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ABSTRACT
We consider data exchange for XML documents: given source and
target schemas, a mapping between them, and a document con-
forming to the source schema, construct a target document and an-
swer target queries in a way that is consistent with source infor-
mation. The problem has primarily been studied in the relational
context, in which data-exchange systems have also been built.

Since many XML documents are stored in relations, it is natural
to consider using a relational system for XML data exchange.How-
ever, there is a complexity mismatch between query answering in
relational and XML data exchange, which indicates that restrictions
have to be imposed on XML schemas and mappings, and on XML
shredding schemes, to make the use of relational systems possible.

We isolate a set of five requirements that must be fulfilled in
order to have a faithful representation of the XML data-exchange
problem by a relational translation. We then demonstrate that these
requirements naturally suggest the inlining technique fordata-
exchange tasks. Our key contribution is to provide shredding algo-
rithms for schemas, documents, mappings and queries, and demon-
strate that they enable us to correctly perform XML data-exchange
tasks using a relational system.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data translation

General Terms
Algorithms, Theory

Keywords
Data Exchange, XML, XML Shredding, Inlining

1. Introduction
Data exchange is the problem of finding an instance of a target

schema, given an instance of a source schema and a schema map-
ping, that is, a specification of the relationship between the source
and the target. Such a target instance should correctly represent in-
formation from the source instance under the constraints imposed
by the target schema, and should allow one to evaluate queries on
the target instance in a way that is semantically consistentwith the
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source data. The problem has received much attention in the past
few years, with several surveys already available [21, 9, 8].

The general setting of data exchange is this:

queryQ
sourceS targetT

mappingM

We have fixed source and target schemas, an instanceS of the
source schema, and a mappingM that specifies the relationship
between the source and the target schemas. The goal is to con-
struct an instanceT of the target schema, based on the source and
the mapping, and answer queries against the target data in a way
consistent with the source data.

The mappings rarely specify the target instance completely, that
is, for each sourceS and mappingM, there could be multiple
target instancesT1, T2, . . . that satisfy the conditions of the map-
ping. Such instances are calledsolutions. The notion of query
answering has to account for their non-uniqueness. Typically, one
tries to computecertain answersCERTAINM(Q,S), i.e., answers
independent of a particular solution chosen. IfQ produces re-
lations, these are usually defined as

T

i Q(Ti). Certain answers
must be produced by evaluating some query – not necessarilyQ
but perhaps itsrewritingQrewr over a particular solutionT , so that
Qrewr(T ) = CERTAINM(Q,S).

Thus, the key tasks in data exchange are: (a) choosing a partic-
ular solutionT among{T1, T2, . . .} to materialize, and (b) finding
a way of producing query answers over that solution by running a
rewritten queryQrewr over it. Usually one builds a so-calleduniver-
sal solution [12, 8]; these solutions behave particularly nicely with
respect to query answering.

These basics of data exchange are independent of a particular
model of data. Most research on data exchange, however, occurred
in the relational context [12, 13, 21, 8] or slight extensions [32, 18];
the first paper that attempted to extend relational results to the XML
context was [6], and a few followups have since appeared [4, 3].
They all concentrate on the algorithmic aspects of query answering
and constructing solutions, with the main goal of isolatingtractable
cases. The problem these papers do not address ishow XML data
exchange can be implemented?

Previous work on algorithms for XML data exchange has tacitly
assumed that one uses a native XML DBMS such as [19]. How-
ever, this is not the only (and perhaps not even the most common)
route: XML documents are often stored in relational DBMSs. Note
that it is natural and in many cases desirable to be able to usethe
established relational technology to solve the considerably more re-
cent and not as well understood XML data-exchange task. In fact,
many ETL products claim that they handle XML data simply by



producing relational translations (known asshredding[22]). This
leads to a two-step approach:

• first shred XML data into relations;

• then apply a relational data-exchange engine (and publish the
result back as an XML document).

The approach seems very natural, but the key question is whether
it will work correctly. That is, are we guaranteed to have the same
result as we would have gotten had we implemented a native XML
data-exchange system? We answer this question in this paper.

To state more precisely the main question addressed in this paper,
assume that we have a translationσ(·) that can be applied to (a)
XML schemas, (b) XML documents, (c) XML schema mappings,
and (d) XML queries. Then the concept ofcorrectnessof such a
translation is shown below:

XML : sourceS
mappingM

- targetT
queryQ

- answer

Relations : σ(S)

shred

? σ(M)
- σ(T )

shred

? σ(Q)
- answer

shred

?

That is, suppose we start with an XML documentS and an XML
schema mappingM. In a native system, we would materialize
some solutionT over which we could answer queriesQ.

But now we want a relational system to do the job. So we shred
S into σ(S) and then apply toσ(S) the translation of the mapping
σ(M) to get a solution – which itself is a shredding of an XML
solution – so that the answer toQ could be reconstructed from the
result of the queryσ(Q) over that relational solution.

The idea seems simple and natural on the surface, but starts look-
ing challenging once we look deeper into it. Before even attempting
to show that the relational translation faithfully represents the XML
data-exchange problem, we need to address the following.

Complexity mismatch. Without restrictions, therecannot be a
faithful representationof XML data exchange by a relational
system. Indeed, it is well known that positive relational-
algebra queries can be efficiently evaluated in relational data
exchange [12, 21, 8], but even for simple XML analogs of
conjunctive queries finding query answers can be coNP-hard
[6]. So any claim that a relational data-exchange system cor-
rectly performs XML data exchange for arbitrary documents
and queries is bound to be wrong. We thus need to identify
the cases that can be handled by a relational system.

Which shredding scheme to use?There are several, that can
roughly be divided into two groups: those that do not take
the schema information into account (e.g., the edge repre-
sentation [14], interval codings [33], and other numbering
schemes [30]), and those that are based on schemas for XML,
such as variants of the inlining technique [28, 22]. Since in
data-exchange scenarios we start with two schemas, it seems
more appropriate to apply schema-based techniques.

Target constraints. In relational data exchange, constraints in tar-
get schemas are required to satisfy certain acyclicity condi-
tions; without them, the chase procedure that constructs a
target instance does not terminate [12, 21, 8]. Constraints
imposed by general XML schema specifications need not in
general be even definable in relational calculus, let alone be
acyclic [20]. We thus need to find a shredding technique that
enables us to encode targets schemas by means of constraints
that guarantee chase termination.

As for the complexity issue, the work on the theory of XML
data exchange has identified a class of mappings for which efficient
query answering is possible [6, 4, 3]. The schemas (say, DTDs),
have rules of the formdb → book∗, book → author∗ subject
(we shall give a formal definition later), and the mappings trans-
form patterns satisfied over the source into patterns satisfied over
targets. Observe that these mappings (just as nested-relational tgds
[15, 27]) are strictly more expressive than relational tgds; see the
Related-Work section for a discussion.

