Tractable XML Data Exchange via Relations

Rada Chirkova Leonid Libkin Juan L. Reutter
Department of Computer Science School of Informatics School of Informatics
North Carolina State University University of Edinburgh _ University of Edinburgh
chirkova@csc.ncsu.edu libkin@inf.ed.ac.uk juan.reutter@ed.ad.uk
ABSTRACT source data. The problem has received much attention inaste p

few years, with several surveys already available [21, 9, 8]

We consider data exchange for XML documents: given sourde an The general setting of data exchange is this:

target schemas, a mapping between them, and a document con-
forming to the source schema, construct a target documelrauan .

swer target queries in a way that is consistent with sourf-in ﬁ mapping/M ﬁ queryQ
mation. The problem has primarily been studied in the resteti

context, in which data-exchange systems have also been buil - -

Since many XML documents are stored in relations, it is ratur
to consider using a relational system for XML data exchaihtmy-
ever, there is a complexity mismatch between query ansgiénin
relational and XML data exchange, which indicates thatie&ins
have to be imposed on XML schemas and mappings, and on XML
shredding schemes, to make the use of relational systeraibjens

We isolate a set of five requirements that must be fulfilled in
order to have a faithful representation of the XML data-exaie
problem by a relational translation. We then demonstrattttiese
requirements naturally suggest the inlining technique data-
exchange tasks. Our key contribution is to provide shregidigo-
rithms for schemas, documents, mappings and queries, amohde
strate that they enable us to correctly perform XML datahexge
tasks using a relational system.

We have fixed source and target schemas, an instSrafethe
source schema, and a mapping that specifies the relationship
between the source and the target schemas. The goal is to con-
struct an instanc& of the target schema, based on the source and
the mapping, and answer queries against the target data aya w
consistent with the source data.

The mappings rarely specify the target instance compl|etedy
is, for each sourc& and mappingM, there could be multiple
target instancedi, 7z, . . . that satisfy the conditions of the map-
ping. Such instances are calledlutions The notion of query
answering has to account for their non-uniqueness. Tyipjcaie
tries to computeertain answersERTAINA(Q, S), i.€., answers
independent of a particular solution chosen. Qfproduces re-
lations, these are usually defined @sQ(7;). Certain answers
Categories and Subject Descriptors must be produced by evaluating some query — not necesgarily
H.2.5 Heter ogeneous Databases]: Data translation but perhaps itsewriting Qrewr OVer a particular solutiof’, so that
Qrewr(T) = CERTAINA(Q, S).

Thus, the key tasks in data exchange are: (a) choosing a&-parti
ular solution7 among{7, 7z, . . .} to materialize, and (b) finding
Keywords a way of producing query answers over that solution by rumain
Data Exchange, XML, XML Shredding, Inlining rewritten queryQrewr over it. Usually one builds a so-callediver-

sal solution [12, 8]; these solutions behave particularly lyiegth
: respect to query answering.
1. Introduction These basics of data exchange are independent of a particula

Data exchange is the problem of finding an instance of a target model of data. Most research on data exchange, howevenrredcu
schema, given an instance of a source schema and a schema may the relational context [12, 13, 21, 8] or slight extensi®2, 18];
ping, that is, a specification of the relationship betweensiburce the first paper that attempted to extend relational resuttest XML

General Terms
Algorithms, Theory

and the target. Such a target instance should correctlgsept in- context was [6], and a few followups have since appeared][4, 3
formation from the source instance under the constraingogad They all concentrate on the algorithmic aspects of querwariag
by the target schema, and should allow one to evaluate guenie  and constructing solutions, with the main goal of isolatiagtable
the target instance in a way that is semantically consistihtthe cases. The problem these papers do not addréssinis<ML data

exchange can be implemented
Previous work on algorithms for XML data exchange has tacitl

assumed that one uses a native XML DBMS such as [19]. How-
Permission to make digital or hard copies of all or part o thiork for ever, this is not the only (and perhaps not even the most catnmo
personal or classroom use is granted without fee providatidbpies are route: XML documents are often stored in relational DBMSeteN
not made or distributed for profit or commercial advantage that copies that it is natural and in many cases desirable to be able tohase
bearglr.‘ish”mice and the full citation %r.‘ th.‘f) first p?ge' Twm"’m.er""ise'_]f.o established relational technology to solve the considgrabre re-
republish, to post on servers or to redistribute to listgunes prior specific
permission and/or a fee. cent and not as well understood XML data-exchange tagk.cln fa
CIKM’11, October 24-28, 2011, Glasgow, Scotland, UK. many ETL products claim that they handle XML data simply by

Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.



producing relational translations (known stiredding[22]). This
leads to a two-step approach:

o first shred XML data into relations;

e then apply a relational data-exchange engine (and pulbiésh t
result back as an XML document).

The approach seems very natural, but the key question ishehet
it will work correctly That is, are we guaranteed to have the same
result as we would have gotten had we implemented a native XML
data-exchange system? We answer this question in this.paper

To state more precisely the main question addressed inaherp
assume that we have a translatiof) that can be applied to (a)
XML schemas, (b) XML documents, (c) XML schema mappings,
and (d) XML queries. Then the concept adrrectnesof such a
translation is shown below:

XML : sourceS W» targetT M answer
shred shred shred
Relations :  o(S) (M) o(T) (@) answer

That is, suppose we start with an XML documéraind an XML
schema mapping\U. In a native system, we would materialize
some solutior? over which we could answer queri€s

But now we want a relational system to do the job. So we shred
S into o(S) and then apply te(S) the translation of the mapping
o(M) to get a solution — which itself is a shredding of an XML
solution — so that the answer € could be reconstructed from the
result of the query (Q) over that relational solution.

The idea seems simple and natural on the surface, but stakts |
ing challenging once we look deeper into it. Before evematiing
to show that the relational translation faithfully repnetsethe XML
data-exchange problem, we need to address the following.

Complexity mismatch Without restrictions, thereannot be a
faithful representatiorof XML data exchange by a relational
system. Indeed, it is well known that positive relational-
algebra queries can be efficiently evaluated in relatioatd d
exchange [12, 21, 8], but even for simple XML analogs of

As for the complexity issue, the work on the theory of XML
data exchange has identified a class of mappings for whidieefti
query answering is possible [6, 4, 3]. The schemas (say, PTDs
have rules of the fornadb — book™, book — author® subject
(we shall give a formal definition later), and the mappings$-
form patterns satisfied over the source into patterns satisfver
targets. Observe that these mappings (just as nestebnellaigds
[15, 27]) are strictly more expressive than relational fgak= the
Related-Work section for a discussion.

This restriction suggests a relational representatios¢o Going
with the edge representation [14] is problematic: firsthezage in
an XML pattern used in a mapping will result in a join in thearel
tional translation, making it inefficient, and second, eaiieg even
a simple schema structure under that representation takast of
the class of target constraints that relational data-exghaystems
can handle. Verifiably correct translations based on nuwaken-
codings [30, 33] will necessarily involve numerical anddodering
constraints in relational translations of mappings, afglithsome-
thing that relational data exchange cannot handle at theenbm
[21, 8] (beyond simple ordering constraints [2]).

One translation scheme however that fits in well with regtns
identified in [6, 4, 3] is thénlining scheme. It works very well for
DTDs of the “right” shape, and its output schemas involveyonl
acyclic constraints, which is perfect for data-exchangmados.

