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Abstract Graph databases are currently one of the most popular paradigms
for storing data. One of the key conceptual differences between graph and
relational databases is the focus on navigational queries that ask whether some
nodes are connected by paths satisfying certain restrictions. This focus has
driven the definition of several different query languages and the subsequent
study of their fundamental properties.

We define the graph query language of Regular Queries, which is a natural
extension of unions of conjunctive 2-way regular path queries (UC2RPQs) and
unions of conjunctive nested 2-way regular path queries (UCN2RPQs). Regular
queries allow expressing complex regular patterns between nodes. We formalize
regular queries as nonrecursive Datalog programs extended with the transitive
closure of binary predicates. This language has been previously considered,
but its algorithmic properties are not well understood.

Our main contribution is to show elementary tight bounds for the contain-
ment problem for regular queries. Specifically, we show that this problem is
2Expspace-complete. For all extensions of regular queries known to date, the
containment problem turns out to be non-elementary. Together with the fact
that evaluating regular queries is not harder than evaluating UCN2RPQs, our
results show that regular queries achieve a good balance between expressive-
ness and complexity, and constitute a well-behaved class that deserves further
investigation.
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1 Introduction

Graph databases have become a popular data model over the last decade.
Important applications include the Semantic Web [4,3], social network analysis
[31], biological networks [38], and several others. The simplest model of a graph
database is as an edge-labeled directed graph [15,34]: nodes represent objects
and a labeled edge between nodes represents the fact that a particular type of
relationship holds between these two objects. For a survey of graph databases,
see [2,8].

Conceptually, graph databases differ from relational databases in that the
topology of the data is as important as the data itself. Thus, typical graph
database queries are navigational, asking whether some nodes are connected
by paths satisfying some specific properties. The most basic query language
for graph databases is that of regular-path queries (RPQs) [28], which selects
pairs of nodes that are connected by a path conforming to a regular expres-
sion. A natural extension of RPQs is the class of two-way regular-path queries
(2RPQs), which enables navigation of inverse relationships [17,18]. In analogy
to conjunctive queries (CQs) and union of CQs (UCQs), the class of union
of conjunctive two-way regular path queries (UC2RPQs) enable us to per-
form unions, joins and projections over 2RPQs [17]. The navigational features
present in these languages are considered essential in any reasonable graph
query language [8].

More expressive languages have been studied, for example, in the context
of knowledge bases and description logics [12,14,10,9]. The class of nested
two-way regular path queries (N2RPQs) and the corresponding class of union
of conjunctive N2RPQs (UCN2RPQs), extend C2RPQs with an existential
test operator, inspired in the language XPath [41,6]. Previous results show
that CN2RPQs is a well-behaved class, as it increases the expressive power
of C2RPQs without increasing the complexity of evaluation or static analysis
problems such as containment [12,14,9]. Yet the regular patterns detected by
2RPQs and N2RPQs are still quite simple: one can only check paths or for a
very limited form of trees between two nodes. Thus, these languages cannot
express queries involving more complex regular patterns.

One key property that the query classes of UC2RPQs and UCN2RPQs fail
to have is that of algebraic closure. Indeed, note that the relational algebra
is defined as the closure of a set of relational operators [1]. Also, the class of
CQs is closed under project and join, while UCQs are also closed under union
[1]. Similarly, the class of 2RPQs is closed under concatenation, union, and
transitive closure. In contrast, UC2RPQs and UCN2RPQs are not closed under
transitive closure, because even the transitive closure of a binary UC2RPQ
query is not a UC2RPQ query. Thus, UC2RPQs and UCN2RPQs are not
natural classes of graph database queries in this sense.

In this paper we study the language of Regular Queries (RQs), which result
from closing the class of UC2RPQs also under transitive closure. We believe
that RQs fully capture regular patterns over graph databases. We define RQs
as binary nonrecursive Datalog programs extended with the transitive closure
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of binary predicates (either extensional or intensional predicates). The class
of RQs is a natural extension of UC2RPQs and UCN2RPQs and can express
many interesting properties that UCN2RPQs cannot (see e.g. [12,43,40]), but
its algorithmic properties until now have not been well understood.

It is easy to see that the complexity of evaluation of regular queries
is the same as for UC2RPQs: NP-complete in combined complexity and
NLogspace-complete in data complexity. This is a direct consequence of the
fact that RQs are subsumed by binary linear Datalog [25,23]. Nevertheless,
the precise complexity of checking the containment of RQs has been open so
far. This is the focus of this paper.

The containment problem for queries asks, given two queries Ω and
Ω′, whether the answer of Ω is contained in the answer of Ω′, over all
graph databases. Checking query containment is crucial in several contexts,
such as query optimization, view-based query answering, querying incom-
plete databases, and implications of dependencies [16,22,32,35,30,36]. A non-
elementary upper bound for RQ containment follows from [26,27]. But, is
the complexity of the containment problem elementary or non-elementary?
Given the importance of the query-containment problem, a non-elementary
lower bound for containment of RQs would suggest that the class may be too
powerful to be useful in practice.

Our main technical contribution is to show elementary tight bounds for
the containment problem of RQs. We attack this problem by considering an
equivalent query language, called nested UC2RPQs (nUC2RPQs), which is
of independent interest. A nUC2RPQ is basically a RQ where each exten-
sional predicate could be a 2RPQ. We show that the containment problem for
nUC2RPQs is in 2Expspace, and as a consequence we obtain a 2Expspace
upper bound for containment of RQs. We also provide matching lower bounds.

Our proofs are based on automata-theoretic techniques. In particular, the
2Expspace upper bound is shown in two stages. First, we reduce the con-
tainment of two nUC2RPQs into containment of, essentially, an RPQ in an
nUC2RPQ. The reduction is based on a serialization technique where we show
how to represent expansions of nUC2RPQs as strings. We then proceed to
tackle the reduced containment problem. Here we exploit techniques used be-
fore, e.g. in [17,19,23] to show that containment of UC2RPQs is in Expspace.
Nevertheless, our proof requires a deep understanding and a significant refine-
ment of these techniques. The essence of the proof is a suitable representation
of the partial mappings of nUC2RPQs into strings, that we call cuts, and that
allows us to significantly extend the automata notions of previous work. This
representation is robust against nesting and does not involve a non-elementary
blow up in size.

We conclude our investigation by studying some interesting restrictions
and extensions of RQs. First we consider RQs of bounded treewidth [24,29].
Intuitively, for k ≥ 1, a RQ has treewidth at most k, if each rule has treewidth
at most k. As it turns out, RQs of bounded treewidth can be evaluated in
polynomial time, as in the case of C2RPQs [5]. Second, we consider RQs of
bounded depth (of nesting) and we show that the containment problem for
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these is Expspace-complete, the same as for UC2RPQs. Finally, we focus
on the arity of the predicates involved in a RQ. By definition, all intensional
predicates in a RQ have arity 2. We show that containment of RQs is still
2Expspace-complete if we relax this condition and allow unbounded arity of
intensional predicates, even if the evaluation problem now becomes Pspace-
complete. Interestingly, we also show that 2Expspace-completeness remains
even when the arity of the extensional predicates is unbounded, that is, when
we deal with arbitrary databases instead of graph databases.

There are several other languages that are either more expressive or in-
comparable to regular queries. One of the oldest is GraphLog [25], which is
equivalent to first-order logic with transitive closure. More recent languages in-
clude extended CRPQs [5], which extends CRPQs with path variables, XPath
for graph databases [39,37], and algebraic languages such as [33,40]. Although
all these languages have interesting evaluation properties, the containment
problem for all of them is undecidable. Another body of research has focused
on fragments of Datalog with decidable containment problems. In fact, reg-
ular queries were investigated in [12,14] (under the name of nested positive
2RPQs), but the precise complexity of checking containment was left open,
with non-elementary tight bounds provided only for strict generalizations of
regular queries [43,13,12,14]. Interestingly, the containment problem is non-
elementary even for positive first-order logic with unary transitive closure [12,
14], which is a slight generalization of regular queries. Thus, regular queries
seems to be the most expressive fragment of first-order logic with transitive
closure that is known to have an elementary containment problem.

Part of this work has been previously presented in IDCT’15 [42]. However,
this version contains several new material. To begin with, the definitions of
RQs, nUC2RPQs and flat nUC2RPQs have been streamlined and are now
much cleaner, and we have also added some new examples. Moreover, the
main 2Expspace bound was only sketched in the conference version, and
proofs of correctness were not included; we only gave a simpler version of the
construction (that was not enough for the proof) and just explained how it
could be modified into a construction that was correct. This version contains
the full construction, as well as proofs for correctness. Finally, all other results
in Sections 7 and 8 are new to this version, as they were not included in the
conference paper.

Organization. We present preliminaries in Section 2. In Section 3 we intro-
duce RQs and nUC2RPQs. The containment problem of RQs is analyzed in
Sections 4-7: Section 4 presents and studies flat nUC2RPQs, Section 5 shows
how to reduce from containment of flat nUC2RPQs to containment of a single-
atom C2RPQ in a flat nUC2RPQ, Section 6 shows that the latter problem is
in Expspace, and Section 7 finishes the upper bound and provides the lower
bound. In Section 8, we study restrictions and extensions of RQs and their
impact in the complexity of evaluation and containment. Finally, in Section 9
we present some conclusions and future work.
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2 Preliminaries

Graph databases. Let Σ be a finite alphabet. A graph database G over Σ is
a pair (V,E), where V is a finite set of nodes and E ⊆ V ×Σ×V . Thus, each
edge in G is a triple (v, a, v′) ∈ V ×Σ×V , whose interpretation is an a-labeled
edge from v to v′ in G. We define the finite alphabet Σ± as the extension of
Σ with the inverse of each symbol, that is, Σ± = Σ ∪ {a− | a ∈ Σ}. The
completion G± of a graph database G over Σ, is a graph database over Σ±

that is obtained from G by adding the edge (v′, a−, v) for each edge (v, a, v′)
in G.

Conjunctive Queries. We assume familiarity with relational schemas
and relational databases. A conjunctive query (CQ) is a formula in the
∃,∧-fragment of first-order logic. We adopt a rule-based notation: A CQ
θ(x1, . . . , xn) over the relational schema σ is a rule of the form θ(x̄) ←
R1(ȳ1), . . . , Rm(ȳm), where Ri is a predicate symbol in σ, for each 1 ≤ i ≤ m,
x̄ are the free variables, and the variables in some ȳi that are not mentioned
in x̄ are the existential quantified variables. The answer of a CQ θ(x1, . . . , xn)
over a relational database D is the set θ(D) = {ā | D |= θ(ā))}, of tuples that
satisfies θ in D. As usual, if θ is a Boolean CQ, that is, it has no free variables,
we identify the answer false with the empty relation, and true with the relation
containing the 0-ary tuple.

We want to use CQs for querying graph databases over a finite alphabet
Σ. In order to do this, given an alphabet Σ, we define the schema σ(Σ)
that consists of one binary predicate symbol Ea, for each symbol a ∈ Σ. For
readability purposes, we identify Ea with a, for each symbol a ∈ Σ. Each
graph database G = (V,E) over Σ can be represented as a relational database
D(G) over the schema σ(Σ): The database D(G) consists of all facts of the
form Ea(v, v′) such that (v, a, v′) is an edge in G.

A conjunctive query over Σ is simply a conjunctive query over σ(Σ±). The
answer θ(G) of a CQ θ over G is θ(D(G±)). A union of CQs (UCQ) Θ over
Σ is a set {θ1(x̄), . . . , θk(x̄)} of CQs over Σ with the same free variables. The
answer Θ(G) is

⋃
1≤j≤k θj(G), for each graph database G.

A (U)CQ with equality is a (U)CQ where equality atoms of the form y =
y′ are allowed. Although each CQ with equality can be transformed into an
equivalent CQ (without equality) via identification of variables, in some cases
it will be useful to work directly with CQs with equality. If ϕ is a CQ with
equality, then its associated CQ (without equality) is denoted by neq(ϕ).

C2RPQs. The basic mechanism for querying graph databases is the class of
two-way regular path queries, or 2RPQs [18]. A 2RPQ E over Σ is a regular
expression over Σ±. Intuitively, E computes the pairs of nodes connected by a
path whose label is in the language L(E) defined by E. Formally, the answer
E(G) of a 2RPQ E over a graph database G = (V,E) is the set of pairs (v, v′)
of nodes in V for which there is a word r1 · · · rp ∈ L(E) such that (v, v′) is
in the answer of the CQ θ(x, y)← r1(x, z1), . . . , rp(zp−1, y) over G. Note that
when p is 0, the word r1 · · · rp corresponds to ε and then θ(x, y) becomes x = y.
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The analogue of CQs in the context of graph databases is the class of
conjunctive 2RPQs, or C2RPQs [17]. A C2RPQ γ(x̄) over Σ is a rule of the
form γ(x̄) ← E1(y1, y

′
1), . . . , Em(ym, y

′
m), where x̄ are the free variables, the

variables in {y1, y
′
1, . . . , ym, y

′
m} not mentioned in x̄ are the existential quan-

tified variables and Ei is a 2RPQ over Σ, for each 1 ≤ i ≤ m. The answer
γ(G) of γ over a graph database G is defined in the obvious way. A union of
C2RPQs (UC2RPQ) Γ over Σ is a finite set {γ1(x̄), . . . , γk(x̄)} of C2RPQs
over Σ with the same free variables. We define Γ (G) as

⋃
1≤j≤k γj(G), for each

graph database G.
Datalog. While UC2RPQs extends UCQs with a limited form of transitive
closure, Datalog extends UCQs with full recursion. A Datalog program Π
consists of a finite set of rules of the form S(x̄)← R1(ȳ1), . . . , Rm(ȳm), where
S,R1, . . . , Rm are predicate symbols and x̄, ȳ1, . . . , ȳm are tuples of variables.
A predicate that occurs in the head of a rule is called intensional predicate.
The rest of the predicates are called extensional predicates. We assume that
each program has a distinguished intensional predicate called Ans.

Let P be an intensional predicate of a Datalog programΠ andD a database
over the extensional predicates of Π. For i ≥ 0, P iΠ(D) denote the collection
of facts about the intensional predicate P that can be deduced from D by at
most i applications of the rules in Π. Let P∞Π (D) be

⋃
i≥0 P

i
Π(D). Then, the

answer Π(D) of Π over D is Ans∞Π (D).
A predicate P depends on a predicate Q in a Datalog program Π, if Q

occurs in the body of a rule ρ of Π and P is the predicate at the head of ρ.
The dependence graph of Π is a directed graph whose nodes are the predicates
of Π and whose edges capture the dependence relation: there is an edge from
Q to P if P depends on Q. A program Π is nonrecursive if its dependence
graph is acyclic, that is, no predicate depends recursively on itself.

A (nonrecursive) Datalog program over a finite alphabet Σ is a (nonrecur-
sive) Datalog program Π whose extensional predicates belong to σ(Σ±). The
answer Π(G) of a (nonrecursive) Datalog program Π over a graph database G
over Σ is Π(D(G±)).

3 Regular Queries and Nested UC2RPQs

We now introduce the class of Regular queries (RQs) and show some basic
results regarding the complexity of evaluation. We also present an equivalent
way of defining RQs that we call nested UC2RPQs, and that is better for
defining the automata techniques that we use throughout the paper.

