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Abstract

Applications of description logics (DLs) such as ontology-
based data access (OBDA) require understanding of how
to pose database queries over DL knowledge bases. While
there have been many studies regarding traditional relational
query formalisms such as conjunctive queries and their exten-
sions, little attention has been paid to graph database queries,
despite the fact that graph databases have essentially the
same structure as knowledge bases. In particular, not much is
known about the interplay between DLs and XPath. The lat-
ter is a powerful formalism for querying semistructured data:
it is in the core of most practical query languages for XML
trees, and it is also gaining popularity in theory and practice
of graph databases. In this paper we make a step towards
coupling knowledge bases and graph databases by studying
how to answer powerful XPath-style queries over simple DLs
like DL-Lite and EL. We start with adapting the definition of
XPath to the DL context, and then proceed to study the com-
plexity of evaluating XPath queries over knowledge bases.
Results show that, while query answering is undecidable for
the full XPath, by carefully tuning the shape of negation al-
lowed in the queries we can arrive at XPath fragments that
have a potential to be used in practice.

Introduction
Satisfiability and model checking have long been two central
problems in the knowledge representation community. How-
ever new applications of description logics (DLs for short)
and their practical counterpart the Web Ontology Language
(OWL) (Motik et al. 2012), such as ontology-based data ac-
cess (OBDA), are forcing us to develop algorithms solving
more complex data manipulation and extraction tasks, and
in particular, require understanding how to answer database-
style queries over knowledge bases that are specified by DLs
(Glimm et al. 2013).

The literature on knowledge bases usually considers rela-
tional queries, mostly focusing on conjunctive queries (CQs)
and their extensions with union (Calvanese et al. 2007; Ar-
tale et al. 2009), forms of negation (Rosati 2007; Gutiérrez-
Basulto et al. 2013), and aggregates (Calvanese et al. 2008;
Kostylev and Reutter 2013). Yet arguably the most rele-
vant to DLs database paradigm is graph databases, as these
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share the same structure with DL knowledge bases: they use
unary and binary predicates (that is, concepts and roles in
DL terminology) to represent graph nodes and edges. While
the idea of using graph queries in knowledge bases is not
new (see e.g., (Calvanese et al. 2000)), we are only start-
ing to understand how such queries can be fine tuned for
various ontology languages. So far the specific research on
this topic has primarily been concerned with the class of
regular path queries (RPQs; see e.g. (Barceló 2013)), one
of the most basic graph query languages. We now know
how to evaluate such queries over various description log-
ics (Calvanese, Eiter, and Ortiz 2007), how to deal with
some of their extensions (Bienvenu, Ortiz, and Šimkus 2013;
Bienvenu et al. 2014) and how to solve their containment
problem in the presence of DL constraints (Calvanese, Or-
tiz, and Šimkus 2011).

There are of course many other languages for querying
graph and semi-structured data, the most notable amongst
them being XPath. Originally designed to extract data from
XML trees (XPath 2.0 2010), XPath has recently been
adapted to work over graph databases (Libkin, Martens,
and Vrgoč 2013) and was shown to retain good evalua-
tion properties while at the same time being more pow-
erful than RPQs and many of their extensions. Moreover,
XPath also subsumes navigational graph querying features
of SPARQL 1.1 (Harris and Seaborne 2013), such as prop-
erty paths, and other commercial graph query languages (see
e.g., Neo4j (Robinson, Webber, and Eifrem 2013)). There-
fore we can view XPath as a unifying formalism contain-
ing all of the usual querying primitives for graph data. It is
worthwhile noting that connections between XML and DLs
have been explored before (Calvanese, De Giacomo, and
Lenzerini 1999), however this work did not consider query-
ing knowledge bases, but it instead concentrated on reason-
ing about their structural properties.