Desiderata for the trandation We now formulate some basic re-
quirements for the translatian in order to be able to achieve our
goals described in the diagram abdwale need the following:

Requirement 1: trandlation of schemas A translations (D) that,
when applied to a DTD of a special form, produces a rela-
tional schema that only has acyclic constraints, which @an b
used in a relational data-exchange setting.

Requirement 2: translation of documents A translation op(-)
for a DTD D that, when applied to documefitconforming
to D, produces relational database (T") of schemar (D).

Requirement 3: trandation of queries For a DTD D, a trans-
lation op (@) of (analogs of) conjunctive queries so that
op(Q)(op(T)) = Q(T) (that is, the result of)(T") can
be computed by relational translations).

conjunctive queries finding query answers can be coNP-hard Requirement 4: translation of mappings For a mappingM be-

[6]. So any claim that a relational data-exchange system cor
rectly performs XML data exchange for arbitrary documents
and queries is bound to be wrong. We thus need to identify
the cases that can be handled by a relational system.

Which shredding scheme to usePhere are several, that can
roughly be divided into two groups: those that do not take
the schema information into account (e.g., the edge repre-
sentation [14], interval codings [33], and other numbering

schemes [30]), and those that are based on schemas for XML,

such as variants of the inlining technique [28, 22]. Since in

data-exchange scenarios we start with two schemas, it seems

more appropriate to apply schema-based techniques.

Target constraintsin relational data exchange, constraints in tar-
get schemas are required to satisfy certain acyclicity ieond

tions; without them, the chase procedure that constructs a

target instance does not terminate [12, 21, 8]. Constraints
imposed by general XML schema specifications need not in
general be even definable in relational calculus, let alene b

tween a source DTDD, and a target DTDD;, its trans-
lation o (M) is a mapping betwees(D;) ando(Dy) that
preserves universal solutions. That is:

(a) Eachop,-translation of a universal solution faf under
M is a universal solution foy p, (T") undero(M); and

(b) Each universal solution farp, (7") unders (M) containg
aop,-translation of a universal solution @f underM.

Requirement 5: query answering For (analogs of) conjunctive
gueries over trees, computing the answeptonderM over
a source tred is the same as computinged M )-solution
of o(T), followed by evaluation o&(Q) over that solution,
as is normally done in a relational data-exchange system.

Satisfaction of these five requirements would guaranteewba
have acorrect relational translation of an XML data-exchange
problem, which would guarantee correct evaluation of qagerThe

In the next sections we formalize each desideratum.

acyclic [20]. We thus need to find a shredding technique that 2\e cannot require the equivalence, as relational soluticaepen
enables us to encode targets schemas by means of constraintgy adding new tuples and thus cannot always be translatibns o

that guarantee chase termination.

trees; we shall discuss this later.



relational approach to XML data exchange, which we propaose i
this paper, satisfies all the five requirements.

Outline Key definitions are given in Section 2. Section 3 provides
translations of schemas and documents and shows that tHidly fu

For the choice of the query language, one has to be careful Requirements 1 and 2. Section 4 states the main conceptieof re

since the definition of certain answers depends on the owtput
the queries. We consider two classes of conjunctive queries
trees. The first is tree patterns that output tuples of attibalues.
These are the queries most commonly considered in XML data ex

change [6, 4, 3] because for them we can define certain answer

as the usual intersecti@ERTAINA (Q, S) = ), Q(Z:). The sec-
ond is a simple XML-to-XML query language from whose queries
outputtrees It is essentially the positive fragment of FLWR ex-
pressions of XQuery [31]. For outputs which are XML treeg th
intersection operator is no longer meaningful for definiegtain
answers. Instead, we use recent results of [11] that showtbow
define and compute certain answers for XML-to-XML queries.

Contributions We provide a relational approach to solve two of
the most important problems of XML data-exchange settinggs:
terializing solutions and answering queries. Our specditticbu-
tions are as follows. First, we introduce an architecturexvliL
data exchange using relational vehicles, with a focus onecbor
evaluation of (analogs of) conjunctive queries on XML d&bac-
ond, we identify a class of XML schema mappings and a shrgddin
mechanism that allows us to overcome the complexity mismatc
Third, we provide algorithms for relational translationsthemas,

tional and XML data exchange. Section 5 provides transiatiaf
mappings and queries, and shows that Requirements 3, 4,amed 5
fulfilled. Section 6 studies queries that output XML trees.

2. Préiminaries

Relational schemas and constraints. A relational schemaor
justschemais a finite selR = {Ru, ..., Ry} of relation symbols,
possibly with a set of integrity constraintdgpendencigs Con-
straints used most often in data exchange are equality-gte-t
generating dependencies [12, 21, 8], but for our purposeslit
suffice to consider onlkeysandforeign keys If R is a relation
over attributes/, and X is a set of attributes, theX is a key
of R if no two tuples of R coincide onX -attributes (that is, for
all tuplesty,t2 € R with t; # ¢ we haverx (t1) # mx (t2)).

If Ry and R2 are relations over sets of attributeés and Us, re-
spectively, then an inclusion constraiRy [X] C R2[Y], where
X C U; andY C U, are of the same cardinality, holds when
mx(R1) C my(R2). We further say that a foreign key on the at-
tributes of R1[X] Crx Rz[Y] holds if the inclusion constraint
R1[X] C R:[Y] holds, andY” is a key ofR».

XML documents, schema mappings, and queries in our proposed With each set of keys and foreign keys, we associate a graph in

architecture. Finally, we prove the correctness of thestetions:
namely, we show that they satisfy the above five requiremants
thus enable us to use relational data exchange systems far XM
data-exchange tasks. Since the computational complekiouio
proposed algorithms is quite low, and their correctnesdbas es-
tablished, we believe this paper makes a case for usingamedat
technology for provably correct XML data exchange.

Related work In recent years, significant effort has been devoted to
developing high-performance XML database systems, andikd-b

ing tools for data exchange. One major direction of the XMbf

is the “relational approach”, which uses relational DBM&store
and query XML data. Documents could be translated into rela-
tional tuples using either a “DTD-aware” translation [28] r a
“schemaless” translation. The latter translations ineltlte edge
[14] and the node [33] representations of the data. Indezaklc
be prebuilt on the data to improve performance in relatiopry
processing, see, e.g., [30, 33]. Constraints arising itrtreslation
are sometimes dealt with explicitly [7, 23]. See [17] for awy of

the relational approach to answering XML queries.

The work on data exchange concentrated primarily on relatio
see [8, 21] for surveys and [26, 27] for system descriptidiap-
pings for the XML data exchange problem were studied in [6it4]
was noticed there that the complexity of many tasks in XMLadat
exchange is higher than for their relational analogs, whiggests
that restrictions must be imposed for a relational impletaugon.
The problem of exchanging XML data was also studied in [15,
27], which give translations of documents and DTDs into est
relational schemas, and then show how to perform XML data ex-
change under this translation. Most RDBMSs, however, do not
provide support for nested relational schemas, and, thpesific
machinery has to be developed in order to implement thiskaan
tion under a strictly relational setting. Moreover, XML npépgs
considered in this paper are strictly more expressive tlested-
relational mappings, and every nested-relational dathamge set-
ting can be efficiently transformed into an equivalent XMLtada
exchange setting. Thus, the results of this paper may aidrtsv
the development of a relational implementation for both Xktd
nested-relational data exchange.

which we put an edge between attributesnd B if there is a con-
straintR1[X] Crx R2[Y])with A € X andB € Y. If this graph
is acyclic, we say that the set of constraintaéyclic A schema
is acyclic if its constraints are acyclic. In data excharae often
uses a more technical notion of weak acyclicity: it includeme
cyclic schemas for which the chase procedure still terremafor
us, however, the simple concept of acyclicity will suffics, aur
translations of schemas only produce acyclic constraints.

