inequaliy y in a
query satisfies the condition thator y cannot be nullified. With
this extension, we have all the necessary ingredients éontain
result of this section.

THEOREM 5.2. Let M = (8, T, X,;) be a data exchange setting
andQ a UCQ” query overT such that each disjunct @ either
(1) has at most one inequality and constant joins undi¢ror (2)
has two inequalities, constant joins and almost constaetirl-
ities under M. Then there exists BATALOGS(*) program I1g
over T such that for every instance of S, certainpm(Q,I) =
certaina(Ilg, I). Moreover,IIo can be effectively constructed
from @ and M in polynomial time.

It immediately follows from Proposition 4.5 that if a dataceange
settingM and a UCQ query(Q satisfy the conditions mentioned
in Theorem 5.2, then ERTAIN-ANSWERSM, Q) is in PTIME.
Furthermore, it can also be shown that the properties ofnigavi
constant joins and almost constant inequalities are heipfte-
ducing the complexity of computing certain answers to ugioh
conjunctive queries with at most one inequality per disjunc

PROPOSITION 5.3. Let Q be aUCQ” query with at most one
inequality per disjunct. If every disjunct af has constant
joins under a setting\t, then CERTAIN-ANSWERSM, Q) is in
NLoGSPACE and if in addition every disjunct of) has almost
constant inequalities undek1, thenCERTAIN-ANSWERS M, Q)
isin LOGSPACE

An obvious question at this point is how natural the condgiased
in Theorem 5.2 are. Although we cannot settle this subjecties-
tion, we are at least able to show that these conditions anmalp
in the sense that removing any of them leads to intractglditthe
class of UCQ@ queries with two inequalities.

THEOREM 5.4.

(1) There exist d_Av data exchange setting! and a queryQ
such that?) is the union of a Boolean conjunctive query and
a Boolean conjunctive query with two inequalities that has
both constant joins and almost constant inequalities under
M, and such thalCERTAIN-ANSWERSM, Q) is CONP-
complete.

(2) There exist d_Av data exchange setting1 and a Boolean
conjunctive query) with two inequalities, such thad has
constant joins undeM, @ does not have almost constant
inequalities underAM and CERTAIN-ANSWERSM, Q) is

CONP-complete.

(3) There exist d_Av data exchange setting1 and a Boolean
conjunctive query) with two inequalities, such thad has
almost constant inequalities undart, @@ does not have con-
stant joins underM and CERTAIN-ANSWERSM, Q) is

CONP-complete.

It is important to notice that although the problem of conmpyt
certain answers to UCQqueries has been considered in the lit-
erature, none of the results of Theorem 5.4 directly folldémsn
any of the known results for this problem. In particular, Rag
at al. showed in [8] a similar result to (1), namely that thelpr
lem of computing certain answers@®NP-complete even for the
union of two queries, the first of which is a conjunctive quand
the second of which is a conjunctive query with two ineqiesit
The difficulty in our case is that the second query is restddb

have constant joins and almost constant inequalities,ewFalgin
et al. considered a query that does not satisfy any of these co
ditions. Moreover, Madry proved in [18] a similar result ()
and (3), namely that the problem of computing certain ansiger
coNP-complete for conjunctive queries with two inequaliti€¢he
difficulty in our case is that we consider a query that has tzoms
joins in (2) and a query that has almost constant inequsiiti€3),
while Madry considered a query that does not satisfy anhe$ée
conditions. In fact, we provide in (2) and (3) two new proofshe
fact that the problem of computing certain answer to a cartjua
query with two inequalities isONP-complete.

We conclude this section with a remark about the possitlitys-

ing the conditions defined in this section to obtain tradigbior
UCQ”. As we mentioned above, the notions of constant joins and
almost constant inequalities can be extended to B@Qeries with

an arbitrary number of inequalities. Thus, one may wondestiadr
these conditions lead to tractability in this general scen&nfor-
tunately, the following proposition shows that this is reé tase,
even for the class of UCQqueries with three inequalities.

ProPoOsSITION 5.5. There exist d_Av data exchange setting1

and a Boolean conjunctive query with three inequalities, such
that @@ has both constant joins and almost constant inequalities
underM, but the problenCERTAIN-ANSWERS M, Q) iS CONP-
complete.

6. THE COMBINED COMPLEXITY OF
QUERY ANSWERING

Beyond the usual data complexity analysis, it is naturalstofar
the combined complexity of the problem of computing certain
swers: What is the complexity if data exchange settings ardes
are not considered to be fixed? To state this problem, we skall
tend the notation defined in Section 2. I2E be a class of data
exchange settings aidta class of queries. In this section, we study
the following problem:

PROBLEM: CERTAIN-ANSWERSDE,C).

INPUT: A data exchange settingt = (S, T,
Ys) € DE, a source instancé, a query
Q@ € C and a tuple of constants frond.

QUESTION Ist € certaina (Q, I)?

