A Formalism for Graph Databases and its Model of
Computation

Juan Reutter and Tony Tan

University of Edinburgh

Abstract. Graph databases are directed graphs in which the edgesbateda
with symbols from a finite alphabet. In this paper we intragladogic for such
graphs in which the domain is the set of edges. We comparegpiessiveness
with the standard logic in which the domain the set of vegideurthermore,
we introduce a robust model of computation for such logie, b called graph
pebble automata.

1 Introduction

The study of graph structured data has received much attelatiely, due to numerous
applications in areas such as biological networks [12,dddial networks [17], and the
semantic Web [9]. The common database model proposed byagpdications is most
commonly denoted agraph databasesn which nodes are objects, and edge labels
define relationships between those objects [2].

For querying graph structured data, one normally wishepégify certain types of
paths between nodes. Most common examples of these quegiesigunctive regu-
lar path queries [1, 14, 6, 3]. Those querying formalismsHasen thoroughly studied,
and their algorithmic properties are more or less undedstom the other hand, there
has been much less work devoted on other formalisms othargreph reachability
patterns, say, for example, the integrity constraints ashabels with unique names,
typing constraints on nodes, functional dependenciesaitoand range of properties.
See, for instance, the survey [2] for more examples of iityegonstraints.

Our intention is to study formalisms for such graph databaggch is capable of
expressing these integrity constraints, while at the same $till feature manageable
model checking properties. Obviously such formalisms ddpn how the underlying
directed graph of the databases are represented in theldicst p

The standard representation of directed graphs is simp8t afsnodes, together
with a binary relation on these nodes to represent the edgagthem. The labeling of
the edges is represented as a function from the edges to iteedfiphabet of symbols.
We call such representation tliertexrepresentation.

Another less common way to represent directed graphs iskéottee edges as the
domain, together with some well defined binary relationshasé edges to indicate how
two edges intersect. The labeling of the edges is represasta set of unary predicates
on the domain. We call such representationgtigerepresentation.

In the first part of our paper we propose a vocabulary for thgeedpresentation,
which we callE-vocabulary. We calV-vocabulary the vocabulary for the vertex repre-
sentation. We study the expressive poweEand compare it td/-vocabulary. In this
respect our contributions are the following.

— The logic that we propose for edge representation is robustie sense that for
each graph database in the vertex representation, thests exinique (up to iso-
morphism) graph database in the edge representation tattesame underlying
directed graph. Vice versa, for each graph database in tieeregresentation, there
exists a unique (up to isomorphism) graph database in thexsapresentation that
have the same underlying directed graph.

— Next, we turn our attention to expressivity Bfvocabulary. For first-order logic
(FO) we show that it is equivalent t¥-vocabulary. On the other hand, for the
existential monadic second-order logtMSO), as well as monadic second-order
logic (MSO), theE-vocabulary is more expressive than tie/ocabulary. That is,
there areIMSO andMSO sentences ifii-vocabulary that cannot be expressed in
sentences iiV-vocabulary irBMSO andMSO logics, respectively.

Inthe second part of our paper we introduce a notion of autefoagraph databases.
We follows the direction in [19] by defining pebble automaiadirected graphs.

Pebble automata was initially introduced for words ovetdimiphabet in [8]. Later
it was extended words over infinite alphabets in [16]. Roygigeaking, & pebble
automaton, in shork-PA, is a finite state automaton equipped wittpebbles. The
pebbles are placed on/lifted from the input word in the stdiskipline — first in last
out — and are intended to mark positions in the input word. @eteble can only mark
one position and the most recently placed pebble serveedsetid of the automaton.
The automaton moves from one state to another dependingaythality tests among
data values in the positions currently marked by the pebhblesvell as, the equality
tests among the positions of the pebbles.

Later in [19] the connection between graphs and pebble aatiowas initially intro-
duced. The main idea in [19] is that a word of even length omeénfinite alphabet can
be viewed as a directed graph, hence pebble automata foswwged infinite alphabets
can be viewed as a model of computation for directed graphs.

In this paper we extend this connection to the case of gragatbdses, i.e., directed
graphs in which edges are labeled with symbols from a finfieabet”’. Some of the
results in this paper are the following.

1. We define the notion of pebble graph automata, or in sha@rPA, for graph
databases.

2. Every first-order sentences of quantifier rantaver graph databases can be simu-
lated byk-PA.

3. We demonstrate the robustness of pebble automata by rsipdiaé equivalence
betweentwo-way alternatingk-PA andone-way deterministié-PA. This result
settles a question raised in [16]. It was first spelled in fb®]words over infinite
alphabet, but no formal proof has been given until now.

This robustness immediately implies that the class of fi@nibf directed graphs
captured byk-PA is closed under boolean operations.

We also note that almost all results in [19] can be carried twehe case of graph
databases, including the fact that reachability from thes®nodes to the target node
t can be checked by-PA if and only if the distance from to ¢ is less than or equal
to 2*. This fact, together with item (1) above, yields the factt tleachability can be

expressed by first-order sentence of quantifier daifland only if the distance between
source and target nodes is less than or equalf té\s the proof is non standard, in the
sense that we do not use the standard Ehrenfeucht-Fagissgach which is commonly
used in most finite definability results, it is worth to mentibat pebble automata can
be a potentially useful tool to prove definability resultdinst-order logic over graph
databases.

Related work.Closely related to our work is Courcelles work [5], which apps to be
the first ones that suggest including the graph edges asfthe domain. The results
and definitions here do not follow from [5]. The first reasothiat the logic introduced
by Courcelle is essentially two sorted logic. That is, thendm consists of two kinds of
elements: the vertices and the edges. Whereas, the logieetdefine here has only the
edges as the domain. Thus, the logic is defined with diffarecabulary than ours. The
second reason is that it has not been shown that every seutfined in the vocabulary
in [5] is indeed a directed graph. It is not clear at all in thistfplace why it is true. We
prove in this paper that indeed such is the case.

Later on in the paper [10] monadic second-order logic wasdhiced for abstract
matroids, which are extensions of graphs. It was shown ihtfi&d many results in [5]
also hold in this setting. However, the emphasis in [10] dkbility issue for satisfac-
tion problem. So naturally it only considers the family oftnaéds with boundetbranch
width, the analog ofree widthfor graphs. While in our paper we are more interested
in a model of computation for graph databases that featurageable model checking
properties.

Another work related to ours is the work in [4]. In that papgotmodels of com-
putation for directed graphs are introduced, the so calletitomata and’-automata.
In brief, given an input directed gragh, a " -automaton marks the vertices Gfwith
symbols from finite alphabet. The decision to aca&pmir not depends on this labeling.
FE-automata operate in the same manner, except that they hmadges, instead of
vertices. It is shown in [4] thalt -automata are weaker thdfrautomata.

These models, th¥- and E-automata, are incomparable to our graph pebble au-
tomata. On one sidely-automata are capable of simulatipgcalculus on directed
graphs, but they are not closed under negation. On the atleraur graph pebble au-
tomata are capable of simulating the whole first-order logicirected graphs, closed
under all boolean operations.

Organization. This paper is organized as follows. In Section 2 we define tlvabular-
iesV andE. Then in Section 3 we define the notionatfuctural equivalentthe notion

to compare two structures frofhandE logics. In Section 4 we compare the expressive
power betweeV andE logics. We introduce graph pebble automata in Section 5. We
then extend all previous definitions to the labeled edggsigran Section 6. Finally we
conclude with a future direction for our work in Section 7.

2 Representation for graph databases

Graph databaseare usually defined as finite edge-labeled directed graghin[this
paper, in order to keep the presentations simple, we shak woly with unlabeled

directed graphs. We will explain how to extend these reduoltshe case of labeled
graphs in Section 6.

In what follows, we state two representations for graphlukzas. The first is the
standard one, where a directed graph is just a set of verigepped with a binary
relation on the vertices. We will denote its vocabularythy

The second one is our proposed representation for directguhg where the edges
are the domain. We will denote its vocabularylby

The vocabularyy. The vocabularyy simply consists of one binary predicake We
denote bySTRUCT(V] the set of structures &f, which are simply directed graphs. A
V-structure is a structure BTRUCT[V].

We will usually writeG = (V(G), E(G)) for structures inSTRUCT[V], where
V(G) = Dom(G) is the domain and®(G) is the binary relation on the elements in
V(G).

The atomic formula in the logi¥/ is eitherz = y or E(x,y). The meaning of
E(z,y) is simply (z,y) € E. The first-order logid~O[V] is obtained by closing the
atomic formulas under the Boolean connectives and firstrogdantification ovel’.
The logic MSO[V], which stands for monadic second-order, is obtained byraddi
quantification over unary predicates on the domain. If tharyipredicates quantifi-
cations are all existential, then we denote itISO[V]. A V-sentence is a sentence
using the vocabulary. A sentence defines a set of directed graphs digp) := {G |
Gk o}

For the sake of presentation, we only consider graghs STRUCT|V] in which
there is no isolated vertices and there is no self loop.

The vocabulanE. Intuitively, rather than viewing a directed gragh= (V, E') as a set
V of vertices and® a binary relation or//, we takeE as the domain and define some
relations among the elementsin

Letwu andv be two vertices andbe an edge from to v. What we mean by thieead
of e is the vertexv, while thetail of e is the vertexu. Now the vocabularE consists
of the binary relationsleadHead, HeadTail andTailTail on the directed edges, where
the intentions of each predicate are as follows.

— TailTail(e1, e2) means that the tails ef, ande, are the same.
— HeadHead(eq, e2) means that the heads @f ande, are the same.
— HeadTail(e;, e2) means that the head ef is the tail ofe,.

As above STRUCTIE] denotes the set of all structuresidfand anE-structure is
a structure iINSTRUCTIE]. We assume that the structuresSMRUCT[E| satisfy the
following axioms.

E1. BothHeadHead andTailTail are equivalence relations.

E2. If HeadHead(e1, e2) andHeadTail(eq, e3), thenHeadTail(ez, e3).
E3. If TailTail(eq, e2) andHeadTail(es, e1), thenHeadTail(es, e2).