This restriction suggests a relational representation to use. Going
with the edge representation [14] is problematic: first, each edge in
an XML pattern used in a mapping will result in a join in the rela-
tional translation, making it inefficient, and second, enforcing even
a simple schema structure under that representation takes us out of
the class of target constraints that relational data-exchange systems
can handle. Verifiably correct translations based on numerical en-
codings [30, 33] will necessarily involve numerical and/orordering
constraints in relational translations of mappings, and this is some-
thing that relational data exchange cannot handle at the moment
[21, 8] (beyond simple ordering constraints [2]).

One translation scheme however that fits in well with restrictions
identified in [6, 4, 3] is theinlining scheme. It works very well for
DTDs of the “right” shape, and its output schemas involve only
acyclic constraints, which is perfect for data-exchange scenarios.

Desiderata for the translation We now formulate some basic re-
quirements for the translationσ, in order to be able to achieve our
goals described in the diagram above.1 We need the following:

Requirement 1: translation of schemas A translationσ(D) that,
when applied to a DTD of a special form, produces a rela-
tional schema that only has acyclic constraints, which can be
used in a relational data-exchange setting.

Requirement 2: translation of documents A translation σD(·)
for a DTDD that, when applied to documentT conforming
toD, produces relational databaseσD(T ) of schemaσ(D).

Requirement 3: translation of queries For a DTDD, a trans-
lation σD(Q) of (analogs of) conjunctive queries so that
σD(Q)

`

σD(T )
´

= Q(T ) (that is, the result ofQ(T ) can
be computed by relational translations).

Requirement 4: translation of mappings For a mappingM be-
tween a source DTDDs and a target DTDDt, its trans-
lation σ(M) is a mapping betweenσ(Ds) andσ(Dt) that
preserves universal solutions. That is:

(a) EachσDt
-translation of a universal solution forT under

M is a universal solution forσDs
(T ) underσ(M); and

(b) Each universal solution forσDs
(T ) underσ(M) contains2

aσDt
-translation of a universal solution ofT underM.

Requirement 5: query answering For (analogs of) conjunctive
queries over trees, computing the answer toQ underM over
a source treeT is the same as computing aσ(M)-solution
of σ(T ), followed by evaluation ofσ(Q) over that solution,
as is normally done in a relational data-exchange system.

Satisfaction of these five requirements would guarantee that we
have acorrect relational translation of an XML data-exchange
problem, which would guarantee correct evaluation of queries. The

1In the next sections we formalize each desideratum.
2We cannot require the equivalence, as relational solutionsare open
to adding new tuples and thus cannot always be translations of
trees; we shall discuss this later.



relational approach to XML data exchange, which we propose in
this paper, satisfies all the five requirements.

For the choice of the query language, one has to be careful
since the definition of certain answers depends on the outputof
the queries. We consider two classes of conjunctive queriesover
trees. The first is tree patterns that output tuples of attribute values.
These are the queries most commonly considered in XML data ex-
change [6, 4, 3] because for them we can define certain answers
as the usual intersectionCERTAINM(Q,S) =

T

i Q(Ti). The sec-
ond is a simple XML-to-XML query language from whose queries
output trees. It is essentially the positive fragment of FLWR ex-
pressions of XQuery [31]. For outputs which are XML trees, the
intersection operator is no longer meaningful for defining certain
answers. Instead, we use recent results of [11] that show howto
define and compute certain answers for XML-to-XML queries.

Contributions We provide a relational approach to solve two of
the most important problems of XML data-exchange settings:ma-
terializing solutions and answering queries. Our specific contribu-
tions are as follows. First, we introduce an architecture for XML
data exchange using relational vehicles, with a focus on correct
evaluation of (analogs of) conjunctive queries on XML data.Sec-
ond, we identify a class of XML schema mappings and a shredding
mechanism that allows us to overcome the complexity mismatch.
Third, we provide algorithms for relational translation ofschemas,
XML documents, schema mappings, and queries in our proposed
architecture. Finally, we prove the correctness of the translations:
namely, we show that they satisfy the above five requirements, and
thus enable us to use relational data exchange systems for XML
data-exchange tasks. Since the computational complexity of our
proposed algorithms is quite low, and their correctness hasbeen es-
tablished, we believe this paper makes a case for using relational
technology for provably correct XML data exchange.

Related work In recent years, significant effort has been devoted to
developing high-performance XML database systems, and to build-
ing tools for data exchange. One major direction of the XML effort
is the “relational approach”, which uses relational DBMSs to store
and query XML data. Documents could be translated into rela-
tional tuples using either a “DTD-aware” translation [29, 28] or a
“schemaless” translation. The latter translations include the edge
[14] and the node [33] representations of the data. Indexes could
be prebuilt on the data to improve performance in relationalquery
processing, see, e.g., [30, 33]. Constraints arising in thetranslation
are sometimes dealt with explicitly [7, 23]. See [17] for a survey of
the relational approach to answering XML queries.

The work on data exchange concentrated primarily on relations,
see [8, 21] for surveys and [26, 27] for system descriptions.Map-
pings for the XML data exchange problem were studied in [6, 4]; it
was noticed there that the complexity of many tasks in XML data
exchange is higher than for their relational analogs, whichsuggests
that restrictions must be imposed for a relational implementation.
The problem of exchanging XML data was also studied in [15,
27], which give translations of documents and DTDs into nested-
relational schemas, and then show how to perform XML data ex-
change under this translation. Most RDBMSs, however, do not
provide support for nested relational schemas, and, thus, specific
machinery has to be developed in order to implement this transla-
tion under a strictly relational setting. Moreover, XML mappings
considered in this paper are strictly more expressive than nested-
relational mappings, and every nested-relational data exchange set-
ting can be efficiently transformed into an equivalent XML data
exchange setting. Thus, the results of this paper may aid towards
the development of a relational implementation for both XMLand
nested-relational data exchange.

Outline Key definitions are given in Section 2. Section 3 provides
translations of schemas and documents and shows that they fulfill
Requirements 1 and 2. Section 4 states the main concepts of rela-
tional and XML data exchange. Section 5 provides translations of
mappings and queries, and shows that Requirements 3, 4, and 5are
fulfilled. Section 6 studies queries that output XML trees.

2. Preliminaries
Relational schemas and constraints. A relational schema, or
justschema, is a finite setR = {R1, . . . , Rk} of relation symbols,
possibly with a set of integrity constraints (dependencies). Con-
straints used most often in data exchange are equality- and tuple-
generating dependencies [12, 21, 8], but for our purposes itwill
suffice to consider onlykeysand foreign keys. If R is a relation
over attributesU , andX is a set of attributes, thenX is a key
of R if no two tuples ofR coincide onX-attributes (that is, for
all tuplest1, t2 ∈ R with t1 6= t2 we haveπX(t1) 6= πX(t2)).
If R1 andR2 are relations over sets of attributesU1 andU2, re-
spectively, then an inclusion constraintR1[X] ⊆ R2[Y ], where
X ⊆ U1 andY ⊆ U2 are of the same cardinality, holds when
πX(R1) ⊆ πY (R2). We further say that a foreign key on the at-
tributes ofR1[X] ⊆F K R2[Y ] holds if the inclusion constraint
R1[X] ⊆ R2[Y ] holds, andY is a key ofR2.