It is worth mentioning that a related study appeared in [B]en
though the focus of that paper was the combined complexitiyeof
existence of solutions problem, some of the results in [B2] loe
extended to the certain answers problem. In particularescom-
plexity bounds for unions of conjunctive queries with inaliies
can be proved by using these results. Nevertheless, ingbt®a
we prove stronger lower bounds that consider single cotijenc
queries with inequalities, and which cannot be directlyvprtbby
using the results of [12].

We start by stating the complexity for the case offBLoGC#)
queries. The study continues by considering some resingti
of DaTALOGC®) that lead to lower combined complexity, and
which are expressed in the form of conjunctive queries wiith s
gle inequalities. We conclude this study by examining umictsd
CQ” queries, which are not rewritable inADALOG®#) (unless
PTIME = NP). The results of this section are summarized in Table

1, where we lek-CQ” be the class of CO queries with at most
k inequalities.

6.1 Combined complexity of DATALOG)

queries
We showed in Proposition 3.3 that the certain answers of a
DATALOGC#) program can be computed by directly posing the
query over the canonical universal solution. It can be shown
that such an approach can compute the certain answers to a
DaTALOGS#) program in exponential time, although canonical
universal solutions can be of exponential size if data exgbaet-
tings are not considered to be fixed. And not only that, it can b
proved that this is a tight bound.

THEOREM 6.1. CERTAIN-ANSWERSGLAV, DATALOGC?)) is
ExXPTIME-complete.

Note that the above problem has to deal with canonical useéer
solutions of exponential size. Then restricting thesetamis to be
of polynomial size would be a natural approach to reduce ¢he-c
plexity of the problem. There are at least two ways to do thise
obvious one would be to fix the data exchange settings, ane lea
only queries and source instances as input. The less obbigus
more interesting case is to restrict the class of data exghaat-
tings to be lav settings. However, for the case oADALOGC)
programs, the combined complexity is inherently exporaéntind
thus reducing the size of canonical universal solutions ca¢ help
in improving the upper bound.

PROPOSITION 6.2. CERTAIN-ANSWERSLAV, DATALOGC (7))
is EXPTIME-complete.

It was shown in Theorem 4.1 that every conjunctive query with
one inequality can be efficiently translated into atBLoG <)
program. Hence, the class of 1-@@ueries form a subclass of the
class of x\TALOG ©(#) programs. Thus, it is natural to ask whether
the EXPTIME lower bound carries over this class, and whether the
Lav restriction could be useful in this case. These are the mstiv
ing questions for the next section.

6.2 Combined complexity of CQ”

We leave the BTALOGC#) queries to concentrate on the analysis
of CQ” queries in data exchange. We first study the clag(Q”,
that is, the class of conjunctive queries with only one irsdity

It is worth mentioning that an ¥rPTIME lower bound can be ob-
tained from [12] for the case of unions of 1-CQueries. We re-
fine this result to the case of 1-GQueries, and therefore present
a stronger lower bound:

THEOREM 6.3. CERTAIN-ANSWEREGLAV, 1-CQ7) is
ExpPTIME-complete.

It is natural to ask what happens in the case of unrestriatedep
and, more specifically, for queries with two inequalities.whs
noted that the data complexity becomes higher when dealitig w
two inequalities, and a similar behavior should be expefiiethe
combined complexity. Indeed, we have that:

[Query | GLAV setting | LAV setting
DATALOGC) ExPTIME-complete ExPTIME-complete
1-CQ* ExPTIME-complete NP-complete
k-CQ7,k>2 CONEXPTIME-complete I15-complete
CQ CONEXPTIME-complete I15-complete

Table 1. Combined complexity of computing certain answers.

THEOREM 6.4. For everyk > 2, CERTAIN-ANSWERSGLAV, k-
CQ7) is CONEXPTIME-complete.

As we mentioned in the previous section, if data exchangagst
are not considered to be fixed, then one has to deal with canoni
cal universal solutions of exponential size when computielgain
answers. A natural way to avoid this problem is by restrgctine
class of data exchange settings to bevIsettings. For the case of
DATALOG ©(#) programs, this restriction does not help in reducing
the complexity of computing certain answers. However, tra-e
uation of CQ’ queries is not inherently exponential and, thus, we
are able to considerably reduce the complexity by considdrav
settings, as we show in the following proposition.

PROPOSITION 6.5. CERTAIN-ANSWERELAV,1-CQ”) is NP-
complete, an€CERTAIN-ANSWERSL AV, k-CQ7) is IT5-complete
for everyk > 2.

A natural question at this point is what happens with the derap

ity of the certain answers problem if one considers the ewmiass
CQ”. In the following theorem, we show that the same complex-
ity bounds as in Theorem 6.4 and Proposition 6.5 hold in tasec
Notice that the lower bounds in the following theorem follinam

the lower bounds in these results.