E4. If HeadTail(eq, e3) andHeadTail(es, e3), thenHeadHead(eq, e2).
E5. If HeadTail(es, e1) andHeadTail(es, e2), thenTailTail(eq, e2).
E6. If HeadHead (e, e2) andTailTail(e1, e2), thene; = es.

E7. Foralle, ~HeadTail(e, e).

The purpose of axiomB1-E5 are for consistency, that s, the structureSTRUCT[E]
are really graphs in the ordinary sense of graphs as stesfniSTRUCTI[V]. (See
Proposition 2 below.) Axion¥'6 does not allow multiple edges, whereas Axidii
does not allow self-loop. Axiom&6 and E7 are not essential, but they will be useful
for our convenience in the presentation.

As usual FO[E], MSOIE] and3IMSO[E] denote the classes of first-order, monadic
second-order and existential monadic second-order seggen the logicE. An E-
sentence is a sentence using the vocabary

We will usually write £ to denote the elements BTRUCT[E] and Dom(€) to
denote the domain &. A sentencep in E-logic defines a set di-structures via

G(p) ={E€ &€ F ¢}

3 The equivalence between edge and vertex representations

In this section we will show that both the edge and the verexesentations essentially
denote the same class of objects.

Definition 1. LetG € STRUCT[V] andG € STRUCT[E]. We say thatZ and& are
structurally equivalenif there exists a 1-1 mapping: E(G) — Dom(&) such that for
all (’1)1,1)2), ’1)2,1)3), (Ul,’l}3) (S E(G) and€1,€2 S Dom(E),

v

(
1. &(v1,v2) = e; and€(ve, v3) = eq if and only ifHeadTail(eq, e2);
2. &(v1,v2) = e; and€(vy, v3) = eq if and only ifTailTail(eq, e2); and
3. £(v1,v3) = e1 and€(vg,v3) = eq if and only ifHeadHead (e, e2).

The 1-1 mapping is called a(V, E)-isomorphism.

In other words, ifG and& are structurally equivalent, then they essentially detiuge
same underlying directed graph. The following proposititates that this notion is
robust.

Proposition 1.

(a) LetG be aV-structure andf,, €2 be E-structures. If both€; and &£, are struc-
turally equivalent ta7, then&; and&, are isomorphic.

(b) LetG,, G2 beV-structures and be aE-structure. If bothG; andG, are equiva-
lentto&, thenG; and G5 are isomorphic.

Moreover, the following proposition shows that both edgd aartex representa-
tions are equivalent, in the sense that each graph stoneg & standard vertex repre-
sentation can be coded as a graph under the edge represerdaati vice versa.

Proposition 2. 1. For everyV-structureG, there exists a unique (up to isomorphism)
E-structure€ which is structurally equivalent t&r.
2. For everyE-structure€&, there exists a unique (up to isomorphis¥structureG
structurally equivalent t&'.

We do not state the full proof, but rather give an example of titee edge to vertex
translation works.

Example 1.Let £ be anE-structure, where

— Dom(E) = {61,62,63};

— HeadHead = {(61, 61), (62, 62), (63, 63), (61, 63), (63, 61)};
— TailTail = {(61,61), (62,62), (63,63)};

— HeadTail = {(61,62), (62,63), (63,62)}.

The following picture well illustrates the structure &f
€2

€1

€3

We can get &-structureG = (V(G), E(G)) equivalent tc€ as follows. LetH be the
equivalent classes deadHead and7 the equivalent classes dgilTail, i.e. H =
{{e1,e3},{ea}} andT = {{e1},{ez2},{es}}. Then we defin&z = (V(G), E(G)) as
follows. The set of vertices IB(G) = H x T, and((H1,T1), (Hs,T2)) € E(G) ifand
only if Ty N Hy # (. Itis depicted as follows.

(@a{e;}) ({e2}, {es})

({er,es}, {e2})

4 \Vertex and edge representations and their logics

In this section we will study the relation between the exgirespower of logics us-
ing vertex or edge vocabularies. We need the following dédimi For a setd C
STRUCT[V], we defineEquiv®(4) as the set ofi-structures which are equivalent
to the structures itd. Formally,

Equiv®(A) = {£ € STRUCTIE] | £ is structurally equivalent to son < A}.
Vice versa, for a se8 C STRUCTIE], we define
Equiv’(B) = {G € STRUCTI[V] | G is structurally equivalent to sontze B}.

By Proposition 1, it is immediate that for every setsC STRUCT[V] andB C
STRUCTIE],

A = Equiv’ (Equiv®(A4)) andB = Equiv®(Equiv’ (B))

From this we immediately get that = Equiv’ () if and only if B = Equiv®(A).
Now we introduce the notion ofV, E)-equivalent the logical version of Defin-
tion 4.

Definition 2. A V-sentencep and anE-sentence) are (V, E)-equivalentf G(¢) =
Equiv’ (G(v)), or equivalentlyg (v)) = Equiv®(G(y)).

Using the notion of V, E)-equivalentwe can now compare the expressive power
between vertex and edge representations. Our first pragoshows that the edge rep-
resentation is as least as expressive as the vertex refatsen

Proposition 3. Let£ in {FO,3IMSO, MSO}. Then, for every sentengec L[V], there
exists a sentenag € L[E] such thatp and are (V, E)-equivalent

The proof is pretty straightforward, thus omitted.

The natural question is whether the converse holds, thathsther for every sen-
tence using the edge representation we can find an equigaBtéince using the vertex
representation. As we show below, it turns out that this istne even foraMSO
sentences, nor if the full power MSO is allowed.

Theorem 1. 1. There exists a sentengec IMSO[E] such that for all sentencg €
IMSO[V], ¢ andy are not(V, E)-equivalent.
2. There exists a sentengec MSO[E] such that for all sentence € MSO[V], ¢
andyp are not(V, E)-equivalent.

Proof. We begin with theIMSO case. The idea is to use the fact thatt)-reachability
in directed graph is not expressiblednSO[V] (see, for example, [13, Theorem 7.16]).
For this we need to add two constastandt¢ to bothV- andE-vocabularies, de-
noting the source and target vertices respectively. Thepnetation of the constants
andt in V-structures are the source and the target vertices, wteleititepretation in
[E-structures are two edges: one whose tail is the sourcexyentel the other whose
head is the target vertex.
We define the following class df-structures consists of directed graphs in which
there is a path from to ¢.

_ there arevy, ..., v S.t.v; = sandv, = t and
Rv = {G € STRUCT[Y] foreachi =1,...,k — 1, (vi,vi11) € E(G) }

It can be readily seen that the cldgguiv”(Ry) is expressible ifIMSOIE] in the
following sentence. There exists a g&such that

— there is an edgg in P such thaffailTail(y, s) holds;

— thereis an edgg in P such thaHeadHead(y, t) holds;

— for every edgey in P where—HeadHead(y, t), there is an edge in P such that
HeadTail(y, z) holds.

This immediately implies thalMSO[E] is strictly more expressive thaMSO[V].
This proves the first case of the theorem.

The proof for the second case goes along the same linegntieisising the fact that
directed graph hamiltonicity (i.e., whether a graph is Hamian) is not expressible in
MSQO[V] (see, for example, [13, Corollary 7.24]). On the other haticected graph
hamiltonicity can be expressed in the followiktpO[E| sentence. There exists a &t
such that

— every two edges i/ are connected (can be expressed as in the proof above); and
— for every edger, z is adjacent to some edggein U (either HeadHead(x,),
TailTail(z, y), or HeadTail(z, y) holds);

O

Next, we compare the two representations for the case ofiidgr logic. It turns
out that the edge and vertex representations are equiviaber@ disallows second-order
guantification. Moreover, we also show that this transfdaromainvolves only a slight
increase in quantifier rank.

Proposition 4. For every sentencg € FO[E], there exists a sentengec FO[V] such
that they arg(V, E)-equivalent andr(¢) = 2qr(z)).

With respect to the vertex to edge transformation, the ¥ahg is immediate from
the proof of proposition 3

Corollary 1. For every sentence € FO[V], there exists a sentengec FO[E] such
thatp andv are (V, E)-equivalent andjr(v)) = qr(y) + 1.

5 Graph pebble automata

In this section we define pebble automata for directed grdpissbased on the idea of
pebble automata (PA) for words over infinite alphabet [1&t D be a set of infinite
symbols. We assume that the nodes in the directed graphgsatwane from®.

Briefly the way graph PA withk pebbles works as follows. If7 is a directed
graph, andas,b1),. .., (an, b,) are the edges ift(G), then we feed a sequence=
(51)--- (37) into graphk-PA. The pebbles are numbered frdnto k. The automaton
starts the computation with only pebbteon the sequence. The pebbles are placed
on/lifted fromw in the stack discipline according to the strict order of thblges: Peb-
ble i can be placed only when pebbles- 1, ...,k are above the sequenae Each
pebble is intended to mark one positionuinand the smallest numbered pebblewen
or, equivalently the most recently placed pebble, servakeabead of the automaton.
The automaton moves from one state to another depending etharthe edges read
by the pebbles satisfy théeadHead, TailTail, HeadTail relations.

Definition 3. A two-way alternating graph-pebble automatar{in short graphk-PA)
is a systemd = (Q, qo, F, u), where

- Q,q9 € Q,U CQandF C Q@ are a finite set otatestheinitial state the set of
universal stateand the set ofinal statesrespectively; and
— wis afinite set of transitions of the form— 3 such that

e «is of the form
(i, P, Voo, Vio, Vor, Va1, q)

,wherei € {1,...,k}, P, Voo, V1o, Vo1, Vi1 C {i+1,...,k},and
e fis of the form(q,act), whereq € Q and

act € {l eft,ri ght,pl ace-pebble,lift-pebble}.

Given a sequence of edges= (') - -- (), aconfiguration of4 on<wris a triple
li,q,6), wherei € {1,....k},ge Qandd: {i,i+1,....k} - {0,1,....,n,n+1}.
The functiond defines the position of the pebbles and is calledptbigble assignment
The symbols in the positiortsandn + 1 are< andw, respectively.