With each set of keys and foreign keys, we associate a graph in
which we put an edge between attributesA andB if there is a con-
straintR1[X] ⊆F K R2[Y ] with A ∈ X andB ∈ Y . If this graph
is acyclic, we say that the set of constraints isacyclic. A schema
is acyclic if its constraints are acyclic. In data exchange,one often
uses a more technical notion of weak acyclicity: it includessome
cyclic schemas for which the chase procedure still terminates. For
us, however, the simple concept of acyclicity will suffice, as our
translations of schemas only produce acyclic constraints.

XML documents and DTDs Assume that we have the follow-
ing disjoint countably infinite sets:El of element names,Att of
attribute names, andStr of possible values of string-valued at-
tributes. All attribute names start with the symbol@.

An XML treeis a finite rooted directed treeT = (N,G), where
N is the set of nodes andG is the set of edges, together with

1. a labeling functionλ : N → El;

2. attribute-value assignments, which are partial functions
ρ@a : N → Str for each@a ∈ Att; and

3. an ordering on the children of every node.

A DTD D overEl with a distinguished symbolr (for the root)
and a set of attributesAtt consists of a mappingPD from El to
regular expressions overEl − {r}, usually written as productions
ℓ → e if PD(ℓ) = e, and a mappingAD fromEl to 2Att that as-
signs a (possibly empty) set of attributes to each element type. For
notational convenience, we always assume that attributes come in
some order, just like in the relational case: attributes in tuples come
in some order so we can writeR(a1, . . . , an). Likewise, we shall
describe anℓ labeled tree node withn attributes asℓ(a1, . . . , an).

A treeT conforms to a DTDD (written asT |= D) if its root is
labeledr, the set of attributes for a node labeledℓ isAD(ℓ), and the
labels of the children of such a node, read from left to right,form a
string in the language ofPD(ℓ).

A class of DTDs In this paper we consider a restriction on DTDs
called nested-relational DTDs[1, 6], a class of DTDs that natu-
rally represent nested relational schemas such as the ones used by
the Clio data-exchange system [26]. The reason for using them is
that outside of this class, it is very easy to construct instances of



1: r

2: book
‘Algorithm Design’

4: author

9: name
Kleinberg

10: aff
CU

5: author

11: name
Tardos

12: aff
CU

6: subject
CS

3: book
‘Algebra’

7: author

13: name
Hungerford

14: aff
SLU

8: subject
Math

(a) TreeT

r → book∗

book → author∗ subject
author → name aff
AD(book) = @title
AD(subject) = @sub
AD(name) = @nam
AD(aff ) = @aff

(b) DTDD

Figure 1: The XML tree T conforms to D

XML data-exchange problems that will exhibit coNP-hardness of
answering conjunctive queries (which are known to be tractable in
practically all instances of relational data exchange), see [6].

A DTD D isnon-recursiveif the graphG(D) defined as{(ℓ, ℓ′) |
ℓ′ is mentioned inP (ℓ)} is acyclic. A non-recursive DTDD is
nested-relationalif all rules of D are of the forml → l̃0 . . . l̃m
where all theli’s are distinct, and each̃li is one of li and l∗i .
From now on, unless otherwise noted, all DTDs are assumed to be
nested-relational. We also assume, without loss of generality, that
the graphG(D) is not a directed acyclic graph (DAG) but a tree.
(One can always unfold a DAG into a tree by tagging occurrences
of element types with the types of their predecessors.)

EXAMPLE 2.1. Figure 1(a) shows an example of an XML tree.
In the Figure, the node identifiers precede the corresponding labels
of each node inT ; we omit the attribute names and only show the
attribute values of each node. In addition, Figure 1(b) shows an
example of a nested relational DTD. Moreover, it is easy to see that
the treeT of Figure 1(a) conforms toD. 2

3. Translations of schemas and documents
We now review theinlining technique [28], provide a precise

definition of the translation, and show that it satisfies ourRequire-
ments 1 and2. The main idea of inlining is that separate relations
are created for the root and each element type that appears under
a star, and other element types are inlined in the relations corre-
sponding to their “nearest appropriate ancestor”. Each relation for
an element type has an ID attribute that is a key, as well as (for
non-root) a “parent-ID” attribute that is a foreign key pointing to
the “nearest appropriate ancestor” of that element in the document.
All the attributes of a given element type in the DTD become at-
tributes in the relation corresponding to that element typewhen
such a relation exists, or otherwise become attributes in the relation
for the “nearest appropriate ancestor” of the given elementtype.

We begin with a formal definition of thenearest appropriate an-
cestorfor the element types used inD. Given a nested-relational
DTD D = (PD, AD, r), we “mark” inG(D) each element type
that occurs under a star inPD. In addition, we mark the root ele-
ment type inG(D). Then, for a given element typeℓ, we define the
nearest appropriate ancestorof ℓ, denoted byµ(ℓ), as the closest
marked element typeℓ′ in the path from the root element toℓ in the
graphG(D). The inlining schema generation is formally captured
by means of the procedure INLSCHEMA below.

EXAMPLE 3.1. Consider again DTDD in Figure 1(b). The
relational schema INLSCHEMA(D) is as follows:

Rr (rID)
Rbook(bookID,@title,rID,subID,@sub)
Rauthor (authID,bookID,nameID,afID,@nam,@aff)

Keys are underlined; we also have the following foreign

Procedure INLSCHEMA(D)

Input : A nested relational DTDD.
Output: A relational schemaSD and a set of integrity

constraints∆D

SetSD = ∅ and∆D = ∅
for each marked element typeℓ ofD:

add toSD a relationRℓ, with attributes:

attr(Rℓ) =

8

>

>

>

<

>

>

>

:

idℓ

AD(ℓ)
idµ(ℓ) | if ℓ 6= r.
idℓ′ | µ(ℓ′) = ℓ, ℓ′ is not marked,
AD(ℓ′) | µ(ℓ′) = ℓ, ℓ′ is not marked.

endfor
for each relationRℓ in SD :

add to∆D the constraint stating thatidℓ is key ofRℓ and,
if ℓ 6= r, the foreign key

Rℓ[idµ(ℓ)] ⊆F K Rµ(ℓ)[idµ(ℓ)].
endfor
add to∆D the dependency (stating the uniqueness of the root)

∀ȳ∀z̄Rr(x, ȳ) ∧Rr(x
′, z̄) → x = x′.

return (SD,∆D)

keys: Rbook(rID) ⊆F K Rr(rID) andRauthor(bookID) ⊆F K

Rbook(bookID). 2

The following shows that ourRequirement 1 is satisfied.

PROPOSITION 3.2. For every nested relational DTDD, the
output ofINLSCHEMA(D) is an acyclic relational schema.

Shredding of XML documents. We now move to the shredding
procedure. Given the inlining INLSCHEMA(D) = (SD,∆D) of a
DTD D, and an XML treeT conforming toD, we use the algo-
rithm INLDOC to shredT into an instance of the relational schema
SD that satisfies the constraints in∆D. Let us first explain this
translation by means of an example.