3.1 Regular Queries

An extended Datalog rule is a rule of the form S(x̄) ← R1(ȳ1), . . . , Rm(ȳm),
where S is a predicate and, for each 1 ≤ i ≤ m, Ri is either a predicate
or an expression P+ for a binary predicate P . An extended Datalog program
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is a finite set of extended Datalog rules. For an extended Datalog program,
we define its extensional/intensional predicates and its dependence graph in
the obvious way. Again we assume that there is a distinguished intensional
predicate Ans. As expected, a nonrecursive extended Datalog program over
an alphabet Σ is an extended Datalog program whose extensional predicates
are in σ(Σ±) and whose dependence graph is acyclic.

Definition 1 (Regular query) A regular query (RQ) Ω over a finite alpha-
bet Σ is a nonrecursive extended Datalog program over Σ, where all inten-
sional predicates, except possibly for Ans, have arity 2.

The semantics of an extended Datalog rule is defined as in the case of a
standard Datalog rule considering the semantics of an atom P+(y, y′) as the
pairs (v, v′) that are in the transitive closure of the relation P . The semantics
of a RQ is then inherited from the semantics of Datalog in the natural way.
We denote by Ω(G) the answer of a RQ Ω over a graph database G.

Example 1 Suppose we have a graph database of persons and its relationships.
We have relations knows and helps, abbreviated k and h, respectively. Thus
our alphabet is Σ = {k, h}. Lets say that a person p is a friend of person p′

if p knows and helps p′ at the same time. The following RQ returns all the
indirect friends, that is, the persons connected by a chain of friends.

F (x, y)← k(x, y), h(x, y).

Ans(x, y)← F+(x, y).

2

Example 2 Suppose now that a person p′ is an acquaintance of p if p knows
p′ and they have an indirect friend in common. The pairs of person connected
by a chain of acquaintances can be expressed by the following RQ.

F (x, y)← k(x, y), h(x, y).

A(x, y)← k(x, y), F+(x, z), F+(y, z).

Ans(x, y)← A+(x, y).

2

Clearly, RQs subsume UC2RPQs and UCN2RPQs (the extension of
UC2RPQs with an existential test operator [41,6]), as RQs are actually strictly
more expressive than these other classes of queries. In particular, the transi-
tive closure of a binary UC2RPQ cannot be expressed as a UC(N)2RPQ, and
indeed using ideas from [12,14] one can show that the queries in Examples
1 and 2 cannot be expressed by any UCN2RPQ, whereas these where easily
expressed as RQs. Moreover, the class of RQs is not only closed under join
and union, but also under transitive closure: the transitive closure of a binary
RQ is always a RQ. This makes RQs a natural graph query language.
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We start our investigation of RQs by establishing some basic results re-
garding the complexity of evaluation. Recall that the evaluation problem asks,
given a query Ω, a graph database G and a tuple t̄, whether t̄ ∈ Ω(G). Inter-
estingly, we show that RQs are not harder to evaluate than UCN2RPQs.

We say that a Datalog program Π is linear if we can partition its rules
into sets Π1, . . . ,Πn such that (1) the predicates in the head of the rules in
Πi do not ocurr in the body of any rule in any set Πj , with j < i; and (2)
the body of each rule in Πi has at most one occurrence of a predicate that
occurs in the head of a rule in Πi

1. A binary linear Datalog program is just a
linear program where all intensional predicates have arity 2, except possibly
for Ans.

Note then that each expression P+ in an extended Datalog program can
be computed by the following linear Datalog rules (assuming now P+ is a new
predicate):

P+(x, y)← P (x, y).

P+(x, y)← P+(x, z), P (z, y).

Thus, every RQ Ω can be translated in polynomial time into a binary linear
Datalog program ΠΩ : one just transforms Ω into a regular Datalog program
by treating each of the expressions P+ as a new predicate, and then adds the
rules shown above for each such predicate P+. It is not difficult to see that
the resulting program is indeed linear: since Regular Queries are nonrecursive
we can use the same ordering on the rules of Ω to derive a partition for the
rules in ΠΩ . For instance, the RQ in Example 2 is translated into the following
linear program:

F (x, y)← k(x, y), h(x, y).

F+(x, y)← F (x, y).

F+(x, y)← F+(x, z), F (z, y).

A(x, y)← k(x, y), F+(x, z), F+(y, z).

A+(x, y)← A(x, y).

A+(x, y)← A+(x, z), A(z, y).

Ans(x, y)← A+(x, y).

As a consequence of this translation we can derive tight complexity bounds
for the evaluation problem [23,25].

Theorem 1 The evaluation problem for RQs is NP-complete in combined
complexity and NLogspace-complete in data complexity.

1 These programs are sometimes referred to as stratified linear programs, or piecewise
linear Programs [45].
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3.2 Nested UC2RPQs

Most of the proofs in this paper assume that regular queries are given in an
equivalent definition called nested UC2RPQs. Nested UC2RPQs can be seen as
a more intuitive extension of C2RPQs as they allow regular expression directly
in the atoms of a rule. Also, as we shall see, nested UC2RPQs will allow us to
exploit automata techniques in a cleaner way.

An extended C2RPQ rule is a rule of the form S(x1, . . . , xn) ←
R1(y1, y

′
1), . . . , Rm(ym, y

′
m), where for each 1 ≤ i ≤ m, Ri is either a pred-

icate, a 2RPQ or an expression P+, where P is a binary predicate. Again, for
a finite set Γ of extended C2RPQ rules, we define its intensional predicates
and its dependence graph in the obvious way. Note that the set of nodes of
the dependence graph of Γ is the union of the intensional predicates and the
2RPQs mentioned in Γ (now the 2RPQs play the role of extensional pred-
icates). As before, we have a special predicate Ans and we say that Γ is a
nonrecursive set of rules over alphabet Σ if its dependence graph is acyclic
and its 2RPQs are defined over Σ.

Definition 2 (Nested UC2RPQ) A nested UC2RPQ (nUC2RPQ) Γ over
Σ is a nonrecursive finite set of extended C2RPQ rules over Σ, where all
intensional predicates, except possibly for Ans, have arity 2.

The semantics of nUC2RPQs is inherited from the semantics of 2RPQs
and Datalog in the natural way. As usual, Γ (G) denotes the answer of the
nUC2RPQ Γ over the graph database G. The following proposition states
that RQs and nUC2RPQs are equivalent; the proof is immediate from the
definition.

Proposition 1

– For every RQ Ω over Σ one can construct in polynomial time a nUC2RPQ
ΓΩ such that Ω(G) = ΓΩ(G) for every graph database G over Σ.

– For every nUC2RPQ Γ one can construct in polynomial time a RQ ΩΓ
such that Γ (G) = ΩΓ (G) for every graph database G over Σ.

4 Containment of Regular Queries

Now we turn to the task of checking containment. Recall that the containment
problem asks, given two queries Ω and Ω′, whether Ω is contained in Ω′, that
is, whether Ω(G) ⊆ Ω′(G) for each graph database G. Our main technical
result is the following.

Theorem 2 The containment problem for RQs is 2Expspace-complete.

As we have mentioned, to prove this theorem we focus on the equiva-
lent class of nUC2RPQs. Since each RQ can be translated into an equivalent
polynomially-sized nUC2RPQ and vice versa, Theorem 2 is a direct conse-
quence of the following theorem.
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Theorem 3 The containment problem for nUC2RPQs is 2Expspace-
complete.

We thus focus solely on Theorem 3. Moreover, when showing this theorem
we assume without loss of generality that the queries are Boolean, since for
every pair of non-Boolean nUC2RPQs Γ (x̄) and Γ ′(x̄) over Σ we can construct
Boolean nUC2RPQs Γb and Γ ′b such that Γ is contained in Γ ′ if and only if Γb is
contained in Γ ′b. The construction is as follows. Assume that x̄ = (x1, . . . , xn).
Queries Γb and Γ ′b are defined over Σ∪{$1, . . . , $n}, where $1, . . . , $n are fresh
symbols not in Σ. Query Γb is obtained from Γ by adding to each rule of Γ
with the Ans predicate in its head, an atom $i(xi, xi), for each 1 ≤ i ≤ n.
Query Γ ′b is constructed in the same way.

To obtain the required 2Expspace upper bound we use the following ap-
proach:

1. We introduce the class of flat nUC2RPQs, which are basically unfoldings
of nUC2RPQs. In particular, each nUC2RPQ can be unfolded to construct
an equivalent flat nUC2RPQ of possibly exponential size.

2. We show that checking containment of flat nUC2RPQs can be reduced
in polynomial time to checking containment of a single-atom C2RPQ and
a flat nUC2RPQ. A single-atom C2RPQ is a query of the form E() ←
R(y, y′), where R is a 2RPQ.

3. We show that containment of a single-atom C2RPQ in a flat nUC2RPQ
can be done in Expspace. As a consequence, we obtain that containment
of nUC2RPQs can be done in 2Expspace.

The organization of the proof is as follows. In Section 4.1 we show how to
go from nUC2RPQs to flat nUC2RPQs (with a possible exponential blowup).
Then Section 5 shows how to reduce from containment of flat nUC2RPQs to
containment of a single-atom C2RPQ and a flat nUC2RPQ, and Section 6
shows that the latter problem can be done in Expspace. Finally, in Section 7
we put all the ingredients together and provide a proof for Theorems 3 and 2.
The latter section also includes the proof for the 2Expspace lower bound.

4.1 From nUC2RPQs to Flat nUC2RPQs

We start by introducing the class of flat nUC2RPQs.

Definition 3 (Flat nested UC2RPQ) A flat nested UC2RPQ (flat
nUC2RPQ) Γ over Σ is a nUC2RPQ such that

1. For each rule S(x1, . . . , xn) ← R1(y1, y
′
1), . . . , Rm(ym, y

′
m) and each 1 ≤

i ≤ m, Ri is either a 2RPQ or an expression of the form P+.
2. For each intensional predicate S, there is a unique occurrence of S over

rule bodies of Γ .

Thus in a flat nUC2RPQ, once an intensional predicate S is defined, it can
be reused only once and only in the form of a transitive closure. However, note
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that S can occur several times in the head of rules, that is, it can be defined
by more than one rule.

By definition, a 2RPQ over Σ is a regular expression over Σ±. However,
since regular expressions and nondetermistic finite automata (NFAs) are equiv-
alent formalisms to express regular languages, we can also represent 2RPQs
as NFAs over Σ±. By slightly abusing notation, we say that a NFA over Σ± is
also a 2RPQ over Σ±. We adopt the convention that all 2RPQs appearing in a
flat nUC2RPQ are represented as NFAs. This is particularly important when
we reduce containment of flat nUC2RPQs to containment of a single-atom
C2RPQ in a flat nUC2RPQ, since the 2RPQs of the flat nUC2RPQ produced
in this reduction are directly defined as NFAs, and a translation of these to
regular expressions may involve an exponential blow-up in size. For the sake of
readability though, all the examples of flat nUC2RPQs presented in the paper
are specified using regular expressions.

Example 3 The following flat nUC2RPQ is equivalent to the query from Ex-
ample 2. Note that we need to rename the two occurrences of predicate F .

F1(x, y)← k(x, y), h(x, y).

F2(x, y)← k(x, y), h(x, y).

A(x, y)← k(x, y), F+
1 (x, z), F+

2 (y, z).

Ans(x, y)← A+(x, y).

2

As Example 3 suggests, each nUC2RPQ can be unfolded to produce an
equivalent flat nUC2RPQ. Nevertheless, this process may involve an exponen-
tial blow-up in size. We formalize this intuition below.

The depth of a nUC2RPQ is the maximum length of a directed path from
a 2RPQ to the Ans predicate in its dependence graph, minus 1. For instance,
queries in Example 1 and 2 have depth 1 and 2, respectively (formally these
queries are RQs but obviously they can be seen as nUC2RPQs too). For an
intensional predicate S of a nUC2RPQ, let rules(S) be the set of rules whose
heads mention S. Then the height of a nUC2RPQ is the maximum size of
rules(S) over all its intensional predicates. The width of a nUC2RPQ is the
maximum number of atoms in a rule body. Finally, the weight of a nUC2RPQ
is the maximum size of a 2RPQ appearing in any rule.

Proposition 2 Let Γ be a nUC2RPQ. Let d, h, w and g be the depth, height,
width and weight of Γ , respectively. Then, Γ is equivalent to a flat nUC2RPQ

Γ ′ of depth at most d, height at most hO(wd), width at most wd+1 and weight
at most O(g). In particular, the size of Γ ′ is at most double-exponential in the
size of Γ .

Proof: The idea is to unfold Γ and whenever necessary, rename intensional
predicates by fresh predicate symbols. Below we sketch a procedure that con-
structs Γ ′ from Γ .
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Let Γ ′ = ∅. We start by constructing a sequence R0
Ans, . . . ,R

d+1
Ans of sets

of rules. Let R0
Ans be the set of rules in Γ that belongs to rules(Ans). For

0 ≤ i ≤ d − 1, Ri+1
Ans is constructed from RiAns as follows. Let ρ ∈ RiAns. For

each atom in the body of ρ of the form P (x, y), with P an intensional predicate,
we choose a rule P (x′, y′)← θ′ ∈ rules(P ) in Γ and substitute P (x, y) by θ′ in
ρ, renaming x′, y′ by x, y, respectively, and the rest of the variables by fresh
variables not appearing in ρ. Note that, for each atom P (x, y) we have many
choices for the rule P (x′, y′) ← θ′, thus the previous step produces a set of
rules Ri+1

ρ . We define Ri+1
Ans = Ri+1

ρ1 ∪ · · · ∪R
i+1
ρk

, where RiAns = {ρ1, . . . , ρk}.
By definition of depth, there is ` ≤ d such that R`Ans = R`+1

Ans. Note
that each rule in R`Ans satisfies condition (1) in Definition 3, that is, each
atom in the body is either a 2RPQ or an expression of the form Q+. Observe

that |RiAns| ≤ h1+w+···+wi

, for 0 ≤ i ≤ d, and thus |R`Ans| ≤ h1+w+···+wd

.
Moreover, the number of atoms in the body of a rule of RiAns is at most wi+1,
for 0 ≤ i ≤ d, and thus at most wd+1 for R`Ans. We define SAns as the set
of rules obtained from R`Ans by replacing each 2RPQ by an equivalent NFA
(recall that 2RPQs in a nUC2RPQ and thus in R`Ans are given as regular
expressions, whereas 2RPQs in a flat nUC2RPQ are given as NFAs), and
by renaming each occurrence of an expression Q+ by I+, where I is a fresh
predicate symbol. The latter implies that rules in SAns satisfy condition (2)
in Definition 3. We add to Γ ′ all the rules in SAns and we mark Ans as seen,
and the rest of intensional predicates in Γ ′ as unseen.

For each unseen intensional predicate I in Γ ′, we construct a sequence
R0
I , . . . ,R

d+1
I as above. Again, there is n ≤ d, such that RnI = Rn+1

I . We thus
define SI in the same way as SAns. We add all the rules in SI to Γ ′, and we
mark I as seen and all other intentional predicates in SI as unseen. Note that
the bounds in the size of R`Ans and the number of atoms in its rules also apply
to RnI . We continue iteratively until no unseen predicate is left in Γ ′.

By construction, Γ ′ is a flat nUC2RPQ equivalent to Γ . Clearly, the depth
of Γ ′ is at most d, and the weight of Γ ′ is at most O(g), as the translation
from regular expressions to NFAs is linear. By the bounds mentioned above,

we have that the height of Γ ′ is at most h1+w+···wd

= hO(wd) and the width
is at most wd+1. This proves the proposition. 2

5 From Flat nUC2RPQs to Single-atom C2RPQs/Flat nUC2RPQs

The goal of this section is to show that checking containment of two flat
nUC2RPQs Γ and Γ ′ over Σ can be reduced to checking containment of a
single-atom C2RPQ γ̃ in a flat nUC2RPQ Γ̃ over a larger alphabet ∆. We
start by defining the notion of expansion, which is central in the analysis of
flat nUC2RPQs.