XML documents and DTDs Assume that we have the follow-
ing disjoint countably infinite setsE'l of element namesAtt of
attribute names, an@tr of possible values of string-valued at-
tributes. All attribute names start with the symisl

An XML treeis a finite rooted directed tréE = (N, G), where
N is the set of nodes and is the set of edges, together with

1. alabeling functiom : N — FEI;

2. attribute-value assignments, which are partial fumstio
paaq : N — Str for eachQa € Att; and

3. an ordering on the children of every node.

A DTD D over El with a distinguished symbal (for the root)
and a set of attributedtt consists of a mapping’» from El to
regular expressions ovéfl — {r}, usually written as productions
¢ — eif Pp(¢) = e, and a mappingp from El to 2 that as-
signs a (possibly empty) set of attributes to each elemeet tifor
notational convenience, we always assume that attribate® ¢n
some order, just like in the relational case: attributesipids come
in some order so we can write(a, ..., a,). Likewise, we shall
describe arf labeled tree node with attributes ad(as, ..., an).

AtreeT conforms to a DTDD (written asT” = D) if its root is
labeledr, the set of attributes for a node labeleid Ap(¢), and the
labels of the children of such a node, read from left to rifgrn a
string in the language dPp (¢).

A class of DTDs In this paper we consider a restriction on DTDs
called nested-relational DTD$1, 6], a class of DTDs that natu-
rally represent nested relational schemas such as the eadsy
the Clio data-exchange system [26]. The reason for using ike
that outside of this class, it is very easy to construct imsta of



/1:r\

2: book 3: book . —  book
Al gorithm Desi gn Al gebra book —  author* subject
/ \\ / \ author —  name aff
4: author 5: author 6: subject 7: author  8: subject AD(boolg = Qtitle
cs Mat h Ap(subject) = Qsub
/ \ / \ / \ Ap(name) = Qnam
9: name 10: aff 11: name 12: aff 13: name  14: aff Ap(aff) = Qaff
Kl ei nberg CU Tardos (0] Hungerford SLU
(a) TreeT’ (b) DTD D

Figurel: TheXML treeT conformsto D

XML data-exchange problems that will exhibit coNP-hardneg
answering conjunctive queries (which are known to be ttdeta
practically all instances of relational data exchanges,[6¢

ADTD D isnon-recursivef the graphG (D) defined ag (¢, ') |
¢" is mentioned inP(¢)} is acyclic. A non-recursive DTDD is
nested-relationalf all rules of D are of the forml — lo...ln
where all thel;’s are distinct, and each is one ofl; and ;.
From now on, unless otherwise noted, all DTDs are assumee to b
nested-relational. We also assume, without loss of gaterddat
the graphG(D) is not a directed acyclic graph (DAG) but a tree.
(One can always unfold a DAG into a tree by tagging occurrence
of element types with the types of their predecessors.)

ExAMPLE 2.1. Figure 1(a) shows an example of an XML tree.
In the Figure, the node identifiers precede the correspgridivels
of each node ifT’; we omit the attribute names and only show the
attribute values of each node. In addition, Figure 1(b) sheaw
example of a nested relational DTD. Moreover, it is easy &tbat
the treeT’ of Figure 1(a) conforms t®. O

3. Trandations of schemas and documents

We now review theinlining technique [28], provide a precise
definition of the translation, and show that it satisfiesRaquire-
ments 1 and2. The main idea of inlining is that separate relations
are created for the root and each element type that appedes un
a star, and other element types are inlined in the relatione<¢
sponding to their “nearest appropriate ancestor”. Eadtiogl for
an element type has an ID attribute that is a key, as well as (fo
non-root) a “parent-ID” attribute that is a foreign key piing to
the “nearest appropriate ancestor” of that element in ticaehent.

All the attributes of a given element type in the DTD become at
tributes in the relation corresponding to that element tyen
such a relation exists, or otherwise become attributessindlation
for the “nearest appropriate ancestor” of the given elerhygrg.

We begin with a formal definition of theearest appropriate an-
cestorfor the element types used . Given a nested-relational
DTD D = (Pp,Ap,r), we “mark” in G(D) each element type
that occurs under a star Bp. In addition, we mark the root ele-
ment type inG(D). Then, for a given element tygewe define the
nearest appropriate ancestaf ¢, denoted by.(¢), as the closest
marked element typé in the path from the root element £an the
graphG(D). The inlining schema generation is formally captured
by means of the procedurelll SCHEMA below.

EXAMPLE 3.1. Consider again DTDD in Figure 1(b). The
relational schemaNL SCHEMA(D) is as follows:

R.(11D)

Ruook(bookI D, @i tle,rlD, subl D, @ub)

Rauthor(aut hl D, bookl D, nanel D, af | D, @am @f f)

Keys are underlined; we also have the following foreign

Procedure INLSCHEMA( D)
Input : A nested relational DTD.
Output: A relational schem& p and a set of integrity
constraintsA p

SetSp =@ andAp = ¢

for each marked element typeof D:
add toSp arelationR,, with attributes:

idp
Ap(0)
attr(Re) = { idu) | ifLF£7
idyr | (') =1¢, ¢ isnot marked,
Ap(¢) | w) =¢, £ isnot marked.
endfor

for each relation R, in Sp:
add toA p the constraint stating thad, is key of R, and,

if £ £ r, the foreign key

Rylidy )] Crr Ry lidue]-
endfor
add toA p the dependency (stating the uniqueness of the root)

VVER(z,5) A Ry (2',2) — . = 2.
return (SD,AD)

keys: Rpook(rID) Crx R,(rID) and Ruuthor(bookID) Cri
Rpook (bookID). O

The following shows that ouRequirement 1 is satisfied.

PROPOSITION 3.2. For every nested relational DT, the
output ofINLSCHEMA(D) is an acyclic relational schema.

Shredding of XML documents. We now move to the shredding
procedure. Given the inliningNiL SCHEMA(D) = (Sp,Ap) of a
DTD D, and an XML tre€l’ conforming toD, we use the algo-
rithm INLDoc to shredT into an instance of the relational schema
Sp that satisfies the constraints lnp. Let us first explain this
translation by means of an example.

