
A Formalism for Graph Databases and its Model of
Computation

Juan Reutter and Tony Tan

University of Edinburgh

Abstract. Graph databases are directed graphs in which the edges are labeled
with symbols from a finite alphabet. In this paper we introduce a logic for such
graphs in which the domain is the set of edges. We compare its expressiveness
with the standard logic in which the domain the set of vertices. Furthermore,
we introduce a robust model of computation for such logic, the so called graph
pebble automata.

1 Introduction

The study of graph structured data has received much attention lately, due to numerous
applications in areas such as biological networks [12, 15],social networks [17], and the
semantic Web [9]. The common database model proposed by suchapplications is most
commonly denoted asgraph databases, in which nodes are objects, and edge labels
define relationships between those objects [2].

For querying graph structured data, one normally wishes to specify certain types of
paths between nodes. Most common examples of these queries are conjunctive regu-
lar path queries [1, 14, 6, 3]. Those querying formalisms have been thoroughly studied,
and their algorithmic properties are more or less understood. On the other hand, there
has been much less work devoted on other formalisms other than graph reachability
patterns, say, for example, the integrity constraints suchas labels with unique names,
typing constraints on nodes, functional dependencies, domain and range of properties.
See, for instance, the survey [2] for more examples of integrity constraints.

Our intention is to study formalisms for such graph databases which is capable of
expressing these integrity constraints, while at the same time still feature manageable
model checking properties. Obviously such formalisms depend on how the underlying
directed graph of the databases are represented in the first place.

The standard representation of directed graphs is simply a set of nodes, together
with a binary relation on these nodes to represent the edge among them. The labeling of
the edges is represented as a function from the edges to the finite alphabet of symbols.
We call such representation thevertexrepresentation.

Another less common way to represent directed graphs is to take the edges as the
domain, together with some well defined binary relations on these edges to indicate how
two edges intersect. The labeling of the edges is represented as a set of unary predicates
on the domain. We call such representation theedgerepresentation.

In the first part of our paper we propose a vocabulary for the edge representation,
which we callE-vocabulary. We callV-vocabulary the vocabulary for the vertex repre-
sentation. We study the expressive power ofE and compare it toV-vocabulary. In this
respect our contributions are the following.



– The logic that we propose for edge representation is robust,in the sense that for
each graph database in the vertex representation, there exists a unique (up to iso-
morphism) graph database in the edge representation that have the same underlying
directed graph. Vice versa, for each graph database in the edge representation, there
exists a unique (up to isomorphism) graph database in the vertex representation that
have the same underlying directed graph.

– Next, we turn our attention to expressivity ofE-vocabulary. For first-order logic
(FO) we show that it is equivalent toV-vocabulary. On the other hand, for the
existential monadic second-order logic (∃MSO), as well as monadic second-order
logic (MSO), theE-vocabulary is more expressive than theV-vocabulary. That is,
there are∃MSO andMSO sentences inE-vocabulary that cannot be expressed in
sentences inV-vocabulary in∃MSO andMSO logics, respectively.

In the second part of our paper we introduce a notion of automata for graph databases.
We follows the direction in [19] by defining pebble automata for directed graphs.

Pebble automata was initially introduced for words over finite alphabet in [8]. Later
it was extended words over infinite alphabets in [16]. Roughly speaking, ak pebble
automaton, in shortk-PA, is a finite state automaton equipped withk pebbles. The
pebbles are placed on/lifted from the input word in the stackdiscipline – first in last
out – and are intended to mark positions in the input word. Onepebble can only mark
one position and the most recently placed pebble serves as the head of the automaton.
The automaton moves from one state to another depending on the equality tests among
data values in the positions currently marked by the pebbles, as well as, the equality
tests among the positions of the pebbles.

Later in [19] the connection between graphs and pebble automata was initially intro-
duced. The main idea in [19] is that a word of even length over an infinitealphabet can
be viewed as a directed graph, hence pebble automata for words over infinite alphabets
can be viewed as a model of computation for directed graphs.

In this paper we extend this connection to the case of graph databases, i.e., directed
graphs in which edges are labeled with symbols from a finite alphabetΣ. Some of the
results in this paper are the following.

1. We define the notion ofk pebble graph automata, or in shortk-PA, for graph
databases.

2. Every first-order sentences of quantifier rankk over graph databases can be simu-
lated byk-PA.

3. We demonstrate the robustness of pebble automata by showing the equivalence
betweentwo-way alternatingk-PA andone-way deterministick-PA. This result
settles a question raised in [16]. It was first spelled in [19]for words over infinite
alphabet, but no formal proof has been given until now.
This robustness immediately implies that the class of families of directed graphs
captured byk-PA is closed under boolean operations.

We also note that almost all results in [19] can be carried over to the case of graph
databases, including the fact that reachability from the source nodes to the target node
t can be checked byk-PA if and only if the distance froms to t is less than or equal
to 2k. This fact, together with item (1) above, yields the fact that reachability can be



expressed by first-order sentence of quantifier rankk if and only if the distance between
source and target nodes is less than or equal to2k. As the proof is non standard, in the
sense that we do not use the standard Ehrenfeucht-Fraı̈sséapproach which is commonly
used in most finite definability results, it is worth to mention that pebble automata can
be a potentially useful tool to prove definability results infirst-order logic over graph
databases.

Related work.Closely related to our work is Courcelles work [5], which appears to be
the first ones that suggest including the graph edges as part of the domain. The results
and definitions here do not follow from [5]. The first reason isthat the logic introduced
by Courcelle is essentially two sorted logic. That is, the domain consists of two kinds of
elements: the vertices and the edges. Whereas, the logic that we define here has only the
edges as the domain. Thus, the logic is defined with differentvocabulary than ours. The
second reason is that it has not been shown that every structure defined in the vocabulary
in [5] is indeed a directed graph. It is not clear at all in the first place why it is true. We
prove in this paper that indeed such is the case.

Later on in the paper [10] monadic second-order logic was introduced for abstract
matroids, which are extensions of graphs. It was shown in [10] that many results in [5]
also hold in this setting. However, the emphasis in [10] is decidability issue for satisfac-
tion problem. So naturally it only considers the family of matroids with boundedbranch
width, the analog oftree widthfor graphs. While in our paper we are more interested
in a model of computation for graph databases that feature manageable model checking
properties.

Another work related to ours is the work in [4]. In that paper two models of com-
putation for directed graphs are introduced, the so calledV -automata andE-automata.
In brief, given an input directed graphG, aV -automaton marks the vertices ofG with
symbols from finite alphabet. The decision to acceptG or not depends on this labeling.
E-automata operate in the same manner, except that they mark the edges, instead of
vertices. It is shown in [4] thatV -automata are weaker thanE-automata.

These models, theV - andE-automata, are incomparable to our graph pebble au-
tomata. On one side,E-automata are capable of simulatingµ-calculus on directed
graphs, but they are not closed under negation. On the other side, our graph pebble au-
tomata are capable of simulating the whole first-order logicon directed graphs, closed
under all boolean operations.

Organization.This paper is organized as follows. In Section 2 we define the vocabular-
iesV andE. Then in Section 3 we define the notion ofstructural equivalent, the notion
to compare two structures fromV andE logics. In Section 4 we compare the expressive
power betweenV andE logics. We introduce graph pebble automata in Section 5. We
then extend all previous definitions to the labeled edges graphs in Section 6. Finally we
conclude with a future direction for our work in Section 7.

2 Representation for graph databases

Graph databasesare usually defined as finite edge-labeled directed graphs [2]. In this
paper, in order to keep the presentations simple, we shall work only with unlabeled



directed graphs. We will explain how to extend these resultsfor the case of labeled
graphs in Section 6.

In what follows, we state two representations for graph databases. The first is the
standard one, where a directed graph is just a set of verticesequipped with a binary
relation on the vertices. We will denote its vocabulary byV.

The second one is our proposed representation for directed graphs where the edges
are the domain. We will denote its vocabulary byE.

The vocabularyV. The vocabularyV simply consists of one binary predicateE. We
denote bySTRUCT[V] the set of structures ofV, which are simply directed graphs. A
V-structure is a structure inSTRUCT[V].

We will usually writeG = (V (G), E(G)) for structures inSTRUCT[V], where
V (G) = Dom(G) is the domain andE(G) is the binary relation on the elements in
V (G).

The atomic formula in the logicV is eitherx = y or E(x, y). The meaning of
E(x, y) is simply (x, y) ∈ E. The first-order logicFO[V] is obtained by closing the
atomic formulas under the Boolean connectives and first-order quantification overV .
The logic MSO[V], which stands for monadic second-order, is obtained by adding
quantification over unary predicates on the domain. If the unary predicates quantifi-
cations are all existential, then we denote it by∃MSO[V]. A V-sentence is a sentence
using the vocabularyV. A sentenceϕ defines a set of directed graphs viaG(ϕ) := {G |
G |= ϕ}.

For the sake of presentation, we only consider graphsG ∈ STRUCT[V] in which
there is no isolated vertices and there is no self loop.

The vocabularyE. Intuitively, rather than viewing a directed graphG = (V,E) as a set
V of vertices andE a binary relation onV , we takeE as the domain and define some
relations among the elements inE.

Letu andv be two vertices ande be an edge fromu to v. What we mean by thehead
of e is the vertexv, while thetail of e is the vertexu. Now the vocabularyE consists
of the binary relationsHeadHead, HeadTail andTailTail on the directed edges, where
the intentions of each predicate are as follows.

– TailTail(e1, e2) means that the tails ofe1 ande2 are the same.
– HeadHead(e1, e2) means that the heads ofe1 ande2 are the same.
– HeadTail(e1, e2) means that the head ofe1 is the tail ofe2.

As above,STRUCT[E] denotes the set of all structures ofE and anE-structure is
a structure inSTRUCT[E]. We assume that the structures inSTRUCT[E] satisfy the
following axioms.

E1. BothHeadHead andTailTail are equivalence relations.
E2. If HeadHead(e1, e2) andHeadTail(e1, e3), thenHeadTail(e2, e3).
E3. If TailTail(e1, e2) andHeadTail(e3, e1), thenHeadTail(e3, e2).
E4. If HeadTail(e1, e3) andHeadTail(e2, e3), thenHeadHead(e1, e2).
E5. If HeadTail(e3, e1) andHeadTail(e3, e2), thenTailTail(e1, e2).
E6. If HeadHead(e1, e2) andTailTail(e1, e2), thene1 = e2.



E7. For all e, ¬HeadTail(e, e).

The purpose of axiomsE1–E5 are for consistency, that is, the structures inSTRUCT[E]
are really graphs in the ordinary sense of graphs as structures inSTRUCT[V]. (See
Proposition 2 below.) AxiomE6 does not allow multiple edges, whereas AxiomE7
does not allow self-loop. AxiomsE6 andE7 are not essential, but they will be useful
for our convenience in the presentation.

As usual,FO[E], MSO[E] and∃MSO[E] denote the classes of first-order, monadic
second-order and existential monadic second-order sentences in the logicE. An E-
sentence is a sentence using the vocabularyE.