EXAMPLE 3.3. Recall treeT from Figure 1(a) and DTDD
from Figure 1(b). Figure 2 shows relationsRbook andRauthor in
the shredding ofT . 2

To present the algorithm, we define thenearest appropriate an-
cestorµ(n) of a noden of an XML documentT that conforms to
a DTDD, as follows. Mark each noden of T such thatλ(n) is
starred inD, as well as the root ofT . Thenµ(n) is the closest
marked noden′ that belongs to the path from the root ton. In the
following algorithm, and for the remainder of the paper, we denote
by idn the relational element representing the noden of a treeT .



bookID @title rID subID @sub

id2 ’Algorithm Design’ id1 id6 CS

id3 ’Algebra’ id1 id8 Math

(a) RelationRbook in INLDOC(T,D)

authID bookID nameID afID @nam @af

id4 id2 id9 id10 ’Kleinberg’ CU
id5 id2 id11 id12 ’Tardos’ CU
id7 id3 id13 id14 ’Hungerford’ SLU

(b) RelationRauthor in INLDOC(T,D)

Figure 2: Shredding of T into INLSCHEMA(D)

Procedure INLDOC(T,D)

Input : A nested relational DTDD and an XML treeT that
conforms toD.

Output: A relational instance of the schema INLSCHEMA(D).

for each marked noden of T :
Let ℓ be the label ofn; Add to the relationRℓ of I a tuple
that contains elements
8

>

>

>

>

>

<

>

>

>

>

>

:

idn

ρ@a(n) | @a ∈ AD(ℓ)
idµ(n) | if ℓ 6= r
idn′ | µ(n′) = n, n′ is not marked.
ρ@a(n′) | µ(n′) = n , @a ∈ AD(λ(n′)) and

n′ is not marked
where the identifiers and attributes values for each of the
elementsidn′ , idµ(n) andρ@a(n′) coincide with the
position of the attributes foridλ(n′), idµ(ℓ) and
AD(λ(n′)) of Rℓ.

endfor
return I

The following proposition shows ourRequirement 2 is satisfied.

PROPOSITION 3.4. LetD be a DTD, andT an XML tree such
that T |= D. ThenINLDOC(T,D) is an instance of the schema
computed byINLSCHEMA(D).

4. Relational and XML Data Exchange
We now quickly review the basics of relational data exchange

and introduce XML schema mappings that guarantee tractable
query answering.

Relational Data Exchange A schema mappingM is a triple
(S,T,Σ), whereS is a source schema,T = (T,∆T) is a target
schema with a set of constraints∆T , andΣ is a set ofsource-to-
target dependenciesthat specify how the source and the target are
related. Most commonly these are given as source-to-targettuple
generating dependencies (st-tgds):

ϕ(x̄) → ∃z̄ ψ(x̄, z̄), (1)

whereϕ andψ are conjunctions of relational atoms overS andT,
respectively.

In data-exchange literature, one normally considers instances
with two types of values: constants and nulls. InstancesS of the
source schemaS consist only of constant values, and nulls are used
to populate target instancesT when some values are unknown.

An instanceT of T (which may contain both constants and nulls)
is called asolution for an instanceS of S underM, or anM-
solution, if every st-tgd (1) fromΣ is satisfied by(S ,T ) (that is, for
each tuplēa such thatϕ(ā) is true inS , there is a tuplēb such that
ψ(ā, b̄) is true inT ).The set of allM-solutions forS is denoted by
SOLM(S) (or SOL(S) if M is understood).

Certain answers and canonical universal solution The main dif-
ficulty in answering a queryQ against the target schema is that

there could be many possible solutions for a given source. Thus,
for query answering in data exchange one normally uses the notion
of certain answers, that is, answers that do not depend on a particu-
lar solution. Formally, for a sourceS and a mappingM, we define
CERTAINM(Q,S) as

T

{Q(T ) | T ∈ SOLM(S)}.
Building all solutions is impractical (or even impossible), so it

is important to find a particular solutionT0 ∈ SOLM(S), and a
rewritingQrewr of Q, so thatCERTAINM(Q,S) = Qrewr(T0).

Universalsolutions were identified in [12] as the preferred solu-
tions in data exchange. Over them, every positive query can be an-
swered, with a particularly simple rewriting: afterQ is evaluated on
a universal solutionT0, tuples containing null values are discarded.
Even among universal solutions there are ones that are most com-
monly materialized in data-exchange systems, such as thecanoni-
cal solutionCANSOLM(S), computed by applying the chase pro-
cedure with constraintsΣ and∆T to the source instanceS . If all
the constraints in∆T are acyclic (in fact, even a weaker notion
suffices), such a chase terminates and computes CANSOLM(S) in
polynomial time [12].

Note that ourRequirement 4 relates universal solutions in rela-
tional and XML data exchange; in particular, we do not insiston
working with the canonical solutions, and others, such as the core
[13] or the algorithmic constructions of [25] can be used as well.

Towards XML schema mappings: patterns To define XML
schema mappings, we need the notions of schemas and source-to-
target dependencies. The notion of schema is well understood in
the XML context. Our dependencies, as in [6, 4, 3] will be based
on tree patterns. Patterns are defined inductively as follows:

• ℓ(x̄) is a pattern, whereℓ is a label, and̄x is a (possibly
empty) tuple of variables (listing attributes of a node);

• ℓ(x̄)[π1, . . . , πk] is a pattern, whereπ1, . . . , πk are patterns,
andℓ andx̄ are as above.

We writeπ(x̄) to indicate that̄x is the tuple of all the variables used
in a pattern. The semantics is defined with respect to a node ofa
tree and to a valuation of all the variables of a pattern as attribute
values. Formally,(T, v) |= π(ā) means thatπ is satisfied in node
v whenx̄ is interpreted as̄a. It is defined as follows:

• (T, v) |= ℓ(ā) if v is labeledℓ and its tuple of attributes is̄a;

• (T, v) |= ℓ(ā)[π1(ā1), . . . , πk(āk)] if

1. (T, v) |= ℓ(ā) and
2. there exist childrenv1, . . . , vk of v (not necessarily dis-

tinct) so that(T, vi) |= πi(āi) for everyi ≤ k.

We writeT |= π(ā) if (T, r) |= π(ā), that is, the pattern is wit-
nessed at the root.

EXAMPLE 4.1. Consider treeT from Figure 1(a), and the tree
patternπ(x, y) = r[book(x)[author[name(y)]]], which finds
books together with the names of their authors. Then it is easy
to see thatT |= π(’Algorithm Design’, Tardos). In fact,
evaluation ofπ(x, y) over T returns the tuples (’Algorithm
Design’, Tardos), (’Algorithm Design’, Kleinberg), and
(’Algebra’, Hungerford). 2



Given a DTDD and a tree patternπ, we say thatπ is compatible
with D if there exists a treeT that conforms toD and a tuple of
attribute values̄a such thatT |= π(ā). In general, checking com-
patibility of patterns with DTDs is NP-complete [10], but for the
DTDs we consider here it can be easily done in polynomial time.