THEOREM 6.6. CERTAIN-ANSWERYGLAV, CQ7) is
CONEXPTIME-complete andCERTAIN-ANSWERSLAV, CQ7) is
I15-complete.

We conclude this section with two remarks. First, notice fixing
data exchange settings has the same effect than restriotingv
settings. In fact, the lower bounds in Proposition 6.5 remmahe
same for fixed lav settings. Second, all the complexity bounds
presented in this section remain the same if we allow unidns o
conjunctive queries with inequalities; k-UCQ” is the class of
unions ofk-CQ?é gueries, then

PROPOSITION 6.7.

(1) CERTAIN-ANSWERYGLAV,1-UCQ”) is EXPTIME-
complete, CERTAIN-ANSWERSLAV,1-UCQ”) is NP-
complete.

(2) CERTAIN-ANSWERYGLAV, k-UCQ”) is CONEXPTIME-
complete, andCERTAIN-ANSWERSEL AV, k-UCQ7) is T15-
complete for every > 2.

(3) CERTAIN-ANSWEREGLAV,UCQ”) is CONEXPTIME-
complete, and CERTAIN-ANSWERELAV,UCQ”) is
I15-complete.

7. CONCLUDING REMARKS

In this paper, we proposed the languagaTPLoGC#) that ex-
tends DATALOG with a restricted form of negation, and studied
some of its fundamental properties. In particular, we shbtiat
the certain answers to asbaLoG S(*) program can be computed
in polynomial time (in terms of data complexity), and we used
this property to find tractable fragments of the class of ngio
of conjunctive queries with inequalities. In the paper, isoa
studied the combined complexity of computing certain amswe
DaTALOGS(#) programs and other related query languages.

Many problems related to &7aLoGS(*) programs remain open.

In particular, it would be interesting to know if it is declile
whether the certain answers to a quéhin UCQ” can be com-
puted as the certain answers to am@LoG *) programllg, and
whether there exist a settingt and a quen in UCQ” such that

the problem ERTAIN-ANSWERSM, Q) is in PTIME, but the cer-
tain answers t@) cannot be computed as the certain answers to a
DATALOG () programil.

Acknowledgments

We are very grateful to Jorge Pérez for many helpful discus-
sions, and to the anonymous referees for their comments. The
authors were supported by: Arenas and Reutter - FONDECYT
grant 1070732; Barcel6é - FONDECYT grant 11080011; Arenas
and Barcel6 - grant P04-067-F from the Millennium Nucleus-Ce
tre for Web Research.

8. REFERENCES

[1] S. Abiteboul, and O. Duschka. Answering queries using

materialized views. Gemo report 383.

[2] S. Abiteboul, R. Hull, and V. Vianuroundations of
databasesAddison-Wesley, 1995.
F. N. Afrati, C, Li, and V. Pavlaki. Data exchange in the
presence of arithmetic comparisonsHDBT, pages
487-498, 2008.
M. Arenas, P. Barceld, R. Fagin, and L. Libkin. Locally
consistent transformations and query answering in data
exchange. IlPODS pages 229-240, 2004.
[5] C. Beeri, and M. Y. Vardi. A proof procedure for data

dependencieslournal of the ACM31(4):718-741, 1984.

[6] A. Deutsch, A. Nash, and J. B. Remmel. The chase revisited
In PODS pages 149-158, 2008.
R. Fagin, P. Kolaitis, L. Popa, W. C. Tan. Composing schem
mappings: Second-order dependencies to the rescue. In
PODS pages 83-94, 2004.
R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa. Data exnba:
semantics and query answerifgheoretical Computer
Science336(1):89-124, 2005.
R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:inggtt
to the coreACM Transactions on Database Systems
30(1):174-210, 2005.

(3]

(4]

(7]

(8]

(9]

[10] G. Gottlob, C. Papadimitriou. On the complexity of
single-rule datalog queriemformation and Computatign
183(1):104-122, 2003.

[11] P. Kolaitis. Schema mappings, data exchange, and raetad
management. IRODS pages 61-75, 2005.

[12] P. Kolaitis, J. Panttaja, and W.-C. Tan. The complerity
data exchange. IRODS pages 30-39, 2006.

[13] T. Imielinski, W. Lipski. Incomplete information in tational
databaseslournal of the ACMB1, 761-791, 1984.

[14] M. Lenzerini. Data integration: A theoretical perspee. In
PODS pages 233-246, 2002.

[15] L. Libkin. Elements of Finite Model Thear$pringer, 2004.

[16] L. Libkin. Data exchange and incomplete informatiam. |
PODS pages 60-69, 2006.

[17] L. Libkin, C. Sirangelo. Data exchange and schema
mappings in open and closed worlds RODS pages
139-148, 2008.

[18] A. Madry. Data exchange: On the complexity of answegrin
queries with inequalitiegnformation Processing Letters
94(6):253-257, 2005.

[19] M. Y. Vardi. The complexity of relational query languegy
In STOC pages 137-146, 1982.