To get an impression of the type of queries one can ask in
XPath consider the following: ‘Can I fly from city A to city
B making stops only in cities with UNESCO World Her-
itage Sites which are endangered?’ If we assume that our
ontology is modelled in a natural way (by having a binary
predicate representing direct flights, another one connecting
cities with UNESCO sites, and one unary predicate signify-
ing if a site is endangered) this query cannot be expressed
by RPQs, but can be expressed using XPath. Additionally,



using XPath also allows us to reason about negative prop-
erties, such as requiring that none of the intermediate stops
in the query above are listed under cultural criteria in the
UNESCO classification—a feature which is not available in
languages like nested RPQs (Bienvenu et al. 2014).

Given that XPath is capable of expressing virtually all rel-
evant querying primitives for graphs and is widely used by
XML practitioners it is natural to ask whether it may have
the same impact as a language for DL knowledge bases. But,
as several studies in OBDA reveal, implementing standard
database query languages over DLs is far from straightfor-
ward. Answering, for example, SQL queries over even the
simplest of knowledge bases is known to be an undecidable
task. In the same spirit, it is not unreasonable to think that
the full XPath language might be too powerful to be used
in DLs, and that first we need to find which fragments can
be used efficiently (or indeed be used at all) in this context.
In particular, XPath contains expressive primitives such as
transitive closure and negation, and these are known to cause
difficulties even when studied in isolation.

The first step towards introducing XPath technologies in
the DL context is, then, to understand the interplay between
XPath and DLs, pinpointing the features that might cause
problems and identifying fragments for which query an-
swers can be computed within reasonable complexity. To
that extent, we first adapt the XPath query language to work
over ontologies, arriving at DLXPath—an expressive lan-
guage designed specifically for DL knowledge bases. To get
a feeling for the interplay between DLXPath and DLs, we
then study the problem of evaluating DLXPath queries over
DL-LiteR and DL-Litecore ontologies. Finally, we show how
most of our techniques can then be applied to study query
answering for DLs belonging to the EL family. The choice
for these particular families of DLs is twofold: they are sim-
ple enough to start such a research, but they are also quite
important in practice, since they underly OWL 2 QL and
OWL 2 EL profiles (Motik et al. 2012).

In this paper we distinguish two flavours of DLXPath:
the core fragment, denoted by DLXPathcore, and the regular
fragment, denoted by DLXPathreg. The two are designed to
match the duality present in the standard XPath query lan-
guage (XPath 2.0 2010), and while the core fragment allows
transitive closure only over basic role names, the regular
fragment lifts this restriction, allowing us to pose more gen-
eral path queries. Regarding negation, we will distinguish
full fragments, which allow both unary and binary negation,
path-positive fragments with only the unary one, and posi-
tive fragments without any negation.

As usual when gauging the usefulness of a new query
language for ontologies, we start by considering data com-
plexity of the query answering problem, where one assumes
that the query and the terminological knowledge (TBox)
are fixed, while the only input is the assertional knowledge
(ABox). Although we show that for the most general case
the problem is undecidable, by limiting the shape of allowed
negation we obtain expressive languages whose queries can
be answered in CONP and even NLOGSPACE, both over
DL-LiteR and DL-Litecore. We then move to studying the
combined complexity, where both the knowledge base and

the query form the input. Here we obtain bounds ranging
from NP-complete (thus matching the ones for ordinary
CQs), to EXPTIME-complete, and undecidable for the full
language. We would like to note that some of the results are
obtained using the deep connection between DLs, DLXPath
and propositional dynamic logic, thus providing some in-
teresting new techniques for answering queries over ontolo-
gies. Finally, we also show how our techniques can be ex-
tended to work for DLs of the EL family, including ELHI⊥,
that is the DL subsuming both DL-Lite and plain EL, thus
providing an extensive overview of the behaviour of XPath
based languages over lightweight DLs.

Preliminaries
The language of DL-LiteR (and DL-Litecore) (Calvanese et
al. 2007; Artale et al. 2009) contains individuals c1, c2, . . .,
concept namesA1, A2, . . ., and role names P1, P2, . . .. Con-
cepts B and roles R are defined by the grammar

B ::= Ai | ∃R, R ::= Pj | P−j .
A DL-LiteR TBox is a finite set of concept and role inclu-
sions of the form

B1 v B2, B1uB2 v ⊥, R1 v R2, R1uR2 v ⊥.
A DL-Litecore TBox contains only concept inclusions. An
ABox is a finite set of assertions of the form Ai(ck) and
Pj(ck, c`). A knowledge base (KB) is a pair (T ,A), where
T is a TBox and A an ABox.