Theinitial configuration isy, = [k, g0, 60], wherefy(k) = 0 is theinitial pebble
assignment. A configuratidu, ¢, 8] with ¢ € F'is called aracceptingconfiguration.

A transition (i, P, Voo, Vo1, Vio, Vi1, p) — (3 applies to a configuratiofy, g, 9], if
1) i=jandp =g,
2) P={l>i:0(1)=6(i)},
a) Voo ={l >1i:aguy = agu)},
b)
¢)

(=)

Vio = {1 >1:bgq) = aggiy}
Vip = {l > Z tag) = bg(i)}, and
d) Vir ={l > :bguy = bg(i)}-

A transition(i, P, Voo, Vo1, Vao, Vi1,p) — [applies to a configuratiofy, ¢,], if con-
ditions (1)—(3) above hold.

We define the transition relation, as follows:[i,q,0] F.. [/, ¢, 6], if there is a
transitionae — (p,act) € p that applies tds, ¢, 0] such thaty’ = p, for all j > 1,
0'(j) = 0(j), and

- ifact =1eft,thend =iandd’ (i) =0(i) — 1,

- if act =right,theni =iandd’ (i) = 0(i) + 1,

- ifact =1ift-pebble, theni’ =i+1,

- if act = pl ace- pebbl e, theni’ =i —1,6(: — 1) = 0andd’(i) = 6(i).

As usual, we denote the reflexive, transitive closure gy F*,.
The acceptance criteria is based on the notioteafls to acceptanceelow. For
every configurationy = [i, ¢, 6],
— if ¢ € F, thenvy leads to acceptance;
— if ¢ € U, theny leads to acceptance if and only if for all configuratigtisuch that
~ F~',~" leads to acceptance;
— if ¢ ¢ FUU, theny leads to acceptance if and only if there is at least one configu
ration~’ such thaty - 4/, andy’ leads to acceptance.

A sequence of edgd§!) - - (;") is accepted by, if the initial configurationy, leads
to acceptance. The languafe4) consists of all sequence of edges accepted bpb-
viously, the sequence induces a set of directed edg@s, as explain in the beginning
of this section.

We have presented here the notionadternatinggraph PA, since it is easier to
work with for our purposes. However, it is not difficult to dediinstead the notion
of deterministicgraph PA. The next theorem shows that this choice is withmeg bf
generality, as both models are equivalent.

Theorem 2. 1. For eachk > 1, two-way non-deterministic grapitPA and one-way
deterministic graptk-PA have the same recognition power.
2. For eachk > 1, graphk-PA languages are closed under boolean operation.

Next, we introduce the relationship between graph PA arst Birder logic.

Theorem 3. For every FOE-sentence), there exists a graph-PA A, such thatk =
ar(y) and L(A) = G(v)).

Proof. The proof is an adaptation of similar result in [19]. First, theorem 5, PA is
closed under boolean operations. ket Qi (xx) where@ € {V,3} andiy(ay) is
of quantifier rankk — 1.

The proofis by straightforward induction én A k-PA A iterates pebblé through
all possible positions in the input. On each iteration, thivmatonA recursively calls
a(k — 1)-PA A’ that accepts the languadg (zx)), treating the position of pebble
as the assignment value fog.

- If Q =V, thenA acceptsw if and only if A" accepts on all iterations.
- If Q = 3, thenA acceptsy if and only if A’ accepts on at least one iteration.

O

Notice that Theorem 3 is optimal in the sense thakalebbles are needed. More
precisely, it is possible to adapt the proof of [19] to showattfor everyk > 2 there
exists an FQE-sentence), with k& = qr(¢), and such thaL (A) # G(v)) for every
graph PAA using less thaik pebbles.

6 When the edges are labeled with symbols from finite alphabet

In the usual graph databases setting the edges are labdkedymibols from a fixed
finite alphabet. Each symbol can be viewed as a unary predicethe edges.

In this section we extend the vocabularfésandE with unary predicates on the
edges, which we calleeixtendedv andE vocabularies. We also extend the definition
of graph pebble automata for edges labeled with symbols &dirmed alphabet.

In the following we letY be a fixed finite alphabet.

ExtendedV logic. The vocabulary for the extendédl logic consists ofs for each
o € X, where each is a binary predicate on the domain. We denot&byhe extended
V logic.

An extendedV-structureis a tupleG = (V, {c},ex) such thall” is the domain of
nodes and the sefw },cx are disjoints. Intuitively, each relationdenotes the set of
edges which are labeled with the symbok Y. Since no edge can be labeled with two
different symbols, the sefs }, > are disjoint.

Extended logic. The vocabulary consists bfeadHead, HeadTail, TailTail, {o },¢ 5,
where eaclr € X is unary predicate on the domain. We denotéfithe extendedk
logic.

An extendedE-structureis atuple€ = (U, HeadHead, HeadTail, TailTail, {c },¢),
whereU is the domain of edges, the relatiddieadHead, HeadTail, TailTail on U are
defined as before, and eaghe X is a unary predicate ofi.

It is straightforward to show that all results on the vocabiesV andE still hold
for the extended logic¥* andE*. In the following we will elaborate this point more
precisely.

Definition 4. LetG be anV™ structure anc€ anE* structure. We say tha¥ and& are
structurally equivalenif there exists a 1-1 mapping: E(G) — Dom(&) such that for
all (v1,v2), (v2,v3), (v1,v3) € J,cx 0 @andey, ea € Dom(E),

1. foreacho € X, (v1,v2) € o if and only if¢(v1, v2) € o;

2. £(v1,v2) = eq and€(va,v3) = eq if and only ifHeadTail(eq, e2);
3. £(v1,v2) = e1 and&(vy,v3) = eq if and only if TailTail(e1, e2); and
4. £(vy,v3) = e1 and{(va, v3) = ey if and only ifHeadHead(eq, e2).

The 1-1 mapping is called a(V*, E*)-isomorphism.

Theorem 4. 1. LetL in {FO,3MSO,MSO}. Then, for every sentenge € L[V*],
there exists a sentengec L[E*] such thatp and are (V*, E*)-equivalent
2. There exists a sentengec IMSO[E”] such that for all sentence € IMSO[V*],
1 andp are not(V*,E*)-equivalent.
3. There exists a sentengec MSO[E*] such that for all sentencge € MSO[V*], ¢
andyp are not(V*,E*)-equivalent.

Next we define a graph pebble automata with unary predicateseedges. It is
also pretty much straightforward extension of DefinitiorirBthis case the input is of

g1 On
theform: | ay | --- | an | € X x D x D, whereo; € X is the label of the edge
bl bn
(ai, bz)
The transitions are of the fornti, o, P, Voo, V1o, Vo1, Vi1,p) — (g,act). It is
straightforward to show that all the results in the previsestion can be adapted for
such graph pebble automata. More precisely,

Theorem 5. 1. For PAwith unary predicates, for eaéh> 1, two-way non-deterministic
graph k-PA and one-way deterministic graphPA have the same recognition
power.

2. For eachk > 1, graphk-PA (with unary predicates) languages are closed under
boolean operation.

3. For every FOE*-sentence), there exists a graph-PA A, with unary predicates
such thatt = qr(v) andL(A) = G(¢)).

7 Future directions

We would like to apply our logics and graph pebble automata more application
oriented settings. Also, it is well known that the emptinpesblem for graph pebble
automata is undecidable. One direction that we would likpursue is to charaterize
a subclass of pebble automata, for which the emptinessgooisl decidable. We also
would like to define and study similar logics for matroid andesad the graph pebble
automata for abstract matroid.

Acknowledgments:We thank the anonymous referees for many helpful commeatsaPsup-
port provided by EPSRC grant G049165 and FET-Open Projet §imnt agreement 233599.

References

1. S. Abiteboul, P. Buneman, D. Sucbata on the Web: From Relations to Semistructured Data
and XML Morgan Kauffman, 1999.

2. R.Angles, C. Gutiérrez. Survey of graph database mod€l Comput. Surv0(1): (2008).

3. P.Barceld, C. Hurtado, L. Libkin, P. Wood. Expressivegiaages for path queries over graph-
structured data. IRODS2010.

4. D. Berwanger, D. Janin. Automata on Directed Graphs: Bdgsus Vertex Marking. In
ICGT 2006.

5. B. Courcelle. The expression of graph properties andhgteamsformations in monadic
second-order logic. Itdandbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundation$997.

6. I. Cruz, A. Mendelzon, P. Wood. A graphical query languagpporting recursion. 181G-
MOD 1987.

7. R. Fagin, L. J. Stockmeyer, and M. Y. Vardi. On monadic NPmvanadic co-NP Info. and
Comp, 120(1):78-92, 1995.

8. N. Globerman and D. Harel. Complexity results for mukbple automata and their logics.
In ICALP 1994.

9. C. Gutierrez, C. Hurtado, A. Mendelzon. Foundations afiatic web databases. RODS
2004.

10. P. Hlinény. Branch-width, parse trees, and monadiorsgorder logic for matroids.J.
Comb. TheorySer. B 96(3): 325-351 (2006)

11. R. Ladner, R. Lipton and L. Stockmeyer. Alternating Rigstn and Stack Automat&IAM
Journal of Comp13(1): 135-155, 1984.

12. U. Leser. A query language for biological networl&ioinformatics21 (suppl 2) (2005),
ii33—ii39.

13. L. Libkin. Elements of Finite Model Theargpringer, 2004.

14. A. O. Mendelzon, P. T. Wood. Finding regular simple pathgraph databaseSIAM J.
Comput, 24(6):1235-1258, 1995.

15. R. Milo, S. Shen-Orr, S. ltzkovitz, N. Kashtan, D. Chidkir, U. Alon. Network motifs:
simple building blocks of complex networkScience298(5594) (2002), 824—-827.

16. F. Neven, T. Schwentick, and V. Vianu. Finite state maesifor strings over infinite alpha-
bets. ACM ToCL, 5(3):403-435, 2004.