EXAMPLE 4.2.[Example 4.1 continued] The patternπ(x, y) is
compatible with the DTDD of Figure 1(b). On the other hand, the
patternπ′(x) = r[author(x)] is not, because no tree consistent
withD can have a child ofr labeled asauthor, or anauthor-labeled
node with an attribute.2

RemarkMore general patterns have been considered in the liter-
ature [5, 24, 10, 4, 3]; in particular, they may involve descendant
navigation, wild cards for labels, and sibling order. However, [6,
4, 3] showed that with these features added, query answeringin
data exchange becomes intractable even for very simple queries. In
fact, the restrictions we use in our definition were identified in [6]
as essential for tractability of query answering. Note thatthe same
restriction was imposed to queries when transforming XML data
into nested-relational schemas [15, 27].

XML schema mappings As our descriptions of XML schemas we
shall use DTDs (since for complex schemas, query answering in
data exchange is known to be intractable [6], and DTDs will suf-
fice to capture all the known tractable cases). Source-to-target con-
straints will be given via patterns.

Formally, an XML schema mappingis a triple M =
(DS ,DT ,Σ), whereDS is the source (nested relational) DTD,
DT is the target (nested relational) DTD, andΣ is a set ofXML
source-to-target dependencies[6], or XML stds, of form

π(x̄) → π′(x̄, z̄), (2)

whereπ andπ′ are tree patterns compatible withDS andDT , re-
spectively.

As in the relational case, target trees may contain nulls to account
for values not specified by mappings. Given a treeT that conforms
to DS , a treeT ′ (over constants and nulls) is anM-solution for
T if T ′ conforms toDT , and the pair(T, T ′) satisfies all the de-
pendencies (2) fromΣ. The latter means that for every tupleā of
attribute values fromT , if T satisfiesπ(ā), then there exists a tuple
b̄ of attribute values fromT ′ such thatT ′ satisfiesπ′(ā, b̄). The set
of all M-solutions forT is denoted by SOLM(T ).

EXAMPLE 4.3. Consider the data-exchange scenario
(D,DT ,M) given by the DTDsD andDT of Figures 1(b) and
3(b), respectively, and whereM is specified by the dependency

r[book(x)[author[name(y)]]] →

r[writer[name(y),work(x)]],

that restructures book-author pairs as writer-work. It canbe shown
that the XML treeT ′ in Figure 3(a) is anM-solution forT . 2

5. XML data exchange using relations
We now provide algorithms for implementing XML data ex-

change via relational translations. Since we have already shown
how to translate DTDs and documents, we need to present trans-
lations of stds of mappings and queries. Both of them are based
on translating patterns into relational conjunctive queries. We first
concentrate on that translation. Then we show how to extend it
easily to mappings and queries, and prove the correctness ofthe
translations. This will complete our program of using a relational
system for XML data exchange in a semantically correct way.

Inlining tree patterns. The key ingredient in our algorithms
is a translation of patternsπ compatible with a DTDD into a
conjunctive queryINLPATTERN(π,D) over the relational schema
INLSCHEMA(D). Very roughly, it can be viewed as this:

1. View a patternπ(x̄) as a treeTπ in which some attribute
values could be variables;

2. Compute the relational database INLDOC(Tπ,D) (which
may have variables as attribute values);

3. View INLDOC(Tπ,D) as a tableau of a conjunctive query;
the resulting query is INLPATTERN(π,D).

The algorithm is actually more complicated because INLDOC

cannot be used in Step 2; we shall explain shortly why.
Towards defining INLPATTERN, observe that each tree pattern

π(x̄) can be viewed as an XML documentTπ(x̄), in which both
values and variables can be used as attribute values. It is defined in-
ductively as follows:Tℓ(x̄) is a single-node tree labeledℓ, with x̄ as
attribute values, and ifπ is ℓ(x̄)[π1(x̄1), . . . , πk(x̄k)], then the root
of Tπ is labeledℓ and has̄x as attribute values. It also hask chil-
dren, with the subtrees rooted at them beingTπ1(x̄1), . . . , Tπk(x̄k).

However, even for a patternπ(x̄) compatible with a DTDD,
we may not be able to define its inlining as the inlining ofTπ(x̄),
becauseTπ(x̄) need not conform toD. For example, if a DTD has
a ruler → ab and we have a patternr[a], it is compatible withD,
butTr[a] does not conform toD, as it is missing ab-node. Hence,
the procedure INLDOC cannot be used ‘as-is’ in our algorithm.

Nevertheless, we can still mark the nodes ofTπ(x̄) with respect to
D and define the nearest appropriate ancestor exactly as it hasbeen
done previously. Intuitively, the procedure INLPATTERN shreds
each node ofTπ(x̄) into a different predicate, and then joins these
predicates using the nearest appropriate ancestor.

Procedure INLPATTERN(π,D)

Input : A DTD D, a tree patternπ(x̄) compatible withD.
Output: Conjunctive query over INLSCHEMA(D).

for each nodev of Tπ(x̄) of formℓ(x̄v):
Construct a queryQv(x̄v) as follows:

if v is markedthen

Qv(x̄v) := ∃idv∃idµ(v)∃z̄Rℓ(idv, x̄v, idµ(v), z̄),

wherez̄ is a tuple of fresh variables, and the positions
of variablesidv , x̄v andidµ(v) are consistent with the
attributesidℓ,AD(ℓ) andidµ(ℓ) respectively in
attr(Rℓ).
If ℓ = r, thenQv does not useidµ(v).

else (v is not marked):
setv′:=µ(v), ℓ′:=λ(v′), and letQv(x̄v) be

∃idv′∃idµ(v′)∃idv∃z̄Rℓ′(idv′ , idµ(v′), idv, x̄v, z̄),

wherez̄ is a tuple of fresh variables, and the positions
of the variablesidv′ , idµ(v′), idv andx̄v are consistent
with the attributesidℓ′ , idµ(ℓ′), idℓ andAD(ℓ)
respectively inattr(Rℓ′). If ℓ′ = r, thenQv does not
useidµ(v′).

endfor
return

V

v∈Tπ(x̄)
Qv(x̄v).

Note that the compatibility ofπ with D ensures that
INLPATTERN is well defined. That is, (1) every attribute formula
of the formℓ(x̄) only mentions attributes inAD(ℓ), and (2) for all
nodesv, v′ ∈ Tπ(x̄), if v′ is a child ofv, thenλ(v′) ∈ PD(λ(v)).
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Figure 3: Tree T ′ is an M-solution for T

Correctness. Given a patternπ(x̄), the evaluation ofπ on a tree
T is π(T ) = {ā | T |= π(ā)}. The following proposition shows
the correctness of INLPATTERN.

PROPOSITION 5.1. Given a nested relational DTDD, a pat-
tern π compatible withD, and a treeT that conforms toD, we
haveπ(T ) = INLPATTERN(π,D)

`

INLDOC(T,D)
´

.