Definition 4 (Expansions) Let Γ be a flat nUC2RPQ over alphabet Σ and
let S be an intensional predicate different from Ans. A CQ with equality π
over Σ is an expansion of S if it is of the form
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π(x1, x2)← π1(y1, y
′
1), . . . , πm(ym, y

′
m)

and there is a rule of form S(x1, x2) ← R1(y1, y
′
1), . . . , Rm(ym, y

′
m) in Γ such

that

1. For each 1 ≤ i ≤ m, if Ri = E is a 2RPQ, then πi(yi, y
′
i) is a CQ with

equality of the form

πi(yi, y
′
i)← r1(yi, z1), r2(z1, z2), . . . , rp(zp−1, y

′
i)

where, p ≥ 0, r1 · · · rp ∈ L(E), and the zjs are fresh variables. When p = 0,
we have that r1 · · · rp = ε, and πi(yi, y

′
i) becomes yi = y′i.

2. If Ri = Q+ for an intensional predicate Q, then πi(yi, y
′
i) is a CQ with

equality of the form

πi(yi, y
′
i)← φ1(w0, w1), φ2(w1, w2), . . . , φq(wq−1, wq)

where q ≥ 1, w0 = yi, wq = y′i, w1, . . . , wq−1 are fresh variables and, for
each 1 ≤ j ≤ q, there is an expansion ζ(t1, t2) of Q such that φj(wj−1, wj)
is obtained from ζ(t1, t2) by renaming t1, t2 by wj−1, wj , respectively, and
renaming the rest of the variables by new fresh variables. In particular, the
quantified variables of distinct φi and φj are disjoint.

Expansions for the predicate Ans are defined similarly. The only difference
is that for Ans, expansions are Boolean queries instead of binary. An expansion
of a flat nUC2RPQ is an expansion of its predicate Ans.

The intuition is that expansions of flat nUC2RPQs are simply expansions
of their associated equivalent Datalog program [23,19]. As it turns out, con-
tainment of flat nUC2RPQs can be characterized in terms of containment of
CQs. This is an easy consequence of the semantics of CQs [21,44] and the fact
that each flat nUC2RPQ is equivalent to the union of its expansions.

Proposition 3 Let Γ and Γ ′ be two flat nUC2RPQs. Then, Γ is contained
in Γ ′ if and only if, for each expansion ϕ of Γ , there exists an expansion ϕ′

of Γ ′ and a containment mapping from neq(ϕ′) to neq(ϕ).

Here, the definition of containment mapping is slightly different to the
usual definition [21], due to the presence of inverses:

Definition 5 (CQ containment mappings) If θ and θ′ are two Boolean
CQs over Σ, then a containment mapping µ from θ′ to θ is a mapping from
the variables of θ′ to the variables of θ such that, for each atom r(y, y′) in θ′,
with r ∈ Σ±, either r(µ(y), µ(y′)) is in θ or r−(µ(y′), µ(y)) is in θ.

Given flat nUC2RPQs Γ and Γ ′ overΣ, we construct a single-atom C2RPQ
γ̃()← Ẽ(y, y′), where Ẽ is 2RPQ (represented as NFA), and a flat nUC2RPQ
Γ̃ such that Γ is contained in Γ ′ if and only if γ̃ is contained in Γ̃ . Our
reduction is based on two ideas:
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1. Expansions of Γ can be “serialized” and represented as serialized expan-
sions, which are strings over a larger alphabet ∆. More importantly, seri-
alized expansions constitute a regular language. Thus, we can construct a
NFA Ẽ such that L(Ẽ) is precisely the set of serialized expansions of Γ .
This technique has been already used before in [17,18].

2. Next we need to serialize Γ ′. Proposition 3 tells us that Γ is contained
in Γ ′ iff Γ ′ can be “mapped” to each expansion of Γ . We have replaced
expansions of Γ by its serializations. By modifying the 2RPQs mentioned
in Γ ′, we construct a flat nUC2RPQ Γ̃ such that Γ ′ can be mapped to
an expansion ϕ of Γ iff Γ̃ can be mapped to the serialization of ϕ. As a
consequence, we have that Γ is contained in Γ ′ iff γ̃ is contained in Γ̃ . This
is a new technique and constitutes the crux of the reduction.

In what follows, we fix flat nUC2RPQs Γ and Γ ′ and focus on the con-
struction of Ẽ and Γ̃ .

5.1 Construction of Ẽ

Let M be the maximum number of atoms in the body of a rule in Γ . Let d be
the depth of Γ . For each 0 ≤ i ≤ d, let Vi = {?i} ∪ {hi1, . . . , hi2M} × {1, 2,∃}
and Si = {$i, 1i, 2i}. Let V = V0 ∪ · · · ∪ Vd and S = S0 ∪ · · · ∪ Sd. We
define the alphabet ∆ = Σ± ∪ V ∪ S. The level of a symbol r ∈ V ∪ S is j iff
r ∈ Sj ∪ Vj . For readability, sometimes we omit the superscripts of symbols
in V ∪S and refer to them using levels. For a string U in ∆, we define U−1 as
the string over ∆ (if well-defined) obtained from U by replacing $j , ?j , 1j , 2j

by $j−1, ?j−1, 1j−1, 2j−1, respectively, and (hji , s) by (hj−1
i , s), for 1 ≤ i ≤ 2M

and s ∈ {1, 2,∃}.
Now we explain how to represent expansions by strings over ∆. This is a

natural extension of the representation given in [17] for C2RPQs. The intuition
is that we represent variables in an expansion by reusing symbols from V.
Symbols of the form (hji , s) represent variables from the program Γ , whereas
symbols of the form ?j represent fresh variables produced when we “unfold”
expressions of the form Q+ (variables w1, . . . wq−1 in Definition 4).

Definition 6 (Serialized expansion) Let π be an expansion of an inten-
sional predicate S of Γ , different from Ans, of the form

π(x1, x2)← π1(y1, y
′
1), . . . , πm(ym, y

′
m)

defined by a rule ρ ∈ rules(S) of the form

S(x1, x2)← R1(y1, y
′
1), . . . , Rm(ym, y

′
m)

Let v1, . . . , vN be an enumeration of the variables in {y1, y
′
1, . . . , ym, y

′
m}

according to the order of appearance in the body of ρ, from left to right. Let
Φ be the function from {v1, . . . , vN} to V that maps vi to (hdi , 1) if vi = x1; to
(hdi , 2) if vi = x2; or to (hdi ,∃) otherwise. Observe also that Φ is well-defined
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since x1 6= x2 and N ≤ 2M (w.l.o.g we can assume x1 6= x2 as equality can be
simulated by an atom ε(x1, x2)).

The serialized expansion Wπ associated with π is the string over ∆ of the
form

$d Φ(y1) W1 Φ(y′1) $d Φ(y2) W2 Φ(y′2) $d · · · $d Φ(ym) Wm Φ(y′m) $d

where for each 1 ≤ i ≤ m, Wi is defined as follows:

1. Suppose Ri = E is a 2RPQ, and πi(yi, yi) is of the form πi(yi, y
′
i) ←

r1(yi, z1), r2(z1, z2), . . . , rp(zp−1, y
′
i), for p ≥ 0 and r1 · · · rp ∈ L(E), then

Wi = r1 · · · rp.
2. Suppose Ri = Q+ for a predicate Q and πi(yi, y

′
i) is of the form

πi(yi, y
′
i)← φ1(w0, w1), φ2(w1, w2), . . . , φq(wq−1, wq)

for q ≥ 1, w0 = yi and wq = y′i. Let ζj(t
j
1, t

j
2) be the expansion of Q defining

φj(wj−1, wj), for each 1 ≤ j ≤ q. Then, Wi is of the form

1d W ′1 2d ?d 1d W ′2 2d ?d · · · ?d 1d W ′q 2d

where for each 1 ≤ j ≤ q, W ′j = (W ′′j )−1, where W ′′j is the serialized

expansion associated with ζj(t
j
1, t

j
2).

If ϕ is an expansion of Ans, then Wϕ is defined in a similar way, but now
the function Φ always maps vi to (hdi ,∃), since ϕ is Boolean. We say that a
string over ∆ is a serialized expansion of Γ if it is the serialized expansion
associated with some expansion of Γ .

Example 4 Suppose Γ is a flat nUC2RPQ over Σ = {a, b} of the form

I(x, y)← a(t, y), a(y, x), a(x, t).

I(x, y)← bb(x, t), (a+ ε)(z, x), (b+ ε)(z, y).

Ans()← a−b∗(x, y), I+(y, z).

Then the following CQ is a possible expansion ϕ of Γ :

ϕ()← a−(x, z1), b(z1, y), φ1(y, w1), φ2(w1, z).

φ1(y, w1)← b(y, z′1), b(z′1, t), z
′ = y, z′ = w1.

φ2(w1, z)← a(t′, z), a(z, w1), a(w1, t
′).

The serialized expansion Wϕ associated with ϕ is

1 2 3 4 5 6 7 8 · · · 21 22 23 · · · 37 38 39

$ h1 a
−b h2 $ h2 1 · · · 2 ? 1 · · · 2 h3 $

$ f1 b b h2 $ h3 f1 $ h3 s4 $ $ h1 a s2 $ s2 a f3 $ f3 a h1 $

9 10 11 12 13 14 15 16 17 18 19 20 24 25 26 27 28 29 30 31 32 33 34 35 36

where for readability we omit levels (symbols in the first and second row have
level 1 and 0, respectively) and we write hi, fi, si for (h`i ,∃), (h`i , 1), (h`i , 2),
respectively. 2
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As it turns out, serialized expansions of Γ constitute a regular language.

Proposition 4 Let Γ be a flat nUC2RPQ over Σ. There exists a NFA Ẽ over
alphabet ∆, such that W ∈ L(Ẽ) if and only if W is a serialized expansion of
Γ . Moreover, the size of Ẽ is polynomial in |Γ |.

Proof: We show by induction in the structure of Γ that for all intensional
predicates R, we can construct NFAs AR and A+

R such that

1. AR accepts all the serialized expansions of R “modulo levels”, that is, each
symbol in the string could have any level.

2. A+
R accepts all the strings of the form

1 W ′1 2 ? 1 W ′2 2 ? · · · ? 1 W ′q 2

where q ≥ 1, the symbols 1, 2, ? may have any level and each W ′i is a
serialized expansion of R modulo levels.

The base case is a predicate S that does not depend on any other predicates.
Let ρ ∈ rules(S) be of the form S(x, y) ← E1(y1, y

′
1), . . . , Em(ym, y

′
m), where

each Ei is a 2RPQ (recall that Ei is specified as a NFA). We define a NFA Aρ
that accepts the serialized expansions of S modulo levels that correspond to
ρ. Intuitively, Aρ ignores levels and checks that the input is of the form

$ Φ(y1) W1 Φ(y′1) $ Φ(y2) W2 Φ(y′2) $ · · · $ Φ(ym) Wm Φ(y′m) $

where for each 1 ≤ i ≤ m, Wi is accepted by the NFA Ei. Note that Aρ can
be implemented with O(|ρ|) states.

We define AS as the union NFA Aρ1 ∪ · · · ∪ Aρk , where rules(S) =
{ρ1, . . . , ρk}. AS accepts all serialized expansions of S modulo levels and it
can be implemented with O(|ΓS |) states, where ΓS is the program obtained
from Γ by considering S as the answer predicate. From AS is trivial to con-
struct A+

S with O(|ΓS |) states.
In the general case, we have an intensional predicate R that depends on

predicates S1, . . . , Sp. By the inductive hypothesis, we already have the NFAs
ASi and A+

Si
, for each 1 ≤ i ≤ p. Let ρ ∈ rules(R) be of the form R(x, y) ←

R1(y1, y
′
1), . . . , Rm(ym, y

′
m). Again, we construct a NFA Aρ that accepts the

serialized expansions of R modulo levels associated with ρ. Aρ ignores levels
and checks that the input is of the form

$ Φ(y1) W1 Φ(y′1) $ Φ(y2) W2 Φ(y′2) $ · · · $ Φ(ym) Wm Φ(y′m) $

where for each 1 ≤ i ≤ m, Wi is accepted by the NFA Ri if Ri is a 2RPQ, or
by the NFA A+

Sj
if Ri = S+

j , for some j ∈ {1, . . . , p}. Then AR is the union

NFA Aρ1 ∪ · · · ∪ Aρk , where rules(R) = {ρ1, . . . , ρk}. The NFA AR can be

implemented with O(
∑k
j=1 |ρj |+

∑p
j=1 |ΓSj |) = O(|ΓR|) states. Again, we can

easily construct A+
R with O(|ΓR|) states.

We then define Ẽ as the product NFA AAns × Alevels, where Alevels is
a NFA that checks the correctness of levels. It is not hard to implement
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Alevels with O(d) = O(|Γ |) states. Clearly, Ẽ accepts precisely the serialized
expansions of Γ and it has O(|Γ |2) states. Since the size of the alphabet ∆ is
polynomial in |Γ |, the size of Ẽ also is. 2

5.2 Construction of Γ̃

Let γ̃ be the single-atom C2RPQ γ̃() ← Ẽ(y, y′). We can associate to each
string W = r1 · · · rp ∈ L(Ẽ), an expansion θW of γ̃ of the form θW () ←
r1(y, z1), . . . , rp(zp−1, y

′). Note that, since ε 6∈ L(Ẽ), then θW is always a CQ
without equality, and thus neq(θW ) = θW .

We would like to define Γ̃ such that, for each expansion ϕ of Γ , the following
are equivalent:

1. there is an expansion ϕ′ of Γ ′ and a containment mapping from neq(ϕ′) to
neq(ϕ).

2. there is an expansion %′ of Γ̃ and a containment mapping from neq(%′) to
θWϕ , where Wϕ is the serialized expansion associated with ϕ.

By Proposition 3, this would imply that Γ is contained Γ ′ iff γ̃ is contained
in Γ̃ . Intuitively, item (2) says that Γ̃ can be “mapped” to the string Wϕ. Thus

we need to emulate mappings from Γ ′ to neq(ϕ) by mappings from Γ̃ to Wϕ

and vice versa. Since Wϕ reuses symbols from V, the main difficulty is that
we could have two distinct symbols in Wϕ that represent the same variable in

neq(ϕ). These two symbols must be indistinguishable to Γ̃ . In order to define
Γ̃ , we first characterize indistinguishability of symbols in terms of regular
languages.

Let ϕ be an expansion of Γ . The internal variables of ϕ are the fresh
variables produced by expanding 2RPQs, that is, variables zis in item (1) of
Definition 4. The rest of the variables in ϕ are external variables. For exam-
ple, the internal and external variables of expansion ϕ from Example 4 are
{z1, z

′
1} and {x, y, z, w1, t, z

′, t′}, respectively. Recall that neq(ϕ) denotes the
CQ without equality associated with ϕ. To obtain neq(ϕ) we iteratively elim-
inate equality atoms y = y′ and rename y and y′ by a fresh variable z. This
defines a renaming from the variables of ϕ to the variables of neq(ϕ) that we
denote ξϕ.