We will usually writeE to denote the elements inSTRUCT[E] andDom(E) to
denote the domain ofE . A sentenceϕ in E-logic defines a set ofE-structures via

G(ϕ) := {E | E |= ϕ}.

3 The equivalence between edge and vertex representations

In this section we will show that both the edge and the vertex representations essentially
denote the same class of objects.

Definition 1. LetG ∈ STRUCT[V] andG ∈ STRUCT[E]. We say thatG andE are
structurally equivalentif there exists a 1-1 mappingξ : E(G) → Dom(E) such that for
all (v1, v2), (v2, v3), (v1, v3) ∈ E(G) ande1, e2 ∈ Dom(E),

1. ξ(v1, v2) = e1 andξ(v2, v3) = e2 if and only ifHeadTail(e1, e2);
2. ξ(v1, v2) = e1 andξ(v1, v3) = e2 if and only ifTailTail(e1, e2); and
3. ξ(v1, v3) = e1 andξ(v2, v3) = e2 if and only ifHeadHead(e1, e2).

The 1-1 mappingξ is called a(V,E)-isomorphism.

In other words, ifG andE are structurally equivalent, then they essentially denotethe
same underlying directed graph. The following propositionstates that this notion is
robust.

Proposition 1.

(a) LetG be aV-structure andE1, E2 be E-structures. If bothE1 andE2 are struc-
turally equivalent toG, thenE1 andE2 are isomorphic.

(b) LetG1,G2 beV-structures andE be aE-structure. If bothG1 andG2 are equiva-
lent toE , thenG1 andG2 are isomorphic.

Moreover, the following proposition shows that both edge and vertex representa-
tions are equivalent, in the sense that each graph stored using the standard vertex repre-
sentation can be coded as a graph under the edge representation, and vice versa.

Proposition 2. 1. For everyV-structureG, there exists a unique (up to isomorphism)
E-structureE which is structurally equivalent toG.

2. For everyE-structureE , there exists a unique (up to isomorphism)V-structureG
structurally equivalent toE .



We do not state the full proof, but rather give an example of how the edge to vertex
translation works.

Example 1.Let E be anE-structure, where

– Dom(E) = {e1, e2, e3};
– HeadHead = {(e1, e1), (e2, e2), (e3, e3), (e1, e3), (e3, e1)};
– TailTail = {(e1, e1), (e2, e2), (e3, e3)};
– HeadTail = {(e1, e2), (e2, e3), (e3, e2)}.

The following picture well illustrates the structure ofE :

-e1 R

e2

I

e3

We can get aV-structureG = (V (G), E(G)) equivalent toE as follows. LetH be the
equivalent classes ofHeadHead andT the equivalent classes ofTailTail, i.e. H =
{{e1, e3}, {e2}} andT = {{e1}, {e2}, {e3}}. Then we defineG = (V (G), E(G)) as
follows. The set of vertices isV (G) = H×T , and((H1, T1), (H2, T2)) ∈ E(G) if and
only if T1 ∩H2 6= ∅. It is depicted as follows.

(∅, {e1}) -
({e1, e3}, {e2})

R ({e2}, {e3})

I

4 Vertex and edge representations and their logics

In this section we will study the relation between the expressive power of logics us-
ing vertex or edge vocabularies. We need the following definition. For a setA ⊆
STRUCT[V], we defineEquivE(A) as the set ofE-structures which are equivalent
to the structures inA. Formally,

EquivE(A) = {E ∈ STRUCT[E] | E is structurally equivalent to someG ∈ A}.

Vice versa, for a setB ⊆ STRUCT[E], we define

EquivV(B) = {G ∈ STRUCT[V] | G is structurally equivalent to someE ∈ B}.

By Proposition 1, it is immediate that for every setsA ⊆ STRUCT[V] andB ⊆
STRUCT[E],

A = EquivV(EquivE(A)) andB = EquivE(EquivV(B))



From this we immediately get thatA = EquivV(B) if and only ifB = EquivE(A).
Now we introduce the notion of(V,E)-equivalent, the logical version of Defin-

tion 4.

Definition 2. A V-sentenceϕ and anE-sentenceψ are (V,E)-equivalentif G(ϕ) =

EquivV(G(ψ)), or equivalently,G(ψ) = EquivE(G(ϕ)).

Using the notion of(V,E)-equivalent, we can now compare the expressive power
between vertex and edge representations. Our first proposition shows that the edge rep-
resentation is as least as expressive as the vertex representation:

Proposition 3. LetL in {FO, ∃MSO,MSO}. Then, for every sentenceϕ ∈ L[V], there
exists a sentenceψ ∈ L[E] such thatϕ andψ are (V,E)-equivalent

The proof is pretty straightforward, thus omitted.
The natural question is whether the converse holds, that is,whether for every sen-

tence using the edge representation we can find an equivalentsentence using the vertex
representation. As we show below, it turns out that this is not true even for∃MSO
sentences, nor if the full power ofMSO is allowed.

Theorem 1. 1. There exists a sentenceψ ∈ ∃MSO[E] such that for all sentenceϕ ∈
∃MSO[V], ψ andϕ are not(V,E)-equivalent.

2. There exists a sentenceψ ∈ MSO[E] such that for all sentenceϕ ∈ MSO[V], ψ
andϕ are not(V,E)-equivalent.

Proof. We begin with the∃MSO case. The idea is to use the fact that(s, t)-reachability
in directed graph is not expressible in∃MSO[V] (see, for example, [13, Theorem 7.16]).

For this we need to add two constantss andt to bothV- andE-vocabularies, de-
noting the source and target vertices respectively. The interpretation of the constantss
andt in V-structures are the source and the target vertices, while their intepretation in
E-structures are two edges: one whose tail is the source vertex, and the other whose
head is the target vertex.

We define the following class ofV-structures consists of directed graphs in which
there is a path froms to t.

RV =

{

G ∈ STRUCT[V]

∣

∣

∣

∣

there arev1, . . . , vk s.t.v1 = s andvk = t and
for eachi = 1, . . . , k − 1, (vi, vi+1) ∈ E(G)

}

It can be readily seen that the classEquivE(RV) is expressible in∃MSO[E] in the
following sentence. There exists a setP such that

– there is an edgey in P such thatTailTail(y, s) holds;
– there is an edgey in P such thatHeadHead(y, t) holds;
– for every edgey in P where¬HeadHead(y, t), there is an edgez in P such that

HeadTail(y, z) holds.

This immediately implies that∃MSO[E] is strictly more expressive than∃MSO[V].
This proves the first case of the theorem.



The proof for the second case goes along the same lines, this time using the fact that
directed graph hamiltonicity (i.e., whether a graph is hamiltonian) is not expressible in
MSO[V] (see, for example, [13, Corollary 7.24]). On the other hand,directed graph
hamiltonicity can be expressed in the followingMSO[E] sentence. There exists a setU
such that

– every two edges inU are connected (can be expressed as in the proof above); and
– for every edgex, x is adjacent to some edgey in U (either HeadHead(x, y),

TailTail(x, y), or HeadTail(x, y) holds);

2

Next, we compare the two representations for the case of first-order logic. It turns
out that the edge and vertex representations are equivalentif one disallows second-order
quantification. Moreover, we also show that this transformation involves only a slight
increase in quantifier rank.

Proposition 4. For every sentenceψ ∈ FO[E], there exists a sentenceϕ ∈ FO[V] such
that they are(V,E)-equivalent andqr(ϕ) = 2qr(ψ).

With respect to the vertex to edge transformation, the following is immediate from
the proof of proposition 3

Corollary 1. For every sentenceϕ ∈ FO[V], there exists a sentenceψ ∈ FO[E] such
thatϕ andψ are (V,E)-equivalent andqr(ψ) = qr(ϕ) + 1.

5 Graph pebble automata

In this section we define pebble automata for directed graphs. It is based on the idea of
pebble automata (PA) for words over infinite alphabet [16]. Let D be a set of infinite
symbols. We assume that the nodes in the directed graphs always come fromD.

Briefly the way graph PA withk pebbles works as follows. IfG is a directed
graph, and(a1, b1), . . . , (an, bn) are the edges inE(G), then we feed a sequencew =
(

a1

b1

)

· · ·
(

an

bn

)

into graphk-PA. The pebbles are numbered from1 to k. The automaton
starts the computation with only pebblek on the sequencew. The pebbles are placed
on/lifted fromw in the stack discipline according to the strict order of the pebbles: Peb-
ble i can be placed only when pebblesi + 1, . . . , k are above the sequencew. Each
pebble is intended to mark one position inw and the smallest numbered pebble onw,
or, equivalently the most recently placed pebble, serves asthe head of the automaton.
The automaton moves from one state to another depending on whether the edges read
by the pebbles satisfy theHeadHead,TailTail,HeadTail relations.

Definition 3. A two-way alternating graphk-pebble automaton, (in short graphk-PA)
is a systemA = 〈Q, q0, F, µ〉, where

– Q, q0 ∈ Q, U ⊆ Q andF ⊆ Q are a finite set ofstates, the initial state, the set of
universal statesand the set offinal states, respectively; and

– µ is a finite set of transitions of the formα→ β such that



• α is of the form
(i, P, V00, V10, V01, V11, q)

, wherei ∈ {1, . . . , k}, P, V00, V10, V01, V11 ⊆ {i+ 1, . . . , k}, and
• β is of the form(q,act), whereq ∈ Q and

act ∈ {left,right,place-pebble,lift-pebble}.

Given a sequence of edgesw =
(

a1

b1

)

· · ·
(

an

bn

)

, aconfiguration ofA on⊳w⊲ is a triple
[i, q, θ], wherei ∈ {1, . . . , k}, q ∈ Q andθ : {i, i+ 1, . . . , k} → {0, 1, . . . , n, n+ 1}.
The functionθ defines the position of the pebbles and is called thepebble assignment.
The symbols in the positions0 andn+ 1 are⊳ and⊲, respectively.

The initial configuration isγ0 = [k, q0, θ0], whereθ0(k) = 0 is the initial pebble
assignment. A configuration[i, q, θ] with q ∈ F is called anacceptingconfiguration.

A transition(i, P, V00, V01, V10, V11, p) → β applies to a configuration[j, q, θ], if

(1) i = j andp = q,
(2) P = {l > i : θ(l) = θ(i)},

(3.a) V00 = {l > i : aθ(l) = aθ(i)},
(3.b) V10 = {l > i : bθ(l) = aθ(i)},
(3.c) V10 = {l > i : aθ(l) = bθ(i)}, and
(3.d) V11 = {l > i : bθ(l) = bθ(i)}.

A transition(i, P, V00, V01, V10, V11, p) → β applies to a configuration[j, q, θ], if con-
ditions (1)–(3) above hold.

We define the transition relation⊢A as follows:[i, q, θ] ⊢A [i′, q′, θ′], if there is a
transitionα → (p,act) ∈ µ that applies to[i, q, θ] such thatq′ = p, for all j > i,
θ′(j) = θ(j), and

- if act = left, theni′ = i andθ′(i) = θ(i) − 1,
- if act = right, theni′ = i andθ′(i) = θ(i) + 1,
- if act = lift-pebble, theni′ = i+ 1,
- if act = place-pebble, theni′ = i− 1, θ′(i− 1) = 0 andθ′(i) = θ(i).