That is, the inlining ofπ, applied to the inlining ofT , returnsπ(T ).

Conjunctive queries over trees. We use the language that is es-
sentially conjunctive queries over trees [6, 16, 10] with navigation
along the child axis.

The languageCT Q is obtained by closing patterns under con-
junction and existential quantification:

Q := π | Q ∧Q | ∃x Q,

where π is a fully specified tree-pattern formula. The seman-
tics is straightforward, given the semantics of patterns defined
above:Q(ā) ∧Q′(b̄) is true iff bothQ(ā) andQ′(b̄) are true, and
∃x Q(ā, x) is true iffQ(ā, c) is true for some valuec. The output
of Q on a treeT is denoted byQ(T ).

We say that a queryQ is compatible with the DTDD if every
pattern used in it is compatible withD.

The inlining of queriesQ compatible withD is given by the
recursive algorithm INLQUERY below.

Procedure INLQUERY(Q,D)

Input : A DTD D, a queryQ compatible withD.
Output: A conjunctive query over INLSCHEMA(D).

if Q = π then
return INLPATTERN(π,D)

else if Q = Q1 ∧Q2 then
return INLQUERY(Q1,D) ∧ INLQUERY(Q2,D)

else if Q = ∃xQ1 then
return ∃x INLQUERY(Q1,D)

Now we show that every queryQ in CT Q can be computed by
its inlining on the inlining of its input (assuming, of course, com-
patibility with a DTD). In other words,Requirement 3 is satisfied.

THEOREM 5.2. Given a DTDD, a treeT that conforms to it,
and a compatible queryQ, we have

Q(T ) = INLQUERY(Q,D)
`

INLDOC(T,D)
´

.

Inlining XML schema mappings We use our transformation of
tree patterns to define the procedure INLMAP, that, given source
and target DTDsDS andDT , transforms an XML mappingM
into a relational mapping INLMAP(M,DS ,DT ) specified with a
set of source-to-target tuple generating dependencies.
Correctness While one could be tempted to ask for a translation
that preserves all solutions, such a result need not hold. The rela-
tional mapping INLMAP uses null values to represent the shredded

Procedure INLMAP(M,DS ,DT)

Input : An XML mappingM from a source DTDDS to a
target DTDDT .

Output: A relational mapping from INLSCHEMA(DS) to
INLSCHEMA(DT ).

Set INLMAP(M,DS ,DT ) := ∅
for dependencyπ(x̄) → ∃z̄π′(x̄, z̄) in M do

INLMAP(M,DS,DT ) := INLMAP(M,DS ,DT )
S

{INLQUERY(π,DS)(x̄) → ∃z̄ INLQUERY(π′,DT )(x̄, z̄)}

end
return INLMAP(M,DS ,DT )

nodes of XML trees, and thus we should only consider solutions
whose null values have not been renamed. However, relational so-
lutions are open to renaming of nulls. This intuition can be for-
malized by means of the universal solutions, which are the most
general among all solutions, and thus do not permit null renam-
ing. Furthermore, one typically materializes a universal solution,
as these solutions contain all the information needed to compute
certain answers of conjunctive queries. This motivates therestric-
tion of ourRequirement 4 to universal solutions.

The theorem below shows that parts (a) and (b) ofRequirement
4 hold. Note that in part (b), relational universal solutionsare only
required to contain a shredding of an XML universal solution. This
is because relational solutions are also open to adding arbitrary tu-
ples, which need not reflect a tree structure of an XML document.

THEOREM 5.3. a) Let M = (DS ,DT ,Σ) be an XML
schema mapping andT an XML document that conforms to
DS . If T ′ is an M-universal solution forT , then its inlining
INLDOC(T ′,DT ) is anINLMAP(M,DS ,DT )-universal solution
for INLDOC(T,DS).
b) Let M = (DS ,DT ,Σ) be an XML schema map-
ping, and T an XML document that conforms toDS .
Then for everyINLMAP(M,DS ,DT )-universal solutionR for
INLDOC(T,DS) there exists anM-universal solutionT ′ such that
INLDOC(T ′,DT ) is contained inR.

Answering XML queries using relational data exchange. The
semantics of query answering in data exchange, both relational and
XML [12, 21, 8, 6, 4], is defined by means of certain answers.
That is, given a schema mappingM = (DS ,DT ,Σ), a treeT that
conforms toDS , and a conjunctive tree queryQ that is compatible
with DT , the certain answers ofQ for T underM, denoted by
CERTAINM(Q,T ), is the set of tuples that belong to the evaluation
of Q over every possibleM-solution forT , that is,

T

{Q(T ′) | T ′

is anM-solution forT}. Note that our queries return sets of tuples,
so we can talk about the intersection operator.

It was shown in [6, 4] that, for conjunctive tree queries and map-
pings using nested-relational DTDs, computing certain answers for
a given source treeT is solvable in polynomial time. Thus, for the



classes of mappings and queries we consider, there is no complex-
ity mismatch between relational and XML data exchange. The next
theorem shows that our translation is correct with respect to query
answering, that is, ourRequirement 5 is satisfied.

THEOREM 5.4. Let M = (DS ,DT ,Σ) be an XML schema
mapping. Then, for every XML treeT that satisfiesDS and
for every conjunctive tree queryQ, the certain answers ofQ for
T underM and the certain answers ofINLQUERY(Q,DT ) for
INLDOC(T,DS) over INLMAP(M,DS ,DT ) coincide:

CERTAINM(Q,T ) =
CERTAININLMAP(M)(INLQUERY(Q,DT ), INLDOC(T,DS)).

This result, combined with the standard procedure of evaluating
conjunctive queries in relational data exchange, also gives us an
algorithm for computing certain answers.

COROLLARY 5.5. Under the conditions of Theorem 5.4,
CERTAINM(Q,T ) can be obtained by the following procedure:

1. run INLQUERY(Q,DT ) on an INLMAP(M,DS ,DT )-
universal solution forINLDOC(T,DS);

2. discard all tuples that contain null values.

6. XML-to-XML Queries
Up to now, we have only considered queries that output tuplesof

attribute values. In this section, we shall focus on proper XML-to-
XML query languages, that is, queries that output XML trees.

Some immediate questions arise when dealing with these for-
malisms in a data exchange context. LetM = (DS,DT ,Σ) be an
XML schema mapping,T be a tree conforming toDS , andQ be
an XML-to-XML query. Since the evaluation ofQ overT returns
an XML tree, we cannot define certain answers as

T

{Q(T ′)) | T ′

is a solution forT}, since the meaning of the intersection operator
for XML documents is not clear.

To overcome this problem, we use recent results from [11] which
showed how to define certain answers for queries returning XML
trees, and how to use them in data exchange context. The key idea
of [11] is to use tree patterns to define information contained in doc-
uments, and to use them to represent compactly the certain knowl-
edge from the collection{Q(T ′)) | T ′ is a solution forT}. More
precisely, ifΠ is a set of tree patterns which are matched by every
treeQ(T ′), we look for a small setΠ0 of patterns that is equivalent
to Π as a description of certain answers. By equivalence we mean
that a tree matches every pattern inΠ iff it matches every pattern
in Π0. If the setΠ0 is finite, then its patterns can be put together to
create a tree with nulls, which we then view as the certain answer.