Let w be a string. For i, j ∈ {1, . . . , |w|}, with i < j, w[i] denotes the i-th
symbol of w and w[i, j] denotes the substring of w from position i to position
j. In a serialized expansion Wϕ, some symbols represent variables of ϕ. This is
formalized as a partial mapping var from {1, . . . , |Wϕ|} to the set of variables
of ϕ. It is clear from the definition of serialized expansion that the symbol
Wϕ[i] represents an external variable y in ϕ, whenever i ∈ {1, . . . , |Wϕ|} and
Wϕ[i] ∈ V. In this case, we let var(i) = y. For instance, in Wϕ from Example
4, positions 5, 7, 10, 16 represent y in ϕ, positions 19, 22 represent w1 and
positions 27, 29, 38 represent z.
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We represent internal variables in ϕ as follows. Suppose we expand a 2RPQ
into r1 · · · rp as in item (1) of Definition 4 and that this string r1 · · · rp is the
substring Wϕ[k+1, k+p] of Wϕ, for some k ∈ {1, . . . , |Wϕ|}. Then var(k+i) =
zi, for each 1 ≤ i ≤ p− 1. For all other positions, var is undefined. Note that
each internal variable in ϕ is represented by a unique position. In Wϕ from
Example 4, position 3 represents z1 and position 11 represents z′1. Positions
4, 12 and with symbols $, 1 or 2 do not represent any variable in ϕ.

As mentioned above, different positions i, j in Wϕ could represent the same
variable in neq(ϕ). This occurs exactly whenWϕ[i],Wϕ[j] ∈ V and ξϕ(var(i)) =
ξϕ(var(j)). In this case, we say that positions i and j are equivalent. Below we
give a simple characterization of equivalent positions.

Let 1 ≤ i, j ≤ |Wϕ| such that Wϕ[i],Wϕ[j] ∈ V. There are several cases.
Suppose first that Wϕ[i] = Wϕ[j] = (h`k, s), for some 1 ≤ k ≤ 2M , 0 ≤
` ≤ d, and s ∈ {1, 2,∃}; and that the symbols Wϕ[i],Wϕ[j] are “produced”
by the same rule, that is, i and j belongs to the positions of the symbols
{Φ(y1), Φ(y′1), . . . , Φ(ym), Φ(y′m)} for a rule

S(x, y)← R1(y1, y
′
1), . . . , Rm(ym, y

′
m)

or
Ans()← R1(y1, y

′
1), . . . , Rm(ym, y

′
m),

as defined in Definition 6. In Example 4, symbols in {2, 5, 7, 22, 38},
{10, 13, 15, 16, 18, 19} and {25, 27, 29, 31, 33, 35} are produced by the same rule.
Clearly, i and j are equivalent, since var(i) = var(j). In this case, we say that
i and j are horizontally equivalent. In Example 4, the pairs (5, 7), (15, 18) and
(27, 29) are horizontally equivalent.

Suppose now that t 1` W ′ 2` t′ is a substring of Wϕ and that the levels
of symbols t, t′ is ` ∈ {1, . . . , d}. Assume that t appears at position i in Wϕ,
and that Wϕ[j] is a symbol in W ′ of the form (h`−1

k , 1). Then we have that
var(i) = var(j) and thus i and j are equivalent. Indeed, this substring appears
in Wϕ precisely when we unfold an expression Q+ (item (2), Definition 6) and
W ′ represents an expansion φ of Q. By definition, (h`−1

k , 1) and t represents
the same variable, namely the first free variable of φ. Analogously, i and j
are equivalent if t′ appears at position i and Wϕ[j] is a symbol in W ′ of the
form (h`−1

k , 2). In either case we say that i and j are vertically equivalent. In
Example 4, the pairs (7, 10), (19, 22) and (29, 38) are vertically equivalent.

Finally, suppose that j = i+ 1. Since we are assuming that Wϕ[i],Wϕ[j] ∈
V, the only possibility is that Wϕ[i] = (h`k, s) and Wϕ[j] = (h`k′ , s

′), for some
1 ≤ k, k′ ≤ 2M , 0 ≤ ` ≤ d and s, s′ ∈ {∃, 1, 2}. This happens exactly when
Wϕ[i],Wϕ[j] are produced by a rule

S(x, y)← R1(y1, y
′
1), . . . , Rm(ym, y

′
m)

or
Ans()← R1(y1, y

′
1), . . . , Rm(ym, y

′
m),

and for some 1 ≤ h ≤ m, it is the case that Φ(yh) = Wϕ[i], Φ(y′h) = Wϕ[j] and
Wh = ε (see Definition 6). Since Wh = ε, there is an equality atom yh = y′h
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in ϕ. Moreover, var(i) = yh and var(j) = y′h. Thus, although var(i) 6= var(j),
we have that ξϕ(var(i)) = ξϕ(var(j)), that is, i and j are equivalent. In this
case, we say that i and j are semantically equivalent. In Example 4, the pairs
(15, 16) and (18, 19) are semantically equivalent.

It is easy to see that we can only have equivalence of two positions by
iteratively applying the above basic type of equivalences. This is stated in the
following proposition.

Proposition 5 Let Wϕ be the serialized expansion associated with an expan-
sion ϕ of Γ . Let i, j ∈ {1, . . . , |Wϕ|}. Then i and j are equivalent if and only
if there is a sequence k1, · · · kp of positions in {1, . . . , |Wϕ|}, such that p ≥ 1,
k1 = i, kp = j and for each h ∈ {1, . . . , p − 1}, kh and kh+1 are either hori-
zontally, vertically or semantically equivalent.

Now we characterize equivalence in terms of regular languages.

Definition 7 (Foldings) Let w and u be strings over ∆± = {a− | a ∈ ∆},
where ∆ is a finite alphabet. A folding F from u into w is a sequence F =
i0, i1, . . . , i|u| of positions in the set {0, . . . , |w|} such that, for each 1 ≤ j ≤ |u|,
it is the case that ij = ij−1 + 1 and u[j] = w[ij ], or ij = ij−1 − 1 and
u[j] = w[ij−1]−. We denote i0 and i|u| by first(F) and last(F), respectively.

Intuitively, if there is a folding from u into w, then u can be read in w by
a two-way automaton that outputs symbol r, each time it is read from left-to-
right, and symbol r−, each time it is read from right-to-left. If the first symbol
that is read in w is the j1-th symbol, with j1 ∈ {1, . . . , |w|}, and similarly,
the last symbol that is read is the j2-symbol, with j2 ∈ {1, . . . , |w|}, then
we say that F is a (j1, j2)-folding from u into w. Note that the first or last
symbol can be read in w either from left-to-right or from right-to-left. In other
words, if F is a (j1, j2)-folding from u into w, then first(F) ∈ {j1 − 1, j1} and
last(F) ∈ {j2 − 1, j2}. For instance, consider the string w = $y1b

−ay2$. Then,
3, 2, 1, 2, 3, 4, 3 is a (3, 4)-folding from by−1 y1b

−aa− into w, and 2, 3, 4, 3, 4, 5, 6
is a (3, 6)-folding of b−aa−ay2$ into w.

We introduce the notion of equality strings. Equality strings are strings
over ∆± with the following key property: For a serialized expansion Wϕ and
positions 1 ≤ i, j ≤ |Wϕ|, i and j are equivalent iff there is a (i, j)-folding
of some equality string into Wϕ. Equality strings are concatenations of basic
equality strings. We have one type of basic equality string for each type of
equivalence. For a level 0 ≤ ` ≤ d, G` denotes the alphabet ∆±≤`, where ∆≤`
is the union of Σ± and all the symbols from V ∪ S of level at most `.

1. An horizontal equality string α is a string that satisfies the regular expres-
sion t G∗` t + t− G∗` t

−, where, 0 ≤ ` ≤ d and t is a symbol of the form
(h`k, s). Observe that in the definition of horizontal equivalence the fact
that Wϕ[i] and Wϕ[j] are produced by the same rule is equivalent to the
fact that Wϕ[i] and Wϕ[j] have the same level ` and each symbol between
position i and j in Wϕ has level at most `. It follows then that i and j
are horizontally equivalent iff there is a horizontal equality string α and
(i, j)-folding of α into Wϕ.
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2. A vertical equality string α is a string that satisfies the regular expression
e1 + e2, where e1 = t1 1` G∗`−1t2 + t−2 G∗`−1(1`)− t−1 , for t1 ∈ V with level `

and t2 of the form (h`−1
k , 1). Similarly, e2 = t2 G

∗
`−12` t1+t−1 (2`)− G∗`−1t

−
2 ,

for t1 ∈ V with level ` and t2 of the form (h`−1
k , 2). It is easy to see that i

and j are vertically equivalent iff there is a vertical equality string α and
(i, j)-folding of α into Wϕ.

3. A semantic equality string α is a string that satisfies the regular expression
t1 t2 + t−2 t−1 , for t1 of the form (h`k, s) and t2 of the form (h`k′ , s

′). Clearly,
i and j are semantically equivalent iff there is a semantic equality string α
and (i, j)-folding of α into Wϕ.

An equality string is a string α over ∆± that satisfies the regular expression
δα1δα2 · · · δαpδ, where p ≥ 0, δ is the regular expression ε+ V± and for each
1 ≤ h ≤ p, αh is either an horizontal, vertical or semantic equality string.
Note that the empty string ε is an equality string. The expression δ allows us
to concatenate foldings of basic equality string. The following proposition is
immediate from the definition of equality string:

Proposition 6 Let Wϕ be the serialized expansion associated with an expan-
sion ϕ of Γ . Let i, j ∈ {1, . . . , |Wϕ|}. Then i and j are equivalent if and only if
there is an equality string α and a (i, j)-folding F from α into Wϕ. Moreover,
if i and j are equivalent, then for any pair (k, k′) ∈ {i− 1, i} × {j − 1, j}, we
can choose α and the (i, j)-folding F such that first(F) = k and last(F) = k′.

In Example 4, positions 5 and 33 are equivalent. This is because 5, 7 are
horizontally equivalent, 7, 16 are vertically equivalent, 16, 15 are semantically
equivalent, 15, 18 are horizontally equivalent, 18, 19 are semantically equiva-
lent, 19, 22 are vertically equivalent and 22, 33 are vertically equivalent. Equiv-
alence of 5 and 33 is then witnessed by the equality string (now we indicate lev-
els; bold symbols are due the expression δ; [·] indicates basic equality strings)

[h1
2 $1 h1

2] (h1
2)−[h1

2 11 $0 f0
1 bb h0

2 $0 h0
3 f

0
1 ] [(f0

1 )−(h0
3)−] [h0

3 f
0
1 $0 h0

3] (h0
3)−

[h0
3 s

0
4] (s04)−[s0

4 $0 21 ?1] (?1)−[?1 11 $0 h0
1 a s

0
2 $0 s0

2 a f
0
3 $0 f0

3 ]

Now we define Γ̃ . Let w = w1 · · ·wp be a string over Σ±. We define
serial(w) as the language that contains all the strings over ∆± of the form
α0w1α1w2α2 · · ·αp−1wpαp, where for each 0 ≤ i ≤ p, αi is an equality string.
If L is a language over Σ±, then serial(L) is the language over ∆± defined by
serial(L) = {w′ | w′ ∈ serial(w), for some w ∈ L}. We have the following:

Lemma 1 For each NFA A over Σ±, there is an NFA A′ over ∆± such that
L(A′) = serial(L(A)). Moreover, the size of A′ is polynomial in the size of A
and ∆.

Proof: It is easy to construct a NFA Aeq of polynomial size in ∆ that
accepts all the equality strings. Then the NFA A′ guesses, on input s1 · · · sn,
positions i1 < · · · < i` such that si1si2 · · · si` ∈ L(A) and it checks that
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each intermediate substring s1 · · · si1−1, si1+1 · · · si2−1, . . . , si`+1 · · · sn is an
equality string, that is, it is accepted by Aeq. We can construct A′ such that
its size is polynomial in the size of A and Aeq, that is, polynomial in the size
of A and ∆. 2

The flat nUC2RPQ Γ̃ is obtained from Γ ′ by replacing each 2RPQ E in Γ ′

by serial(E) (recall that E is given as a NFA). Recall that γ̃ is the single-atom
C2RPQ γ̃()← Ẽ(y, y′) and that θW is the CQ associated with the string W .
Now we show that Γ̃ satisfies our desired property.

Proposition 7 Let ϕ be an expansion of Γ . Then the following are equivalent:

1. there is an expansion ϕ′ of Γ ′ and a containment mapping from neq(ϕ′) to
neq(ϕ).

2. there is an expansion %′ of Γ̃ and a containment mapping from neq(%′) to
θWϕ .

Proof: Let ψ be an expansion of an arbitrary flat nUC2RPQ. In the construc-
tion of ψ, when we reach the base case (1) in Definition 4, we expand a 2RPQ
E by choosing a string in L(E). We call this a basic expansion. We identify ba-
sic expansions with a set of natural numbers BEψ = {1, . . . , e(ψ)}, where e(ψ)
is number of times we have to expand a 2RPQ in the whole construction of ψ.
We also associate with ψ functions Aψ and Sψ. The function Aψ maps a basic
expansion i ∈ BEψ to the associated 2RPQ Aψ(i) that we are expanding. The
function Sψ maps i ∈ BEψ to the string Sψ(i) ∈ L(Aψ(i)) that we choose in
the expansion. Note that the internal variables are those that appear exactly
when we apply a basic expansion.

Recall that neq(ψ) denotes the CQ without equality associated with ψ and
ξψ is the renaming from ψ to neq(ψ). Let V ext and V int be the external and
internal variables of ψ, respectively. Then, we define the external and internal
variables of neq(ψ) as ξψ(V ext) and ξψ(V int), respectively. Note that internal
variables of ψ and neq(ψ) coincide, since ξψ is the identity over V int.

We assume that θWϕ is of the form θWϕ() ←
r1(z0, z1), r2(z1, z2), . . . , rp(zp−1, zp), where p ≥ 1 and Wϕ = r1 · · · rp.
For a variable zj in Wϕ with 0 ≤ j ≤ p, we define pos(zj) = j

(1)⇒ (2) Since Γ̃ and Γ ′ only differ in their 2RPQs, we can take the expansion
%′ to be the “same” as ϕ′: %′ expands intensional predicates using the same
rule as ϕ′ and expands expression Q+ as ϕ′ does. In particular, the set of basic
expansions of %′ and ϕ′ coincide, i.e, BE%′ = BEϕ′ . The only difference between
%′ and ϕ′ are the strings we choose in basic expansions. Thus to completely
define %′, we only need to specify the function S%′ .

Let i ∈ BE%′ and suppose that Sϕ′(i) = ε. Then we assign S%′(i) = ε. Note
that this is well-defined, that is, S%′(i) = ε ∈ L(A%′(i)), since ε ∈ L(Aϕ′(i))
implies ε ∈ L(serial(Aϕ′(i))) = L(A%′(i)). If Sϕ′(i) 6= ε, then we define B%′(i)
in such a way that B%′(i) 6= ε. We define B%′(i) later, together with the
containment mapping from neq(%′) to θWϕ . At this point, we have by definition
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that external variables of ϕ′ and %′ coincide. Moreover, by the above (partial)
definition of S%′ we have that equality atoms (between external variables) also
coincide in ϕ′ and %′. Thus w.l.o.g. we can assume that the renamings ξϕ′ and
ξ%′ coincide over external variables. In particular, the set of external variables
of neq(ϕ′) and neq(%′) is exactly the same. We denote this set by Uext.