17. R. Ronen and O. Shmueli. SoQL: a language for queryingcesating data in social net-
works. InICDE 2009.

18. T. Schwentick. On Winning Ehrenfeucht Games and Monki#ic Ann. Pure Appl. Logic
79(1), 61-92, 1996.

19. T. Tan. Graph reachability and pebble automata ovelitefatphabets. 1hICS2009.

20. G. Turan. On the definability of properties of finite grap Discrete Mathematics
49(3):291-302, 1984.

A Proof of Proposition 1

Proposition 1.

(a) LetG be aV-structure and€,, £, be E-structures. If both€; and £, are struc-
turally equivalent taz, then&; and&, are isomorphic.

(b) LetG:, G4 beV-structures and be aE-structure. If bothz; andG, are equiva-
lentto&, thenG, andGs are isomorphic.

Proof. We prove par(a). Let&; : E(G) — Dom(&y) andés : E(G) — Dom(Es)
be the(V,E)-isomorphisms fronG to £; and fromG to &2, respectively. Letf =
& o &1 be the 1-1 mapping fro@om(&,) to Dom(&5). We show thatf establishes
the isomorphism betweefy and&s.

Lete,e’ € Dom(&;). We claim that the following holds.

1. HeadHead(e, ¢’) holds in&; if and only |fHeadHead((e), f(e)) holds in&s.
2. HeadTail(e, ¢’) holds in&; if and only if HeadTail(f(e), f(¢')) hoIds in&,.
3. TailTail(e, ¢’) holds in&; if and only if TailTail(f (), f(¢’)) holds in&s.

We prove only for the case défeadHead. All the other cases can be proved in a similar
mannerHeadHead(e, ¢’) holds in&; if and only if for some(vy, v3), (v2, v3) € E(G),

51(1}1703) =€ andfl(’l@”(}g) =€

if and only if

(v1,v3) = & ' (e) and vy, v3) = &1 (€)
if and only if

§a(v1,v3) = f(e) and&a(va, v3) = f(e')

if and only if HeadHead(f(e), f(e’)) holds in&,. This shows that; and £, are
isomorphic.

Now we prove partb). Let¢; : E(G1) — Dom(€) andé; : E(G2) — Dom(€&)
be the(V, E)-isomorphisms frondz; to £ and fromGs, to &, respectively. The function
g =& ' o& isal-1 mapping froni(G,) to E(G»). ThatG; andGs are isomorphic
follows directly from the fact thag; and¢, are(V, E)-isomorphisms.]

B Proof of Proposition 2
Proposition 2.1.For everyG = (V, E) € STRUCT[V], there exists a unique (up to
isomorphism)E-structure€ which is structurally equivalent t&'.

Proof. We simply takef, where

— Dom(&) = {(u,v) | (u,v) € E(G)};
— HeadHead((u, v), (w,v)) holds in€ for every(u, v), (w,v) € Dom(E);
— HeadTail((u, w), (w,v)) holds in& for every(u,v), (w,v) € Dom(&);

— TailTail((u, w), (u,v)) holds in& for every(u, v), (w,v) € Dom(&).

It is immediate that satisfies all the Axiom&'1-E7. O

Proposition 2.2. For everyE-structure&, there exists a unique (up to isomorphism)
V-structureG structurally equivalent t&.

Proof. Let £ be anE-structure. By AxiomFE1, the relationdHeadHead and TailTail
are equivalence relations @om(€). Then, let and7 be the equivalence classes of
HeadHead andTailTail, respectively.

Now we are going to define@-structureG as follows. The set of verticds(G) C
(HU{0}) x (T x {0}) is as follows.

— ForH,T # 0, (H,T) € V(G) if and only if there arez € H, e’ € T such that
HeadTail(e, ¢');

- (0,T) € V(G) if and only if for all e € T, there is nee’ € Dom(&) such that
HeadTail(¢’, ¢); and
- (H,0) € V(G) if and only if for all e € H, there is nce’ € Dom(&) such that

HeadTall(e e’).
The setE(G) of edges is defined as follow.

(Hl,Tl), (HQ,TQ) S E(G) if and Only |fT1 N Ho 7& (Z)

Now we need to show that is structurally equivalent t&. We start the following
claim.

Claim.

Cl. ForeactH € H, there is exactly on& € 7 U {0} suchtha{H,T) € V.

C2. Foreacl’ € 7, thereis exactly oné/ € H U {0} suchtha{H,T) € V.

C3. ForeveryH € H andT € 7, eitherH NT = () or H N T consists of only one
element.

Proof. We prove C1. By Axiom E2, there existse 7U{(} suchthatH,T) € V(G).
Let (H,TY),(H,Ty) € V(G). If Ty = (, thenTy = @ too. Thus, T} = T5, and the
uniqueness df’ is established.

Considefly, T, # 0. There exists € H, e; € Ty, e2 € Ty such thatHeadTail(e, e1)
andHeadTail(e, e5). By Axiom E5, we hav@ailTail(e1, e2). Thus,eq, e2 belong to the
sameTailTail-equivalence class. Therefoflg, = T5.

Claim C2 can be prove similarly using Axioms E3 and E4. Now wevp C3.
SupposeH N'T # @ andej,e; € H N T. It means thaHeadHead(e;, e5) and
TailTail(e1, e2). By Axiom E6, e; = es. O

Now we define the following 1-1 mappirg: E(G) — Dom(&) and show that it
is a(V, E)-isomorphism fronG to €. For every((Hy, Th), (H2,T3)) € E(G),

E((Hy,Ty), (Hy, Ty)) = e, whereTy N Hy = {e}.

By claim C3, 71 N H, is either empty or singleton.

First, we show that the mappirtgis surjective. Sincé{ and7 are equivalence
relations orDom(&), for everye € Dom(&), there existdd € H andT € 7 such that
e € TNH.Thus, the edgé(Hy,Th), (H2,T2)) € E(G), whereT} =T andH, = H,
is the pre-image of, thatis,£((H1,T1), (Ha, T2)) = e.

Now we show that is injective. Suppose

§((H1,Th), (H2,T2)) = §((Hs, T3), (Ha, T4)).

By the definition of¢ and by the Claim C3]}1 N Hy = T3 N Hy = {e}. Thus,T; and
T35 are theTailTail-equivalence classes that containgn the same mannekf, and H,
are theHeadHead-equivalence classes that containThis means thaly; = 75 and
Hs = Hy.

By Claim C2, there exists exactly od¢ such tha{ H, T}) € V(G), thus, it follows
that H; = Hs. Similarly, by Claim C1, there exists exactly ofiesuch that H,,T") €
V(G), it follows thatT, = T}. Therefore((fil7 T‘l)7 (Hg, Tg)) = ((Hg, Tg), (H4, T4))

The uniqueness @ (up to isomorphism) follows directly from Proposition 1.i$h
proves our proposition.]

C Proof of Proposition 3

Proposition 3.Let £ in {FO,3IMSO, MSO}. Then, for every sentengec L[V], there
exists a sentenag € L[E] such thaty andv are (V, E)-equivalent.

We need the following notion in our proof. Le{z1,...,z,,) € FO[V] be a for-
mula with its free variable coming from among, . . ., z,,. It is possible that some of
the variablescy, . .., z,, are not used at all insidg(z1, . . .,z). A signfunction on
x1,..., %y, isafunctiony : {z1,...,z,} — {Head, Tail}.

For the sake of readability, we sketch the proof only for theecfor First Order
logic. We shall explain afterwards how to extend this praofthe other two cases.

The idea of the proof is to define a proced@enstruct-E-formula that computes
the following.

Input: A pair (p(x1,...,2m), X), Wherep(z1,. .., x.,) € FO[V] with free variables
from amongey, . . ., x,, andy is a sign function o1, ..., m }.

Output: Aformulay(y, ..., ym) € FO[E] with free variablesfromamong, . . . , ym
such that for every structurally equivalent pair of strues{G, &) € STRUCT[V]x
STRUCTI[E] and¢ : E(G) — Dom(€) is the(V, E)-isomorphism, the following
holds.

— For every tuple(vy, ..., v,) € V(G)™, if G E ¢(v1,...,0m), then& =
v(el, ..., em), where

“Le;) = (v, v) for somev, if o; = Tall
&e) = (v,v;) for somev, if a; = Head
— Vice versa, for every tupléey, ..., e,) € Dom(E)™, if £ = Y(er,...,em),
thenG = p(v1,. .., vm), Where
e (es) = (vi,v) for somev, if o; = Tall
€)= (v,v;) for somev, if a; = Head

The desired sentenee will then be Construct-E-formula(y). The definition of this
procedure is as expected, the details can be found in thensippe

In order to extend these results for the other two cases, mplgiadd the fol-
lowing to our transformation: for every quantificati@nX in MSO[V], we have two
quantifications X, 3 Xpead in MSOIE], or for the quantificatiov X in MSO[V],

V Xtail V Xnead iIn MSO[E]. The intention ofX 1y is to denote the set of edges whose
tails are inX, while Xpeaq the set of edges whose heads ar&inThe transformation
is then straightforward.

We give the details of all these constructions in the reshisfdection. Procedure 1
in the next page we define the desired proce@aestruct-E-formula. The proof that
Construct-E-formula(¢(x1, . . ., xm), X) outputs the desired(y1, . . ., y.,) according
to the sign functiony can be shown by straightforward induction on the quantifiekr
of p(x1,...,2m).

Procedure 2 is for the extension to t&O part.

Procedure 1Construct-E-formula(p(z1, ..., Zm), X)

1:
2:

w

if o(x1,...,2m)is E(zi, ;) then
If x(z;) = Head and x(z;) = Head, output the formula:3zHeadTail(y;, z) A
HeadHead(z, y;).
If x(z;) = Head and x(z;) = Tail, output the formula:3zHeadTail(y;,z) A
HeadTail(z, y;).
If x(zi) = Tailandx(z;) = Tail, output the formuladzTailTail(y;, z) AHeadTail(z, y;).
end if
if o(x1,...,2m)iSz; = x; then
If x(z;) = Head andx(x;) = Head, output the formulaHeadHead(y;, y;).
If x(z;) = Head andx/(x;) = Tail, output the formulaHeadTail(y;, y;).
If x(z;) = Tailandx(x;) = Tail, output the formulaTailTail(y:, v;).