We shall not need additional details of the construction; instead
we shall use a result from [11] that tells us how certain answers can
be computed for a specific XML-to-XML query language. The lan-
guage, called TQL (to be defined shortly), is inspired by XQuery’s
FLWR expressions, and is restricted to positive features (i.e., no
negation). The key result from [11] is the following:

PROPOSITION6.1 ([11]). Let M = (DS ,DT ,Σ) be an
XML schema mapping,Q a TQL query, andT a tree that con-
forms toDS . If T ′ is an M-universal solution forT , then
CERTAINM(Q,T ) = Q(T ′).

Given this result, we now do the following. We provide a formal
definition of the TQL language of [11], which can express XML-
to-XML analogs of relational conjunctive queries. We then show
how to adapt the machinery we have previously developed for eval-
uating certain asnwers over a universal solution. Note thatfor this

new translation, a TQL queryQ returning trees needs to be trans-
lated into asetof relational queries generating views that define the
shredding of the treeQ(T ).

6.1 TQL queries

TQL queries [11] are inspired by the FLWR (for-let-where-
return) expressions of XQuery [31], but they only use positive fea-
tures. The key construct isfor π(x̄) return q(x̄), whereπ(x̄) is a
pattern andq(x̄) is a query that defines a forest expression. For-
mally, the syntax of forest expressions is

q(x̄) ::= ǫ
| ℓ(ā, x̄′)[q′(x̄′′)]
| q′(x̄′), q′′(x̄′′)
| for π(ā, x̄, ȳ) return q′(x̄, ȳ)

whereℓ ranges over node labels,ā over constant attribute values,
andx̄ etc are tuples of variables.

A TQL queryQ is an expression of the formr[q], whereq is
a forest expression without variables. To define the semantics of
this language, we first define inductively the forest[[q(x̄)]]T,v, for
a valuationv of all variables inx̄ as attribute values. We use the
notationℓ(ā)[f ] for a tree whose root is labeledℓ and carries a tuple
of attributes̄a, andf is the forest of subtrees below the root.

[[ǫ]]T,v = ǫ (empty forest)
[[ℓ(ā, x̄′)[q′(x̄′′)]]]T,v = ℓ(ā, v(x̄′))

ˆ

[[q′]]T,v

˜

[[q′(x̄), q′′(x̄′′)]]T,v = [[q′]]T,v ∪ [[q′′]]T,v

[[for π(ā, x̄, ȳ) return q′(x̄, ȳ)]]T,v =

[

˘

[[q′]]T,v′ | v
′ extendsv andT |= π(ā, v′(x̄), v′(ȳ))

¯

For a treeT and a queryQ = r[q], the evaluationQ(T ) of Q over
T is defined as the treer[[[q]]T ], i.e., the forest[[q]]T under rootr.

EXAMPLE 6.2. Recall the tree T from figure 1(a). The treeT ′

from figure 3(a) can also be obtained as the transformationQ(T )
resulting from the evaluation of a TQL queryQ over T , where
Q = r[q], andq is defined as

for r/book (x)/author/name(y) return

writer [name(y),work(x)] (3)

For the sake of readability, we use the/ operator to denote the child
axis in tree patterns.2

6.2 Inlining TQL queries

If Q is a TQL query, then, to be able to define its inlining trans-
lation, we need to specify a DTD for treesQ(T ). Note that TQL
queries define the shape of their outputs, and at the same timedo
not put restrictions on the number of appearances of labels.Hence
it is natural to define the DTD for outputs ofQ as astarredDTD
DQ, whose shape is determined byQ, and where each element type
except the root occurs under the Kleene star.

More precisely, for a forest expressionq, we define a forestFq

inductively as follows: Fε is the empty forest;Fℓ[q′] is ℓ[Fq′ ];
Fq′∪q′′ = Fq′ ∪ Fq′′ , andFfor π return q′ = Fq′ . ForQ = r[q]
we letTQ = r[Fq].

ThenDQ is a non-recursive DTD that has a rulep → c∗1 · · · c
∗
n

for each nodep in TQ with children labelledc1, . . . , cn. As usual,
we require thatDQ be acyclic and we assume without loss of gen-
erality thatG(DQ) is a tree.

EXAMPLE 6.3.[Example 6.2 continued] Recall queryQ =
r[q]. Then,TQ is the XML tree given byr[writer [name,work ]],



and thusDQ contains productionsr → writer
∗, writer →

name
∗
work

∗, name → ǫ andwork → ǫ. 2

Before showing the algorithm INLTQL, we need to introduce
some features that will be used in the algorithm. Consider again
query (3) and DTDDQ in examples 6.2 and 6.3. For each pair
of attributes that satisfyr/book (x)/author/name(y), the query
Q creates a subtreewriter [name(y),work(x)] in the treeQ(T ).
Thus, the relational translation would need to create one tuple in
the relations corresponding towriter, nameandwork for each pair
of attributesx, y that satisfy the relational translation of the pattern
r/book (x)/author/name(y) in the instance INLDOC(T ).

Thus, in the relational translation we need a way to associate
each particularwriter wih a particularnameandwork. One pos-
sible way of doing this is by creating a (Skolem) functionf that
associates with each pair(name,work) a unique identifier for the
correspondingwriter. Thus, the functionf must be defined in
such a way thatf(book ,name) is different for each different pair
(name,work). We enforce this requirement by letting each term
f(ā) represent a distinct constantcf(ā).

We will define our translation algorithm inductively. The key
procedure TQLSTEPfor the inductive step is described below. Its
inputs, in addition to a query and a DTD, include a conjunctive
query corresponding to the conjunction of patterns in the query,
and a function term corresponding to the parent in the treeQ(T )
(for example, when creating views for relationRwork , we would
input the identifierf(x, y) of the parent node labelledwriter). This
is illustrated by the example below.

EXAMPLE 6.4.[Example 6.3 continued] Assume that queryQ =
r[q] of examples 6.2 and 6.3 is posed overT under schemaD. The
following views define the translation forQ:

Rr(fr) := true
Rwriter (fwriter(x, y), fr) :=

INLQUERY(r/book (x)/author/name(y), D)

Rname(fname(x, y), fwriter(x, y), y) :=

INLQUERY(r/book (x)/author/name(y), D)

Rwork (fwork(x, y), fwriter(x, y), x) :=

INLQUERY(r/book (x)/author/name(y), D)

Notice how each tuple in relationsRname andRwork is set to ref-
erence the correct tuple in relationRwriter . 2

Procedure TQLSTEP(Q,D, ϕ, t)

Input : A forest expressionq(x̄), a DTDD, a conjunctive
queryϕ(x̄) and a skolem termt.