ExampPLE 3.3. Recall treel’ from Figure 1(a) and DTDD
from Figure 1(b). Figure 2 shows relatiofi&ook and Rquthor iN
the shredding of". O

To present the algorithm, we define thearest appropriate an-
cestoru(n) of a noden of an XML document!” that conforms to
a DTD D, as follows. Mark each node of T such that\(n) is
starred inD, as well as the root of". Thenu(n) is the closest
marked node:’ that belongs to the path from the rootsto In the
following algorithm, and for the remainder of the paper, veaate
by id,, the relational element representing the nadsf a treeT".



bookl D @itle D sublD | @ub auF hl D bogkl D na@l D af ID @am @ f
- - - — - : idy ido idg id1o ' Kl ei nberg’ Ccu
ida Al gorithm Design idy idg Cs . . . . , ,

id " Al gebr &’ idy ids Mat h ids ids ad11 id12 Tar dos CcuU
3 idr ids id13 id1a | ' Hungerford | SLU

(2) Relationfzy.ooy, in INLDOC(T’, D) (b) RelationRouchor in INLDOC(T, D)

Figure2: Shredding of T" into INLSCHEMA(D)

Procedure INLDOC( T, D) there could be many possible solutions for a given sourceus;Th
Input_: A nested relational DTDD and an XML treel that for query answering in data exchange one normally uses ti@no
conforms toD of certain answers, that is, answers that do not depend onieLpa

Output: A relational instance of the schemaLSCHEMA(D). ls;S(T)Llfﬂon@Fonggﬁf{(g?;fr?eaggf m(zlp)[;ingvl, we define
M I M .

for each marked node: of T': ) Building all solutions is impractical (or even impossiblgp it
Let £ be the label of; Add to the relation?, of I a tuple is important to find a particular solutiof, € SoL(S), and a
that contains elements rewriting Qrewr of Q, S0 thatcERTAINA(Q, S) = Qrew(70).
idn Universalsolutions were identified in [12] as the preferred solu-
pac(n) | Qa € Ap(¥) tions in data exchange. Over them, every positive query eaanb
idy(n) | ife#r swered, with a particularly simple rewriting: aft@ris evaluated on
idy | w(n') =mn,n'is not marked. a universal solutioffp, tuples containing null values are discarded.
paa(n’) | p(n')=n,Qae Ap(A(n’))and Even among universal solutions there are ones that are rost ¢
n’ is not marked monly materialized in data-exchange systems, such asatieni-
where the identifiers and attributes values for each of the cal solutionCANSOL 4 (S), computed by applying the chase pro-
elementsd,,, id,,(,) andpaq(n’) coincide with the cedure with constraints and At to the source instancg. If all
position of the attributes faid ) (,,+), id,,,) and the constraints iM are acyclic (in fact, even a weaker notion
Ap(A(n')) of Ry. suffices), such a chase terminates and comput@sSDL ¢ (S) in
endfor polynomial time [12].
return Note that ouRequirement 4 relates universal solutions in rela-

tional and XML data exchange; in particular, we do not insist
working with the canonical solutions, and others, such astre
The following proposition shows olequirement 2 is satisfied. [13] or the algorithmic constructions of [25] can be used af.w

Towards XML schema mappings: patterns To define XML
schema mappings, we need the notions of schemas and source-t
target dependencies. The notion of schema is well undetstoo
the XML context. Our dependencies, as in [6, 4, 3] will be lase
ontree patternsPatterns are defined inductively as follows:

PROPOSITION 3.4. Let D be a DTD, andl” an XML tree such
thatT = D. ThenINLDOC(T, D) is an instance of the schema
computed byNLSCHEMA(D).

4. Relational and XML Data Exchange e ((z) is a pattern, wheré is a label, andz is a (possibly

We now quickly review the basics of relational data exchange empty) tuple of variables (listing attributes of a node);
and introduce XML schema mappings that guarantee tractable o&)[m
query answering. X

Relational Data Exchange A schema mapping\ is a triple ) o ) )
(S,T, %), whereS is a source schem&, = (T, Ar) is a target We writer(Z) to indicate that is the tuple of all the variables used

.., ] is a pattern, where,, . . ., m;, are patterns,
and/ andz are as above.

schema with a set of constraintsy, andY is a set ofsource-to- in a pattern. The semantics is defined with respect to a node of
target dependenciethat specify how the source and the target are {re€ and to a valuation of all the variables of a pattern aiate
related. Most commonly these are given as source-to-tangés values. Formally(T' v) |= 7(a) means thatr is satisfied in node
generating dependencies (st-tgds): v whenz is interpreted as. Itis defined as follows:
o(z) — IzP(T, 2), (1) o (T,v) = {(a) if vis labeled! and its tuple of attributes i,

wherey and+ are conjunctions of relational atoms o&andT, o (Tov) F4@)[m(ar), ..., mk(an)] if
respectively. ) _ ) 1. (T,v) = ¢(a) and

.In data-exchange Ilterature, one normally considers fitets 2. there exist children, . . . , v of v (not necessarily dis-
with two types of val_ues. constants and nulls. Instargexf the tinct) so that(T, v;) = i (as) for everyi < k.
source schem@ consist only of constant values, and nulls are used
to populate target instanc&swhen some values are unknown. We writeT' = «(a) if (T,r) = «(a), that is, the pattern is wit-

AninstanceT of T (which may contain both constants and nulls) nessed at the root.
is called asolution for an instanceS of S under M, or an M- EXAMPLE 4.1. Consider tred” from Figure 1(a), and the tree
solution if every st-tgd (1) fromd is satisfied by(S, 7') (that s, for pattern(z,y) = r[book(z)[author[name(y)]]], which finds
each tuplez such thatp(a) is true inS, there is a tuplé such that  pooks together with the names of their authors. Then it iy eas
¥(a, b) is true in7).The set of allM-solutions forS is denoted by to see thatl’ = m(" Al gorithm Design’, Tardos). In fact,
SoLm(S) (or SoL(S) if Mis understood). evaluation ofr(z,y) over T returns the tuples’ @ gorithm
Certain answersand canonical universal solution The main dif- Desi gn’, Tardos), ( Al gorithm Design’, Kl ei nberg), and

ficulty in answering a query) against the target schema is that (' Al gebra’,Hungerford). O



Given a DTDD and a tree patterm, we say thatr is compatible
with D if there exists a tre& that conforms taD and a tuple of
attribute values such thatl" = = (a). In general, checking com-
patibility of patterns with DTDs is NP-complete [10], butrfthe
DTDs we consider here it can be easily done in polynomial time

ExAmPLE 4.2.[Example 4.1 continued] The patterifz, y) is
compatible with the DTDD of Figure 1(b). On the other hand, the
patternt’(z) = r[author(x)] is not, because no tree consistent
with D can have a child of labeled aswuthor, or anauthorlabeled
node with an attribute 0

RemarkMore general patterns have been considered in the liter-

ature [5, 24, 10, 4, 3]; in particular, they may involve dextant
navigation, wild cards for labels, and sibling order. Hoe\6,

4, 3] showed that with these features added, query answering
data exchange becomes intractable even for very simpléegudén
fact, the restrictions we use in our definition were identifie [6]

as essential for tractability of query answering. Note thatsame
restriction was imposed to queries when transforming XMtada
into nested-relational schemas [15, 27].

XML schema mappings As our descriptions of XML schemas we

Inlining tree patterns. The key ingredient in our algorithms
is a translation of patterns compatible with a DTDD into a
conjunctive queryNLPATTERN(7, D) over the relational schema
INLSCHEMA(D). Very roughly, it can be viewed as this:

1. View a patternr(z) as a treelr in which some attribute
values could be variables;

2. Compute the relational databaseLDoc(T%, D) (which
may have variables as attribute values);

3. View INLDoOC(T%, D) as a tableau of a conjunctive query;
the resulting query isSNLPATTERN(7, D).

The algorithm is actually more complicated becauseDoc

cannot be used in Step 2; we shall explain shortly why.