Now we completely define S%′ and the containment mapping ν from neq(%′)
to θWϕ . We start by defining ν over Uext, that is, the external variables of
neq(%′). By hypothesis, we have a containment mapping µ from neq(ϕ′) to
neq(ϕ). Let ξϕ be the renaming from ϕ to neq(ϕ). Let t be a variable in Uext.
Suppose µ(t) is a variable y in neq(ϕ). Then we assign ν(t) = zj , where j
is any position in {1, . . . , p} representing the variable y, that is, such that
ξϕ(var(j)) = y. Note that we could have many choices for j when y is an
external variable of neq(ϕ), whereas we only have one choice when y is an
internal variable. At this point, ν is well-defined over Uext.

Let i ∈ BE%′ such that Sϕ′(i) 6= ε. It only remains to define S%′(i) and
the extension of ν to the internal variables produced by the basic expansion
i. Suppose i is a basic expansion between external variables t and t′. Note
that ν(t), ν(t′) are already defined. Observe also that ν can be extended to the
internal variables in the expansion i iff there is a folding F of B%′(i) into Wϕ

with first(F) = pos(ν(t)) and last(F) = pos(ν(t′)).
Suppose Sϕ′(i) = s1 · · · sn, for n ≥ 1. Let o1 . . . on−1 be the internal vari-

ables associated with the basic expansion i in ϕ′, and let o0 = t and on = t′. We
examine the values µ(o0), µ(o1), . . . , µ(on−1), µ(on). Let j1 < j2 < · · · < jm
be all the positions j in {0, . . . , n}, such that µ(oj) is an external variable in
neq(ϕ). Suppose first that j1 > 0 and jm < n. For each 1 ≤ k ≤ m+ 1, let Sk
be the substring sjk−1+1 · · · sjk of s1 · · · sn, where j0 = 0 and jm+1 = n (note
that Sk 6= ε). The intuition is that Si is “mapped” via µ to a string Sϕ(i′), for
some basic expansion i′ of ϕ. Thus for each 1 ≤ k ≤ m+ 1, we have a folding
Fk of Sk into Wϕ that simulates the mapping µ. Note that for each 1 ≤ k ≤ m,
last(Fk) ∈ {q − 1, q} for a position q ∈ {1, . . . , p} such that Wϕ[q] ∈ V (i.e,
q represents an external variable in neq(ϕ)), first(Fk+1) ∈ {q′ − 1, q′} for a
position q′ ∈ {1, . . . , p} such that Wϕ[q′] ∈ V, and q and q′ are equivalent
(since µ is a containment mapping). By Proposition 6, there is an equality
string αk and a (q, q′)-folding Ik of αk into Wϕ with first(Ik) = last(Fk) and
last(Ik) = first(Fk+1).

We then define S%′(i) = S1α1S2α2 · · ·αmSm+1. The extension of ν is given
by the folding F obtained from the concatenation of F1, I1,F2, · · · , Im,Fm+1.
Observe that F is actually a folding from S%′(i) into Wϕ with first(F) =
pos(ν(o0)) = pos(ν(t)) and first(F) = pos(ν(on)) = pos(ν(t′)) as required.
Note also that S%′(i) ∈ serial(s1 . . . sn) ⊆ L(serial(Aϕ′(i))) = L(A%′(i)).

Suppose now that j1 = 0 and jm < n (the other cases are analogous).
Then S1 = ε. Using the same arguments as above, we have equality strings
α2, . . . , αm and a folding F from S2α2 · · ·αmSm+1 into Wϕ. The problem is
that we could have that first(F) 6= pos(ν(o0)). Nevertheless, we have that
first(F) ∈ {q − 1, q} for a position q ∈ {1, . . . , p} such that Wϕ[q] ∈ V, and
pos(ν(o0)) and q are equivalent. By Proposition 6, there is an equality string



Regular Queries on Graph Databases 23

α and a (pos(ν(o0)), q)-folding I of α into Wϕ with first(I) = pos(ν(o0)) and
last(I) = first(F). Then in this case, S%′(i) = αS2α2 · · ·αmSm+1 and our
desired folding F ′ is the concatenation of I,F .

(2) ⇒ (1) As above, the expansion ϕ′ is the same as %′. We only need to
specify Sϕ′(·). Let i ∈ BEϕ′ = BE%′ and suppose that S%′(i) ∈ serial(w), for
some w ∈ L(Aϕ′(i)). Then we assign Sϕ′(i) = w.

By construction, the external variables of %′ and ϕ′ coincide. We denote
these variables by Uext. Note also that, if S%′(i) = ε, the only option for w is
ε and thus Sϕ′(i) = ε. In particular, if y = y′ is an equality atom in %′ with
y, y′ ∈ Uext, then y = y′ is also an equality atom in ϕ′. However, the converse
is not true. If S%′(i) 6= ε, then it could be the case that the only option is
w = ε. If this occurs then S%′(i) is simply an equality string. Thus it could be
possible that y = y′ is an equality atom in ϕ′ but not in %′. As a consequence,
the external variables of neq(%′) and neq(ϕ′) do not coincide.

For an external variable z of neq(ϕ′), we define ξ−1
ϕ′ (z) = {y |

z is external variable in ϕ′ and ξϕ′(y) = z}. Now we define the containment
mapping µ from neq(ϕ′) to neq(ϕ). By hypothesis, we have a containment
mapping ν from neq(%′) to θWϕ . First we define µ over the external variables
of neq(ϕ′). Let z be such a variable. Let y be any variable in ξ−1

ϕ′ (z). By con-
struction, y is also an external variable of %′. Let j = pos(ν(ξ%′(y))). We have
two cases: (i) Wϕ[j] or Wϕ[j + 1] belongs to V, or (ii) Wϕ[j],Wϕ[j + 1] 6∈ V.
If case (i) holds, then let q ∈ {j, j + 1} such that Wϕ[q] ∈ V. In this case we
define µ(z) = ξϕ(var(q)), that is, µ(z) is the variable represented by q. Note
that if both Wϕ[j],Wϕ[j + 1] ∈ V, µ(z) is independent of the choice of q as
in this case j and j + 1 represent the same variable. If case (ii) holds then we
have that Wϕ[j],Wϕ[j + 1] ∈ Σ± and thus j represents an internal variable in
neq(ϕ). In this case we define µ(z) = ξϕ(var(j)).

We show that µ(z) is independent of the choice of y. Let y, y′ ∈ ξ−1
ϕ′ (z).

Then there exists a sequence t0 = t1, t1 = t2, · · · t`−1 = t` of equality atoms in
ϕ′, where ` ≥ 1, t0 = y and t` = y′. Since the tks belongs to Uext, they are
also external variables of %′. As we mentioned above, for each 0 ≤ k ≤ ` − 1,
t` = t`+1 is either an equality atom in %′ or there is a basic expansion of
the form a1(t`, y1), a2(y1, y2), · · · , an(yn−1, t`+1) where a1 . . . an is a nonempty
equality string. As a consequence, we have in neq(%′) a sequence of variables
v0, . . . , vr such that v0 = ξ%′(y), vr = ξ%′(y

′) and for each 0 ≤ k ≤ r −
1, %′ contains atoms ak1(vk, y1), a2(y1, y2), · · · , akn(yn−1, vk+1) with ak1 · · · akn a
nonempty equality string. Let 0 ≤ k ≤ r − 1 and let j = pos(ν(vk)) and
j′ = pos(ν(vk+1)). Note that, since equality strings always start and end with
symbols from V±, then j and j′ satisfy case (i) in the definition of µ. Then we
have position q ∈ {j, j+1} and q′ ∈ {j′, j′+1} and a (q, q′)-folding of ak1 · · · akn
into Wϕ. It follows that q and q′ are equivalent. By an inductive reasoning,
we conclude that there are positions q, q′ with q ∈ {pos(ν(v0)), pos(ν(v0))+1}
and q′ ∈ {pos(ν(vr)), pos(ν(vr)) + 1} such that q and q′ are equivalent. This
implies that the value of µ(z) is independent of y and y′.
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It remains to show that µ can be extended to the internal variables of
neq(ϕ′). Recall that internal variables of ϕ′ and neq(ϕ′) coincide. Let i be
a basic expansion of ϕ′ of the form w1(y0, y1), w2(y1, y2), · · · , wn(yn−1, yn)
with n ≥ 1, where y0, yn ∈ Uext. Then neq(ϕ′) contains atoms
w1(z, y1), w2(y1, y2), · · · , wn(yn−1, z

′), where z = ξϕ′(y0) and z′ = ξϕ′(yn).
It suffices to show that µ can be extended as a containment mapping to
y1, . . . , yn−1 (µ(z) and µ(z′) are already defined).

Since w1(y0, y1), w2(y1, y2), · · · , wn(yn−1, yn) is a basic expansion in ϕ′,
there is a basic expansion in %′ of the from s1(y0, t1), s2(t1, t2), · · · , sr(tr−1, yn)
with r ≥ 1 and s1 · · · sr ∈ serial(w1 . . . wn). Thus neq(%′) contains atoms
s1(ξ%′(y0), t1), s2(t1, t2), · · · , sr(tr−1, ξ%′(yn)). By simulating ν over these
atoms and ignoring equality string in s1 · · · sr, we can easily extend µ to
y1, . . . , yn−1. Note that this extension is well-defined since we can define µ(z)
and µ(z′) starting from y0 ∈ ξ−1

ϕ′ (z) and yn ∈ ξ−1
ϕ′ (z′), respectively. 2

As a corollary of Proposition 3 and 7 we have that:

Corollary 1 Γ is contained in Γ ′ if and only if γ̃ is contained in Γ̃ .

Finally note that γ̃ and Γ̃ can be constructed in polynomial time from Γ
and Γ ′. Thus we have shown the following theorem.

Theorem 4 There is a polynomial time reduction from the containment prob-
lem of flat nUC2RPQs to the containment problem of a single-atom C2RPQ
in a flat nUC2RPQ.

6 Containment of Single-atom C2RPQs in Flat nUC2RPQs

Next we show that containment of a single-atom C2RPQ in a flat nUC2RPQ
is in Expspace. We exploit automata-theoretic techniques along the lines of
[17,23,19]. The main idea is to reduce the problem to checking emptiness of a
suitable doubly exponential-sized NFA.

Let us remark that it is by no means obvious how to extend previous
techniques [17,19] to handle nUC2RPQs. In [17], it is shown that checking
containment of UC2RPQs Γ and Γ ′ is in Expspace. This is done by reducing
the problem to checking emptiness of a NFA A that accepts precisely the coun-
terexamples for containment of Γ in Γ ′, that is, the (string representation of)
expansions θ of Γ such that Γ ′ cannot be mapped to θ. The main construction
behind A is a two-way NFA (2NFA) AΓ ′ that accepts all the expansions θ of Γ
such that Γ ′ can be mapped to θ. Basically, the 2NFA AΓ ′ guesses the images
of each variable of Γ ′ and then checks that these form a valid mapping from
Γ ′ to θ. Since each atom in Γ ′ is a 2RPQ E, this can be done easily with a
2NFA by guessing a folding of a word w ∈ L(E) into θ.

When we have atoms of the form P+(x, y) in Γ ′, we cannot apply this
idea anymore. The natural extension of AΓ ′ to this case, will guess a sequence
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φ1(x,w1), . . . , φp(wp−1, y) of expansions of P and mappings from these expan-
sions to θ. This would require guessing an unbounded number of images, as
the number of variables involved in φ1, . . . , φp is unbounded. Thus it is not
clear at all how to extend AΓ ′ to work with a flat nUC2RPQ Γ ′. Instead, we
follow a different approach, and construct AΓ ′ directly as a (one-way) NFA.
The automaton AΓ ′ scans the input θ from left to right and in each step, it
guesses a “partial mapping” from Γ ′ to θ. This is formalized with the notion
of cut, which we define next.

6.1 Cuts

To decide whether a single-atom C2RPQ γ() ← E(y, y′) is contained in a
(Boolean) flat nUC2RPQ Γ , we have to check that for each expansion θ of γ,
there is an expansion ϕ of Γ and a containment mapping from neq(ϕ) to neq(θ)
(Proposition 3). We can assume w.l.o.g. that ε 6∈ L(E) and replace neq(θ) by
θ (see the beginning of Section 5.2). Note also that expansions for the single-
atom C2RPQ γ are CQs of a very particular form, that we call linear CQs:
they are sequences w0(z0, z1), . . . , wk−1(zk−1, zk) where w0 · · ·wk−1 ∈ L(E)
and each zj is distinct. Thus we can directly identify expansions of γ with
strings in L(E). A linearization of Γ is a linear CQ θ such that there is an
expansion ϕ of Γ and a containment mapping from neq(ϕ) to θ. Thus the key
idea of the proof is to show that the set linearizations (viewed as strings) of a
flat nUC2RPQ Γ can be characterized by an NFA.

Recall we are assuming w.l.o.g. that our single-atom C2RPQ γ and the flat
nUC2RPQ Γ are Boolean queries. Nevertheless, to develop the notion of cut
it will be convenient to work with binary flat nUC2RPQs. We will come back
to Boolean queries in Section 6.4.

Definition 8 (Cuts) Let Γ (x, y) be a binary flat nUC2RPQ and recall that
rules(Ans) is the set of rules where Ans occur in their head. A cut of Γ is a
tuple of the form C = (ρ, Inc,Mark,States), where

– ρ is a rule in rules(Ans), say of the form

Ans(x, y)← P1(u1, v1), . . . , Pm(um, vm),

– Inc is a subset of the set of variables that appear in ρ, called the set of
variables included in C;

– Mark is a subset of Inc, called the set of marked variables of C; and
– States is an m-tuple (s1, . . . , sm) such that for each 1 ≤ j ≤ m:

– If Pj is a 2RPQ, then sj is a state of Pj (recall Pj is given as a NFA),
– if Pj is an expression P+, then sj is a cut of the subquery ΓP , which

is obtained from Γ by considering P as the answer predicate.

Furthermore, initial cuts are those in which Inc is empty, and final cuts
are those in which Inc corresponds to the set of all variables in the rule ρ. We
say that a cut includes a variable x if it belongs to Inc, and marks a variable
x if it belongs to Mark.
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Let θ() ← w0(z0, z1), . . . , wk−1(zk−1, zk) be a linear CQ and consider the
ordering z0 < z1 · · · < zk. Let p ∈ {0, . . . , k}. Then the intuition is that a
cut C = (ρ, Inc,Mark,States) describes a partial mapping of Γ to θ up to all
variables smaller than or equal to zp. The set Inc represents variables of Γ that
are actually mapped to variables smaller or equal than zp and the set Mark
are those that are mapped precisely to variable zp. For each atom Pj(uj , vj)
of ρ that is “cut” by the cut C, that is, such that uj ∈ Inc and vj 6∈ Inc, or
vj ∈ Inc and uj 6∈ Inc, we store some information in C that will allow us to
extend C to another cut in position p+ 1. If Pj is an NFA, this information is
simply a state of Pj . If Pj = P+, this is again a cut for the subquery ΓP . This
is summarized in the tuple States. When the j-th atom of ρ is not cut by C,
then the value of the j-th coordinate of States is irrelevant.

The sets of cuts of a flat nUC2RPQ Γ is denoted by Cuts(Γ ). Before
continuing we show polynomial and exponential bounds of the size and number
of cuts of flat nUC2RPQs:

Lemma 2 Let Γ be a binary flat nUC2RPQ. Then |Cuts(Γ )| is at most ex-
ponential in |Γ | and the size of each cut in Cuts(Γ ) is polynomial in |Γ |.