Output: A set of views over INLSCHEMA(DQ).

if q(x̄) ::= ǫ then
return ∅

else if q(x̄) ::= q′(x̄′), q′′(x̄′′) then
return TQLSTEP(q′,D, ϕ, t) ∪ TQLSTEP(q′′,D, ϕ, t)

else if q(x̄) ::= ℓ(ā, x̄′)[q′(x̄′′)] then
Let f be a fresh skolem function. Define viewV as
Rℓ(f(x̄), t, ā, x̄′) := INLQUERY(ϕ,D), or just
Rℓ(f(), t, ā) := true if ϕ = ∅.
return {V } ∪ TQLSTEP(q′,D, ϕ, f(x̄))

else if q(x̄) ::= for π(ā, x̄, ȳ) return q′(x̄, ȳ) then
Letϕ′(ā, x̄, ȳ) = ϕ(x̄) ∧ π(ā, x̄, ȳ).
return TQLSTEP(q′,D, ϕ′, t)

To define the inlining translation INLTQL, we simply need a
Skolem term for the root of the tree, as the basis for the inductive
procedure TQLSTEP.

Procedure INLTQL(Q,D)

Input : A TQL queryQ = r[q] and a DTDD.
Output: A set of views over INLSCHEMA(DQ).

Create a 0-ary functionfr.
return TQLSTEP(Q,D, ∅, fr())

A TQL queryQ is compatible with a DTDD if all the patterns
used inQ are compatible withD. The following proposition shows
that INLTQL satisfies an analog ofrequirement 3 for queries that
outputs trees.

PROPOSITION 6.5. Given a DTDD, a TQL queryQ compat-
ible withD, and and a treeT that conforms toD, we have that
INLDOC(Q(T ),DQ) = INLTQL(Q,D)(INLDOC(T )), up to re-
naming of nulls.

That is, the set of views INLTQL(Q,D) applied to the inlining
of T yields the same answer as the inlining ofQ(T ).

Translating relations back into XML
To complete the translation, we need an algorithm to publish

back the relational data as an XML document. This is done by
means of the algorithm PUBREL. We say that an instanceI of
INLSCHEMA(D) D-representsa treeT that conforms toD if
I = INLDOC(T,D).

Procedure PUBREL(D,I)
Input : A DTD D and an instanceI thatD-represents some

tree.
Output: An XML tree T that isD-represented byI .

for each nodeℓ ofG(D), traversed as Depth-first-searchdo
for each tuplet ofRℓ in I with elementsn, ā andn′

corresponding to attributesidn,AD(ℓ) andidµ(n). do
for every non-starred nodeℓ′ ofG(D) such that
µ(ℓ′) = ℓ, and elementsn′′ and b̄ in t corresponding
to attributesidℓ′ andAD(ℓ′) do

Create a noden′′ in T labelledℓ′, with attributes̄b,
in a parent-child scheme that resemblesG(D).

endfor
Add toT a noden labelledℓ, with attributes̄a, with n′

as ancestor, according to the parent-child sequence
defined byG(D (no parent ifℓ = r).

endfor
endfor
return T

This algorithm will only work for relational instances thatrep-
resent shredded documents. The following proposition shows its
correctness.

PROPOSITION 6.6. Given a DTD D and a rela-
tional instance I of INLSCHEMA(D), it is the case that
INLDOC(PUBREL(D, I)) = I .

6.3 TQL queries in XML data exchange

Combining the previously mentioned result in [11] with the
correctness of the algorithms we presented we conclude thatre-
quirements 1-5 are satisfied for data exchange with XML-to-XML
queries:



THEOREM 6.7. Let M = (DS ,DT ,Σ) be an XML schema
mapping. Then, for every XML treeT that satisfiesDS and for
every TQL queryQ, the certain answers ofQ for T underM and
the certain answers ofINLTQL(Q,DT ) for INLDOC(T,DS) over
INLMAP(M,DS ,DT ) coincide:

INLDOC(CERTAINM(Q,T ),DQ) =
CERTAININLMAP(M)(INLTQL(Q,DT ), INLDOC(T,DS)).

Remark: The notion of certain answers naturally (component-wise)
extends to queries computing multiple relations.

Theorem 6.7 and Proposition 6.6 give us a way
of computing CERTAINM(Q,T ). First, compute
CERTAININLMAP(M)(INLTQL(Q,DT ), INLDOC(T,DS)) by
materializing views INLTQL(Q,DT ) over the canonical solution
for INLDOC(T,DS) and then use the procedure PUBREL to
output it as the treeCERTAINM(Q,T ).

7. Concluding Remarks
Our technique provides a relational approach to solve two ofthe

most important problems of XML data-exchange settings: materi-
alizing solutions and answering queries. The diagram belowsum-
marizes this. In a pure XML setting, we can start with a document
T and use a mappingM to find a (universal) solutionT ′

univ, over
which we can then answer a queryQ to produce certain answers.

T
M

- T ′
univ

Q
- certain answer

R

INLDOC

? INLMAP(M)
- R′

univ

INLDOC

? INLQUERY(Q)
- certain answer

w

w

w

w

w

w

w

w

w

w

Using the translation INLDOC of documents, we generate a
relational instanceR, on which the translation of the mapping
INLMAP(M) generates a universal solutionR′

univ. This solution
is a shredding, via INLDOC, of a universal XML solution, and also
conforms to the shredding of source DTD. Finally, we apply the
standard technique [12] for evaluating queries in relational data ex-
change to the query translation INLQUERY(Q) or INLTQL(Q) to
produce the correct answers, in the latter case with the possibility
of using PUBREL to publish back the results into XML.

Implementing our proposed algorithms for use in practical sys-
tems would be straightforward using their specifications given in
this paper. A natural next step is to evaluate XML data-exchange
systems using relational data storage and implementationsof our
algorithms. We are currently working on this direction.

We finish with a remark about the possibility of allowing opera-
tors? and+ in DTDs, as well as a choice operator for representing
multiple choices. We say that a non-recursive DTDD is an ex-
tended nested relationalDTD if all rules of D are of the form
ℓ→ ℓ̃0 . . . ℓ̃m, or ℓ→ ℓ0 + . . .+ℓm, where all theℓi’s andℓ̃i’s are
distinct, and each̃ℓi is one ofℓi, ℓi?, ℓ∗i or ℓ+i (as usualℓ? stands
for ℓ|ǫ andℓ+ for ℓℓ∗).

The procedure INLSCHEMA can be extended to these DTDs. For
each elementℓ that is under the operator?, the transformation cre-
ates a special relationℓ that references the relation of the nearest ap-
propriate ancestor ofℓ. Furthermore, the transformation for a rule
of the formℓ1 → ℓ+2 can be defined by including a dependency that
ensures that there is at least one tuple in the relationRℓ2 for each
tuple inRℓ1 . Finally, for the choice operatorℓ → ℓ0 + . . . + ℓm
the transformation would create one relationRℓ for each possible
choice ofℓ0, . . . , ℓm. Then, it is possible to extend all the proce-

dures in a way that still satisfiesrequirements 1-5 under extended
nested relational DTDs.
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