Towards defining NLPATTERN, observe that each tree pattern

w(z) can be viewed as an XML documefft, 3, in which both
values and variables can be used as attribute values. fineden-
ductively as followsT,z) is a single-node tree labelégwith z as
attribute values, and if is £(z) 71 (Z1), . . .
of Tx is labeled¢ and hast as attribute values. It also h&aschil-
dren, with the subtrees rooted at them beliygz,), . - ., T, (z,)-

, 7 (Z1)], then the root

However, even for a patterm(z) compatible with a DTDD,

shall use DTDs (since for complex schemas, query answening i e may not be able to define its inlining as the inliningZaf ),

data exchange is known to be intractable [6], and DTDs will su
fice to capture all the known tractable cases). Sourcergetaon-
straints will be given via patterns.

Formally, an XML schema mappinds a triple M =
(Ds, Dr,Y), where Ds is the source (nested relational) DTD,
Dr is the target (nested relational) DTD, ahdis a set ofXML
source-to-target dependencif, or XML stds, of form

m(z) — 7'(z,2), @)

wherer andr’ are tree patterns compatible withs and Dr, re-
spectively.

As inthe relational case, target trees may contain nulls¢oant
for values not specified by mappings. Given a ffeat conforms
to Dg, a treeT” (over constants and nulls) is aw-solution for
T if T’ conforms toDr, and the pai(T,T”) satisfies all the de-
pendencies (2) fronx.. The latter means that for every tupleof
attribute values fronT’, if T satisfiesr(a), then there exists a tuple
b of attribute values from™” such thafl” satisfiest’(a, b). The set
of all M-solutions forT" is denoted by SL(T').

EXAMPLE 4.3. Consider the data-exchange scenario
(D, Dy, M) given by the DTDsD and Dt of Figures 1(b) and
3(b), respectively, and wher#! is specified by the dependency

r[book(x)[authorname(y)]]] —
rlwritername(y), work(z)]],

that restructures book-author pairs as writer-work. Itisashown
that the XML tre€T” in Figure 3(a) is an\-solution for7. O

5. XML data exchange using relations

We now provide algorithms for implementing XML data ex-
change via relational translations. Since we have alreadwis

how to translate DTDs and documents, we need to present trans

lations of stds of mappings and queries. Both of them aredbase
on translating patterns into relational conjunctive geeriWe first
concentrate on that translation. Then we show how to extend i
easily to mappings and queries, and prove the correctneig of
translations. This will complete our program of using a tielzal
system for XML data exchange in a semantically correct way.

becausd’, ;) need not conform td. For example, if a DTD has
aruler — ab and we have a patterra], it is compatible withD,
but T, does not conform td, as it is missing @&-node. Hence,
the procedureNLDoC cannot be used ‘as-is’ in our algorithm.

Nevertheless, we can still mark the node&’of;) with respect to

D and define the nearest appropriate ancestor exactly asheleas
done previously.
each node of ;) into a different predicate, and then joins these
predicates using the nearest appropriate ancestor.

Intuitively, the procedur&UPATTERN shreds

Procedure INLPATTERN( 7, D)

Input : ADTD D, atree pattermr(z) compatible withD.
Output: Conjunctive query overNL SCHEMA(D).

for each nodev of T}z of form{(z.,):
Construct a quer®), (Z.) as follows:

if v is markedthen
Quv(Zw) = FidyFid,, () IZRe(idw, T, id (), 2),

wherez is a tuple of fresh variables, and the positions
of variablesid,,, ., andid,,, are consistent with the
attributesid,, Ap(¢) andid,, (¢ respectively in
attr(Ry).
If £ = r, then, does not useéd,, ..

else (v is not marked):
setv’:=u(v), £:=X(v"), and letQ,(z,) be

Jid,, Hidu(vf)}idvaiRg/ (idy, idu(vf), idy, T, 5),

wherez is a tuple of fresh variables, and the positions
of the variablesd,, id, ), id, andz, are consistent
with the attributesd,, id,, ), id; and Ap(£)
respectively inattr(R,/). If ' = r, thenQ,, does not
useid“(vf).

endfor

return /\veT,T(i) Quv(Ty).

Note that the compatibility ofr with D ensures that

INLPATTERN is well defined. That is, (1) every attribute formula
of the form¢(z) only mentions attributes il p (¢), and (2) for all
nodesv, v’ € T (s), if v’ is a child ofv, thenA(v') € Pp(A(v)).



r
/ \\ r —  writer*
. . . writer —  name work™
writer writer writer
Ap(name) = Qnam
m/ Ap(work) = Qtitle
name work name work nane work

Hungerford ' Al gebra’
(a) Target Tred”

Tardos ' Al gorithm Design’

Kl ei nberg " Al gorithm Desi gn’

(b) Target DTDDr

Figure3: TreeT' isan M-solution for T

Correctness.  Given a patternr(z), the evaluation ofr on a tree
Tisw(T) ={a|T E w(a)}. The following proposition shows
the correctness oNL PATTERN.

PrRoOPOSITION 5.1. Given a nested relational DT, a pat-
tern w compatible withD, and a treeT" that conforms taD, we
haver(T) = INLPATTERN(m, D)(INLDOC(T, D)).

That s, the inlining ofr, applied to the inlining of ", returnsr(T").

Conjunctive queriesover trees. We use the language that is es-
sentially conjunctive queries over trees [6, 16, 10] witkigation
along the child axis.

The language&7 Q is obtained by closing patterns under con-
junction and existential quantification:

Q=7|QAQ[3zQ,

where 7 is a fully specified tree-pattern formula. The seman-
tics is straightforward, given the semantics of patternndd
above:Q(a) A Q'(b) is true iff bothQ (@) andQ’(b) are true, and
Jz Q(a, x) is true iff Q(a, c) is true for some value. The output
of @ on a tre€l" is denoted byQ (7).

We say that a query) is compatible with the DTDD if every
pattern used in it is compatible with.

The inlining of queries)) compatible withD is given by the
recursive algorithmNL QUERY below.

Procedure INLQUERY( @, D)

Input : ADTD D, a query@ compatible withD.
Output: A conjunctive query overNL SCHEMA(D).

if @ = 7 then

return INLPATTERN(7, D)
dseif @ = Q1 A Q2 then

return INLQUERY(Q1, D) A INLQUERY(Q2, D)
dseif Q = 3zQ; then

return 3z INLQUERY(Q1, D)

Now we show that every quer® in C7 Q can be computed by
its inlining on the inlining of its input (assuming, of coerscom-
patibility with a DTD). In other wordsRequirement 3 is satisfied.

THEOREM 5.2. Given a DTDD, a treeT that conforms to it,
and a compatible querg), we have

Q(T) = INLQUERY(Q, D)(INLDOC(T, D)).

Inlining XML schema mappings We use our transformation of
tree patterns to define the procedura M AP, that, given source
and target DTDsDs and D, transforms an XML mapping\U
into a relational mappingNLMAP(M,Ds,Dr) specified with a
set of source-to-target tuple generating dependencies.
Correctness While one could be tempted to ask for a translation
that preserves all solutions, such a result need not hold. réla-

Procedure INLMAP( M, Dg, Dr)

Input : An XML mapping M from a source DTODs to a
target DTDDr.

Output: A relational mapping fromNLSCHEMA(Ds) to
INLSCHEMA(D7).