:end if
Cifo(zy, . om) iISei(zn, ., Tm) ® w2(21, ..., Tm), Where® € {A, V} then

Lety1 (y1, - . ., ym) = Construct-E-formula(e1 (z1, ..., Tm), X)-
Letya(y1, - . ., ym) = Construct-E-formula(pz(z1, ..., Tm), X)-
Output the formulag: (y1, .- -, Ym) @ Y2(y1,- .-, Ym)-

:end if
Sif oz, ..o m) IS0 (21, ..., 2m) then

Lety1(y1, - . ., ym) = Construct-E-formula(e: (z1, ..., ZTm), X)-
Output the formula-iy (e1, .. ., €m).

s endif
Cifo(z,. .o, om) ISQx o1 (21, . .., Tm, x), Wwhere@ € {3,V} then

Lety1 (y1, - . ., Ym,y) = Construct-E-formula(e (z1, .. ., zm,x), x U {(x,Head)}).
Lety2(y1, - . ., ym,y) = Construct-E-formula(er (z1, .. ., zm,x), x U {(z, Tail)}).

If @ = 3, output the formulady Y1 (y1,-- -, Ym,¥) V Y2(Y1,- - -, Ym, Y).

If @ =V, output the formula¥y 1 (y1,- -« Ym, ¥) A2(Y1y -+« s Ym, Y)-

cendif

Procedure 2Extension ofConstruct-E-formula(¢(z1, . .., zm), x) for MSO

1. if p(z1,...,zm) isx; € X then

2:

if x(z;) = Head, then output the formula3z(y: € Xpeag A HeadHead(y;, 2)).
if x(z;) = Tall, then output the formuladz(z € X A TailTail(y;, 2)).

3: end if

D Proof of proposition 4

We define Procedur@onstruct-V-formula that computes the following.

Input: Aformulay(yi,...,ym) € FO[E] with free variables fromamong, . . ., e,,.
Output: A formulap(xy, 2}, ...,xm,z,,) € FO[E] with free variables from among
x1,T),...,xm,x,, such that for every structurally equivalent pair of struetu
(G,€) € STRUCT[V] x STRUCT[E] and¢ : E(G) — Dom(&) is the (V,E)-
isomorphism, the following holds.
— For every tuple(vy, ..., v,) € V(G)™, if G E ¢(v1,...,vm), thenE =
Y(e1,...,em), where
£ 1(e;) = { (vi,v) for somev, if a; = Tall
Y (v, v) for somev, if a; = Head

— Vice versa, for every tupléey, ..., e,) € Dom(E)™, if £ = Y(er,...,em),
thenG = p(v1,. .., vm), Where

£ (e;) = (vi,v) for some, if a; = Talil
= ('Ua 'Ui) for somev, if o; = Head

The desired sentengewill then beConstruct-V-formula(y). Algorithm 3 describes
in details the procedur@onstruct-V-formula.

Procedure 3Construct-V-formula(y(es, . . ., ex,)
1:if 1/)(61, Ceey em) ise; = €; then

2 Output the formulaz; = z; A y; = y;.

3: endif

4: if ¢(es,...,em) isHeadHead(e;, e;) then

5: Output the formulay; = y;.
6
7
8

: end if
cif (e, ..., em) isHeadTail(e;, e;) then
: Output the formulay; = z;.
9: end if
10: if ¢(eq, ..., em) is TailTail(e;, e;) then
11: Output the formular; = x;.
12: end if
13: if ¢Y(e1,...,em)isQe i(e1,...,em,e), where@Q € {3,V} then
14: Letpi(z1,y1,. .., ZTm, Ym,,y) = Construct-V-formula(y (e1, ..., em,e)).
15: Output the formula@zx Qy (E(x7 y) — o1(T1, Y1, Tm, Ym, T, y))
16: end if

It can be shown by straightforward induction on the quamtiiek ofy)(y1, . . ., ym)
thatConstruct-V-formula(y(y1, - - . , ym)) outputs the desiregd(z1, 2, . . ., T, 20,).

E

The Equivalence between Alternating and Deterministidk-PA

In this section we will prove that for ak > 1, two-way alternating:-PA and one-
way deterministick-PA have the same recognition power. As mentioned earlhier, t
proof is a direct generalization of the same proof for thexejence between two-way
alternating and one-way deterministic finite state autenraf11].

LetA = (¥, Q,q, F,u, U, N, D) be atwo-way alternating-PA. We show how to

simulateA with a one-way deterministic-PA A’. We start by normalizing the behavior
of A as follows.

1.

2.

[©2é)]

On input wordkwr, A starts the computation with peblden the right-end marker
>.

The state) is partitioned intoQ; U - - - U Qk, WhereQ); is the set of states when
pebblei is the head pebble.

Similarly, we denote by/;, N; and D; the set of universal, nondeterministic and
deterministic states, respectively amdthe set of transitions when pebhlés the
head pebble.

. EaCf‘Qi is further partitioned int@i,st ayUQi,ri ght UQi,I ef t UQi,pI aceUQi,l ifts

where
— if (’L',P, VOQ, V01, Vlo,‘/u,q) — (p,St ay), thenq (S Qi,st ay;
—if (’L',P, VOO, VOl; V107V117q) — (p, ri ght), thenq (S Qi,ri ght i
—if (’L',P, VOO, VOl; V107V117q) — (p,l eft), thenq (S Qi,l eft s
— if (4, P, Voo, Vor, Vio, Vi1,q) — (p,pl ace-pebbl e), theng € Q;place;
and
— if (4, P, Voo, Vo1, Vio, Vi1,q) — (p,1 1 ft - pebbl e), theng € Qi

. The automaton can only do universal and existential bviagavhile the head peb-

ble is stationery.
Thatis, (¢, P, Voo, Vo1, Vio, Vi1,9) — (p,act)andg € UUN, thenact = st ay.

. The automaton places the new pebble on the right-end marke
. The automaton lifts the pebble only when it is on the rightt marker.
. When the head pebble is reading the left-end and the eigtitmarkersi and>, the

automaton does not place new pebble.

. Only pebble: can enter the final states and it does so only after it readsghe

end marker.

We will need the following notions. A pebbleassignment is a pebble assignment

when the pebbles i + 1,...,k are on the input word. That is, the domain tbfs
{i,i+1,...,k}.

Let ¢ be a pebble-assignment on an input word = (') --- (3"). We define

ay

Succ(d) = 0’ as follows.

— If 6(i) < n, thend’ is a pebblerassignment, where for eagh= 1,7+ 1,..., k,

o 0G), =i,k
9(3)—{9(j)+1,isz'.

—If 6(i) = n + 1, thend' is pebblefi + 1) assignment such that for eagh=

i+1,..,k 0'(5) = 0()).

Similarly, for a pebble-assignmen#, we can defin€red(d) as follows.

— If 1 < 6(4), thend’ is a pebble-assignment, where for eagh=i,i + 1,. .., k,
s\ 9(])5 If]:7’+17ak7
') = {H(j)l,isz'.

— If 8(i) = 0, thend’ is pebblefi + 1) assignment such that foreagh-i+1, ..., k,
0'(3) = 0(4)-
In the following subsections we present the determiniradifod, starting from pebbleé
and finishing with pebblé, in the following subsections. We will denote bg/i) the
equivalent automaton ofl, where the behavior of pebblds. .., are one-way and
deterministic. By this notation4® is the equivalent one-way, deterministic version of
A.

E.1 Determinizing pebblel

The determinization follows closely the one described ih Bection 4]. For complete-
ness, we present it here. The end result of the determioizatisuch that pebble 1 is
placed in the left-end markerand lifted when it reaches the right-end marnker

We need a few notations. For eagk (), we define a new symbgl We denote by
Q={G:q€Q}.If ACQ,thend = {p: p € A}. We define dermto be an object
of the formg — A whereq € Q andA C QU Q. Atermq — Aisclosedif A C Q.

A partial responsés a set of terms, while esponsés a set of closed terms.

Letw = (3!)---(3") be a data word and be a pebble-1 assignment. The de-
terminization of pebbl@ depends on the following three conceptsponseR (w, 6),
partial responsePR(w, #) and theproof systenS(R, P, Voo, Vo1, Vio, Vi1). We will
define these concepts one by one starting with the respdasef).

The respons® (w, 0) is defined as follows. For a sétC @, a closed terngy — S
belongs tdR (w, 0) if there exists a computation tréeof .A onw whose root is labelled
with [1, ¢, 8] such that

— if (1) < n, then each leaf is labelled wiflh, p, Succ(8)] for somep € S;

— if (1) = n 4+ 1, then each leaf is labelled wifh, p, Succ(6)] for somep € S;

— each internal node in the computation tfEés labelled with[1, ¢, ¢'], whereq’ €
@ and0 < #'(1) < 6(1); and

— for eachp € S, there exists a leaf labelled with, p, Succ(¢)].

Remark 1.Let w;, w, be data words. Let; andd, be pebble-1 assignments ew; >
and<ws>, respectively, such tha (1) = 62(1) = 0. That is, on both assignments
pebble 1 is reading the left-end markeThen,R (w1, 61) = R(wz, 62).

Now we define the partial respon®R (w, §) as follows. Forase§ C Q U Q, a
termgq — S belongs toPR(w, 0) if there exists a computation tréeof .4 onw whose
root is labelled with1, ¢, 6] such that

— if 8(1) < n, then each leaf is labelled with eithigr p, Succ(8)] for somep € S or
[1, p, 6] for somep € S;

— if 8(1) = n+ 1, each leaf is labelled with eithé, p, Succ(6)] for somep € S or
[1, p, 6] for somep € S;

— each internal node in the computation ttEés labelled with[1, ¢’, '], whereq’ €
Q1 ando < 0'(1) < 6(1);

— if 6(1) < n, for eachp € S, there exists a leaf labelled wifh, p, Succ(6)];

—if (1) = n + 1, for eachp € S, there exists a leaf labelled witB, p, Succ(9)];
and

— for eachp € S, there exists a leaf labelled with, p, 6].