An interpretation I = (∆I , ·I) is a nonempty domain
∆I of elements with an interpretation function ·I that as-
signs an element cIk ∈ ∆I to each individual ck, a subset
AIi of ∆I to each concept name Ai, and a binary relation
P Ij ⊆ ∆I × ∆I to each role name Pj . When dealing with
DL-Lite it is usual to adopt the unique name assumption
(UNA), and we do so here by requiring that cIk 6= cI` , for all
individuals ck 6= c`. Our results, however, do not depend on
UNA. The interpretation function ·I is extended to roles and
concepts in the following standard way:

(∃R)I =
{
d ∈ ∆I | there is d′ ∈ ∆I with (d, d′) ∈ RI

}
,

(P−j )I = {(d′, d) ∈ ∆I ×∆I | (d, d′) ∈ P Ij }.

The satisfaction relation |= for TBox inclusions and ABox
assertions is also standard:

I |= B1 v B2 iff BI1 ⊆ BI2 ,
I |= B1 uB2 v ⊥ iff BI1 ∩BI2 = ∅,
I |= R1 v R2 iff RI1 ⊆ RI2 ,
I |= R1 uR2 v ⊥ iff RI1 ∩RI2 = ∅,
I |= Ai(ck) iff cIk ∈ AIi ,
I |= Pj(ck, c`) iff (cIk , c

I
` ) ∈ P Ij .

A KB K = (T ,A) is satisfiable if there is an interpreta-
tion I satisfying all inclusions of T and assertions of A. In
this case we write I |= K and say that I is a model of K.

DLXPath: XPath for Knowledge Bases
As mentioned in the introduction, the family of DL-Lite was
designed not only to keep satisfiability and model checking



problems simple, but mainly to keep the complexity of con-
junctive query answering the same as in the case of relational
databases, while simultaneously maximising the expressive
power of the ontological language. This allows one to use
DL-Lite as a foundation for practical data management ap-
plications, such as OBDA. However, this does not automat-
ically mean that other useful query formalisms with good
evaluation properties over databases also have good proper-
ties when posed over DL-Lite knowledge bases. Hence, each
class of queries which can be useful in knowledge base ap-
plications requires a separate research on its computational
properties.

In this paper we concentrate on an adaptation of XPath
query language for XML trees to knowledge bases. Recently
it was shown that (a version of) XPath can be successfully
used for querying graph databases (Libkin, Martens, and
Vrgoč 2013). Every interpretation of a DL-Lite vocabulary
can be seen as a graph, and hence every DL-Lite KB is an
incomplete description of a graph. That is why we expect
our adaptation DLXPath for querying knowledge bases to
be useful in practical applications.

In what follows, we will consider several fragments of
DLXPath. We start with DLXPathcore, the fragment which
corresponds to core XPath, the theoretical foundation of
most practical languages for querying XML trees.1

Definition 1 Node formulas ϕ,ψ and path formulas α, β of
DLXPathcore are expressions satisfying the grammar

ϕ,ψ := A | ¬ϕ | ϕ ∧ ψ |ϕ ∨ ψ | 〈α〉 ,
α, β := ε | R | [ϕ] | α ∪ β | α · β | α | R+,

(1)

whereA ranges over concept names andR ranges over roles
(i.e., role names and their inverses).

Semantics J·KI of DLXPathcore for an interpretation I as-
sociates subsets of ∆I to node formulas and binary relations
on ∆I to path formulas as given in Table 1.

As usual when dealing with ontologies, our interest is not
query answering for a particular interpretation, but comput-
ing those answers that are true in all possible models of the
knowledge base. Formally, let K = (T ,A) be a knowl-
edge base and α a DLXPath path formula. The certain an-
swers of α over K, denoted Certain(α,K), is the set of all
pairs (c1, c2) of individuals such that (cI1 , c

I
2 ) ∈ JαKI for

all models I of K. Similarly, one can define certain answers
Certain(ϕ,K) for a DLXPath node formula ϕ as the set of
all individuals c such that cI ∈ JϕKI , for all I models of K.
In the paper all of the results will be stated for path formulas
(queries from here on), however, they remain unchanged for
node formulas.