As usual, we denote the reflexive, transitive closure of⊢A by ⊢∗
A

.
The acceptance criteria is based on the notion ofleads to acceptancebelow. For

every configurationγ = [i, q, θ],

– if q ∈ F , thenγ leads to acceptance;
– if q ∈ U , thenγ leads to acceptance if and only if for all configurationsγ′ such that
γ ⊢ γ′, γ′ leads to acceptance;

– if q /∈ F ∪U , thenγ leads to acceptance if and only if there is at least one configu-
rationγ′ such thatγ ⊢ γ′, andγ′ leads to acceptance.

A sequence of edges
(

a1

b1

)

· · ·
(

an

bn

)

is accepted byA, if the initial configurationγ0 leads
to acceptance. The languageL(A) consists of all sequence of edges accepted byA. Ob-
viously, the sequencew induces a set of directed edgesGw as explain in the beginning
of this section.

We have presented here the notion ofalternatinggraph PA, since it is easier to
work with for our purposes. However, it is not difficult to define instead the notion
of deterministicgraph PA. The next theorem shows that this choice is without loss of
generality, as both models are equivalent.



Theorem 2. 1. For eachk ≥ 1, two-way non-deterministic graphk-PA and one-way
deterministic graphk-PA have the same recognition power.

2. For eachk ≥ 1, graphk-PA languages are closed under boolean operation.

Next, we introduce the relationship between graph PA and First Order logic.

Theorem 3. For every FOE-sentenceψ, there exists a graphk-PAAψ such thatk =
qr(ψ) andL(A) = G(ψ)).

Proof. The proof is an adaptation of similar result in [19]. First, by Theorem 5, PAk is
closed under boolean operations. Letϕ = Qxkψ(xk) whereQ ∈ {∀, ∃} andψ(xk) is
of quantifier rankk − 1.

The proof is by straightforward induction onk. A k-PAA iterates pebblek through
all possible positions in the input. On each iteration, the automatonA recursively calls
a (k − 1)-PA A′ that accepts the languageL(ψ(xk)), treating the position of pebblek
as the assignment value forxk.

- If Q = ∀, thenA acceptsw if and only ifA′ accepts on all iterations.
- If Q = ∃, thenA acceptsw if and only ifA′ accepts on at least one iteration.

2

Notice that Theorem 3 is optimal in the sense that allk pebbles are needed. More
precisely, it is possible to adapt the proof of [19] to show that for everyk ≥ 2 there
exists an FOE-sentenceψ, with k = qr(ψ), and such thatL(A) 6= G(ψ)) for every
graph PAA using less thank pebbles.

6 When the edges are labeled with symbols from finite alphabet

In the usual graph databases setting the edges are labeled with symbols from a fixed
finite alphabet. Each symbol can be viewed as a unary predicate on the edges.

In this section we extend the vocabulariesV andE with unary predicates on the
edges, which we calledextendedV andE vocabularies. We also extend the definition
of graph pebble automata for edges labeled with symbols froma fixed alphabet.

In the following we letΣ be a fixed finite alphabet.

ExtendedV logic. The vocabulary for the extendedV logic consists ofσ for each
σ ∈ Σ, where eachσ is a binary predicate on the domain. We denote byV

∗ the extended
V logic.

An extendedV-structureis a tupleG = (V, {σ}σ∈Σ) such thatV is the domain of
nodes and the sets{σ}σ∈Σ are disjoints. Intuitively, each relationσ denotes the set of
edges which are labeled with the symbolσ ∈ Σ. Since no edge can be labeled with two
different symbols, the sets{σ}σ∈Σ are disjoint.



ExtendedE logic. The vocabulary consists ofHeadHead,HeadTail,TailTail, {σ}σ∈Σ,
where eachσ ∈ Σ is unary predicate on the domain. We denote byE

∗ the extendedE
logic.

An extendedE-structureis a tupleE = (U,HeadHead,HeadTail,TailTail, {σ}σ∈Σ),
whereU is the domain of edges, the relationsHeadHead,HeadTail,TailTail onU are
defined as before, and eachσ ∈ Σ is a unary predicate onU .

It is straightforward to show that all results on the vocabulariesV andE still hold
for the extended logicsV∗ andE

∗. In the following we will elaborate this point more
precisely.

Definition 4. LetG be anV
∗ structure andE anE

∗ structure. We say thatG andE are
structurally equivalentif there exists a 1-1 mappingξ : E(G) → Dom(E) such that for
all (v1, v2), (v2, v3), (v1, v3) ∈

⋃

σ∈Σ σ ande1, e2 ∈ Dom(E),

1. for eachσ ∈ Σ, (v1, v2) ∈ σ if and only ifξ(v1, v2) ∈ σ;
2. ξ(v1, v2) = e1 andξ(v2, v3) = e2 if and only ifHeadTail(e1, e2);
3. ξ(v1, v2) = e1 andξ(v1, v3) = e2 if and only ifTailTail(e1, e2); and
4. ξ(v1, v3) = e1 andξ(v2, v3) = e2 if and only ifHeadHead(e1, e2).

The 1-1 mappingξ is called a(V∗,E∗)-isomorphism.

Theorem 4. 1. LetL in {FO, ∃MSO,MSO}. Then, for every sentenceϕ ∈ L[V∗],
there exists a sentenceψ ∈ L[E∗] such thatϕ andψ are (V∗,E∗)-equivalent

2. There exists a sentenceψ ∈ ∃MSO[E∗] such that for all sentenceϕ ∈ ∃MSO[V∗],
ψ andϕ are not(V∗,E∗)-equivalent.

3. There exists a sentenceψ ∈ MSO[E∗] such that for all sentenceϕ ∈ MSO[V∗], ψ
andϕ are not(V∗,E∗)-equivalent.

Next we define a graph pebble automata with unary predicates on the edges. It is
also pretty much straightforward extension of Definition 3.In this case the input is of

the form:





σ1

a1

b1



 · · ·





σn
an
bn



 ∈ Σ × D × D, whereσi ∈ Σ is the label of the edge

(ai, bi).
The transitions are of the form:(i, σ, P, V00, V10, V01, V11, p) → (q,act). It is

straightforward to show that all the results in the previoussection can be adapted for
such graph pebble automata. More precisely,

Theorem 5. 1. For PA with unary predicates, for eachk ≥ 1, two-way non-deterministic
graph k-PA and one-way deterministic graphk-PA have the same recognition
power.

2. For eachk ≥ 1, graphk-PA (with unary predicates) languages are closed under
boolean operation.

3. For every FOE
∗-sentenceψ, there exists a graphk-PAAψ with unary predicates

such thatk = qr(ψ) andL(A) = G(ψ)).



7 Future directions

We would like to apply our logics and graph pebble automata ina more application
oriented settings. Also, it is well known that the emptinessproblem for graph pebble
automata is undecidable. One direction that we would like topursue is to charaterize
a subclass of pebble automata, for which the emptiness problem is decidable. We also
would like to define and study similar logics for matroid and extend the graph pebble
automata for abstract matroid.

Acknowledgments:We thank the anonymous referees for many helpful comments. Partial sup-
port provided by EPSRC grant G049165 and FET-Open Project FoX, grant agreement 233599.

References

1. S. Abiteboul, P. Buneman, D. Suciu.Data on the Web: From Relations to Semistructured Data
and XML. Morgan Kauffman, 1999.

2. R. Angles, C. Gutiérrez. Survey of graph database models. ACM Comput. Surv.40(1): (2008).
3. P. Barceló, C. Hurtado, L. Libkin, P. Wood. Expressive languages for path queries over graph-

structured data. InPODS2010.
4. D. Berwanger, D. Janin. Automata on Directed Graphs: EdgeVersus Vertex Marking. In

ICGT2006.
5. B. Courcelle. The expression of graph properties and graph transformations in monadic

second-order logic. InHandbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundations, 1997.

6. I. Cruz, A. Mendelzon, P. Wood. A graphical query languagesupporting recursion. InSIG-
MOD 1987.

7. R. Fagin, L. J. Stockmeyer, and M. Y. Vardi. On monadic NP vs. monadic co-NP.Info. and
Comp., 120(1):78–92, 1995.

8. N. Globerman and D. Harel. Complexity results for multi-pebble automata and their logics.
In ICALP1994.

9. C. Gutierrez, C. Hurtado, A. Mendelzon. Foundations of semantic web databases. InPODS
2004.

10. P. Hliněný. Branch-width, parse trees, and monadic second-order logic for matroids.J.
Comb. Theory, Ser. B 96(3): 325–351 (2006)

11. R. Ladner, R. Lipton and L. Stockmeyer. Alternating Pushdown and Stack Automata.SIAM
Journal of Comp.13(1): 135–155, 1984.

12. U. Leser. A query language for biological networks.Bioinformatics21 (suppl 2) (2005),
ii33–ii39.

13. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
14. A. O. Mendelzon, P. T. Wood. Finding regular simple pathsin graph databases.SIAM J.

Comput., 24(6):1235–1258, 1995.
15. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon. Network motifs:

simple building blocks of complex networks.Science298(5594) (2002), 824–827.
16. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alpha-

bets.ACM ToCL, 5(3):403–435, 2004.
17. R. Ronen and O. Shmueli. SoQL: a language for querying andcreating data in social net-

works. InICDE 2009.
18. T. Schwentick. On Winning Ehrenfeucht Games and MonadicNP. Ann. Pure Appl. Logic,

79(1), 61–92, 1996.
19. T. Tan. Graph reachability and pebble automata over infinite alphabets. InLICS2009.
20. G. Turán. On the definability of properties of finite graphs. Discrete Mathematics,

49(3):291–302, 1984.



A Proof of Proposition 1

Proposition 1.

(a) LetG be aV-structure andE1, E2 be E-structures. If bothE1 andE2 are struc-
turally equivalent toG, thenE1 andE2 are isomorphic.

(b) LetG1,G2 beV-structures andE be aE-structure. If bothG1 andG2 are equiva-
lent toE , thenG1 andG2 are isomorphic.

Proof. We prove part(a). Let ξ1 : E(G) 7→ Dom(E1) andξ2 : E(G) 7→ Dom(E2)
be the(V,E)-isomorphisms fromG to E1 and fromG to E2, respectively. Letf =
ξ2 ◦ ξ−1

1 be the 1-1 mapping fromDom(E1) to Dom(E2). We show thatf establishes
the isomorphism betweenE1 andE2.

Let e, e′ ∈ Dom(E1). We claim that the following holds.

1. HeadHead(e, e′) holds inE1 if and only if HeadHead(f(e), f(e′)) holds inE2.
2. HeadTail(e, e′) holds inE1 if and only if HeadTail(f(e), f(e′)) holds inE2.
3. TailTail(e, e′) holds inE1 if and only if TailTail(f(e), f(e′)) holds inE2.