Proof: We show that each cut can be represented by a string of length at
most C|Γ | over an alphabet of size at most C ′|Γ |, for constants C,C ′. This
proves that the size of each cut is polynomial, and that the size of Cuts(Γ ) is
exponential, as the number of cuts would be at most (C ′|Γ |)C|Γ |.

To describe a cut C = (ρ, Inc,Mark,States), we can write ρ, then list the
variables in Inc and Mark, and write, for each atom Pj(uj , vj) of ρ with Pj a
2RPQ, the state sj . At this point, the space used is proportional to |ρ|. Then
we proceed recursively. For each atom P+(uj , vj) of ρ, we write the description
of the cut sj of ΓP . Note that, if P+(uj , vj) and Q+(uk, vk) are distinct atoms
in ρ, since Γ is a flat nUC2RPQ, then the rules in ΓP and ΓQ are disjoint.
This implies that the size of our representation of cuts is proportional to |Γ |. 2

6.2 Transition System Based on Cuts

We represent each linear CQ θ() ← w0(z0, z1), . . . , wk−1(zk−1, zk) with the
string w = w0, . . . , wk−1, and each partial mapping from a flat nUC2RPQ Γ
to θ as a pair Cuts(Γ ) × {0, . . . , k}. Our next step is to define a transition
system T(Γ,w) defined over cuts of Γ and positions of a word w over Σ±. A
configuration of T(Γ,w) is just a pair from Cuts(Γ )×{0, . . . , k}, and represents
that a certain cut is assigned to a certain position of w. The system T(Γ,w)

relates configurations according to a transition relation ⇒(Γ,w) that ranges
over (Cuts(Γ )×{0, . . . , k})× (Cuts(Γ )×{0, . . . , k}). As usual⇒∗(Γ,w) denotes
the reflexive and transitive closure of the relation ⇒(Γ,w).

Let us shed light on the intuition behind the system. We note first that our
transition system, while non-deterministic, can only advance to configurations
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relating greater or equal positions in w. The idea is that a run of T(Γ,w) should
non-deterministically guess the greatest cuts, in terms of variables, that can be
mapped to each position in w. For the same reason, the transition system can
only move towards configurations whose cuts include at least those variables
included in previous configurations.

Example 5 Consider a query over alphabet Σ = {a, b} given by the single
rule ρ: Γ (x, y) ← a+(x, z), a−(z, y), stating that there is a path labeled with
a+ between x and z, and a reverse a-labelled edge between z and y. It is
not difficult to see that the CQ θ() ← a(u1, u2), a(u2, u3) is a linearization of
Γ . Indeed, for example, the expansion a(x, x′), a(x′, z), a(y, z) can be mapped
onto θ.

The string associated to θ is w = aa. Assume now that the NFA for a+ is
({q0, qf}, Σ, q0, {qf}, δ), with δ(q0, a) = qf and δ(qf , a) = qf and the NFA for
a− is ({p0, pf}, Σ, p0, {pf}, δ), with δ(q0, a

−) = pf .
A valid run for T(Γ,w) over w starts in the initial cut (ρ, {}, {}, (q0, p0)) at

the beginning of the string and then advances to cut (ρ, {x}, {x}, (q0, p0)) while
still in position 0 of w. This means we have non-deterministically guessed that
we will start checking the conjunct a+(x, z) of ρ. We then advance to position 1
in w and cut (ρ, {x}, {}, (qf , p0)), which reflects the transition of a+(x, z) when
reading an a, and then to (ρ, {x, y}, {y}, (qf , pf )) as we guess that we now start
checking the second conjunct as well. Since y is the second variable of a−(z, y),
we need to satisfy the automaton for a− in reverse, and this is why we start
in state pf in the second position of the tuple of states. We then advance to
position 2 and cut (ρ, {x, y}, {}, (qf , p0)), reflecting the transition of the NFAs
(the second in reverse), and finally to the cut (ρ, {x, y, z}, {z}, (qf , p0)). Since
this last cut is final, we determine that T(Γ,w) can advance from an initial state
to a final state.

To define the relation⇒(Γ,w), we fix a nested UC2RPQ Γ and a string w =
w0, . . . , wk−1. We begin with the set of transitions that relates configurations
in subsequent positions.

Recall that for a symbol r ∈ Σ±, r− denotes the symbol a− if r = a ∈ Σ,
or the symbol a if r = a− for a ∈ Σ. Let p ∈ {0, . . . , k − 1}. We have
that (C, p) ⇒(Γ,w) (C ′, p + 1), if C and C ′ are cuts of the form C =
(ρ, Inc,Mark,States) and C = (ρ, Inc, ∅,States′) with States = (s1, . . . , sm),
States′ = (s′1, . . . , s

′
m) and ρ of the form

Ans(x1, . . . , xn)← P1(u1, v1), . . . , Pm(um, vm)

such that for each 1 ≤ j ≤ m, one of the following holds:

A.1 uj , vj ∈ Inc and sj = s′j ,
A.2 uj , vj 6∈ Inc and sj = s′j ,
A.3 uj ∈ Inc, vj /∈ Inc, and it holds that either Pj is an NFA and there is a

wp-transition in Pj from sj to s′j , or Pj = P+ and (sj , p)⇒(ΓP ,w) (s′j , p+1),
A.4 vj ∈ Inc, uj /∈ Inc, and it holds that either Pj is an NFA and there is a w−p -

transition in Pj from s′j to sj , or Pj = P+ and (sj , p)⇒(ΓP ,w) (s′j , p+ 1).
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In other words, the only way to move to a greater position by ⇒(Γ,w) is
to move from a cut C to a cut C ′ that includes the same variables as C,
unmark all marked variables and where for each atom Pj(uj , vj) with exactly
one variable in Inc, it must be the case that we can advance from p to p+ 1,
reading wp, either according to ⇒(ΓP ,w) or to the NFA of Pj , depending on
whether Pj is an NFA or the transitive closure of the predicate P .

Recall the notion of folding (Definition 7) from Section 5.2. We say that
F is a [p, p′]-folding if p = first(F) and p′ = last(F). Note that this is slightly
different from a (p, p′)-folding as defined in Section 5.2, where p and p′ are the
positions of the first and last symbol read by the folding, respectively.

Next we describe the piece of⇒(Γ,w) that relates cuts in the same position.
Intuitively, these represent two types of transitions: Either we are including
new variables in C, or we are synchronizing the content of the tuple States.

It is best if we start defining those for the case of flat nUC2RPQs of
depth 0. Thus, assume for now that Γ has nesting depth 0. We then have
that (C, p) ⇒(Γ,w) (C ′, p), for cuts C = (ρ, Inc,Mark,States) and C ′ =
(ρ, Inc′,Mark′,States′), with States = (s1, . . . , sm), States′ = (s′1, . . . , s

′
m),

Inc ⊆ Inc′, Mark′ = Mark ∪ Inc′ \ Inc and ρ of the form

Ans(x, y)← P1(u1, v1), . . . , Pm(um, vm).

if for each 1 ≤ j ≤ m, one of the following holds:

B.1 Both C and C ′ include both uj and vj ,
B.2 Both C and C ′ do not include any of uj and vj ,
B.3 C does not include any of uj and vj , C

′ includes and marks uj but does
not include vj and s′j is an initial state.

B.4 C does not include any of uj and vj , C
′ includes and marks vj but does

not include uj and s′j is a final state.
B.5 C includes only uj , C

′ also includes and marks vj and sj = s′j is a final
state,

B.6 C includes only vj , C
′ also includes and marks uj and sj = s′j is an initial

state,
B.7 Both C and C ′ include only uj but not vj and there is a [p, p]-folding τ

such that there is a run for the automaton for Pj , reading τ , that starts in
state sj and ends in state s′j , or

B.8 Both C and C ′ include only vj but not uj and there is a [p, p]-folding τ
such that there is a run for the automaton for Pj , reading τ−, that starts
in state s′j and ends in state sj , where τ− = τ−` , . . . , τ

−
1 , if τ = τ1, . . . , τ`.

Intuitively, (C, p) ⇒(Γ,w) (C ′, p) if for every atom Pj(uj , vj) of Γ we have
that both of uj or vj have already been included in C (condition B.1); or
that neither uj not vj have been included in C or C ′ (condition B.2); or that
we are guessing that p is the position where the first variable of Pj(uj , vj) is
witnessed (conditions B.3-B.4), or a previous position has already witnessed
one variable of Pj(uj , vj) and p is the position where the last variable of
Pj(uj , vj) is witnessed (conditions B.5-B.6), or it is the case that we are in the
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middle of a run for the NFA of Pj , and there is a valid run advancing from
state sj to s′j that can be folded from p to p (conditions B.7-B.8).

For simplicity, we excluded the case when C does not include any of uj
and vj and C ′ includes both uj and vj . This is not a problem since we can
assume w.l.o.g. that for each 1 ≤ j ≤ m, uj 6= vj , by adding atoms ε(uj , vj)
whenever necessary. Note also that the set Mark is completely determined by
Inc: it always contains the new variables added to Inc at the current position.

For queries with higher depth, the definition of ⇒(Γ,w) is analogous, but
now sj and s′j could be cuts, instead of states of an NFA. Thus we need to gen-
eralize the notions of initial/final states (conditions B.3-B.6) and [p, p]-foldings
(conditions B.7-B.8) to the context of cuts. We explain these generalizations
below.

Let (C, p) and (C ′, p′) be two configurations where p, p′ ∈ {0, . . . , k}. We
say that (C, p) and (C ′, p′) define an accepting run for the flat nUC2RPQ
Γ (x, y) over w if the following holds:

– C marks x and C ′ marks y, and
– there is a sequence of configurations (C0, p0), (C1, p1), . . . , (Cn, pn) such

that
– p0 ≤ p1 ≤ · · · ≤ pn, p0 = 0, pn = k,
– C0 and Cn are initial and final cut of Γ , respectively,
– (Ci, pi)⇒(Γ,w) (Ci+1, pi+1), for each 1 ≤ i ≤ n− 1, and
– (C, p) and (C ′, p′) appear in the sequence.

The idea is that (C, p) and (C ′, p′) define an accepting run exactly when
Γ (x, y) can be mapped to w in such a way that x and y are mapped to positions
p and p′, respectively.

Let us give some intuition about the subsequent technical definitions. For
queries of higher depth, we must also consider atoms of the form Γ+(x, y)
where Γ (x, y) is a flat nested UC2RPQ itself. Suppose that Γ+(x, y) can be
mapped to a string w in such a way that x and y are mapped to positions p0

and p`, respectively (for simplicity, assume p0 < p`). Our transition system
must capture this by a sequence of configurations (C1, q1), . . . , (Cn, qn), that
will corresponds to the coordinate of States associated with the atom Γ+(x, y).
This sequence must satisfy that Ci is a cut of Γ , q1 = p0, qn = p` and q1 ≤
· · · ≤ qn. Moreover, C1 must be “initial”, Cn must be “final”, and the transition
from (Cj , qj) to (Cj+1, qj+1) is due to ⇒(Γ,w) or due to special transitions we
call “transitive runs” (which generalize conditions B.7-B.8).

Suppose φ1(z′0, z
′
1), φ2(z′1, z

′
2), . . . , φq(z

′
q−1, z

′
q) is the expansion of Γ+(x, y)

that can be mapped to w, where each φi is an expansion of Γ (x, y). Let
η(z′0), . . . , η(z′q) be the positions in {0, . . . , |w|}, where the variables z′0, · · · z′q
are mapped. Note that η(z′0) = p0 and η(z′q) = p`. Assume that η(z′0) <
η(z′1) < · · · < η(z′q). In this case our sequence (C1, q1), . . . , (Cn, qn) is as fol-
lows. The configuration (C1, q1) must be initial: C1 marks x and there is an
initial cut CI with (CI , 0) ⇒∗(Γ,w) (C1, q1). We need this last requirement be-

cause x may not be the first variable (form left to right) that is mapped to
w. This will be condition (1) in the definition of initial cut w.r.t a position.



30 Juan L. Reutter et al.

Similarly, (Cn, qn) must be final: Cn marks y and there is a final cut CF with
(Cn, qn) ⇒∗(Γ,w) (CF , k). Again we need this last requirement because y may

not be the last variable that is mapped to w. This is condition (1) in the
definition of final cut w.r.t a position.

All the other transitions from (Cj , qj) to (Cj+1, qj+1) are given by the ac-
cepting runs of the expansions φ1, . . . , φq, except when we switch from expan-
sion φi to expansion φi+1. Instead, this corresponds to a transition from a con-
figuration (Cj , qj) to (Cj+1, qj+1), where qj+1 = qj , Cj is final at position qj ,
Cj+1 marks x and there is an initial cut CI with (CI , 0)⇒∗(Γ,w) (Cj+1, qj+1).

This corresponds to the notion of transitive run (see the definition below).
Unfortunately, the general situation is more intricate as the order of the

positions η(z′0), . . . , η(z′q) could be arbitrary. Thus the idea is to simplify the
cycles in η(z′0), . . . , η(z′q) by strengthening the definition of initial/final cuts
and of transitive run. Next we formalize this idea.

We say that a cut C is an initial cut for Γ (x, y) over w at position p, with
p ∈ {0, . . . , k} if one of the following two cases holds:

1. C marks x and there is initial cut CI of Γ such that (CI , 0)⇒∗(Γ,w) (C, p).

2. There is a nonempty sequence p0, p1, p2, . . . , p` of positions in {0, . . . , k}
and cuts Cx, Cy0 , C

x
0 , C

y
1 , C

x
1 , , . . . , C

y
` , C

x
` such that

– p` < p,
– (Cx, p) and (Cy0 , p0) define an accepting run for Γ (x, y) over w,
– For each 0 ≤ i ≤ ` − 1, (Cxi , pi) and (Cyi+1, pi+1) define an accepting

run for Γ (x, y) over w, and
– Cx` marks x and there is an initial cut CI of Γ such that

(CI , 0)⇒∗(Γ,w) (Cx` , p`)⇒∗(Γ,w) (C, p)

A cut C is a final cut for Γ (x, y) over w at position p ∈ {0, . . . , k}, if one
of the following two cases holds:

1. There is a cut Cy and final cut CF of Γ such that Cy marks y, (C, p)⇒∗(Γ,w)

(Cy, p)⇒∗(Γ,w) (CF , k).

2. There is a nonempty sequence p0, p1, p2, . . . , p` of positions in {0, . . . , k}
and cuts Cy0 , C

x
0 , C

y
1 , C

x
1 , , . . . , C

y
` , C

x
` , C

y such that
– p < pi, for each 0 ≤ i ≤ `,
– Cy0 marks y and there is a final cut CF of Γ such that

(C, p)⇒∗(Γ,w) (Cy0 , p0)⇒∗(Γ,w) (CF , k)

– For each 0 ≤ i ≤ ` − 1, (Cxi , pi) and (Cyi+1, pi+1) define an accepting
run for Γ (x, y) over w, and

– (Cx` , p`) and (Cy, p) define an accepting run for Γ (x, y) over w.

Finally, we say that (C, p) and (C ′, p), with p ∈ {0, . . . , k}, define a transi-
tive run for Γ (x, y) over w if

– C ′ marks x and there is an initial cut CI with (CI , 0)⇒∗(Γ,w) (C ′, p), and
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– C is a final cut for Γ (x, y) over w at position p.