Set NLMAP(M, Ds, D) :=0)

for dependencyt(z) — 3z7'(zZ, z) in M do
INLMAP(M, Ds, Dr) := INLMAP(M, Ds, Dr)J

{INLQUERY(m, Ds)(Z) — 3z INLQUERY(n’, D1)(Z, 2)}

end
return INLMAP(M, Dg, D)

nodes of XML trees, and thus we should only consider solstion
whose null values have not been renamed. However, relhgona
lutions are open to renaming of nulls. This intuition can be f
malized by means of the universal solutions, which are thetmo
general among all solutions, and thus do not permit null mena
ing. Furthermore, one typically materializes a universdlison,
as these solutions contain all the information needed topciben
certain answers of conjunctive queries. This motivategektic-
tion of ourRequirement 4 to universal solutions.

The theorem below shows that parts (a) and (FRefuirement
4 hold. Note that in part (b), relational universal soluti@me only
required to contain a shredding of an XML universal solutithis
is because relational solutions are also open to addingampiu-
ples, which need not reflect a tree structure of an XML documen

THEOREM 5.3. @) Let M = (Ds,Dr,X) be an XML
schema mapping and” an XML document that conforms to
Dgs. If T' is an M-universal solution forT", then its inlining
INLDOC(T", Dr) is anINLMAP(M, Dg, Dr)-universal solution
for INLDOC(T, Ds).

b) Let M = (Ds,Dr,X) be an XML schema map-
ping, and 7' an XML document that conforms tds.
Then for everyINLMAP(M, Ds, Dr)-universal solutionR for
INLDOC(T, Ds) there exists aoM-universal solutiorf” such that
INLDOC(T", Dr) is contained inR.

Answering XML queriesusing relational data exchange. The
semantics of query answering in data exchange, both reédtémd
XML [12, 21, 8, 6, 4], is defined by means of certain answers.
That is, given a schema mapping = (Ds, Dr, X), a treeT” that
conforms toDgs, and a conjunctive tree que€y that is compatible
with Dr, the certain answers of) for T' under M, denoted by
CERTAINAM(Q, T'), is the set of tuples that belong to the evaluation
of Q over every possibl@{-solution forT’, that is,\{Q(T") | T”
is anM-solution forT'}. Note that our queries return sets of tuples,
so we can talk about the intersection operator.

It was shown in [6, 4] that, for conjunctive tree queries arapm
pings using nested-relational DTDs, computing certaimans for

tional mapping NLM AP uses null values to represent the shredded a given source tre€ is solvable in polynomial time. Thus, for the



classes of mappings and queries we consider, there is ndeomp
ity mismatch between relational and XML data exchange. &x¢ n
theorem shows that our translation is correct with respequery
answering, that is, ouRequirement 5 is satisfied.

THEOREM 5.4. Let M = (Ds, Dr,X) be an XML schema
mapping. Then, for every XML tre€ that satisfiesDs and
for every conjunctive tree quer®, the certain answers af for
T under M and the certain answers oNLQUERY(Q, Dr) for
INLDOC(T, Ds) overINLMAP(M, Ds, Dr) coincide:

CERTAINM(Q,T) =
CERTAINin mar(ar) (INLQUERY(Q, D7), INLDOC(T, Ds)).

This result, combined with the standard procedure of etialgia
conjunctive queries in relational data exchange, alsosgiusean
algorithm for computing certain answers.

COROLLARY 5.5. Under the conditions of Theorem 5.4,
CERTAINA (@, T') can be obtained by the following procedure:

1. run INLQUERY(Q, D7) on an INLMAP(M, Ds, Dr)-
universal solution foiNLDOC(T, Ds);
2. discard all tuples that contain null values.

6. XML-to-XML Queries

Up to now, we have only considered queries that output tugfles
attribute values. In this section, we shall focus on propeiLxXo-
XML query languages, that is, queries that output XML trees.

Some immediate questions arise when dealing with these for-

malisms in a data exchange context. Mdt= (Dg, D7, X) be an
XML schema mapping]" be a tree conforming t®s, andQ be
an XML-to-XML query. Since the evaluation @ overT returns
an XML tree, we cannot define certain answer§ §(7")) | 7"

is a solution forT'}, since the meaning of the intersection operator

for XML documents is not clear.
To overcome this problem, we use recent results from [11¢kvhi
showed how to define certain answers for queries returnind. XM

new translation, a TQL querg returning trees needs to be trans-
lated into asetof relational queries generating views that define the
shredding of the tre@(T').

6.1 TQL queries

TQL queries [11] are inspired by the FLWR (for-let-where-
return) expressions of XQuery [31], but they only use pesifea-
tures. The key construct fer = (Z) return ¢(z), wherern(z) is a
pattern andz(z) is a query that defines a forest expression. For-
mally, the syntax of forest expressions is

q(z) == €
¢(a, 7l (&")]

| ql(a—?/)7 q//(j//)

| forn(a,z,q)return ¢’ (z, %)
where/ ranges over node labelg,over constant attribute values,
andz etc are tuples of variables.

A TQL query @ is an expression of the formig|, whereq is

a forest expression without variables. To define the secmofi
this language, we first define inductively the forggtz)] ;. ,,, for
a valuationv of all variables inz as attribute values. We use the
notation¢(a)[f] for a tree whose root is labeléand carries a tuple
of attributesa, and f is the forest of subtrees below the root.

e (empty fores}
Ua,v(z)[ld'].,]

[[q/]]T,’U U IIqN]]T,'U

IIE]] T,v =
(@2)d @ )Ny, =
ld@),d" @)y, =
[for n(a, z,y) return ¢'(z, )] 1., =

U{ld1 ;.. | v extends andT k= =(a,v'(z),v' ()}

For a tre€l” and a queryy = r[q|, the evaluatiorQ(T") of Q over
T is defined as the tred[q] ;], i.e., the foresfq] . under rootr.
EXAMPLE 6.2. Recall the tree T from figure 1(a). The trEé

from figure 3(a) can also be obtained as the transformad¢h)
resulting from the evaluation of a TQL quety over T', where

[¢

trees, and how to use them in data exchange context. The&ay id Q = r[q], andq is defined as

of [11] is to use tree patterns to define information containeloc-
uments, and to use them to represent compactly the certailkn
edge from the collectiofQ(T")) | T' is a solution forT'}. More

for r/book () / author /name(y) return
writer[name(y), work(x)] ?3)

precisely, iflL is a set of tree patterns which are matched by every o the sake of readability, we use theperator to denote the child

treeQ(T"), we look for a small seffl, of patterns that is equivalent

to IT as a description of certain answers. By equivalence we mean

that a tree matches every patternlInff it matches every pattern

in I,. If the setll is finite, then its patterns can be put together to

create a tree with nulls, which we then view as the certaiwans

We shall not need additional details of the constructiontead
we shall use aresult from [11] that tells us how certain ams\wan
be computed for a specific XML-to-XML query language. The lan
guage, called TQL (to be defined shortly), is inspired by XQise
FLWR expressions, and is restricted to positive features, (no
negation). The key result from [11] is the following:

PropPosITIONG.1 ([11]). Let M = (Ds,Dr,X) be an
XML schema mappingy a TQL query, andl" a tree that con-
forms to Ds. If T' is an M-universal solution forT, then
CERTAINM(Q, T) = Q(T").