We prove only for the case ofHeadHead. All the other cases can be proved in a similar
manner.HeadHead(e, e′) holds inE1 if and only if for some(v1, v3), (v2, v3) ∈ E(G),

ξ1(v1, v3) = e andξ1(v2, v3) = e′

if and only if

(v1, v3) = ξ−1
1 (e) and(v2, v3) = ξ−1

1 (e′)

if and only if

ξ2(v1, v3) = f(e) andξ2(v2, v3) = f(e′)

if and only if HeadHead(f(e), f(e′)) holds in E2. This shows thatE1 andE2 are
isomorphic.

Now we prove part(b). Let ξ1 : E(G1) 7→ Dom(E) andξ2 : E(G2) 7→ Dom(E)
be the(V,E)-isomorphisms fromG1 to E and fromG2 to E , respectively. The function
g = ξ−1

2 ◦ ξ1 is a 1-1 mapping fromE(G1) toE(G2). ThatG1 andG2 are isomorphic
follows directly from the fact thatξ1 andξ2 are(V,E)-isomorphisms. 2

B Proof of Proposition 2

Proposition 2.1.For everyG = (V,E) ∈ STRUCT[V], there exists a unique (up to
isomorphism)E-structureE which is structurally equivalent toG.

Proof. We simply takeE , where

– Dom(E) = {(u, v) | (u, v) ∈ E(G)};
– HeadHead((u, v), (w, v)) holds inE for every(u, v), (w, v) ∈ Dom(E);
– HeadTail((u,w), (w, v)) holds inE for every(u, v), (w, v) ∈ Dom(E);



– TailTail((u,w), (u, v)) holds inE for every(u, v), (w, v) ∈ Dom(E).

It is immediate thatE satisfies all the AxiomsE1–E7. 2

Proposition 2.2.For everyE-structureE , there exists a unique (up to isomorphism)
V-structureG structurally equivalent toE .

Proof. Let E be anE-structure. By AxiomE1, the relationsHeadHead andTailTail
are equivalence relations onDom(E). Then, letH andT be the equivalence classes of
HeadHead andTailTail, respectively.

Now we are going to define aV-structureG as follows. The set of verticesV (G) ⊆
(H ∪ {∅}) × (T × {∅}) is as follows.

– ForH,T 6= ∅, (H,T ) ∈ V (G) if and only if there aree ∈ H, e′ ∈ T such that
HeadTail(e, e′);

– (∅, T ) ∈ V (G) if and only if for all e ∈ T , there is noe′ ∈ Dom(E) such that
HeadTail(e′, e); and

– (H, ∅) ∈ V (G) if and only if for all e ∈ H , there is noe′ ∈ Dom(E) such that
HeadTail(e, e′).

The setE(G) of edges is defined as follow.

(H1, T1), (H2, T2) ∈ E(G) if and only if T1 ∩H2 6= ∅.

Now we need to show thatG is structurally equivalent toE . We start the following
claim.

Claim.

C1. For eachH ∈ H, there is exactly oneT ∈ T ∪ {∅} such that(H,T ) ∈ V .
C2. For eachT ∈ T , there is exactly oneH ∈ H ∪ {∅} such that(H,T ) ∈ V .
C3. For everyH ∈ H andT ∈ T , eitherH ∩ T = ∅ or H ∩ T consists of only one

element.

Proof. We prove C1. By Axiom E2, there existsT ∈ T ∪{∅} such that(H,T ) ∈ V (G).
Let (H,T1), (H,T2) ∈ V (G). If T1 = ∅, thenT2 = ∅ too. Thus,T1 = T2, and the
uniqueness ofT is established.

ConsiderT1, T2 6= ∅. There existse ∈ H , e1 ∈ T1, e2 ∈ T2 such thatHeadTail(e, e1)
andHeadTail(e, e2). By Axiom E5, we haveTailTail(e1, e2). Thus,e1, e2 belong to the
sameTailTail-equivalence class. Therefore,T1 = T2.

Claim C2 can be prove similarly using Axioms E3 and E4. Now we prove C3.
SupposeH ∩ T 6= ∅ and e1, e2 ∈ H ∩ T . It means thatHeadHead(e1, e2) and
TailTail(e1, e2). By AxiomE6, e1 = e2. 2

Now we define the following 1-1 mappingξ : E(G) → Dom(E) and show that it
is a(V,E)-isomorphism fromG to E . For every((H1, T1), (H2, T2)) ∈ E(G),

ξ((H1, T1), (H2, T2)) = e, whereT1 ∩H2 = {e}.



By claimC3, T1 ∩H2 is either empty or singleton.
First, we show that the mappingξ is surjective. SinceH andT are equivalence

relations onDom(E), for everye ∈ Dom(E), there existsH ∈ H andT ∈ T such that
e ∈ T ∩H . Thus, the edge((H1, T1), (H2, T2)) ∈ E(G), whereT1 = T andH2 = H ,
is the pre-image ofe, that is,ξ((H1, T1), (H2, T2)) = e.

Now we show thatξ is injective. Suppose

ξ((H1, T1), (H2, T2)) = ξ((H3, T3), (H4, T4)).

By the definition ofξ and by the Claim C3,T1 ∩H2 = T3 ∩H4 = {e}. Thus,T1 and
T3 are theTailTail-equivalence classes that containse. In the same manner,H2 andH4

are theHeadHead-equivalence classes that containe. This means thatT1 = T3 and
H2 = H4.

By Claim C2, there exists exactly oneH such that(H,T1) ∈ V (G), thus, it follows
thatH1 = H3. Similarly, by Claim C1, there exists exactly oneT such that(H2, T ) ∈
V (G), it follows thatT2 = T4. Therefore,((H1, T1), (H2, T2)) = ((H3, T3), (H4, T4)).

The uniqueness ofG (up to isomorphism) follows directly from Proposition 1. This
proves our proposition. 2

C Proof of Proposition 3

Proposition 3.LetL in {FO, ∃MSO,MSO}. Then, for every sentenceϕ ∈ L[V], there
exists a sentenceψ ∈ L[E] such thatϕ andψ are (V,E)-equivalent.

We need the following notion in our proof. Letϕ(x1, . . . , xm) ∈ FO[V] be a for-
mula with its free variable coming from amongx1, . . . , xm. It is possible that some of
the variablesx1, . . . , xm are not used at all insideϕ(x1, . . . , xm). A sign function on
x1, . . . , xm is a functionχ : {x1, . . . , xm} 7→ {Head,Tail}.

For the sake of readability, we sketch the proof only for the case for First Order
logic. We shall explain afterwards how to extend this proof for the other two cases.

The idea of the proof is to define a procedureConstruct-E-formula that computes
the following.

Input: A pair (ϕ(x1, . . . , xm), χ), whereϕ(x1, . . . , xm) ∈ FO[V] with free variables
from amongx1, . . . , xm andχ is a sign function on{x1, . . . , xm}.

Output: A formulaψ(y1, . . . , ym) ∈ FO[E] with free variables from amongy1, . . . , ym
such that for every structurally equivalent pair of structures(G, E) ∈ STRUCT[V]×
STRUCT[E] andξ : E(G) → Dom(E) is the(V,E)-isomorphism, the following
holds.

– For every tuple(v1, . . . , vm) ∈ V (G)m, if G |= ϕ(v1, . . . , vm), thenE |=
ψ(e1, . . . , em), where

ξ−1(ei) =

{

(vi, v) for somev, if αi = Tail
(v, vi) for somev, if αi = Head

– Vice versa, for every tuple(e1, . . . , em) ∈ Dom(E)m, if E |= ψ(e1, . . . , em),
thenG |= ϕ(v1, . . . , vm), where

ξ−1(ei) =

{

(vi, v) for somev, if αi = Tail
(v, vi) for somev, if αi = Head



The desired sentenceψ will then beConstruct-E-formula(ϕ). The definition of this
procedure is as expected, the details can be found in the Appendix.

In order to extend these results for the other two cases, we simply add the fol-
lowing to our transformation: for every quantification∃ X in MSO[V], we have two
quantifications∃ XTail ∃ XHead in MSO[E], or for the quantification∀ X in MSO[V],
∀XTail ∀XHead in MSO[E]. The intention ofXTail is to denote the set of edges whose
tails are inX , whileXHead the set of edges whose heads are inX . The transformation
is then straightforward.

We give the details of all these constructions in the rest of this section. Procedure 1
in the next page we define the desired procedureConstruct-E-formula. The proof that
Construct-E-formula(ϕ(x1, . . . , xm), χ) outputs the desiredψ(y1, . . . , ym) according
to the sign functionχ can be shown by straightforward induction on the quantifier rank
of ϕ(x1, . . . , xm).

Procedure 2 is for the extension to theMSO part.



Procedure 1Construct-E-formula(ϕ(x1, . . . , xm), χ)

1: if ϕ(x1, . . . , xm) isE(xi, xj) then
2: If χ(xi) = Head and χ(xj) = Head, output the formula:∃zHeadTail(yi, z) ∧

HeadHead(z, yj).
3: If χ(xi) = Head and χ(xj) = Tail, output the formula:∃zHeadTail(yi, z) ∧

HeadTail(z, yj).
4: If χ(xi) = Tail andχ(xj) = Tail, output the formula:∃zTailTail(yi, z)∧HeadTail(z, yj).
5: end if
6: if ϕ(x1, . . . , xm) is xi = xj then
7: If χ(xi) = Head andχ(xj) = Head, output the formula:HeadHead(yi, yj).
8: If χ(xi) = Head andχ(xj) = Tail, output the formula:HeadTail(yi, yj).
9: If χ(xi) = Tail andχ(xj) = Tail, output the formula:TailTail(yi, yj).

10: end if
11: if ϕ(x1, . . . , xm) isϕ1(x1, . . . , xm)⊗ ϕ2(x1, . . . , xm), where⊗ ∈ {∧,∨} then
12: Letψ1(y1, . . . , ym) = Construct-E-formula(ϕ1(x1, . . . , xm), χ).
13: Letψ2(y1, . . . , ym) = Construct-E-formula(ϕ2(x1, . . . , xm), χ).
14: Output the formula:ψ1(y1, . . . , ym)⊗ ψ2(y1, . . . , ym).
15: end if
16: if ϕ(x1, . . . , xm) is¬ϕ1(x1, . . . , xm) then
17: Letψ1(y1, . . . , ym) = Construct-E-formula(ϕ1(x1, . . . , xm), χ).
18: Output the formula:¬ψ1(e1, . . . , em).
19: end if
20: if ϕ(x1, . . . , xm) isQx ϕ1(x1, . . . , xm, x), whereQ ∈ {∃, ∀} then
21: Letψ1(y1, . . . , ym, y) = Construct-E-formula(ϕ1(x1, . . . , xm, x), χ ∪ {(x,Head)}).
22: Letψ2(y1, . . . , ym, y) = Construct-E-formula(ϕ1(x1, . . . , xm, x), χ ∪ {(x,Tail)}).
23: If Q = ∃, output the formula:∃y ψ1(y1, . . . , ym, y) ∨ ψ2(y1, . . . , ym, y).
24: If Q = ∀, output the formula:∀y ψ1(y1, . . . , ym, y) ∧ ψ2(y1, . . . , ym, y).
25: end if

Procedure 2Extension ofConstruct-E-formula(ϕ(x1, . . . , xm), χ) for MSO
1: if ϕ(x1, . . . , xm) is xi ∈ X then
2: if χ(xi) = Head, then output the formula:∃z(y1 ∈ XHead ∧ HeadHead(yi, z)).

if χ(xi) = Tail, then output the formula:∃z(z ∈ XTail ∧ TailTail(yi, z)).
3: end if



D Proof of proposition 4

We define ProcedureConstruct-V-formula that computes the following.