Example 2 Coming back to the example from the introduc-
tion, consider role names HasDirectFlight, which connects
cities with a direct flight, and HasUNESCOSite, which con-
nects cities with their UNESCO world heritage sites, as well
as concept name InDanger denoting that a particular site is
endangered. Let KBK represent the flight destination graph,

1The subscript ‘core’ is used in this paper for two unrelated pur-
poses. This matching is historical and accidental, but we decided to
stay with conventional notation despite this undesired collision.

JAKI = AI

J¬ϕKI = ∆I \ JϕKI
Jϕ ∧ ψKI = JϕKI ∩ JψKI
Jϕ ∨ ψKI = JϕKI ∪ JψKI

J〈α〉KI = {d | there is d′ such that (d, d′) ∈ JαKI}

JεKI = {(d, d) | d ∈ ∆I}
JRKI = RI

J[ϕ]KI = {(d, d) | d ∈ JϕKI}
Jα ∪ βKI = JαKI ∪ JβKI
Jα · βKI = JαKI ◦ JβKI

JαKI = (∆I ×∆I) \ JαKI
JR+KI is the transitive closure of RI

Table 1: Semantics of DLXPathcore. The symbol ‘\’ stands
for set-theoretic difference.

as well as knowledge about heritage sites, partially explicitly
in the ABox, and partially implicitly, by means of TBox in-
clusions. Then checking whether it is possible to fly from
Edinburgh to a city that has an endangered UNESCO world
heritage site is equivalent to checking if Edinburgh belongs
to Certain(ϕ,K), where ϕ is a node formula

〈HasDirectFlight+[〈HasUNESCOSite[InDanger]〉]〉.
As already noted, the formalism of core XPath forms the

basis of most query languages over XML trees. However, in
(Libkin, Martens, and Vrgoč 2013) it was shown that the cor-
responding graph language cannot express certain properties
that are deemed essential when querying graphs. Thus, be-
sides DLXPathcore we also consider its generalisation called
regular DLXPath, or DLXPathreg, which extends the core
fragment by allowing the use of transitive closure opera-
tor + over arbitrary path formulas. Formally, path formulas
of DLXPathreg satisfy the grammar

α, β := ε | R | [ϕ] | α ∪ β | α · β | α | α+,

while node formulas remain the same as for DLXPathcore
in grammar (1). As expected, the semantics Jα+KI over an
interpretation I is the transitive closure of JαKI .
Example 3 With full transitive closure we are now able to
pose more complex queries than the ones in the core frag-
ment. Consider again the knowledge base K from Example
2. We can now ask whether it is possible to fly from Liver-
pool to Jerusalem, making stopovers only in places that have
an endangered UNESCO world heritage site, by checking
if the pair (Liverpool, Jerusalem) is in Certain(α,K),
where α is a query

(HasDirectFlight[〈HasUNESCOSite[InDanger]〉])+.
Note that here we check if each of the cities along the
path has an endangered site. If we want to additionally re-
quire that the sites along the route are not included in the
UNESCO list under cultural criteria, we need to replace
[InDanger] with [InDanger ∧ ¬Cultural] in the query above,
provided Cultural is the corresponding concept name in K.



Besides these two query languages, we will consider their
fragments, which will be introduced as needed.