Given this result, we now do the following. We provide a forma
definition of the TQL language of [11], which can express XML-
to-XML analogs of relational conjunctive queries. We théiows
how to adapt the machinery we have previously developed/ids e
uating certain asnwers over a universal solution. Noteftirathis

axis in tree patternstd

6.2

If Qis a TQL query, then, to be able to define its inlining trans-
lation, we need to specify a DTD for tre€X7"). Note that TQL
queries define the shape of their outputs, and at the samedtme
not put restrictions on the number of appearances of lablace
it is natural to define the DTD for outputs ¢f as astarredDTD
D¢, whose shape is determined @y and where each element type
except the root occurs under the Kleene star.

More precisely, for a forest expressignwe define a foresk,
inductively as follows: F. is the empty forest;Fy, is £[Fy];
Fq’Uq” = Fq/ @] Fq//, andeO,ﬂ,etum ¢ = Fq/. FOI’Q = T[q]
we letTg = r[Fy].

Then Dg is a non-recursive DTD that has a ryle— ¢I - - - ¢,
for each node in T with children labelled:, . . ., ¢,. As usual,
we require thatD¢ be acyclic and we assume without loss of gen-
erality thatG(Dgq) is a tree.

EXAMPLE 6.3.[Example 6.2 continued] Recall quey =
r[q]. Then,Tq is the XML tree given byr[writer[name, work]],

Inlining TQL queries



and thusDg contains productions: — writer™, writer —
name* work™, name — € andwork — €. O

Before showing the algorithmNLTQL, we need to introduce
some features that will be used in the algorithm. Consideinag
query (3) and DTDDg in examples 6.2 and 6.3. For each pair
of attributes that satisfy/book (z)/author /name(y), the query
Q creates a subtreeriter [name(y), work(z)] in the treeQ(T).
Thus, the relational translation would need to create opéetin
the relations corresponding tariter, nameandwork for each pair
of attributesr, y that satisfy the relational translation of the pattern
r/book (z) / author /name(y) in the instanceNLDoC(T).

Thus, in the relational translation we need a way to assciat
each particulamriter wih a particularnameandwork. One pos-
sible way of doing this is by creating a (Skolem) functifrthat
associates with each pdiname, work) a unique identifier for the
correspondingwriter. Thus, the functionf must be defined in
such a way thay (book, name) is different for each different pair
(name, work). We enforce this requirement by letting each term
f(a) represent a distinct constatyt;).

We will define our translation algorithm inductively. Theyke
procedure TQITEPfor the inductive step is described below. Its
inputs, in addition to a query and a DTD, include a conjurectiv
query corresponding to the conjunction of patterns in therygu
and a function term corresponding to the parent in the Q€E)
(for example, when creating views for relatidt,.,, we would
input the identifierf (x, y) of the parent node labelledriter). This
is illustrated by the example below.

EXAMPLE 6.4.[Example 6.3 continued] Assume that qu€ry=

r[q] of examples 6.2 and 6.3 is posed o¥eunder schem®. The
following views define the translation fa@p:

R, (fr) :=true
Ruriter (fwriter (2, Y), fr) =
INLQUERY(7/book (x)/author /name(y), D)
Rname (fname(my y)7 fw'rite'r (:E, y)v y) =
INLQUERY(r/book (x)/ author /name(y), D)
Royork (fwork (1'7 y)7 Jwriter (337 y)7 :E) =
INLQUERY(7/book(x)/author /name(y), D)

Notice how each tuple in relatior3,,,;me and R... is set to ref-
erence the correct tuple in relatid,iter. O

Procedure TQLSTER @, D, ¢, t)

Input : A forest expressiog(z), a DTD D, a conjunctive
queryp(z) and a skolem term
Output: A set of views over NLSCHEMA(Dg).

if ¢(Z) ::= ethen
return
eseif ¢(7) == ¢'(z'),¢" (z") then
return TQLSTER, D, ¢,t) U TQLSTERq”, D, ¢, t)
eseif ¢(z) == {(a,z’)[¢'(z")] then
Let f be a fresh skolem function. Define vié#as
Ro(f(%),t,a,%") := INLQUERY(yp, D), or just
Ri(f(),t,a) := trueif o = 0.
return {V} UTQLSTERY, D, ¢, f(Z))
elseif ¢(z) := for n(a, z, y) return ¢'(z, y) then
Lety'(a, z,7) = ¢(z) A7 (a,Z,§).
return TQLSTERq', D, ¢', t)

To define the inlining translationNLTQL, we simply need a
Skolem term for the root of the tree, as the basis for the itigeic
procedure TQISTER

Procedure INLTQL( @, D)

Input : ATQL query@ = r[g] and a DTDD.
Output: A set of views over NLSCHEMA(Dg).

Create a O-ary functioffi..
return TQLSTERQ, D, 0, f-())

A TQL query @ is compatible with a DTDD if all the patterns
used in@ are compatible wittD. The following proposition shows
that INLTQL satisfies an analog oequirement 3 for queries that
outputs trees.

PROPOSITION 6.5. Given a DTDD, a TQL query@ compat-
ible with D, and and a tre€l’ that conforms taD, we have that
INLDOC(Q(T), Dg) = INLTQL(Q, D)(INLDOC(T)), up to re-
naming of nulls.

That is, the set of viewsNLTQL(Q, D) applied to the inlining
of T' yields the same answer as the inliningi@f7").

Trandating relationsback into XML

To complete the translation, we need an algorithm to publish
back the relational data as an XML document. This is done by
means of the algorithm B BREL. We say that an instancg of
INLSCHEMA(D) D-representsa tree7T" that conforms toD if
I = INLDOC(T, D).

Procedure PUBREL( D,I)
Input : ADTD D and an instancé that D-represents some
tree.
Output: An XML tree T that is D-represented by.

for each node? of G(D), traversed as Depth-first-searcio
for each tuplet of R, in I with elements:, a andn’
corresponding to attributesl,,, Ap(¢) andid,,(,). do
for every non-starred nodé’ of G(D) such that
wu(¢) = ¢, and elementa’” andb in ¢ corresponding
to attributesid,, and Ap (¢') do
Create a node” in T labelled?’, with attributesh,
in a parent-child scheme that resemilg®).
endfor
Add toT a noden labelled?, with attributesa, with n’
as ancestor, according to the parent-child sequence
defined byG(D (no parent ift = r).
endfor
endfor
return T

This algorithm will only work for relational instances thiap-
resent shredded documents. The following proposition shitsv
correctness.

PROPOSITION6.6. Given a DTD D and a rela-
tional instance I of INLSCHEMA(D), it is the case that
INLDOC(PUBREL(D, I)) = I.

6.3 TQL queriesin XML data exchange

Combining the previously mentioned result in [11] with the
correctness of the algorithms we presented we concluder ghat
quirements 1-5 are satisfied for data exchange with XML-to-XML
queries:



THEOREM 6.7. Let M = (Dg, Dr,X) be an XML schema
mapping. Then, for every XML treE that satisfiesDs and for
every TQL queryy, the certain answers af for 7" under M and
the certain answers dNLTQL(Q, D) for INLDOC(T, Dg) over
INLMAP(M, Dg, D7) coincide:

INLDOC(CERTAINM(Q, T), Dg) =
CERTAINin mar(ar) (INLTQL(Q, D7), INLDOC(T, Ds)).

Remark The notion of certain answers naturally (component-wise)
extends to queries computing multiple relations.

Theorem 6.7 and Proposition 6.6 give us a way
of computing CERTAINAM(Q,T). First,  compute
CERTAINiwumar(ar) (INLTQL(Q, D), INLDOC(T', Ds)) by
materializing views NLTQL(Q, Dr) over the canonical solution
for INLDOC(T, Ds) and then use the procedureUBREL to
output it as the treeERTAINA(Q, T').