We call the tree” awitnessfor ¢ — S € PR(w, 0).
We define gproof systenfor S(R, P, Voo, Vo1, V1o, Vi1), Wwherea € X, P,V C
{2,...,k} and aresponsk, as follows.

L q— {q}
q— Bu{pt,p—C
q— BUC
(1, P, Voo, Vo1, Vao, Va1,q) — (pi,stay) € uj foreachi =1,...,mandq € U
q—A{p1,-- . Pm}
(1,P, VOQ, VOly‘/lm‘/lh(Z) — (p,St ay) € U1 andp ¢ U
q— {p}
(1,P, VOQ,VOh‘/lo,‘/u,q) — (p,ri ght) € U1
q —{p})
(1,P, VOQ,VOh‘/lo,‘/u,q) — (p,' eft) € U1 andp — S e RandS - Ql
q— S
(1,P,V00,V01,‘/10,‘/11,q) — (p,l i ft-pebbl e) if a:DandP,V:(Z)
q— {p}
We denote by TKIR, P, Vo, Vo1, Vio, Vi1) be the set of terms “provable” using the
proof SystemS’(R, P, VOQ, V01, VIO; VH).
The following claim is the pebble 1 counter part of a simil@im in [11, pp. 149].

2.

7.

Claim. For every wordo = (;') - -- (;*) and pebblet assignment on <wr,
PR(w, 9) = THUQ,(’LU7 Pred(@)), P7 Vbo, ‘/01, VIO; VH),
where

-1<60(1)<n+1;
- P={l:00)=0(1)};
= Voo ={l >i:agq) = agg }
= Vio={l>1i:bouy = agi)};
- Vio= {l > ag(y = bG(i)}; and
= Vir ={l>i:bauy = bogs)}-
Proof. The prooffollows closely the similar proofin [11]. Firsteghow thaPR (w, §) C

TH(R(w,Pred(0)), P, Voo, Vo1, V1o, V11) inductively on the size of witnesses for terms
in PR(w,). Letq — S € PR(w,#). The basis is when the witness for— S €

PR(w, 0) consists of a single node with the laljelg, 6]. Then,S = {¢} andg — {q}
is provable using rule 1.

For the induction step, suppoge— S € PR(w,) is witnessed by a tre® with
more than one node. There are five cases to consider:

1. The state is a universal state, that ig,c U;. Let

(1, P, Voo, Vo1, Vio, Vi1,q) — (p1,stay) € ui;

(17P7 ‘/007‘/017‘/10; Vll;q) - (pm;St ay) S 1258

In this case, the root of is labelled with[1, ¢, 6] and its immediate children
T1,..., Ty are labelled with[1, pq1,6],...,[1, pm, 0], respectively. The complete
subtree rooted at; withesseg; — S; € PR(w, 0), wheresS; is the set of states in
the labels of the leafs in the subtree. Furtherm8&yej- - -US,,, = S. By the induc-
tion hypothesisp; — S; € TH(R(w, Pred(0)), P, Voo, Vo1, Vio, V11). Combining
rules 2 and 3, we obtaip— S € TH(R(w, Pred(9)), P, Voo, Vo1, V1o, Vi1).

2. The state is a nondeterministic state, thatise N;. Let

(1, P, Voo, Vo1, Vio, Vi1, q) — (p1,Stay) € ui;

(17P7 ‘/007‘/017‘/10;‘/11;q) - (pm,S'[ay) € U1;

Or, if ¢ is a deterministic state, i.e.€ Dy, thenm = 1. This case is just like case 1
above, except that we use rules 4 and 2.

3. (1, P, Voo, Vo1, Vio, Vi1,q) — (p,ri ght) € ;. Inthis caseS = {p}. By rule 5,
we havey — {p} € TH(R(w, Pred(9)), P, Voo, Vo1, Vio, V11)-

4. (1,P, Voo, Vo1, V107V11,q) — (p,l ift- pebbl e) € 1, wherea = 1, PV = 0.
Inthis caseS = {p}. By rule 7, we havg — {p} € TH(R(w, Pred(6)), P, Voo, Vo1, V10, V11).

5. (1, P, Voo, Vo1, Vio, Vi1,q) — (p,l eft) € uy. The childw of the root of 7 has
the label[1, p, Pred(6)]. Every path fromr to a leaf of7 must pass through a node
with label of the form[1,r,]. That is, pebble 1 must return to the positi(i)
again.
LetA = {pi,...,p} be the descendants efwith the properties
(a) eacty; is labelled with[1, r;, 0],
(b) no node between andp; has a label with the third coordinate
(c) every path fromr to a leaf passes through a nodetin
Let 7' be the unique subtree &f whose root isr and whose set of leaves is
A. Then, 7" is a witness ofp — {71,...,7} € PR(w,Pred()). Since this
is a closed term, thep — {7,...,7} € R(w,Pred(d)). By rule 6,q —
{ri,...,m} € TH(R(w,Pred(9)), P, Voo, Vo1, V1o, V11). The complete subtree
of 7 rooted atp; witnesses; — S; € PR(w,), whereS; is the set of states
in the labels of the leafs in the subtree. By the inductiondtigpsis,; — S; €
TH(R(w, Pred(6)), P, Voo, Vo1, Vio, Vi1). Applying rule 2, we obtaig — (J, ., Si €
TH(R(w, Pred(h)), P, Voo, Vo1, Vio, Vi1). Sincel, .., S; = S, this case fol-
lows.

Now we prove that TKR (w, Pred(6)), P, Voo, Vo1, V1o, V11) € PR(w, 0) by in-
duction on the prooflength. Suppage> S € TH(R(w, Pred(9)), P, Voo, Vo1, Vio, Vi1)
has a proof lengtbr 1.

— If the last step of the proof (from which — S is concluded) is an application
of rules 1, 3, 4, 5, or 7, then it is immediate that there is aatation tree that
withessegy — S € PR(w, 0).

— If the last step of the proof is an application of rule 2, thepmosey — A U {p}
andp — B are the antecedents from whigh— AU B is concluded§ = AU B).
By the induction hypothesis, there are computation tfEesd7’ which witness
qg — AU {p} andp — B, respectively. If each leaf df labelled with[1, p,] is
replaced with the tre@” (whose root is labelled witfi, p, 6]), then the resulting
tree witnesseg — AU B € PR(w,0).

— If the last step of the proof is an application of rule 6, thappose thay — A is
concluded from

(1, P, Voo, Vo1, Vio, Vi1, q) — (p,] ef t)andp — S € R(w,Pred(d)) andS C Q;.

Sincep — S € R(w, Pred(#)), then there exists a computation trEesuch that
o the root of7” is labelled with[1, p, Pred(6)];
o the leaf of 7" is labelled with[1, r,] for somer € S;
o foreachr € S, there is a leaf of ’ labelled with[1, r, §].
Now we can construct a trée such that
e the root of7 is labelled with[1, ¢, 0];
o the root has only one immediate chitdabelled with[1, p, Pred(6)];
e the subtree rooted atis the tree7”.
The treeT is a witness of the termm — S € PR(w,).

This completes the proof of the claim.

We denote by CTKR, P, Vo, Vo1, Vio, Vi1) the set of closed terms in TR, P, Voo, Vo1, Vio, Vi1).
Since, by ClaimE.1, TK‘V?,(IU7 Pred(H)), P, Voo, Vo1, Vao, VH) = PR(U), 9), thus,

CTH(R(U), Pred(@)), P7 ‘/()0, ‘/()1, Vl(), Vll) = R(w, 9)

The determinization ofi; is done precisely by means of this equation. Loosely speak-
ing, the set of “states” of the deterministic versiongfare roughly the set of responses
R(w,). There are only finitely many such responses. From the “sfate, Pred(¢)),
if pebble 1 reads the “inputP, Vyo, Vo1, V10, V11, then it deterministically moves right
and enters the sta{®, 9).

In the following paragraphs we will describe this idea morecisely. But before
we do that, we need to make a bit of modification on the behafipebble2.

LetQs, jiz, Us, Na, D, be the modification of)2, 2, Us, Ny ,D2, respectively, as
follows. For a sef3, we write2” to denote the power set @f.

— Qo = QU220 U2,
- Uy =Uy U (2Q2 — {@}),
— NQZNQUQQQQ;

— Dy = Ds.

The set of transitiong; is the sefus plus the following transitions.

1. Forevernyu € ¥, P,V C{3,...,k}, S1,...,5m C Q2,

(2, P, Voo, Vo1, Vio, Vi1, {S1, ..., Sm}) — (Si,stay) € fis, foreachi =1,2,...,m.

Thatis, from the statéS, ..., Sn} E~C~22 pebble2 performs existential branching.
Recall that the statgSs, ..., S} € @2 is a nondeterministic state.
2. Foreveryn € X, P,V C {3,...,k}, S C Q2, we have the following transition in

2.

(2, P, Voo, Vo1, Vio, V11, 8) — (¢,stay) € fip, foreachg € S.

That is, from the stat& C (), pebble2 performs universal branching.
Recall that the staté € Q- is a universal state.

3. We replace each transitid®, P, Voo, Vo1, V1o, Vi1,9) — (p,pl ace- pebbl e) €
1o With the following transition

(2, P, Voo, Vo1, Vio, Vi1, q) — ((p,0),pl ace- pebbl e) € fis.

In other wordsji, no longer contains the transitid, P, Voo, Vo1, Vio, Vi1,9) —
(p, pl ace- pebbl e). Rather, it contains the transitié®, P, Voo, Vo1, Vio, Vi1,49) —

((p

,0),pl ace- pebbl e).

All other transitions inu, remain infis.

Now we define the sets of stat€q and the set of transitions, for deterministic
pebble 1. We use the “prime” sign, as;if, to indicate that the behavior of pebble 1 (as
described by}) is deterministic. On the other hand, the “tilde” sign, agun is used
to indicate that the behavior of pebble 2 (as described-fys still alternating.