Input: A formulaψ(y1, . . . , ym) ∈ FO[E] with free variables from amonge1, . . . , em.
Output: A formulaϕ(x1, x

′
1, . . . , xm, x

′
m) ∈ FO[E] with free variables from among

x1, x
′
1, . . . , xm, x

′
m such that for every structurally equivalent pair of structures

(G, E) ∈ STRUCT[V] × STRUCT[E] andξ : E(G) → Dom(E) is the(V,E)-
isomorphism, the following holds.

– For every tuple(v1, . . . , vm) ∈ V (G)m, if G |= ϕ(v1, . . . , vm), thenE |=
ψ(e1, . . . , em), where

ξ−1(ei) =

{

(vi, v) for somev, if αi = Tail
(v, vi) for somev, if αi = Head

– Vice versa, for every tuple(e1, . . . , em) ∈ Dom(E)m, if E |= ψ(e1, . . . , em),
thenG |= ϕ(v1, . . . , vm), where

ξ−1(ei) =

{

(vi, v) for somev, if αi = Tail
(v, vi) for somev, if αi = Head

The desired sentenceϕ will then beConstruct-V-formula(ψ). Algorithm 3 describes
in details the procedureConstruct-V-formula.

Procedure 3Construct-V-formula(ψ(e1, . . . , em)

1: if ψ(e1, . . . , em) is ei = ej then
2: Output the formula:xi = xj ∧ yi = yj .
3: end if
4: if ψ(e1, . . . , em) is HeadHead(ei, ej) then
5: Output the formula:yi = yj .
6: end if
7: if ψ(e1, . . . , em) is HeadTail(ei, ej) then
8: Output the formula:yi = xj .
9: end if

10: if ψ(e1, . . . , em) is TailTail(ei, ej) then
11: Output the formula:xi = xj .
12: end if
13: if ψ(e1, . . . , em) isQe ψ1(e1, . . . , em, e), whereQ ∈ {∃,∀} then
14: Letϕ1(x1, y1, . . . , xm, ym, x, y) = Construct-V-formula(ψ1(e1, . . . , em, e)).

15: Output the formula:QxQy
“

E(x, y)→ ϕ1(x1, y1, . . . , xm, ym, x, y)
”

.

16: end if

It can be shown by straightforward induction on the quantifier rank ofψ(y1, . . . , ym)
thatConstruct-V-formula(ψ(y1, . . . , ym)) outputs the desiredϕ(x1, x

′
1, . . . , xm, x

′
m).



E The Equivalence between Alternating and Deterministick-PA

In this section we will prove that for allk ≥ 1, two-way alternatingk-PA and one-
way deterministick-PA have the same recognition power. As mentioned earlier, the
proof is a direct generalization of the same proof for the equivalence between two-way
alternating and one-way deterministic finite state automata in [11].

LetA = 〈Σ,Q, q0, F, µ, U,N,D〉 be a two-way alternatingk-PA. We show how to
simulateA with a one-way deterministick-PAA′. We start by normalizing the behavior
of A as follows.

1. On input word⊳w⊲,A starts the computation with pebblek on the right-end marker
⊲.

2. The stateQ is partitioned intoQ1 ∪ · · · ∪ Qk, whereQi is the set of states when
pebblei is the head pebble.
Similarly, we denote byUi, Ni andDi the set of universal, nondeterministic and
deterministic states, respectively andµi the set of transitions when pebblei is the
head pebble.

3. EachQi is further partitioned intoQi,stay∪Qi,right∪Qi,left∪Qi,place∪Qi,lift,
where

– if (i, P, V00, V01, V10, V11, q) → (p,stay), thenq ∈ Qi,stay;
– if (i, P, V00, V01, V10, V11, q) → (p,right), thenq ∈ Qi,right;
– if (i, P, V00, V01, V10, V11, q) → (p,left), thenq ∈ Qi,left;
– if (i, P, V00, V01, V10, V11, q) → (p,place-pebble), thenq ∈ Qi,place;

and
– if (i, P, V00, V01, V10, V11, q) → (p,lift-pebble), thenq ∈ Qi,lift.

4. The automaton can only do universal and existential branching while the head peb-
ble is stationery.
That is,(i, P, V00, V01, V10, V11, q) → (p,act) andq ∈ U∪N , thenact = stay.

5. The automaton places the new pebble on the right-end marker ⊲.
6. The automaton lifts the pebble only when it is on the right-end marker⊲.
7. When the head pebble is reading the left-end and the right-end markers⊳ and⊲, the

automaton does not place new pebble.
8. Only pebblek can enter the final states and it does so only after it reads theright-

end marker⊲.

We will need the following notions. A pebble-i assignmentθ is a pebble assignment
when the pebblesi, i + 1, . . . , k are on the input word. That is, the domain ofθ is
{i, i+ 1, . . . , k}.

Let θ be a pebble-i assignment on an input wordw =
(

a1

a1

)

· · ·
(

an

dn

)

. We define
Succ(θ) = θ′ as follows.

– If θ(i) ≤ n, thenθ′ is a pebble-i assignment, where for eachj = i, i+ 1, . . . , k,

θ′(j) =

{

θ(j), if j = i+ 1, . . . , k,
θ(j) + 1, if j = i.

– If θ(i) = n + 1, thenθ′ is pebble-(i + 1) assignment such that for eachj =
i+ 1, . . . , k, θ′(j) = θ(j).



Similarly, for a pebble-i assignmentθ, we can definePred(θ) as follows.

– If 1 ≤ θ(i), thenθ′ is a pebble-i assignment, where for eachj = i, i+ 1, . . . , k,

θ′(j) =

{

θ(j), if j = i+ 1, . . . , k,
θ(j) − 1, if j = i.

– If θ(i) = 0, thenθ′ is pebble-(i+1) assignment such that for eachj = i+1, . . . , k,
θ′(j) = θ(j).

In the following subsections we present the determinization ofA, starting from pebble1
and finishing with pebblek, in the following subsections. We will denote byA(i) the
equivalent automaton ofA, where the behavior of pebbles1, . . . , i are one-way and
deterministic. By this notation,A(k) is the equivalent one-way, deterministic version of
A.

E.1 Determinizing pebble1

The determinization follows closely the one described in [11, Section 4]. For complete-
ness, we present it here. The end result of the determinization is such that pebble 1 is
placed in the left-end marker⊳ and lifted when it reaches the right-end marker⊲.

We need a few notations. For eachq ∈ Q, we define a new symbol̄q. We denote by
Q̄ = {q̄ : q ∈ Q}. If A ⊆ Q, thenĀ = {p̄ : p ∈ A}. We define aterm to be an object
of the formq → A whereq ∈ Q andA ⊆ Q ∪ Q̄. A termq → A is closed, if A ⊆ Q̄.
A partial responseis a set of terms, while aresponseis a set of closed terms.

Let w =
(

a1

d1

)

· · ·
(

an

dn

)

be a data word andθ be a pebble-1 assignment. The de-
terminization of pebble1 depends on the following three concepts:responseR(w, θ),
partial responsePR(w, θ) and theproof systemS(R, P, V00, V01, V10, V11). We will
define these concepts one by one starting with the responseR(w, θ).

The responseR(w, θ) is defined as follows. For a setS ⊆ Q, a closed termq → S̄
belongs toR(w, θ) if there exists a computation treeT of A onw whose root is labelled
with [1, q, θ] such that

– if θ(1) ≤ n, then each leaf is labelled with[1, p,Succ(θ)] for somep ∈ S;
– if θ(1) = n+ 1, then each leaf is labelled with[2, p,Succ(θ)] for somep ∈ S;
– each internal node in the computation treeT is labelled with[1, q′, θ′], whereq′ ∈
Q and0 ≤ θ′(1) ≤ θ(1); and

– for eachp ∈ S, there exists a leaf labelled with[1, p,Succ(θ)].

Remark 1.Letw1, w2 be data words. Letθ1 andθ2 be pebble-1 assignments on⊳w1⊲
and⊳w2⊲, respectively, such thatθ1(1) = θ2(1) = 0. That is, on both assignments
pebble 1 is reading the left-end marker⊳. Then,R(w1, θ1) = R(w2, θ2).

Now we define the partial responsePR(w, θ) as follows. For a setS ⊆ Q ∪ Q̄, a
termq → S belongs toPR(w, θ) if there exists a computation treeT of A onw whose
root is labelled with[1, q, θ] such that

– if θ(1) ≤ n, then each leaf is labelled with either[1, p,Succ(θ)] for somep̄ ∈ S or
[1, p, θ] for somep ∈ S;



– if θ(1) = n+ 1, each leaf is labelled with either[2, p,Succ(θ)] for somep̄ ∈ S or
[1, p, θ] for somep ∈ S;

– each internal node in the computation treeT is labelled with[1, q′, θ′], whereq′ ∈
Q1 and0 ≤ θ′(1) ≤ θ(1);

– if θ(1) ≤ n, for eachp̄ ∈ S, there exists a leaf labelled with[1, p,Succ(θ)];
– if θ(1) = n + 1, for eachp̄ ∈ S, there exists a leaf labelled with[2, p,Succ(θ)];

and
– for eachp ∈ S, there exists a leaf labelled with[1, p, θ].

We call the treeT awitnessfor q → S ∈ PR(w, θ).
We define aproof systemfor S(R, P, V00, V01, V10, V11), wherea ∈ Σ, P, V ⊆

{2, . . . , k} and a responseR, as follows.

1.
q → {q}

2.
q → B ∪ {p}, p→ C

q → B ∪ C

3.
(1, P, V00, V01, V10, V11, q) → (pi,stay) ∈ µ1 for eachi = 1, . . . ,m andq ∈ U

q → {p1, . . . , pm}

4.
(1, P, V00, V01, V10, V11, q) → (p,stay) ∈ µ1 andp /∈ U

q → {p}

5.
(1, P, V00, V01, V10, V11, q) → (p,right) ∈ µ1

q → {p̄}

6.
(1, P, V00, V01, V10, V11, q) → (p,left) ∈ µ1 andp→ S̄ ∈ R andS ⊆ Q1

q → S

7.
(1, P, V00, V01, V10, V11, q) → (p,lift-pebble) if a = ⊲ andP, V = ∅

q → {p̄}

We denote by TH(R, P, V00, V01, V10, V11) be the set of terms “provable” using the
proof systemS(R, P, V00, V01, V10, V11).

The following claim is the pebble 1 counter part of a similar claim in [11, pp. 149].