Before continuing to the complexity of DLXPath query
evaluation, we briefly compare our languages with other for-
malisms. First, DLXPath is clearly incomparable with CQs.
However, all tree-shaped CQs and unions of CQs with no
more than two free variables can be written as DLXPathcore
queries. On the other hand, all negation-free and +-free
DLXPathreg queries can be written as unions of CQs, though
with a cost of possible exponential blow-up. If we allow
negation but only over concept and role names, then a query
can be written as a union of CQs with safe negation. Second,
DLXPathreg queries without negation and node tests [ϕ] are
2-way regular path queries (2RPQs), the standard formalism
for querying graph databases. If, additionally, role inverses
are not allowed as path formulas, it becomes plain RPQs,
that is, essentially, regular expressions. Some fragments of
DLXPath can be expressed in other description logic for-
malisms. For example, it is well-known that a unary tree-
shaped CQ with the corresponding tree being rooted and di-
rected, can be written as a concept of EL, a DL underlying
OWL 2 EL profile (Motik et al. 2012). Finally, DLXPathreg
node formulas without path negation are nothing else but
propositional dynamic logic with converse (CPDL) formu-
las; we will discuss this connection in more detail later on.

In the following two sections we analyse the complexity
of evaluating DLXPath queries over DL-Lite KBs.

Data Complexity
of DLXPath Query Evaluation

As is widely accepted in theory and proved in practice, the
size of the query and TBox is usually much smaller than the
size of the ABox (see e.g., (Vardi 1982) for discussion in
the relational database context and (Calvanese et al. 2007)
for DLs). This is why one usually considers data complexity
of query answering, assuming that the TBox and the query
are fixed, and only ABox is part of the input. In this section
we study this problem for various fragments of DLXPath.
Formally, let T be a TBox and α a DLXPath query. We are
interested in the following family of problems.

CERTAIN ANSWERS (α, T )
Input: ABox A and pair (c1, c2) of individuals
Question: Is (c1, c2) ∈ Certain(α, (T ,A))?

As was previously mentioned, the data complexity of CQ
query answering over DL-LiteR knowledge bases is the
same as over relational databases, that is, in LOGSPACE
(Calvanese et al. 2007). At first glance, one may expect a
similar result in the case of DLXPath, where the complex-
ity is NLOGSPACE-complete over graph databases (Libkin,
Martens, and Vrgoč 2013). However, the combination of the
open world assumption and allowing negation in queries
makes things quite different. In fact, the situation here is
more like in the case of CQ with safe negation, where the
complexity jump is dramatic: from polynomiality to unde-
cidability (Gutiérrez-Basulto et al. 2013).

Theorem 4 There exists a DLXPathcore query α such that
the problem CERTAIN ANSWERS (α, ∅) is undecidable (that
is, certain answers is already undecidable when using an
ampty TBox).

The proof uses similar techniques as the proof of Theo-
rem 1 in (Gutiérrez-Basulto et al. 2013), that shows the un-
decidability of the problem of computing certain answers
for conjunctive queries with safe negation over DL-LiteR
knowledge bases. In fact, the reduction can be done using
the empty TBox, which shows that undecidability is ‘con-
tained’ in the formulation of the fixed query.

Having this negative result, a natural direction is to search
for DLXPath fragments that have decidable certain answers
problem. Based on previous studies for XPath in XML and
graph databases (see e.g., (Benedikt, Fan, and Geerts 2008)),
the most problematic primitive seems to be the negation ᾱ
in path formulas. Indeed, we now show that removing this
primitive from the syntax leads to decidability of the certain
answers problem. We write DLXPathpath-pos

core for the fragment
of DLXPathcore that does not allow the negation ᾱ, for α a
path formula, and define the fragment DLXPathpath-pos

reg ac-
cordingly. We then have the following theorem.

Theorem 5 There exists a DLXPathpath-pos
core query α such

that the problem CERTAIN ANSWERS (α, ∅) is CONP-hard.
The problem is in CONP for any DL-LiteR TBox T and
DLXPathpath-pos

reg query α.

Similarly to the previous result, the reduction for hard-
ness can be done using the empty TBox. Moreover, the fixed
query does not use the transitive closure operator +.