— @) consists of elements of the forfy, R), whereq €); andR is a response;
—) consists of the following transitions. For eagkt Q1,

1.

(1,<,0,0,(q,0)) — ((¢,R),ri ght) € p}, whereR = R(w, 6), for somew

andé such tha#(1) = 0.

By Remark 1, suctk (w, 6) is well defined.

. For everyresponse andP,V C {2,...,k},

(17P7 ‘/007‘/017‘/107‘/11; (qu\)‘)) - ((Qa CTH(R,P, ‘/007‘/017‘/10; Vll))a ri ght) S /’L/l

. (1,5,0,0,(¢,R)) — ({S1,...,Sm},1ift-pebble), where for eaclj =

1,....m

° q— S'j € CTH(R,>,0,0);
[] Sj Q Qg.

)

Intuitively transitions in item 3 of:; mean the following. LeR = R(w, §) andd
is pebble-1 assignment, whetel) = n + 1 andn is the length ofw. Letd’ is pebble-2
assignment such that for= 2, ..., k, 0(i) = 0'(i).

That the closed termp — S; belongs to CTHIR, >, (),) means that there exists a
computation tre€ such that

— the root is labelled with the configuratigh g, 6];

— all the non leaf nodes are labelled with 1-configurationat ik, configurations
where the head pebble is pebble 1;

— all the leaf is labelled with the configuratidh p, ¢'], for somep € S;;

— for eachp € S;, there exists a leaf with the configuratifmp, ¢'].

Since CTHR, >, (),) contains the closed termgs— Si,...,q — S,,, it means that
there are onlym possible “choices” of sets of states once pebble 1 is liftedt is,
S1,...,Sm. See picture below.

[1,4,0] [1,4,0]

’ kY kY

’
[27]7179/] """"" [27]71,9/] [27t170/] """"" [27t879/]

S1={p1,..,p1} Sm={t1,...,ts}

So, once we have deterministically simulated pebble 1, we baindicate to the
automaton that there are possible “choices” of sets of states for pebble 2, hence,
the state{S1,...,Sn} € 2292 From this state the automaton nondeterministically
chooses which set of states pebble 2 enters. Suppose iteshttesset;. Then, from
S, the automaton branches conjunctively into each statg.isee picture below.

[17 (q7 0)790] [17 (Q7®)7‘90]

2,{S1,...,5m}, 6] 2,{S1,...,5m}, 0]
[273179/] """ [27Sm70l]
2put] o Pt 200,0] o [2,6,0]
—_— —_—
S1={p1,--,p1 } Sm={t1,..., ts}

We now show thafi; U us andp) U 1o are “equivalent.” Recall that for a subset
X C pu, recall thaty Fx +' denotes that the relationt +’ is obtained by means of a

transition in.X.
Letw = (3!)--- (;") be a data word anél be a pebble-2 assignment emw. For

eachi = 0,...,n + 1, we also denote bg; a pebblet assignment such that

o J00G), =2,k
M”_{@ if j=1.

First, we show that transitions jm andus can be “correctly” simulated by transi-
tions inu} andfis. Suppose

[2,]?1,9] l_uz [1ap27971+1] I_Zl [1;p3;9n+1] '_Ml [27174;9]-

Thus, this means that there exists a closed tesm— S € R(w,0,.1) such that
S CQyandpy € S.
Now we are going to show that there exists a “deterministici by means of the
transitions inu} andjis from the configuration2, p;, 6] to the configuratiofi2, py4, 6.
By the construction ofi,, we have

[25p179] Fﬂ2 [17(p27®)590]' (1)
Then, by the construction ¢f;

[1, (p2,0), 60] by [1, (P2, R(<wr, 6o)), 01]; 2)

Furthermore, applying Claim 1 repeatedly, we obtain

(1, (p2, R(<we, 09)), 01] =, [1, (P2, R(<qws, 61)), 0]
(1, (p2, R(<we, 01)), 02] =, [1, (2, R(<ws, 62)), 03]

[1, (pg, 7?,(<1’LUD7 Gn_l)), On] "M/l [1, (pg, 7?,(<1’LUD7 On)), 9n+1]

Thus, we obtain

[17 (p27 R(<1w>, 90))5 91] l_;’l [L (an R(<]’wl>, 9”))7 9n+1] (3)
Again, by the construction qgf/, we have
[1, (p2, R(<we>, 0n)), Ony1] Fpr [2,{S1,- -, S}, 0], 4
where foreachy = 1,...,m, po — S; € CTH(<w>, 0,,11).
Suppose tha$; = S. Again, by the construction gi,, we have
[27{S17'-'7S’m}59] Fﬂz [275159]' (5)
and sincepy € S,
[25’9179] '7[1«2 [27p459]' (6)

Now, combining Equation§l)—(6), we obtain the run

1. [2 plve] I_ [17(]72,@)790];

2. [(p27]'_*1 [17(p2aR(<]wD79n))59n+1];

3. [1,(p2, R (<1w> 0.)), 9n+1] Fur 2,451, S}, 0]
4. 2, {Sl,... S}, 0] Fa, 12,51,0];

5. [2,51,0] b, [2,p4,0].

Vice versa, now we show that transitiongifiandji» can be “correctly” simulated
by transitions inu; andus. Suppose we have the following relations:

[27(]59] F,542 [15 (p,@),@o],

- [1,(p,0),00] Fpuy [1, (p, R(qw, 0o)), 01];

e (p,R(qw%@o)),@ﬂ Fur o B (1 (0 R(Qw, 60,)), 01
(L (0, R(<wp, 0,)), Ona] Fp 2,450,y S}, 0

[27 {Slv ceey S’m}a 9] F,542 [27 Sia 9]!

(2,85, 0] Fa, (2,5, 6], for eachs € S;.

Now, from the construction gi-, Relation (1) implies that the relation below holds.
[27 q, 9] '7#2 [va 9n+1]'
From the construction gf| and Claim E.1, Relations (2)—(4) implies that

oUTAWNE

p — S; € R(<wv,0,11), whereS; C Q.
This means that for eache S;,
(1,0, 0n41] ., [2,5,0], wheres € ;.

This completes the proof that U i are “equivalent” tqu} U fis.

E.2 Determinizing pebbles

Now, assuming that the behavior of pebhles. . , i — 1 are one-way and deterministic,
we will determinize pebblé The end result of the determinization is such that pebble i
is placed in the left-end markerand lifted when it reaches the right-end manker

The idea is very similar to the one in Subsection E.1, withekeeption that now
during the computation pebblecan place pebblé — 1). The effect of such place-
ment is the state of pebbiechanges. Figure 1 below is an example of a sequence of
moves of pebble of a two pebble automatad on (3!) (;2) (52) (3*)- Recall by our
normalization ofA4 in Section 3, the computation starts with pebble 2 aboveigia-r
end marker-. We assume that the behavior of pebble 1 is already deteredirin the
manner explained in the previous subsection.

< @ @ @ G) e
pebble2| g5 — g1 — g3 — (g2,43) — @1 — Qo
— — g6 — (g7 — (g8 — ({9 — qi0 — qy

pebblel

qi1 — qi2 — (i3 — qi14 — q15 — (16
(g2, 45)

Fig. 1. A sequence of moves ot on (31) (52) (52) (5+)-

b ba

For example, the paifgs, ¢5) in the run of pebble 1 indicates that pebble 2 first
arrives at the symbod“s) when pebble 2 is in the statg, upon which pebble 1 is
placed. When pebble Thas finally finished its computatiaat,ith when it is lifted after
reading the right-end marker A enters the statg), from which pebble 2 continues
the computation. This pailg2, ¢5) can be viewed as a termm — {¢5} and has to be
included as an “axiom” in the proof system TR, a, ®, #). This will be made more
precise in the next paragraphs.

Let Q1,...,Q;—1 be the set of states of pebbles . ., (i — 1), respectively, and
w1, - - -, i1 be the set of transitions of pebbles . ., (i — 1), respectively. We assume
that the behavior of pebblds. .. i — 1, according tquy, . . ., u;—1, iS deterministic.

Letw = (Zl) e (Z") andd be a pebble-assignment ow. We define a set of terms
o(pi,w,0) as follows. Fom, ¢ € Q;, the termp — {q} € p(u;, w,0) if and only if
there exists, so € Q;—1 such that

1. (i, P, Voo, Vo1, Vio, Vi1,p) — (s1,pl ace- pebbl e) € u;, where
- P={l>i:0()=00)};
= Voo ={l>i:agq) =asw};
= Vio={l>1i:byay = ag(y) }
- Vio= {l > ag(1)y = bg(i)}; and
- Vi1 = {l > bg(l) = be(i)}-
2. [i—1,s1,60p] F* [i—1, 82,0p41] isan(i—1)-run,wherédy(i—1) = 0, 0,41 (i—1) =
n—+1andby(j) = On+1(j) =0(j), forallj =4,... k.
3. (4,>,0,0,s2) — (q,1 i ft-pebble)e u_;.

Since pebbles, ..., (i — 1) all behave deterministically, for eaghe Q; p| ace, there
exists exactly one € Q; such that the term — {q} € p(A;, w, 6).

For a pebble-assignmené, we define the responge(w, 0) as follows. For a set
S C Q, aclosed terny — S belongs taR (w,) if there exists a computation tree
of A onw whose root is labelled with, ¢, 8] such that

— if 6(i) < n, then each leaf is labelled with, p, Succ(#)] for somep € S;
— if (i) = n + 1, then each leaf is labelled wifh+ 1, p, Succ(#)] for somep € S;
— each internal node iff is labelled with[j, ¢’, 8], where
1. j<i;and
2. if j =14, then0 < 0'(3) < 0(i).
— for eachp € S, there exists a leaf labelled with, p, Succ(6)].