Claim. For every wordw =
(

a1

b1

)

· · ·
(

an

bn

)

and pebble-1 assignmentθ on⊳w⊲,

PR(w, θ) = TH(R(w,Pred(θ)), P, V00 , V01, V10, V11),

where

– 1 ≤ θ(1) ≤ n+ 1;
– P = {l : θ(l) = θ(1)};
– V00 = {l > i : aθ(l) = aθ(i)};
– V10 = {l > i : bθ(l) = aθ(i)};
– V10 = {l > i : aθ(l) = bθ(i)}; and
– V11 = {l > i : bθ(l) = bθ(i)}.

Proof. The proof follows closely the similar proof in [11]. First, we show thatPR(w, θ) ⊆
TH(R(w,Pred(θ)), P, V00, V01, V10, V11) inductively on the size of witnesses for terms
in PR(w, θ). Let q → S ∈ PR(w, θ). The basis is when the witness forq → S ∈



PR(w, θ) consists of a single node with the label[1, q, θ]. Then,S = {q} andq → {q}
is provable using rule 1.

For the induction step, supposeq → S ∈ PR(w, θ) is witnessed by a treeT with
more than one node. There are five cases to consider:

1. The stateq is a universal state, that is,q ∈ U1. Let

(1, P, V00, V01, V10, V11, q) → (p1,stay) ∈ µ1;

...

(1, P, V00, V01, V10, V11, q) → (pm,stay) ∈ µ1;

In this case, the root ofT is labelled with [1, q, θ] and its immediate children
π1, . . . , πm are labelled with[1, p1, θ], . . . , [1, pm, θ], respectively. The complete
subtree rooted atπi witnessespi → Si ∈ PR(w, θ), whereSi is the set of states in
the labels of the leafs in the subtree. Furthermore,S1∪· · ·∪Sm = S. By the induc-
tion hypothesis,pi → Si ∈ TH(R(w,Pred(θ)), P, V00, V01, V10, V11). Combining
rules 2 and 3, we obtainq → S ∈ TH(R(w,Pred(θ)), P, V00, V01, V10, V11).

2. The stateq is a nondeterministic state, that is,q ∈ N1. Let

(1, P, V00, V01, V10, V11, q) → (p1,stay) ∈ µ1;

...

(1, P, V00, V01, V10, V11, q) → (pm,stay) ∈ µ1;

Or, if q is a deterministic state, i.e.q ∈ D1, thenm = 1. This case is just like case 1
above, except that we use rules 4 and 2.

3. (1, P, V00, V01, V10, V11, q) → (p,right) ∈ µ1. In this case,S = {p̄}. By rule 5,
we haveq → {p̄} ∈ TH(R(w,Pred(θ)), P, V00 , V01, V10, V11).

4. (1, P, V00, V01, V10, V11, q) → (p,lift-pebble) ∈ µ1, wherea = ⊲, P, V = ∅.
In this case,S = {p̄}. By rule 7, we haveq → {p̄} ∈ TH(R(w,Pred(θ)), P, V00, V01, V10, V11).

5. (1, P, V00, V01, V10, V11, q) → (p,left) ∈ µ1. The childπ of the root ofT has
the label[1, p,Pred(θ)]. Every path fromπ to a leaf ofT must pass through a node
with label of the form[1, r, θ]. That is, pebble 1 must return to the positionθ(1)
again.
LetΛ = {ρ1, . . . , ρl} be the descendants ofπ with the properties
(a) eachρi is labelled with[1, ri, θ],
(b) no node betweenπ andρi has a label with the third coordinateθ,
(c) every path fromπ to a leaf passes through a node inΛ.
Let T ′ be the unique subtree ofT whose root isπ and whose set of leaves is
Λ. Then,T ′ is a witness ofp → {r̄1, . . . , r̄l} ∈ PR(w,Pred(θ)). Since this
is a closed term, thenp → {r̄1, . . . , r̄l} ∈ R(w,Pred(θ)). By rule 6, q →
{r1, . . . , rl} ∈ TH(R(w,Pred(θ)), P, V00, V01, V10, V11). The complete subtree
of T rooted atρi witnessesri → Si ∈ PR(w, θ), whereSi is the set of states
in the labels of the leafs in the subtree. By the induction hypothesis,ri → Si ∈
TH(R(w,Pred(θ)), P, V00, V01, V10, V11). Applying rule 2, we obtainq →

⋃

1≤i≤l Si ∈
TH(R(w,Pred(θ)), P, V00, V01, V10, V11). Since

⋃

1≤i≤l Si = S, this case fol-
lows.



Now we prove that TH(R(w,Pred(θ)), P, V00, V01, V10, V11) ⊆ PR(w, θ) by in-
duction on the proof length. Supposeq → S ∈ TH(R(w,Pred(θ)), P, V00, V01, V10, V11)
has a proof length≥ 1.

– If the last step of the proof (from whichq → S is concluded) is an application
of rules 1, 3, 4, 5, or 7, then it is immediate that there is a computation tree that
witnessesq → S ∈ PR(w, θ).

– If the last step of the proof is an application of rule 2, then supposeq → A ∪ {p}
andp→ B are the antecedents from whichq → A∪B is concluded (S = A∪B).
By the induction hypothesis, there are computation treesT andT ′ which witness
q → A ∪ {p} andp → B, respectively. If each leaf ofT labelled with[1, p, θ] is
replaced with the treeT ′ (whose root is labelled with[1, p, θ]), then the resulting
tree witnessesq → A ∪B ∈ PR(w, θ).

– If the last step of the proof is an application of rule 6, then suppose thatq → A is
concluded from

(1, P, V00, V01, V10, V11, q) → (p,left) andp→ S̄ ∈ R(w,Pred(θ)) andS ⊆ Q1.

Sincep→ S̄ ∈ R(w,Pred(θ)), then there exists a computation treeT ′ such that
• the root ofT ′ is labelled with[1, p,Pred(θ)];
• the leaf ofT ′ is labelled with[1, r, θ] for somer ∈ S;
• for eachr ∈ S, there is a leaf ofT ′ labelled with[1, r, θ].

Now we can construct a treeT such that
• the root ofT is labelled with[1, q, θ];
• the root has only one immediate childπ labelled with[1, p,Pred(θ)];
• the subtree rooted atπ is the treeT ′.

The treeT is a witness of the termq → S ∈ PR(w, θ).

This completes the proof of the claim.

We denote by CTH(R, P, V00, V01, V10, V11) the set of closed terms in TH(R, P, V00, V01, V10, V11).
Since, by Claim E.1, TH(R(w,Pred(θ)), P, V00, V01, V10, V11) = PR(w, θ), thus,

CTH(R(w,Pred(θ)), P, V00 , V01, V10, V11) = R(w, θ).

The determinization ofµ1 is done precisely by means of this equation. Loosely speak-
ing, the set of “states” of the deterministic version ofµ1 are roughly the set of responses
R(w, θ). There are only finitely many such responses. From the “state” R(w,Pred(θ)),
if pebble 1 reads the “input”P, V00, V01, V10, V11, then it deterministically moves right
and enters the state(R, θ).

In the following paragraphs we will describe this idea more precisely. But before
we do that, we need to make a bit of modification on the behaviorof pebble2.

Let Q̃2, µ̃2, Ũ2, Ñ2, D̃2 be the modification ofQ2, µ2, U2,N2 ,D2, respectively, as
follows. For a setB, we write2B to denote the power set ofB.

– Q̃2 = Q2 ∪ 2Q2 ∪ 22Q2 ;
– Ũ2 = U2 ∪ (2Q2 − {∅});
– Ñ2 = N2 ∪ 22Q2 ;



– D̃2 = D2.

The set of transitions̃µ2 is the setµ2 plus the following transitions.

1. For everya ∈ Σ, P, V ⊆ {3, . . . , k}, S1, . . . , Sm ⊆ Q2,

(2, P, V00, V01, V10, V11, {S1, . . . , Sm}) → (Si,stay) ∈ µ̃2, for eachi = 1, 2, . . . ,m.

That is, from the state{S1, . . . , Sm} ∈ Q̃2 pebble2 performs existential branching.
Recall that the state{S1, . . . , Sm} ∈ Q̃2 is a nondeterministic state.

2. For everya ∈ Σ, P, V ⊆ {3, . . . , k}, S ⊆ Q2, we have the following transition in
µ̃2.

(2, P, V00, V01, V10, V11, S) → (q,stay) ∈ µ̃2, for eachq ∈ S.

That is, from the stateS ⊆ Q2 pebble2 performs universal branching.
Recall that the stateS ∈ Q̃2 is a universal state.

3. We replace each transition(2, P, V00, V01, V10, V11, q) → (p,place-pebble) ∈
µ2 with the following transition

(2, P, V00, V01, V10, V11, q) → ((p, ∅),place-pebble) ∈ µ̃2.

In other words,̃µ2 no longer contains the transition(2, P, V00, V01, V10, V11, q) →
(p,place-pebble). Rather, it contains the transition(2, P, V00, V01, V10, V11, q) →
((p, ∅),place-pebble).

All other transitions inµ2 remain inµ̃2.
Now we define the sets of statesQ′

1 and the set of transitionsµ′
1 for deterministic

pebble 1. We use the “prime” sign, as inµ′
1, to indicate that the behavior of pebble 1 (as

described byµ′
1) is deterministic. On the other hand, the “tilde” sign, as inµ̃2, is used

to indicate that the behavior of pebble 2 (as described byµ̃2) is still alternating.

– Q′
1 consists of elements of the form(q,R), whereq ∈ Q1 andR is a response;

– µ′
1 consists of the following transitions. For eachq ∈ Q1,
1. (1, ⊳, ∅, ∅, (q, ∅)) → ((q,R),right) ∈ µ′

1, whereR = R(w, θ), for somew
andθ such thatθ(1) = 0.
By Remark 1, suchR(w, θ) is well defined.

2. For every responseR andP, V ⊆ {2, . . . , k},

(1, P, V00, V01, V10, V11, (q,R)) → ((q,CTH(R, P, V00, V01, V10, V11)),right) ∈ µ′
1.

3. (1, ⊲, ∅, ∅, (q,R)) → ({S1, . . . , Sm},lift-pebble), where for eachj =
1, . . . ,m,
• q → S̄j ∈ CTH(R, ⊲, ∅, ∅);
• Sj ⊆ Q2.

Intuitively transitions in item 3 ofµ′
1 mean the following. LetR = R(w, θ) andθ

is pebble-1 assignment, whereθ(1) = n+1 andn is the length ofw. Let θ′ is pebble-2
assignment such that fori = 2, . . . , k, θ(i) = θ′(i).

That the closed termq → S̄j belongs to CTH(R, ⊲, ∅, ∅) means that there exists a
computation treeT such that



– the root is labelled with the configuration[1, q, θ];

– all the non leaf nodes are labelled with 1-configurations, that is, configurations
where the head pebble is pebble 1;

– all the leaf is labelled with the configuration[1, p, θ′], for somep ∈ Sj ;

– for eachp ∈ Sj , there exists a leaf with the configuration[2, p, θ′].

Since CTH(R, ⊲, ∅, ∅) contains the closed termsq → S̄1, . . . , q → S̄m, it means that
there are onlym possible “choices” of sets of states once pebble 1 is lifted,that is,
S1, . . . , Sm. See picture below.