While this theorem looks positive in light of the general
undecidability result, the complexity might still be too high
for practical applications, as it leads to algorithms which
run in exponential time in the size of the ABox. To lower
the complexity and obtain tractable algorithms, one could
also consider fragments of DLXPath that do not allow any
form of negation, neither in node nor in path formulas. We
denote such fragments of DLXPathcore and DLXPathreg by
DLXPathpos

core and DLXPathpos
reg , respectively. This last frag-

ment is nothing else but nested 2RPQs (Pérez, Arenas, and
Gutierrez 2010), a language that has already been studied
for DL-Lite knowledge bases (Bienvenu et al. 2014), where
an NLOGSPACE tight complexity bound was shown for the
problem of computing certain answers for both DL-Litecore
and DL-LiteR. Furthermore, since they can express graph
reachability, the problem is already NLOGSPACE hard even
for DLXPathpos

core queries (Jones 1975). From these results we
conclude that nesting and inverse in regular expressions, as
well as fixed DL-LiteR TBoxes do not increase the tractable
data complexity of query evaluation.

Combined Complexity
of DLXPath Query Evaluation

Even if data complexity is the most important measure in
practice, combined complexity, that is complexity under the
assumption that both TBox, ABox and the query are given
as input, allows us to get a better understanding of the query



answering problem, and often provides a blueprint of how to
solve the problem in practice. That is why we continue our
study in this direction. Formally, we consider the following
family of problems, where X ranges over {core,R}, y over
{core, reg}, and z is either nothing, or ‘path-pos’, or ‘pos’.

DLXPathz
y CERTAIN ANSWERS OVER DL-LiteX

Input: DL-LiteX KB K, DLXPathz
y query α,

and pair (c1, c2) of individuals
Question: Is (c1, c2) ∈ Certain(α,K)?

As it immediately follows from Theorem 4, the prob-
lem remains undecidable for full DLXPathcore and, hence,
for full DLXPathreg. However, the last result also follows
from the connection of DLXPath with propositional dy-
namic logic (PDL) and some well known properties of PDL.
Since this connection will be heavily used in the remainder
of the paper we now discuss it in more detail.

First of all, we note that in the PDL community a different
terminology is used: for example, interpretations are called
Kripke structures, concept names are called propositional
letters or variables, role names are atomic programs, and
inverse operator is converse. Though, to be consistent with
the rest of the paper we stay with the DL terminology.

As already mentioned, node formulas of DLXPathpath-pos
reg

are, essentially, PDL with converse (CPDL) formulas (see
(Harel, Kozen, and Tiuryn 2000) for a good introduc-
tion on the topic). Formally, the syntax of plain proposi-
tional dynamic logic (PDL) is the same as DLXPathpath-pos

reg

(i.e., CPDL), except that it does not allow the inverse P−j of
role names as path expressions. The standard problem in the
PDL community is satisfiability of a node formula ϕ; that
is, checking whether there exists an interpretation I and an
element d in its domain such that ϕ holds in d.

Lutz et al. showed that the satisfiability of PDL formu-
las extended with arbitrary path negation (such a logic is de-
noted PDL¬) is undecidable (Lutz and Walther 2005), which
already implies the undecidability of the certain answers
problem DLXPathreg: indeed, a PDL¬ formula ϕ is satis-
fiable if and only if the DLXPathreg query [¬ϕ] has the cer-
tain answer (c, c) over the empty KB with individual c in the
language. Note, however, that it does not immediately imply
undecidability in data complexity shown in Theorem 4.

Turning our attention to the certain answers problem for
DLXPathpath-pos queries, we again use the connection with
the theory of PDL. It is well-known that the satisfiability
problem for PDL is EXPTIME-complete (Harel, Kozen,
and Tiuryn 2000). It remains in EXPTIME even if these
formulas are allowed to use the transitive closure opera-
tor + only over role names. The same holds for CPDL
(Harel, Kozen, and Tiuryn 2000) and PDL(¬), that is, the
extension of PDL which allows path negation in a limited
form—only on role names (Lutz and Walther 2005). Sim-
ilarly to the previous undecidability result, the EXPTIME
lower bounds for these classes of PDL formulas already im-
ply EXPTIME-hardness of the certain answers problem for
DLXPathpath-pos

core , even for empty KBs. Also, in (Bienvenu et
al. 2014) hardness was established even for DLXPathpos

reg .