Similarly, we define the partial responB& (w, 6) as follows. Fora sef C QUQ,
atermqg — S belongs toPR(w, 0) if there exists a computation trég of A on w
whose root is labelled witf, ¢, 6] such that

— if 8(4) < n, then each leaf is labelled with eithgrp, Succ(d)] for somep € S or
[i,p, 0] for somep € S;
— if 8(¢) = n+ 1, each leaf is labelled with eithér+ 1, p, Succ(d)] for somep € S
or [¢, p, 8] for somep € S;
— each internal node iffl is labelled with[j, ¢, ¢'], where
1. j <i;and
2. if j =14, then0 < 0'(3) < 0(i);
— if 8(4) < n, for eachp € S, there exists a leaf labelled wifh p, Succ(0)];
— if 6(i) = n+1, for eachp € S, there exists a leaf labelled wifh-+ 1, p, Succ(0)];
and
— for eachp € S, there exists a leaf labelled with p, 0].

The following claim is the generalization of Claim E.1 and hroof is similar, thus,
omitted.

Claim. For every wordo = (5*) - -- (;) and pebble-assignmenf on <ws,
PR(’U_), 9) = TH(Pa Pa VOO; V017 ‘/107 ‘/11)7
where

— P =R(w,Pred(9)) U p(u;, w,0);
S 1<006) <ntl;
—P={I>i:00)=0())

= Voo = {1 >1i:apq) = agg)

= Vio={l>1i:byqy = agg))

= Vio={l>i:agq) = bp)}; and
= Vit ={l>i:bguy = bgi)}-

We will describe intuitively how to simulate pebbledeterministically in the fol-
lowing paragraph. The “main” states of pebblill still be of the form (¢, R), where
q € Q; andR is a response.

Letw = (3!)---(}*) be an input word an@ be a pebble-assignment such that
1 < 0(i) < n. Let R be a response. From the configuration(q, R), 8], pebblei

performs the following.

1. Places pebblé — 1) and simulates it starting from each possible state, in daler
obtain the set of termg(u;, w, 9).
2. LetP =R U p(u;,w,0).
Then, pebble enters the statg, CTH(P, P, Voo, Vo1, V1o, V11)) and moves right,
where
— 4 = ag(j),
—P={l>i:60()=00)};
- Voo = {l > ag() = ag(i)};
- Vip = {l > bg(l) = ag(i)};
- Vipo= {l > ag(1) = bg(i)}; and
- Vi = {l > b@(l) = b@(i)}-

The formal description is given below. L&y, .. ., Q; be the sets of states of peb-
bles1,...,1, respectively, ang,, . .., u; be the sets of transitions of pebbles. . , i,
respectively. Recall that the behavior of the pebbles. , (i—1), according tQuq, . . . , ti—1,
is deterministic.

Similar to the case of pebble we need to make a bit of modification on the behav-
ior of pebble(i + 1). Let Qit1, fiir1, Uis1, Nit1, Diy1 be the modification o) 1,
wi+1, Uit1, Niy1 ,Diq1, respectively, as follows.

— Qis1 = Qi1 U291 U220,
= Uip1 = Uiy U291 — (Y,
- :i+1 = Ny U229
— Dit1=Diy1.
The set of transitiong, ;; is the setu; 1 plus the following transitions:
1. Foreverylabet € X, setsP,V C {i+2,...,k}, and setsS1, ..., Sm C Qit1,
(i+1, P, Voo, Vo1, Vio, Vi1, {51, ..., Sm}) — (Sj,stay) € ji;41, foreachj =1,..., m.

That is, from the stat¢Sy,..., S} € Qit1 pebble(i 4+ 1) performs existential
branching.
Recall that the statgSy, ..., S} € Qi+1 is a nondeterministic state.

2. Foreverya, P,V,S C Q;+1, we have the following transition ifa; ;1.

(i + 1, P, Voo, Vor, Vio, V11, 5) — (¢,stay) € fii11, foreachg € S.

That is, from the staté' € Q,,, pebble(i + 1) performs universal branching.
Recall that the staté ¢ Qi+1 is a universal state.

3. We replace each transiti¢i+1, P, Voo, Vo1, Vio, Vi1,q) — (p,pl ace- pebbl e) €
141 With the following transition ing;

(i + 1, P, Voo, Vo1, Vio, Vi1,q) — ((p,0), pl ace- pebbl e) € fi; 1.

Thatis,ji; 11 nolonger containg+1, P, Voo, Vo1, Vio, Va1,q) — (p,pl ace- pebbl e),
rather it containgi + 1, P, Vio, Vo1, Va0, Vi1, q) — ((p,0), pl ace- pebbl e).

All other transitions inu; 1 remain infi; 1.

Now, we define the sets of stat€g, . .., Q; and the sets of transitions, . .., u/
such that the behavior of pebbles . . , i, according tq.}, . . ., i}, is deterministic. We
start with defining the sets of stat€y, .. ., Q..

1. Qj consists of elements of the forms
— (¢,PR) whereq € Q; andPR is apartial response
— (¢, X,PR) whereq € Q;, X C Qi pl ace andPR is apartial response
The intuitive meaning of the statg, PR) is like in the previous subsection. The
purpose of the statg, X, PR) is for simulating pebbl¢; — 1) in order to compute
the setp. The setX is supposed to contain the states of pellfi®em which the
automaton has yet to simulate pebble- 1).
2. Foreacly = 1,...,i — 1, the states iip’; are of the form

((¢, X, PR, s),p)

whereg € Q;, X C Qi piace, PR is a partial response,c @Q; pi ace andp € Q5.
The intuitive meaning of these states is as follows.
— The triple (¢, X, PR) is to remember the state of pebhlevhile simulating
pebble(i — 1).
— The componend € Q; pi ace iS to remember the starting state of the simulation
of pebble(i — 1).
— The last component € @; is the current state of the simulation.

The sets of transitiong,, . . ., ; are defined as follows.
1. The setgs, ..., u;_,, are defined as follows.
(a) Foreach =1,...,i— 2, for each transition

(4, P, Voo, Vo1, Vio, Va1, p) — (t,act) € pj,

we have the transition

(4, P, Voo, Vor, Vio, Vir, (¢, X, PR, 5),p)) — (((¢, X, PR, 5),t),act) € .
(b) For each transition

(i — 1, P, Voo, Vor, Vio, Vi1, p) — (t,act) € p; 1,

whereact 11 ft- pebbl e, we have the transition

(i—1, P, Voo, Vo1, Vio, Vi1, ((¢, X, PR, s),p)) — (((¢, X, PR, s),t),act) € u,_;.
(c) For each transition

(i—1,5,0,0,p) — (¢t,1i ft-pebble)eu,_1
we have the transition

(7’ - 1a>7®a®7 ((QaXa PR,S),p)) -

(¢, X,PRU{s — {t}}),l i ft-pebble)ecu,_,.
2. w; consists of the following transitions.
(a) For eachy € Q;, (4,9,0,0,(¢,0)) — ((g,R),ri ght) € ul, whereR =
R(w,), for somew andd such tha¥ (i) = 0.
By Remark 1, suctR (w, 6) is well defined.
(b) For state; € Q;, every responsg, labela € Y andP,V C {i+1,...,k},

(¢, P, Voo, Vo1, Vao, Va1, (¢, R)) — ((¢, Qipr ace, R), St ay) € pj.

The purpose of this transition is to start computing the s&trons.
(c) For every statg € @Q;, every partial responseR, every nonempty seX C
Qipl ace; and every set®, V C {i +1,...,k},

(4, P, Voo, Vor, V1o, Vi1, (¢, X, PR)) —
(((¢, X —{s},PR,s),t),pl ace- pebbl e) € .,
whereX # (), s € X and(i, P, Voo, Vo1, Vio, Vi1,5) — (t,pl ace- pebbl e).
The purpose of these transitions is to simulate pebblel) from the states,
wheres is the state of pebblebefore pebblé¢i—1) is placed for the simulation.
Note that this is a place-pebble transition, so the stateX —{s}, PR, s),t) €

!/
i—1"
(d) For every statg € @, every partial responsBR, every labela € X and

everyset V C {i+1,...,k},
(i, P, Voo, Vo1, Vio, Vi1, (¢, 0, PR)) — ((q, CTH(PR, P, Vio, Vo1, Vo, Vi1)), ri ght) € 1.

The purpose of these transitions is as follows. Now that tteraaton has
finished simulating pebble — 1) from all possible states, as indicated by the
fact thatX = (), pebble: computes CTHPR, P, Voo, Vo1, Vio, Vi1), enters
the state(q, CTH(PR, P, Voo, Vo1, Vio, Vi1)) and moves right.
e) (4,>,0,0,(¢,R)) — ({S1,...,Sm},lift-pebble), where for eacly =

1,...,m,

- q— Sj S CTH(R, >, (Z), @),

-5 C Qi1
The purpose of these transitions is the same as their példgenterpart. Re-
call also that no new pebble is placed when the head pebbkading the
right-end markes, thus, it is not necessary to compute the set of tgsms

The proof thagu; U- - -Up; Uiy @andpf U- - -Upl U fi; 11 are equivalentis similar
to the corresponding proof for the case of pebbl#hus, omitted.

E.3 Determinizing.A

For the final step, we define the determinigti®A A" = (Q’, ¢}, 1/, F') that accepts
the same language &= (Q, qo, 1, F'). By the induction step explained in the previous
subsection, we assume that the behavior of pelibles, k — 1 is deterministic.

- Q' =Q1U---UQ)_1 UQL U{Gacc; ¢rej}» Where eacl®)y, ..., Q. _,, Q) arethe
modification of the set of staté€3, ..., Qx_1, @ like in the previous subsection;

- 46 = (q0,0);

- F' = {qacc};
-y = piU---Upg_y Upg, where eachdt, ..., u,._, . are the modification
of the set of transitiong, . .., ur—1, ui like in the previous subsection, plus the

following transitions.
The transition
(ka >, (Z)a @7 (q07R)) - (Qaccv right) € :u;ca

if there exists a se§ C F such thayy — S € CTH(R,, 0, (), and the transition
(k7l>a @7 (Z)a (q07R)) - (q’r'ej7 r I ght) S ,U,;c,
if there does not exists a s&tC F such thatyy — S € CTH(R, >, 0, 0).

The proof that4 and A’ are equivalent is similar to the corresponding proof for the
case of pebblé, thus, omitted.