[1, q, θ]

/ w
[2, p1, θ

′] · · · · · · · · · [2, pl, θ
′]

| {z }

S1={p1,...,pl}

· · · · · ·

[1, q, θ]

/ w
[2, t1, θ

′] · · · · · · · · · [2, ts, θ
′]

| {z }

Sm={t1,...,ts}

So, once we have deterministically simulated pebble 1, we have to indicate to the
automaton that there arem possible “choices” of sets of states for pebble 2, hence,
the state{S1, . . . , Sm} ∈ 22Q2 . From this state the automaton nondeterministically
chooses which set of states pebble 2 enters. Suppose it chooses the setSj. Then, from
Sj the automaton branches conjunctively into each state inSj . See picture below.



[1, (q, ∅), θ0]

?

[2, {S1, . . . , Sm}, θ
′]

?

[2, S1, θ
′]

w
[2, p1, θ

′]
/

[2, pl, θ
′]· · ·

| {z }

S1={p1,...,pl}

· · · · · ·

[1, (q, ∅), θ0]

?

[2, {S1, . . . , Sm}, θ
′]

?

[2, Sm, θ
′]

w
[2, t1, θ

′]
/

[2, ts, θ
′]· · ·

| {z }

Sm={t1,...,ts}

We now show thatµ1 ∪ µ2 andµ′
1 ∪ µ̃2 are “equivalent.” Recall that for a subset

X ⊆ µ, recall thatγ ⊢X γ′ denotes that the relationγ ⊢ γ′ is obtained by means of a
transition inX .

Letw =
(

a1

b1

)

· · ·
(

an

bn

)

be a data word andθ be a pebble-2 assignment on⊳w⊲. For
eachi = 0, . . . , n+ 1, we also denote byθi a pebble-1 assignment such that

θi(j) =

{

θ(j), if j = 2, . . . , k,
i, if j = 1.

First, we show that transitions inµ1 andµ2 can be “correctly” simulated by transi-
tions inµ′

1 andµ̃2. Suppose

[2, p1, θ] ⊢µ2
[1, p2, θn+1] ⊢

∗
µ1

[1, p3, θn+1] ⊢µ1
[2, p4, θ].

Thus, this means that there exists a closed termp2 → S̄ ∈ R(w, θn+1) such that
S ⊆ Q2 andp4 ∈ S.

Now we are going to show that there exists a “deterministic” run by means of the
transitions inµ′

1 andµ̃2 from the configuration[2, p1, θ] to the configuration[2, p4, θ].
By the construction of̃µ2, we have

[2, p1, θ] ⊢µ̃2
[1, (p2, ∅), θ0]. (1)

Then, by the construction ofµ′
1,

[1, (p2, ∅), θ0] ⊢µ′

1
[1, (p2,R(⊳w⊲, θ0)), θ1]; (2)



Furthermore, applying Claim 1 repeatedly, we obtain

[1, (p2,R(⊳w⊲, θ0)), θ1] ⊢µ′

1
[1, (p2,R(⊳w⊲, θ1)), θ2]

[1, (p2,R(⊳w⊲, θ1)), θ2] ⊢µ′

1
[1, (p2,R(⊳w⊲, θ2)), θ3]

...

[1, (p2,R(⊳w⊲, θn−1)), θn] ⊢µ′

1
[1, (p2,R(⊳w⊲, θn)), θn+1]

Thus, we obtain

[1, (p2,R(⊳w⊲, θ0)), θ1] ⊢∗
µ′

1

[1, (p2,R(⊳w⊲, θn)), θn+1] (3)

Again, by the construction ofµ′
1, we have

[1, (p2,R(⊳w⊲, θn)), θn+1] ⊢µ′

1
[2, {S1, . . . , Sm}, θ], (4)

where for eachj = 1, . . . ,m, p2 → Sj ∈ CTH(⊳w⊲, θn+1).
Suppose thatS1 = S. Again, by the construction of̃µ2, we have

[2, {S1, . . . , Sm}, θ] ⊢µ̃2
[2, S1, θ]. (5)

and sincep4 ∈ S,
[2, S1, θ] ⊢µ̃2

[2, p4, θ]. (6)

Now, combining Equations(1)–(6), we obtain the run

1. [2, p1, θ] ⊢µ̃2
[1, (p2, ∅), θ0];

2. [1, (p2, ∅), θ0] ⊢∗
µ′

1

[1, (p2,R(⊳w⊲, θn)), θn+1];
3. [1, (p2,R(⊳w⊲, θn)), θn+1] ⊢µ′

1
[2, {S1, . . . , Sm}, θ];

4. [2, {S1, . . . , Sm}, θ] ⊢µ̃2
[2, S1, θ];

5. [2, S1, θ] ⊢µ̃2
[2, p4, θ].

Vice versa, now we show that transitions inµ′
1 andµ̃2 can be “correctly” simulated

by transitions inµ1 andµ2. Suppose we have the following relations:

1. [2, q, θ] ⊢µ̃2
[1, (p, ∅), θ0];

2. [1, (p, ∅), θ0] ⊢µ′

1
[1, (p,R(⊳w⊲, θ0)), θ1];

3. [1, (p,R(⊳w⊲, θ0)), θ1] ⊢µ′

1
· · · ⊢µ′

1
[1, (p,R(⊳w⊲, θn)), θn+1];

4. [1, (p,R(⊳w⊲, θn)), θn+1] ⊢µ′

1
[2, {S1, . . . , Sm}, θ];

5. [2, {S1, . . . , Sm}, θ] ⊢µ̃2
[2, Si, θ];

6. [2, Si, θ] ⊢µ̃2
[2, s, θ], for eachs ∈ Si.

Now, from the construction of̃µ2, Relation (1) implies that the relation below holds.

[2, q, θ] ⊢µ2
[1, p, θn+1].

From the construction ofµ′
1 and Claim E.1, Relations (2)–(4) implies that

p→ S̄i ∈ R(⊳w⊲, θn+1), whereSi ⊆ Q2.

This means that for eachs ∈ Si,

[1, p, θn+1] ⊢
∗
µ1

[2, s, θ], wheres ∈ Si.

This completes the proof thatµ1 ∪ µ2 are “equivalent” toµ′
1 ∪ µ̃2.



E.2 Determinizing pebblei

Now, assuming that the behavior of pebbles1, . . . , i−1 are one-way and deterministic,
we will determinize pebblei. The end result of the determinization is such that pebble i
is placed in the left-end marker⊳ and lifted when it reaches the right-end marker⊲.

The idea is very similar to the one in Subsection E.1, with theexception that now
during the computation pebblei can place pebble(i − 1). The effect of such place-
ment is the state of pebblei changes. Figure 1 below is an example of a sequence of
moves of pebble2 of a two pebble automatonA on

(

a1

b1

)(

a2

b2

)(

a3

b3

)(

a4

b4

)

. Recall by our
normalization ofA in Section 3, the computation starts with pebble 2 above the right-
end marker⊲. We assume that the behavior of pebble 1 is already determinized in the
manner explained in the previous subsection.

⊳
`

a1

a1

´ `
a2

d2

´ `
a3

a3

´ `
a4

a4

´
⊲

pebble2 q5 ← q4 ← q3 ← (q2, q
′
2) ← q1 ← q0

→֒ → q6 → q7 → q8 → q9 → q10 → qf

pebble1
(q2, q

′
2)

q11 → q12 → q13 → q14 → q15 → q16

Fig. 1. A sequence of moves ofA on
`

a1

b1

´`
a2

b2

´`
a3

b3

´`
a4

b4

´
.

For example, the pair(q2, q′2) in the run of pebble 1 indicates that pebble 2 first
arrives at the symbol

(

a3

a3

)

when pebble 2 is in the stateq2, upon which pebble 1 is
placed. When pebble 1 has finally finished its computation, that is, when it is lifted after
reading the right-end marker⊲, A enters the stateq′2 from which pebble 2 continues
the computation. This pair(q2, q′2) can be viewed as a termq2 → {q′2} and has to be
included as an “axiom” in the proof system TH(R, a, ∅, ∅). This will be made more
precise in the next paragraphs.

Let Q1, . . . , Qi−1 be the set of states of pebbles1, . . . , (i − 1), respectively, and
µ1, . . . , µi−1 be the set of transitions of pebbles1, . . . , (i−1), respectively. We assume
that the behavior of pebbles1, . . . , i− 1, according toµ1, . . . , µi−1, is deterministic.

Letw =
(

a1

a1

)

· · ·
(

an

an

)

andθ be a pebble-i assignment onw. We define a set of terms
℘(µi, w, θ) as follows. Forp, q ∈ Qi, the termp → {q} ∈ ℘(µi, w, θ) if and only if
there existss1, s2 ∈ Qi−1 such that

1. (i, P, V00, V01, V10, V11, p) → (s1,place-pebble) ∈ µi, where
– P = {l > i : θ(l) = θ(i)};
– V00 = {l > i : aθ(l) = aθ(i)};
– V10 = {l > i : bθ(l) = aθ(i)};
– V10 = {l > i : aθ(l) = bθ(i)}; and
– V11 = {l > i : bθ(l) = bθ(i)}.

2. [i−1, s1, θ0] ⊢∗ [i−1, s2, θn+1] is an(i−1)-run, whereθ0(i−1) = 0, θn+1(i−1) =
n+ 1 andθ0(j) = θn+1(j) = θ(j), for all j = i, . . . , k.

3. (i, ⊲, ∅, ∅, s2) → (q,lift-pebble) ∈ µi−1.



Since pebbles1, . . . , (i − 1) all behave deterministically, for eachp ∈ Qi,place, there
exists exactly oneq ∈ Qi such that the termp→ {q} ∈ ℘(Ai, w, θ).

For a pebble-i assignmentθ, we define the responseR(w, θ) as follows. For a set
S ⊆ Q, a closed termq → S̄ belongs toR(w, θ) if there exists a computation treeT
of A onw whose root is labelled with[i, q, θ] such that

– if θ(i) ≤ n, then each leaf is labelled with[i, p,Succ(θ)] for somep ∈ S;
– if θ(i) = n+ 1, then each leaf is labelled with[i+ 1, p,Succ(θ)] for somep ∈ S;
– each internal node inT is labelled with[j, q′, θ′], where

1. j ≤ i; and
2. if j = i, then0 ≤ θ′(i) ≤ θ(i).

– for eachp ∈ S, there exists a leaf labelled with[1, p,Succ(θ)].

Similarly, we define the partial responsePR(w, θ) as follows. For a setS ⊆ Q∪Q̄,
a termq → S belongs toPR(w, θ) if there exists a computation treeT of A on w
whose root is labelled with[i, q, θ] such that

– if θ(i) ≤ n, then each leaf is labelled with either[i, p,Succ(θ)] for somep̄ ∈ S or
[i, p, θ] for somep ∈ S;

– if θ(i) = n+ 1, each leaf is labelled with either[i+ 1, p,Succ(θ)] for somep̄ ∈ S
or [i, p, θ] for somep ∈ S;

– each internal node inT is labelled with[j, q′, θ′], where
1. j ≤ i; and
2. if j = i, then0 ≤ θ′(i) ≤ θ(i);

– if θ(i) ≤ n, for eachp̄ ∈ S, there exists a leaf labelled with[i, p,Succ(θ)];
– if θ(i) = n+1, for eachp̄ ∈ S, there exists a leaf labelled with[i+1, p,Succ(θ)];

and
– for eachp ∈ S, there exists a leaf labelled with[i, p, θ].