We can now finish the definition of ⇒(Γ,w) for queries of higher depth. Let
then Γ be again a binary flat nUC2RPQ, and let ρ be a rule in Γ of the form

Ans(x, y)← P1(u1, v1), . . . , Pm(um, vm),

Then we have that (C, p)⇒(Γ,w) (C ′, p), for cuts C = (ρ, Inc,Mark,States) and
C ′ = (ρ, Inc′,Mark′,States′) in Cuts(Γ ), with Inc ⊆ Inc′, Mark′ = Mark∪Inc′\
Inc, States = (s1, . . . , sm) and States′ = (s′1, . . . , s

′
m), if for each 1 ≤ j ≤ m

where Pj is a 2RPQ one of conditions B.1-B.8 hold; and for each 1 ≤ j ≤ m
where Pj is an expression P+, one of the following conditions hold:

D.1 Both C and C ′ include both uj and vj ,
D.2 Both C and C ′ do not include any of uj and vj ,
D.3 C does not include any of uj and vj ; C

′ includes and marks uj , but does
not include vj ; and s′j is an initial cut for ΓP (uj , vj) over w at position p,

D.4 C does not include any of uj and vj ; C
′ includes and marks vj , but does

not include uj ; and s′j is an initial cut for ΓP (vj , uj) over w at position p,
D.5 C includes uj but not vj ; C

′ includes and marks vj ; s
′
j = sj and s′j is a

final cut for ΓP (uj , vj) over w at position p,
D.6 C includes vj but not uj ; C

′ includes and marks uj ; s
′
j = sj and s′j is a

final cut for ΓP (vj , uj) over w at position p,
D.7 Both C and C ′ include uj but not vj , and either (sj , p)⇒(ΓP ,w) (s′j , p), or

(sj , p) and (s′j , p) define a transitive run for ΓP (uj , vj) over w,
D.8 Both C and C ′ contain vj but not uj , and either (sj , p)⇒(ΓP ,w) (s′j , p), or

(sj , p) and (s′j , p) define a transitive run for ΓP (vj , uj) over w.

The following lemma states the correctness of our system T(Γ,w):

Lemma 3 Let Γ (x, y) be a flat nUC2RPQ, w = w0, . . . , wk−1 a string over
Σ± and p, p′ ∈ {0, . . . , k}. There are pairs (C, p) and (C ′, p′) over Cuts(Γ )×
{0, . . . , k} that define an accepting run for Γ (x, y) over w if and only if there
is an expansion ϕ of Γ and a containment mapping from neq(ϕ) to the linear
CQ θw()← w0(z0, z1), . . . wk−1(zk−1, zk) that maps x to zp and y to zp′ .

Proof: (=⇒) The proof is by induction on the depth of Γ . We start with the
base case when Γ is a UC2RPQ. Assume that there are pairs (C, p) and (C ′, p′)
over Cuts(Γ )×{0, . . . , k} that define an accepting run for Γ over w. Then we
assume that C = (ρ, Inc,Mark,States) and C ′ = (ρ, Inc′,Mark′,States′) in
Cuts(Γ ), where ρ is one of the rules in Γ , of the form

Ans(x, y)← P1(u1, v1), . . . , Pm(um, vm),

where each Pj is an NFA.
Let S be the sequence of configurations that witnesses the accepting run

of (C, p) and (C ′, p′). We use S to define the following expansion π of Γ :

π(x, y)← π1(u1, v1), . . . πm(um, vm).
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Next we define πj , for each 1 ≤ j ≤ m. Consider then an arbitrary j
in {1, . . . ,m}. Let (C0, p0) be the configuration in S such that C0 marks for
the first time the variable uj . Likewise, define (C`, p`) with respect to vj . We
proceed depending on which of p0 or p` is greater.

Assume first that p0 ≤ p`. Let s0
j , . . . , s

`
j be the sequence corresponding to

the j-th element of States in each of the cuts C0, . . . , C` between C0 and C`
in the sequence S. Then by definition of ⇒(Γ,w), it must be the case that s0

j

is an initial state and s`j is a final state of Pj .

The sequence s0
j , . . . , s

`
j defines a valid run for the NFA Pj over a word τ

that can be [p0, p`]-folded into w. Indeed, if going from a cut Ca to a cut Cb in
the sequence C0, C1, . . . , C` we advance from position q to position q+ 1, then
by definition we have that sbj can be obtained by a transition of the NFA when
in state saj and reading wq. Otherwise, if from Ca to Cb we do not advance, but
rather stay in position q, then there is a [q, q]-folding into w that defines a run
from saj to sbj . The word τ is then obtained by concatenating all these foldings
together with the symbols wp0 , . . . , wp` in the order given by the sequence
C0, C1, . . . , C`.

Finally, if τ = r1, . . . , r|τ | is the word that can be [p0, p`]-folded into w, πj
is defined as the CQ

πj(uj , vj)← r1(uj , z
′
1), r2(z′1, z

′
2), . . . , r|τ |(z

′
|τ |−1, vj).

Note that the existence of a containment mapping from πj(uj , vj) to θw is
immediate from the construction.

For the case when p` < p0, the construction is analogous, except that in
this case we define a word τ that can be [p0, p`]-folded into w, since we start
in a final state in C` and finish with the initial state in C0.

After the completion of this procedure we have created an expansion for
each of the atoms of ρ, and shown that there is a containment mapping from
each of these to θw. Since the images of the variables that are shared by two
πj and πj′ , j 6= j′, are given by the positions in which the cuts mark a variable
the first time, and this can only happen once, we have that the expansion of
Γ given by the union of the expansions of the atoms can be mapped to θw as
well. Moreover, since C marks x and C ′ marks y, we have that this mapping
sends x to zp and y to zp′ , as required. This finishes the base case.

The case when Γ is an arbitrary flat nUC2RPQ follows along the same
lines than the base case. Assume again that C = (ρ, Inc,Mark,States) and
C ′ = (ρ, Inc′,Mark′,States′) in Cuts(Γ ), where ρ is one of the rules in Γ , of
the form

Ans(x, y)← P1(u1, v1), . . . , Pm(um, vm),

where Pj may now be either an NFA or an expression P+.
Let S be the sequence of configurations that witnesses the accepting run

of (C, p) and (C ′, p′). Again, for a given j such that 1 ≤ j ≤ m, we show
how to define the expansion πj , corresponding to the part of the expansion
that relates to Pj(uj , vj). If Pj is a 2RPQ, we define πj exactly as in the base
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case. Thus we assume that Pj is an expression of the form P+. As before, let
(C0, p0) be the configuration in S such that C0 marks for the first time the
variable uj . Likewise, define (C`, p`) with respect to vj . We again have two
cases, depending on p0 and p`. Since they are analogous we only show the case
when p0 ≤ p`.

We shall define an expansion πj of P+(uj , vj) and a containment mapping
µj from πj to θw such that µj(uj) = zp0 and µj(vj) = zp` . If t is a configura-
tion, then t[1] and t[2] denote its associated cut and position, respectively. It
suffices to define a sequence c1, . . . , c2n of configurations of T(ΓP ,w) such that
(i) c1[2] = p0 and cn[2] = p`, (ii) for each 1 ≤ i ≤ n, c2i−1[1] marks uj and
c2i[1] marks vj , (iii) for each 1 ≤ i ≤ n − 1, c2i[2] = c2i+1[2], and (iv) for
each 1 ≤ i ≤ n, c2i−1 and c2i define an accepting run for ΓP (uj , vj). Indeed,
if such a sequence exists, then by inductive hypothesis we have expansions
φ1, . . . , φn of ΓP (uj , vj) and containment mappings ν1, . . . , νn from theses ex-
pansions into θw that can be merged to define the expansion πj of P+(uj , vj)
and the containment mapping µj into θw. As in the base case, we can merge all
these πjs and µjs to produce our required expansion of Γ and the containment
mapping into θw.

Let s0
j , . . . , s

`
j be the sequence corresponding to the j-th element of States

in each of the cuts C0, . . . , C` between C0 and C` in the sequence S, and
q0 ≤ q1 ≤ · · · ≤ q` be its corresponding positions (q0 = p0 and q` = p`). The
sequence c1, . . . , c2n is defined as follows. By definition of ⇒(Γ,w) (condition
D.3), s0

j is an initial cut for ΓP (uj , vj) at position p0. If this is because of

condition (1) of initial cut, then s0
j marks uj and there is an initial cut sI such

that (sI , 0) ⇒∗(ΓP ,w) (s0
j , p0). In this case we let c1 = (s0

j , p0) and call c1 the

current configuration. If condition (2) holds, then we have positions r0, . . . , rf
and cuts cx, cy0, c

x
0 , c

y
1, c

x
1 , , . . . , c

y
f , c

x
f such that

– rf < p0,
– (cx, p0) and (cy0, r0) define an accepting run for ΓP (uj , vj) over w,
– For each 0 ≤ i ≤ f − 1, (cxi , ri) and (cyi+1, ri+1) define an accepting run for
ΓP (uj , vj) over w, and

– cxf marks uj and there is an initial cut cI of ΓP such that

(cI , 0)⇒∗(ΓP ,w) (cxf , rf )⇒∗(ΓP ,w) (s0
j , p0)

In this case we let c1 = (cx, p0), c2 = (cy0, r0), c3 = (cx0 , r0), c4 = (cy0, r1),
and so on, until we define ch = (cxf , rf ), which becomes the current configura-
tion. Note that in any case, for the current configuration c, we have that c[1]
marks uj , (cI , 0)⇒∗(ΓP ,w) c⇒

∗
(ΓP ,w) (s0

j , p0), for some initial cut cI .

Let g be the greatest position in {0, . . . , `} such that (s0
j , p0) ⇒∗(ΓP ,w)

(sgj , qg). By definition of ⇒(Γ,w), either (sgj , qg) = (s`j , p`) or (sgj , qg) and

(sg+1
j , qg) define a transitive run for ΓP (uj , vj) (condition D.7). If the lat-

ter case holds, we continue the construction of c1, . . . , c2n as follows. If sgj is a
final cut at position qg due to condition (1) in the definition of final cuts, and
this is witnessed by a cut cy, then the next pair in the sequence is the current
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configuration c and (cy, qg), and (sg+1
j , qg) becomes the current configuration.

We have that

(cI , 0)⇒∗(ΓP ,w) c⇒
∗
(ΓP ,w) (s0

j , p0)

⇒∗(ΓP ,w) (sgj , qg)⇒
∗
(ΓP ,w) (cy, qg)⇒∗(ΓP ,w) (cF , k)

for some initial and final cuts cI and cF . Thus c and (cy, qg) actually define
an accepting run.

Suppose now that condition (2) holds. Let r0, . . . , rf and
cy0, c

x
0 , c

y
1, c

x
1 , , . . . , c

y
f , c

x
f , c

y be the positions and cuts witnessing the transitive

run of (sgj , qg) and (sg+1
j , qg), thus we have

– qg < ri, for each 0 ≤ i ≤ f ,
– cy0 marks vj and there is a final cut cF of ΓP such that

(sgj , qg)⇒
∗
(ΓP ,w) (cy0, r0)⇒∗(ΓP ,w) (cF , k)

– For each 0 ≤ i ≤ f − 1, (cxi , ri) and (cyi+1, ri+1) define an accepting run for
ΓP (uj , vj) over w,

– (cxf , rf ) and (cy, qg) define an accepting run for ΓP (uj , vj) over w, and

– sg+1
j marks uj and there is an initial cut cI of ΓP such that (cI , 0)⇒∗(ΓP ,w)

(sg+1
j , qg).

In this case, the next pair in the sequence c1, . . . , c2n is the current con-
figuration c and (cy0, r0). Again, it is easy to see that c and (cy0, r0) define an
accepting run. The next pairs in the sequence correspond to (cx0 , r0), (cy1, r1);
(cx1 , r1), (cy2, r2); · · · ; (cxf , rf ), (cy, qg). The current configuration again becomes

c = (sg+1
j , qg). Observe that in any case, the current configuration c satisfies

that c[1] marks uj , (cI , 0) ⇒∗(ΓP ,w) c, for some initial cut cI . Thus we can re-

peat this construction by considering the greatest position ĝ in {g + 2, . . . , `}
such that (sg+1

j , qg)⇒∗(ΓP ,w) (sĝj , qĝ), and so on, until (sĝj , qĝ) = (s`j , p`).
In this situation, we have that the current configuration satisfies

(cI , 0) ⇒∗(ΓP ,w) c ⇒
∗
(ΓP ,w) (s`j , p`), for some initial cut cI , and c[1] marks uj .

By condition D.5, we have that (s`j , p`) is a final cut for ΓP (uj , vj) at position
p`. If this is due to condition (1) of final cuts, then we finish the construction
of c1, . . . , c2n with the pair c, (cy, p`), where cy is the witness for condition (1).
Otherwise, we have positions r0, . . . , rf and cuts cy0, c

x
0 , c

y
1, c

x
1 , , . . . , c

y
f , c

x
f , c

y

witnessing the fact that (s`j , p`) is final. In this case, we finish the construction
of c1, . . . , c2n with the pairs c, (cy0, r0); (cx0 , r0), (cy1, r1); · · · ; (cxf , rf ), (cy, p`).

(⇐=) The proof is again by induction. For the base case, assume that there
is an expansion π for a rule ρ of Γ that can be mapped into θw. As usual π is
of the form

π(x, y)← π1(u1, v1), . . . , πm(um, vm),

where for each 1 ≤ j ≤ m we have that πj(uj , vj) is a CQ of the form

πj(uj , vj)← r1(uj , z
′
1), r2(z′1, z

′
2), . . . , r|τ |(z

′
|τ |−1, vj),
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and such that τ = r1, . . . , r|τ | belongs to the language of the NFA Pj of
the j-th atom. Now let p0 and p` be the positions of w such that zp0 and zp`
are the images of uj and vj according to the containment mapping from πj
to θw. Now note that τ can be [p0, p`]-folded into w. Again we have two cases
depending on which of p0 or p` is bigger.

If p0 ≤ p`, then we can divide τ into 2` − 1 subwords
α1, β1, . . . , α`−1, β`−1, α` such that each αi can be [pi, pi]-folded into w and
each βi correspond to the symbol wpi . Furthermore, from the division of
τ we divide the run of the NFA for Pj to create a sequence of states
q0, qα1 , qβ1 , . . . , qβ`−1

, qα`
: it starts at q0 and each qαi and qβi correspond to

the state of the run for τ after reading the corresponding substring. Note, in
particular, that qα`

is a final state. If p` < p0 we can proceed in the same way,
except our sequence of states would start in a final run and would mimic an
inverse run, until it finishes in the initial state.

The sequences of states and the containment mapping from π to θw gives
us the key to construct a sequence of configurations. The idea is the following:

– Variables uj and vj should be included in the positions p0 and p`, respec-
tively.

– For every 1 ≤ j ≤ m, the advancement of the j-th state of the cuts must
follow the sequence q0, qα1

, qβ1
, . . . , qβ`−1

, qα`
.

By coordinating all these requirements together we obtain a sequence of
configurations that start in position 0 of w and end in position k. It must be
the case that this sequence contains configurations (C, p) and (C ′, p′), where
C marks x and C ′ marks y. Thus (C, p) and (C ′, p′) define an accepting run
for Γ .