7. Concluding Remarks

Our technique provides a relational approach to solve twtbef
most important problems of XML data-exchange settings:entat
alizing solutions and answering queries. The diagram bselaw-
marizes this. In a pure XML setting, we can start with a docoime
T and use a mapping to find a (universal) solutioff},,, over
which we can then answer a quépyto produce certain answers.

M .
T Tiniv @ certain answer
INLDOC INLDOC
INLMAP(M INLQUERY .
R (M) Rl Q Q) certain answer

Using the translationNLDoc of documents, we generate a
relational instanceR, on which the translation of the mapping
INLMAP(M) generates a universal solutidt{,,,. This solution
is a shredding, viaNLDoc, of a universal XML solution, and also
conforms to the shredding of source DTD. Finally, we apply th
standard technigue [12] for evaluating queries in relatiolata ex-
change to the query translatioRUQUERY(Q®) or INLTQL(Q) to
produce the correct answers, in the latter case with thelplitys
of using RUBREL to publish back the results into XML.

Implementing our proposed algorithms for use in practigat s
tems would be straightforward using their specificationgigiin
this paper. A natural next step is to evaluate XML data-ergka
systems using relational data storage and implementatibosr
algorithms. We are currently working on this direction.

We finish with a remark about the possibility of allowing oper
tors? and+ in DTDs, as well as a choice operator for representing
multiple choices. We say that a non-recursive DTDis an ex-
tended nested relationaDTD if all rules of D are of the form
£—ALo...4m, 0Nl — lo+...+ L, Where all the/;'s and/?;’s are
distinct, and eacld; is one of¢;, £;?, £; or £ (as usual? stands
for £|e and¢™ for £4*).

The procedureNL SCHEMA can be extended to these DTDs. For
each element that is under the operat@r the transformation cre-
ates a special relatigtthat references the relation of the nearest ap-
propriate ancestor of. Furthermore, the transformation for a rule
of the form¢; — ¢ can be defined by including a dependency that
ensures that there is at least one tuple in the reld@ignfor each
tuple in R,, . Finally, for the choice operatdr — ¢y + ... +
the transformation would create one relatiBpn for each possible
choice offo,...,¢n. Then, it is possible to extend all the proce-

dures in a way that still satisfieequirements 1-5 under extended
nested relational DTDs.

Acknowledgments Partial support provided by EPSRC grant G049165 and
FET-Open Project FoX, grant agreement 233599.

8. References
[1] S. Abiteboul, L. Segoufin and V. Vianu. Representing aodrging
XML with incomplete informationTODS 31(1) (2006), 208-254
[2] F. Afrati, C. Li, V. Pavlaki. Data exchange in the preserd
arithmetic comparisons. IEDBT 2008 pages 487-498.
[3] S. Amano, C. David, L. Libkin, F. Murlak. On the tradeofétween
mapping and querying power in XML data exchangelGDT 2010
[4] S. Amano, L. Libkin, F. Murlak. XML schema mappings. RODS
2009 pages 33-42.
[5] S. Amer-Yahia, S. Cho, L. Lakshmanan, D. Srivastavaerattern
query minimizationVLDB J.11 (2002), 315-331.
[6] M. Arenas, L. Libkin. XML data exchange: consistency ancry
answeringJ. ACM55(2): (2008).
[7] A.Balmin and Y. Papakonstantinou. Storing and querytdL data
using denormalized relational databasésDB J, 14:30—-49, 2005.
[8] P. Barceld. Logical foundations of relational data exche.
SIGMOD Record8(1): 49-58 (2009).
[9] P. A.Bernstein, S. Melnik. Model management 2.0: malsifig
richer mappingsSIGMOD’07, pages 1-12
[10] H. Bjorklund, W. Martens, T. Schwentick. Conjunctivaeyy
containment over trees. DBPL 2007 pages 66-80.
C. David, L. Libkin, F. Murlak. Certain answers for XMLueries. In
PODS 2010pages 191-202.
R. Fagin, P. G. Kolaitis, R. Miller, L. Popa. Data exchgan
semantics and query answerif@CS336(1): 89-124 (2005).
[13] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchangetirggto the
core.ACM TODS30(1):174-210, 2005.
D. Florescu, D. Kossman. Storing and querying XML dagang a
RDBMS IEEE Data Engineering Bulleti22(3): 27-34, 1999.
A. Fuxman, M. Hernandez, H. Ho, R. Miller, P. Papotti,Ropa.
Nested mappings: schema mapping reloatdB’06, pages 67-78.
G. Gottlob, C. Koch, K. Schulz. Conjunctive queries oirees.
JACM53(2): 238-272, 2006.
G. Gou and R. Chirkova. Efficiently querying large XMLtda
repositories: A survefEEE TKDE, 19:1381-1403, 2007.
M. Hernandez, H. Ho, L. Popa, A. Fuxman, R. Miller, T. kdla, P.
Papotti. Creating nested mappings with Cliol@DE 2007
H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. Lakshmana.
Nierman, S Paparizos, J. Patel, D. Srivastava, N. Wiwaawat.
Wau, C. Yu. TIMBER: A native XML databas&/LDB Journal11(4):
274-291, 2002.
N. Klarlund, T. Schwentick, D. Suciu. XML: model, schas) types,
logics, and queries. lhogics for Emerging Appl. of Databases 2003
Ph. Kolaitis. Schema mappings, data exchange, ancdaeta
management. IRODS 2005pages 61-75.
R. Krishnamurthy, R. Kaushik, J. Naughton. XML-to-SQuery
translation literature: state of the art and open problémxSym’'03
R. Krishnamurthy, R. Kaushik, and J. Naughton. XML vieas
integrity constraints and their use in query translationilGDE’05.
L. Lakshmanan, G. Ramesh, H. Wang, Z. Zhao. On testing
satisfiability of tree pattern queriegL. DB 2004 pages 120-131.
G. Mecca, P. Papotti, S. Raunich. Core schema mapgimgs.
SIGMOD 2009 pages 655-668.
R. Miller, M. Hernandez, L. Haas, L. Yan, H. Ho, R. Fagdin,Popa.
The Clio project: managing heterogeneB{GMOD Record30
2001).
[27] (L Pop)>a, Y. Velegrakis, R. Miller, M. Hernandez, R. Ragi
Translating Web data. INLDB 2002 pages 598-609.
[28] J. Shanmugasundaram, et al. Relational databaseséoyigg XML
documents: limitations and opportunitiéd_DB’99, pages 302-314.
[29] J. Shanmugasundaram, et al. A general techniques &yimg XML
documents using a relational database sys&@MOD Record
30:20-26, 2001.
[30] I. Tatarinov, et al. Storing and querying ordered XMlingsa
relational database system.SiGMOD’'02 pages 204-215.
[31] XQuery 1.0: An XML Query Language.
http://www.w3.0rg/TR/xquery.
[32] C. Yu, L. Popa. Constraint-based XML query rewriting fata
integration. INSIGMOD 2004 pages 371-382.
[33] C. Zhang, et al. On supporting containment queries lational
database management systemsSIBMOD’'01, pages 425-436.

[11]
[12]

[14]
[15]
[16]
[17]
(18]
[19]

[20]
[21]
[22]
(23]
[24]
[25]
[26]