The upper bound is, however, much more challenging.
To deal with DL-LiteR knowledge bases, in particular with
role inclusions, we join the aforementioned extensions of
PDL with inverse and negation on role names, and consider
the language CPDL(¬) whose node formulas obey the same
grammar (1) as PDL (and DLXPath), and path formulas are
defined as follows:

α, β := ε | R | [ϕ] | α ∪ β | α · β | R | α+.

We need the following result to establish complexity of
the certain answers problem.

Theorem 6 Checking satisfiability of a CPDL(¬) node for-
mula can be done in EXPTIME.

The proof makes use of ideas from (Lutz and Walther
2005) and (Vardi and Wolper 1986). Although it is not
strictly related to description logics and knowledge repre-
sentation, we state the result explicitly as we believe it might
be of interest to the PDL community.

Of course, satisfiability results do not transfer directly to
query answering over KBs. However, widening and recast-
ing the ideas from (De Giacomo and Lenzerini 1994) and
(De Giacomo and Lenzerini 1996), we obtain the desired
upper bound.

Lemma 7 The problem DLXPathpath-pos
reg CERTAIN AN-

SWERS OVER DL-LiteR is in EXPTIME.

Summing up, we obtain the following theorem (the hard-
ness results follows from (Harel, Kozen, and Tiuryn 2000)
and (Bienvenu et al. 2014) and are included just for com-
pleteness).

Theorem 8 The problem DLXPathpath-pos
reg CERTAIN AN-

SWERS OVER DL-LiteR is EXPTIME-complete. It remains
EXPTIME-hard for DLXPathpos

reg queries with DL-Litecore

KBs, and for DLXPathpath-pos
core even with empty KBs.

The only remaining fragment is that of DLXPathpos
core

queries, that is, the restriction of the DLXPathcore lan-
guage that use neither binary nor unary negation. In the
previous section we saw that data complexity of answer-
ing DLXPathpos queries is the same as answering RPQs and
2RPQs, regardless of whether we made use of the regular
or the core fragment. For combined complexity, the case is
now different. We have already seen that query answering
remains EXPTIME-hard for DLXPathpos. We now show
that the restriction to the core fragment decreases the com-
plexity by almost one exponential.

Theorem 9 The problem DLXPathpos
core CERTAIN AN-

SWERS OVER DL-LiteR is NP-complete. It remains NP-
hard for DL-Litecore.

It is worthwhile to mention, that the result holds even if
the queries are not allowed to use the transitive closure oper-
ator + at all, being, essentially, very restricted form of unions
of CQs but with the same complexity of query answering.
Hence, the border in combined complexity of the problem
lies somewhere very close to here, leaving 2RPQs on one
side and DLXPathpos

core with CQs on the other.



DLXPathpos
core DLXPathpos

reg DLXPathpath-pos DLXPath
data combined data combined data combined data combined

DL-Lite NLOGSPACE-c NP-c NLOGSPACE-c EXPTIME-c CONP-c EXPTIME-c undec. undec.
EL PTIME-c EXPTIME-c∗/NP-c† PTIME-c EXPTIME-c CONP-c EXPTIME-c undec. undec.

Table 2: A summary of the complexity results. Here “-c” stands for “-complete” and “undec.” for “undecidable”. All the results
hold for both DLXPathcore and DLXPathreg unless a subscript core or reg has been added. The results in the first line hold for
both DL-Litecore and DL-LiteR. The results in the second line hold for all of EL, ELH⊥ and ELHI⊥, except for † that holds
up to ELH⊥. The EXPTIME bound in ∗ is shown for ELHI⊥. The new results of this paper are set off in bold.

DLXPath for EL Family
Another important family of lightweight DLs used in prac-
tice is EL and its extensions, which underlie the OWL 2 EL
profile (Motik et al. 2012). Here we look at one particular
logic from this family, denoted ELHI⊥, that is essentially
the minimal DL from the EL family that that subsumes DL-
LiteR. The increase in expressive power that comes with
ELHI⊥ does come with an exponential jump for answer-
ing, for example, standard conjunctive queries. Surprisingly,
the situation is different for DLXPath queries and almost all
the results from the previous sections hold for all the range
of DLs from EL to ELHI⊥. It is interesting to note that
for these results we use the same base techniques outlined
in the previous sections, which suggests that the techniques
introduced in this paper are robust to the particular choice of
description logics.