The following claim is the generalization of Claim E.1 and the proof is similar, thus,
omitted.

Claim. For every wordw =
(

a1

b1

)

· · ·
(

an

bn

)

and pebble-i assignmentθ on⊳w⊲,

PR(w, θ) = TH(P , P, V00, V01, V10, V11),

where

– P = R(w,Pred(θ)) ∪ ℘(µi, w, θ);
– 1 ≤ θ(i) ≤ n+ 1;
– P = {l > i : θ(l) = θ(i)};
– V00 = {l > i : aθ(l) = aθ(i)};
– V10 = {l > i : bθ(l) = aθ(i)};
– V10 = {l > i : aθ(l) = bθ(i)}; and
– V11 = {l > i : bθ(l) = bθ(i)}.

We will describe intuitively how to simulate pebblei deterministically in the fol-
lowing paragraph. The “main” states of pebblei will still be of the form(q,R), where
q ∈ Qi andR is a response.

Let w =
(

a1

b1

)

· · ·
(

an

bn

)

be an input word andθ be a pebble-i assignment such that
1 ≤ θ(i) ≤ n. Let R be a response. From the configuration[i, (q,R), θ], pebblei
performs the following.



1. Places pebble(i− 1) and simulates it starting from each possible state, in orderto
obtain the set of terms℘(µi, w, θ).

2. LetP = R∪ ℘(µi, w, θ).
Then, pebblei enters the state(q,CTH(P , P, V00, V01, V10, V11)) and moves right,
where

– a = aθ(i);
– P = {l > i : θ(l) = θ(i)};
– V00 = {l > i : aθ(l) = aθ(i)};
– V10 = {l > i : bθ(l) = aθ(i)};
– V10 = {l > i : aθ(l) = bθ(i)}; and
– V11 = {l > i : bθ(l) = bθ(i)}.

The formal description is given below. LetQ1, . . . , Qi be the sets of states of peb-
bles1, . . . , i, respectively, andµ1, . . . , µi be the sets of transitions of pebbles1, . . . , i,
respectively. Recall that the behavior of the pebbles1, . . . , (i−1), according toµ1, . . . , µi−1,
is deterministic.

Similar to the case of pebble1, we need to make a bit of modification on the behav-
ior of pebble(i+ 1). Let Q̃i+1, µ̃i+1, Ũi+1, Ñi+1, D̃i+1 be the modification ofQi+1,
µi+1, Ui+1,Ni+1 ,Di+1, respectively, as follows.

– Q̃i+1 = Qi+1 ∪ 2Qi+1 ∪ 22Qi+1 ;
– Ũi+1 = Ui+1 ∪ 2Qi+1 − {∅};

– Ñi+1 = Ni+1 ∪ 22Qi+1 ;
– D̃i+1 = Di+1.

The set of transitions̃µi+1 is the setµi+1 plus the following transitions:

1. For every labela ∈ Σ, setsP, V ⊆ {i+ 2, . . . , k}, and setsS1, . . . , Sm ⊆ Qi+1,

(i+1, P, V00, V01, V10, V11, {S1, . . . , Sm}) → (Sj ,stay) ∈ µ̃i+1, for eachj = 1, . . . ,m.

That is, from the state{S1, . . . , Sm} ∈ Q̃i+1 pebble(i + 1) performs existential
branching.
Recall that the state{S1, . . . , Sm} ∈ Q̃i+1 is a nondeterministic state.

2. For everya, P , V , S ⊆ Qi+1, we have the following transition iñµi+1.

(i+ 1, P, V00, V01, V10, V11, S) → (q,stay) ∈ µ̃i+1, for eachq ∈ S.

That is, from the stateS ∈ Q̃i+1 pebble(i+ 1) performs universal branching.
Recall that the stateS ∈ Q̃i+1 is a universal state.

3. We replace each transition(i+1, P, V00, V01, V10, V11, q) → (p,place-pebble) ∈
µi+1 with the following transition iñµi+1

(i+ 1, P, V00, V01, V10, V11, q) → ((p, ∅),place-pebble) ∈ µ̃i+1.

That is,µ̃i+1 no longer contains(i+1, P, V00, V01, V10, V11, q) → (p,place-pebble),
rather it contains(i+ 1, P, V00, V01, V10, V11, q) → ((p, ∅),place-pebble).



All other transitions inµi+1 remain inµ̃i+1.
Now, we define the sets of statesQ′

1, . . . , Q
′
i and the sets of transitionsµ′

1, . . . , µ
′
i

such that the behavior of pebbles1, . . . , i, according toµ′
1, . . . , µ

′
i, is deterministic. We

start with defining the sets of statesQ′
1, . . . , Q

′
i.

1. Q′
i consists of elements of the forms
– (q,PR) whereq ∈ Qi andPR is apartial response;
– (q,X,PR) whereq ∈ Qi,X ⊆ Qi,place andPR is apartial response.

The intuitive meaning of the state(q,PR) is like in the previous subsection. The
purpose of the state(q,X,PR) is for simulating pebble(i−1) in order to compute
the set℘. The setX is supposed to contain the states of pebblei from which the
automaton has yet to simulate pebble(i− 1).

2. For eachj = 1, . . . , i− 1, the states inQ′
j are of the form

((q,X,PR, s), p)

whereq ∈ Qi,X ⊆ Qi,place, PR is a partial response,s ∈ Qi,place andp ∈ Qj.
The intuitive meaning of these states is as follows.

– The triple(q,X,PR) is to remember the state of pebblei while simulating
pebble(i− 1).

– The components ∈ Qi,place is to remember the starting state of the simulation
of pebble(i− 1).

– The last componentp ∈ Qj is the current state of the simulation.

The sets of transitionsµ′
1, . . . , µ

′
i are defined as follows.

1. The setsµ′
1, . . . , µ

′
i−1, are defined as follows.

(a) For eachj = 1, . . . , i− 2, for each transition

(j, P, V00, V01, V10, V11, p) → (t,act) ∈ µj ,

we have the transition

(j, P, V00, V01, V10, V11, ((q,X,PR, s), p)) → (((q,X,PR, s), t),act) ∈ µ′
j .

(b) For each transition

(i− 1, P, V00, V01, V10, V11, p) → (t,act) ∈ µi−1,

whereact 6= lift-pebble, we have the transition

(i−1, P, V00, V01, V10, V11, ((q,X,PR, s), p)) → (((q,X,PR, s), t),act) ∈ µ′
i−1.

(c) For each transition

(i− 1, ⊲, ∅, ∅, p) → (t,lift-pebble) ∈ µi−1

we have the transition

(i− 1, ⊲, ∅, ∅, ((q,X,PR, s), p)) →



((q,X,PR∪ {s→ {t}}),lift-pebble) ∈ µ′
i−1.

2. µ′
i consists of the following transitions.

(a) For eachq ∈ Qi, (i, ⊳, ∅, ∅, (q, ∅)) → ((q,R),right) ∈ µ′
i, whereR =

R(w, θ), for somew andθ such thatθ(i) = 0.
By Remark 1, suchR(w, θ) is well defined.

(b) For stateq ∈ Qi, every responseR, labela ∈ Σ andP, V ⊆ {i+ 1, . . . , k},

(i, P, V00, V01, V10, V11, (q,R)) → ((q,Qi,place,R),stay) ∈ µ′
i.

The purpose of this transition is to start computing the set of terms℘.
(c) For every stateq ∈ Qi, every partial responsePR, every nonempty setX ⊆

Qi,place, and every setsP, V ⊆ {i+ 1, . . . , k},

(i, P, V00, V01, V10, V11, (q,X,PR)) →

(((q,X − {s},PR, s), t),place-pebble) ∈ µ′
i,

whereX 6= ∅, s ∈ X and(i, P, V00, V01, V10, V11, s) → (t,place-pebble).
The purpose of these transitions is to simulate pebble(i− 1) from the states,
wheres is the state of pebblei before pebble(i−1) is placed for the simulation.
Note that this is a place-pebble transition, so the state((q,X−{s},PR, s), t) ∈
Q′
i−1.

(d) For every stateq ∈ Qi, every partial responsePR, every labela ∈ Σ and
every setsP, V ⊆ {i+ 1, . . . , k},

(i, P, V00, V01, V10, V11, (q, ∅,PR)) → ((q,CTH(PR, P, V00, V01, V10, V11)),right) ∈ µ′
i.

The purpose of these transitions is as follows. Now that the automaton has
finished simulating pebble(i − 1) from all possible states, as indicated by the
fact thatX = ∅, pebblei computes CTH(PR, P, V00, V01, V10, V11), enters
the state(q,CTH(PR, P, V00, V01, V10, V11)) and moves right.

(e) (i, ⊲, ∅, ∅, (q,R)) → ({S1, . . . , Sm},lift-pebble), where for eachj =
1, . . . ,m,

– q → S̄j ∈ CTH(R, ⊲, ∅, ∅);
– Sj ⊆ Qi+1.

The purpose of these transitions is the same as their pebble1 counterpart. Re-
call also that no new pebble is placed when the head pebble is reading the
right-end marker⊲, thus, it is not necessary to compute the set of terms℘.

The proof thatµ1∪· · ·∪µi∪µi+1 andµ′
1∪· · ·∪µ′

i∪ µ̃i+1 are equivalent is similar
to the corresponding proof for the case of pebble1, thus, omitted.

E.3 Determinizing A

For the final step, we define the deterministick-PA A′ = 〈Q′, q′0, µ
′, F ′〉 that accepts

the same language asA = 〈Q, q0, µ, F 〉. By the induction step explained in the previous
subsection, we assume that the behavior of pebbles1, . . . , k − 1 is deterministic.

– Q′ = Q′
1 ∪ · · · ∪Q′

k−1 ∪Q
′
k ∪ {qacc, qrej}, where eachQ′

1, . . . , Q
′
k−1, Q

′
k are the

modification of the set of statesQ1, . . . , Qk−1, Qk like in the previous subsection;



– q′0 = (q0, ∅);
– F ′ = {qacc};
– µ′ = µ′

1 ∪ · · · ∪ µ′
k−1 ∪ µ′

k, where eachµ′
1, . . . , µ

′
k−1, µ

′
k are the modification

of the set of transitionsµ1, . . . , µk−1, µk like in the previous subsection, plus the
following transitions.
The transition

(k, ⊲, ∅, ∅, (q0,R)) → (qacc,right) ∈ µ′
k,

if there exists a setS ⊆ F such thatq0 → S̄ ∈ CTH(R, ⊲, ∅, ∅), and the transition

(k, ⊲, ∅, ∅, (q0,R)) → (qrej ,right) ∈ µ′
k,

if there does not exists a setS ⊆ F such thatq0 → S̄ ∈ CTH(R, ⊲, ∅, ∅).

The proof thatA andA′ are equivalent is similar to the corresponding proof for the
case of pebble1, thus, omitted.