Formally, the language of ELHI⊥ (Baader, Brandt, and
Lutz 2005; 2008) has the same roles as DL-LiteR, but allows
for complex concepts defined by the grammar

C ::= > | Ai | ∃R.C | C1 u C2,

whereAi ranges over concept names andR over roles. Then,
an ELHI⊥ TBox is a set of concept inclusions of the form

C1 v C2, C v ⊥

and role inclusions as in DL-LiteR. TBoxes of ELH⊥ dis-
allows role inverses, and plain EL further disallows role in-
clusions and ⊥ in concept inclusions.

The interpretation function ·I of an interpretation I is ex-
tended to ELHI⊥ concepts similarly to the case of DL-Lite,
with >I denoting the universal relation, (C1 u C2)I the in-
tersection of CI1 and CI2 , and

(∃R.C)I =
{
d ∈ ∆I | ∃d′ ∈ ∆I : (d, d′) ∈ RI , d′ ∈ CI

}
.

Similarly, the satisfaction relation |= extends to ELHI⊥ in-
clusions in the standard way.

When studying the complexity of DLXPath query an-
swering over ELHI⊥ we inherit all of the lower bound from
the results on DL-Lite, in particular we immediately obtain
that query answering is undecidable for the full language.
Since the proof of Theorem 4 uses an empty TBox this also
holds for plain EL.

What is more interesting is the fact that the EXPTIME al-
gorithm for combined complexity of DLXPathpath-pos is ro-
bust enough to extend to this setting. Complementing this
observation with the results for DLXPathpos

reg from (Bienvenu
et al. 2014), we can obtain the following theorem.

Theorem 10 Answering DLXPathpath-pos
reg queries over

ELHI⊥ KBs is EXPTIME-complete in combined com-
plexity, with the lower bound already holding for EL
and DLXPathpos

reg . In data complexity the problem is
CONP-complete for DLXPathpath-pos

reg and drops to PTIME-
complete for DLXPathpos

reg , again for any DL between
ELHI⊥ and EL.

The last remaining fragment we study is DLXPathpos
core.

Here we observe that comparing to DL-Lite the rise in data
complexity is similar to the one in the previous theorem, that
is, from NLOGSPACE-complete to PTIME-complete. This
can be attributed to the expressive power of logics in the
EL family, since hardness results already hold for instance
queries over simple EL knowledge bases (Calvanese et al.
2006). The NP bounds for combined complexity showed
for DL-LiteR hold for ELH⊥ and EL as well, but for full
ELHI⊥ the problem becomes EXPTIME-complete.
Theorem 11 Answering DLXPathpos

core queries over ELH⊥
KBs is NP-complete in combined complexity. For ELHI⊥
KBs it becomes EXPTIME-complete. For both DLs the
problem is PTIME-complete in data complexity. Apart from
combined complexity for ELHI⊥ KBs all the lower bounds
already hold for EL.

Conclusions and Future Work
In this paper we conducted a detailed study of using the
XPath language to query ontologies of the DL-Lite and EL
families. The results, summarised in Table 2, show that al-
though the problem is generally undecidable, by limiting the
shape of allowed negation we can get decidable and even
tractable fragments. The deep connection between XPath,
DL and PDL allowed us to use ideas developed in other ar-
eas and gave insight on how query evaluation can be affected
by certain aspects of the language. Although this connection
was explored previously (see e.g., discussion in Chapters 13
and 14 in (Blackburn, Benthem, and Wolter 2006)), we be-
lieve that the time is ripe for a comprehensive survey de-
scribing how techniques from one area can be transferred to
another and hope that the results of this paper can motivate
such a survey.

From a practical point of view, we would like to find and
test the classes of queries that are of particular practical in-
terest and have either tractable general algorithms or reli-
able heuristics. Here we primarily want to tackle positive
and path-positive fragments of XPath, as these queries were
implemented and tested by the XML community, and many
good heuristics have been developed over the years.
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