For the inductive case we need to account atoms in Γ that are flat
nUC2RPQs themselves. Assume that the rule of Γ that gives rise to π is
of form

Ans(x, y)← P1(u1, v1), . . . , Pm(um, vm),

where each Pj is either an NFA or the transitive closure of P . Thus, π contains
atoms πj(uj , vj) for 1 ≤ j ≤ m. Then note that the expansions for atoms
πj(uj , vj) of π in which Pj = P+ are of the form

πj(uj , vj)← φ1(z′0, z
′
1), . . . , φq(z

′
q−1, z

′
q),

where z′0 = uj and z′q = vj , and each φi is an expansion for the query
ΓP (uj , vj). Just as in the base case let us assume that the image for uj is
position p0, which is smaller than p`, the image for vj (the other case is anal-
ogous).

It suffices to construct a sequence (c1, q1), . . . , (cn, qn) of configurations of
T(ΓP ,w) with q1 ≤ · · · ≤ qn, such that (i) q1 = p0 and (c1, q1) is an initial cut for
ΓP (uj , vj) at position p0, (ii) qn = p` and (cn, pn) is a final cut for ΓP (uj , vj) at
position p`, and (iii) for each 1 ≤ i ≤ n− 1, either (ci, qi)⇒(ΓP ,w) (ci+1, qi+1),
or (ci, qi) and (ci+1, qi+1) define a transitive run for ΓP (uj , vj). As in the base
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case, our required accepting run is constructed by synchronizing each of the
sequences (c1, q1), . . . , (cn, qn), for each 1 ≤ j ≤ m.

Let η(z′0), . . . , η(z′q) be the positions in w where z′0, . . . , z
′
q are mapped. In

particular, η(z′0) = p0 and η(z′q) = p`. We assume without loss of generality
that all the η(z′1), . . . , η(z′q−1) are distinct, and η(z′i) 6∈ {p0, p`} for each 1 ≤
i ≤ q − 1. We have that each expansion φi can be mapped into θw. Thus by
inductive hypothesis, there are pairs (cxi , η(z′i−1)), (cyi , η(z′i)), for each 1 ≤ i ≤
q, such that (cxi , η(z′i−1)) and (cyi , η(z′i)) define an accepting run for ΓP (uj , vj).

We construct the sequence (c1, q1), . . . , (cn, qn) as follows. If p0 = p` then
the sequence is given by the accepting run of (cx1 , p0) and (cy1, p0). Thus we
assume p0 < p`. If η(z′i) > p0, for each 1 ≤ i ≤ q, then we let e0 = 0 and we let
S0 be the sequence witnessing the accepting run of (cx1 , p0) and (cy1, η(z′1)). In
this case, we let (c1, q1) = (cx1 , p0). Otherwise, let e0 be the greatest position
in {1 . . . , q} such that η(z′e0) < p0. In this case, we let S0 be the sequence
witnessing the accepting run of (cxe0+1, η(z′e0)) and (cye0+1, η(z′e0+1)), and let
(c1, q1) be the last configuration in S0 of the form (c∗, p0). It is easy to see
that in the first case, condition (1) in the definition of initial cut holds, and in
the second case, condition (2) holds. Thus in any case (c1, q1) is an initial cut
for ΓP (uj , vj) at position p0.

Now let g1 be the smallest position in {η(z′e0+1), η(z′e0+2), . . . , η(z′q)} and
let e1 be the (unique) position in {e0 + 1, . . . , q} such that η(z′e1) = g1. Note
that p0 < g1 ≤ p`. If g1 < p`, then the next elements in the sequence
(c1, q1), . . . , (cn, qn) are the configurations in S0 that appear after (c1, q1) until
we reach the last configuration in S0 of the form (c∗, g1). Since η(z′i) > g1, for
each e0 + 1 ≤ i ≤ e1, it follows that (c∗, g1) and (cxe1+1, g1) define a transitive
run for ΓP (uj , vj). Thus we can define (cxe1+1, g1) as the next element in our
sequence.

Let S1 be the witness of the accepting run of (cxe1+1, g1) and
(cye1+1, η(z′e1+1)). Let g2 be the smallest position in {η(z′e1+1), η(z′e1+2), . . . ,
η(z′q)} and e2 be the position in {e1 + 1, . . . , q} with η(z′e2) = g2. Note that
p0 < g1 < g2 ≤ p`. By the previous reasoning, we can continue the construc-
tion of (c1, q1), . . . , (cn, qn), starting from (cxe1+1, g1), the sequence S1, g2 and
e2. We repeat this until gi = p`. At this point, the last defined configuration in
the sequence (c1, q1), . . . , (cn, qn) is the last configuration in Si−1 of the form
(c∗, gi) = (c∗, p`). It must be the case that c∗ is a final cut for ΓP (uj , vj) at
position p`.

2

6.3 Cut Automata

A straightforward idea to continue with the proof is to use the system T(Γ,w) to
create a deterministic finite automaton that accepts all strings that represent
the set of linearizations of Γ . However, after a careful analysis one realizes
that doing this in a straightforward way results in a much more expensive
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algorithm, so a little bit of extra work has to be done to avoid additional
exponential blowups in our algorithm. In a nutshell, the idea is to extend the
alphabet with information about cuts.

Formally, let Γ (x, y) be a binary flat nUC2RPQ over Σ. From Σ we con-
struct the extended alphabet Σ(Γ ) as follows.

– Let R be a 2RPQ (given as an NFA), and assume that Q is the set of states
of R. Then each symbol of Σ(R) consists a set of pairs of states of R. In
other words, Σ(R) = 2Q×Q.

– Let now Γ be the flat nUC2RPQ. Let Ians(Γ ) and Rans(Γ ) be the set of
intentional predicates and 2RPQs, respectively, occurring in rules of Γ with
the Ans predicate in their heads. Let Cuts(Γ )2 = Cuts(Γ )×Cuts(Γ ). We

define Same(Γ ) = 2Cuts(Γ )2 , Initial(Γ ) = Final(Γ ) = 2Cuts(Γ ) × 2Cuts(Γ ),

Transitive(Γ ) = 2Cuts(Γ )2 × 2Cuts(Γ )2 . Then each symbol of Σ(Γ ) contains
an element from Same(Γ ), Initial(Γ ), Final(Γ ) and Transitive(Γ ), and for
each 2RPQ R ∈ Rans(Γ ), a symbol from Σ(R) and for each P ∈ Ians(Γ ),
a symbol from Σ(ΓP ) (recall ΓP denotes the subquery of Γ , where P is
now the answer predicate). In other words,

Σ(Γ ) = Same(Γ )× Initial(Γ )× Final(Γ )× Transitive(Γ )

× X
R∈Rans(Γ )

Σ(R)× X
P∈Ians(Γ )

Σ(ΓP )

The following is shown directly from Lemma 2.

Lemma 4 Let Γ be a binary flat nU2CRPQ. Then the number of different
symbols |Σ(Γ )| of Σ(Γ ) is exponential in |Cuts(Γ )|. In particular, |Σ(Γ )| is
double exponential in |Γ |.

We now give intuition regarding this construction. Let w be a string from
Σ(Γ )∪Σ±, of the form w = u0a0u1 · · · ak−1uk, where the uis and ais belongs
to Σ(Γ ) and Σ±, respectively. Let τ(w) = a0, . . . , ak−1 be the projection of w
over Σ±.

For p ∈ {0, . . . , k}, the symbol up ∈ Σ(Γ ) contains, firstly, an element from
Same(Γ ), that is, a subset of Cuts(Γ )×Cuts(Γ ), which corresponds to all those
pairs (C,C ′) such that (C, p) ⇒∗(Γ,τ(w)) (C ′, p). The symbol up also contains

an element from Initial(Γ ), which is a pair (C, C′) of subsets of Cuts(Γ ). The
intuition is that C contains all the initial cuts for Γ (x, y) over τ(w) at position
p. Similarly, C′ contains the initial cuts but for Γ (y, x). Analogously, if (C, C′)
is the element in up from Final(Γ ), then C (resp. C′) contains all the final
cuts for Γ (x, y) (resp. Γ (y, x)) over τ(w) at position p. Finally, if (P,P ′) ∈
Transitive(Γ ), then P (resp. P ′) contains all those pairs of cuts (C,C ′) such
that (C, p) and (C ′, p) define a transitive run for Γ (x, y) (resp. Γ (y, x)) over
τ(w).

For each 2RPQ R ∈ Rans(Γ ) with set of states Q, the symbol up contains
a subset of Q×Q that represents all the pairs (q, q′) such that there is a word
w′ that can be read from q to q′ in R, and that can be [p, p]-folded into τ(w).
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For each intentional predicate P ∈ Ians(Γ ), the symbol of Σ(ΓP ) appearing
in up satisfies the above conditions but w.r.t ΓP .

If a string w from Σ(Γ ) ∪Σ± satisfies all of the above conditions, we say
that w has valid annotations w.r.t. Γ . We show:

Lemma 5 Let Γ (x, y) be a flat nU2CRPQ over Σ. Then there is a NFA Ava
Γ

that accepts a string w over Σ(Γ )∪Σ± if and only if w has valid annotations
w.r.t. Γ . Furthermore, one can build such a NFA such that its number of states
is exponential in |Cuts(Γ )|.

Proof: Let Γ (x, y) be a binary flat nU2CRPQ over Σ. The automaton Ava
Γ

that checks that a word w = u0a0 · · ·uk−1ak−1uk from Σ(Γ ) ∪ Σ± has valid
annotations results of the intersection of several automata.

First, it is trivial to construct a NFA Af that checks that w has the form
u0a0 · · ·uk−1ak−1uk, where k ≥ 1 and the uis and ais belong to Σ(Γ ) and
Σ±, respectively.

Now, for each 2RPQ R ∈ Rans(Γ ), we build an NFA AR that check that
the symbols from Σ(R) appearing in u0, . . . , uk are correct. At each position
p, the automaton AR stores two subsets Q←p and Q→p of Q×Q:

– Q←p contains all the pairs (q, q′) such that there is a word w′ that can be
read from q to q′ in R, and that can be [p, p]-folded into τ(w) using only
positions smaller or equal to p.

– Q→p contains all the pairs (q, q′) such that there is a word w′ that can be
read from q to q′ in R, and that can be [p, p]-folded into τ(w) using only
positions greater or equal to p.

Then AR checks that up is consistent with Q←p and Q→p , that is, the symbol
Qp ∈ Σ(R) appearing in up is exactly the transitive closure of Q←p ∪Q→p . Note
that Q←0 = {(q, q) | q ∈ Q} and that Q←p+1 is determined by Q←p and ap.
Indeed, Q←p+1 is the reflexive and transitive closure of all the pairs (q, q′) such
that there is a pair (q̂, q̂′) ∈ Q←p with q̂ ∈ δR(q, a−p ) and q′ ∈ δR(q̂′, ap), where
δR is the transition function of R. Similarly, Q→k = {(q, q) | q ∈ Q} and Q→p
is determined by Q→p+1 and ap. Then Q←p and Q→p can be easily computed by
an NFA. Note that the number of states of AR is exponential with respect to
|Q|, and thus w.r.t |Cuts(Γ )|.

To check the correctness of the symbols from Same(Γ ), we define an NFA
Asame as follows. Let p be a position in {0, . . . , k} and (C,C ′) be cuts of Γ . Sup-
pose that C and C ′ are defined by a rule ρ and let R1, . . . , Rn and P1, . . . , Pr
be all the 2RPQs and intentional predicates appearing in ρ. Then it is not hard
to see that whether (C, p) ⇒∗(Γ,τ(w)) (C ′, p) is completely determined by the

symbols in up from Σ(R1), . . . , Σ(Rn), Σ(ΓP1
), . . . , Σ(ΓPr

). Thus Asame can
check directly that in each up, the symbol from Same(Γ ) is consistent with
the symbols from Σ(R1), . . . , Σ(Rn), Σ(ΓP1

), . . . , Σ(ΓPr
).

Now we build an NFA Afinal that checks the correctness of the symbols
from Final(Γ ). This automaton is the intersection of two NFAs Afinal

x,y and

Afinal
y,x that check the first and second component, respectively, of the symbols
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from Final(Γ ). We only define Afinal
x,y , as the definition of Afinal

y,x is completely
analogous. If Fp is the first component of the symbol from Final(Γ ) in up, then
Fp must correspond to the set of final cuts of Γ (x, y) over τ(w) at position p.
The NFA Afinal

x,y , after reading up, stores the following information:

– The set E←p of all cuts C for which there is an initial cut CI of Γ with
(CI , 0)⇒∗(Γ,τ(w)) (C, p).

– The set E→p of all cuts C for which there is a final cut CF of Γ with
(C, p)⇒∗(Γ,τ(w)) (CF , k).

– The set FRp of all the pairs (C,C ′) such that (C, p) and (C ′, p) define
a forward run for Γ (x, y) over τ(w). We say that pairs (C, p) and (C ′, p)
define a forward run for Γ (x, y) over τ(w), if there is a nonempty sequence
p0, . . . , p` of positions in {0, . . . , k} and cuts Cy0 , C

x
0 , C

y
1 , C

x
1 , . . . , C

y
` , C

x
`

such that
– All the pis are distinct and p ≤ pi, for each 0 ≤ i ≤ `,
– Cy0 marks y and there is a final cut CF of Γ such that

(C, p)⇒∗(Γ,w) (Cy0 , p0)⇒∗(Γ,w) (CF , k)

– For each 0 ≤ i ≤ ` − 1, the pairs (Cxi , pi) and (Cyi+1, pi+1) define an
accepting run for Γ (x, y) over τ(w),

– Cx` marks x and there is a final cut CF of Γ such that

(C ′, p)⇒∗(Γ,w) (Cx` , p`)⇒∗(Γ,w) (CF , k)

Afinal
x,y computes E←p , E→p and FRp as follows:

– Note that C ∈ E←p iff there are cuts C ′, C ′′ such that C ′ ∈ E←p−1, (C ′, p −
1) ⇒(Γ,τ(w)) (C ′′, p) and (C ′′, p) ⇒∗(Γ,τ(w)) (C, p). Thus E←p is determined

by E←p−1, up and ap−1. Thus Afinal
x,y can guess the E←p s, starting from E←0 ,

which corresponds to the cuts C for which there is an initial cut CI of Γ
with (CI , 0)⇒∗(Γ,τ(w)) (C, 0).

– Analogous to E←p , we have that E→p is determined by E→p+1, up and ap. Thus
we can guess the E→p s and check that E→k corresponds to the cuts C for
which there is an final cut CF of Γ with (C, k)⇒∗(Γ,τ(w)) (CF , k).

– It is not hard to check that FRp is determined by FRp+1, up, ap, E←p and

E→p . Thus Afinal
x,y guesses the FRps and checks that FRk corresponds to the

pairs (C,C ′) for which there are cuts (Dy, D
′
x) such that (C, k) ⇒∗(Γ,τ(w))

(Dy, k), (C ′, k)⇒∗(Γ,τ(w)) (D′x, k), Dy and D′x marks y and x respectively,

and Dy, D
′
x ∈ E→k .

Note that we obtain an equivalent definition of final cut for Γ (x, y) at
position p if we impose that all the pis are distinct. As a consequence, we have
that C is a final cut for Γ (x, y) at position p, that is, C ∈ Fp iff one of the
following conditions hold:

1. there is a cut Cy that marks y with (C, p)⇒∗(Γ,τ(w)) (Cy, p) and Cy ∈ E→p .

This corresponds to condition (1) in the definition of final cut.
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2. there are pairs (D,Dy) and (Ĉ, Ĉ)′ ∈ FRp+1 such that (C, p) ⇒∗(Γ,τ(w))

(D, p) ⇒(Γ,τ(w)) (Ĉ, p + 1), Dy marks y, Dy ∈ E←p and (Dy, p) ⇒(Γ,τ(w))

(Ĉ ′, p+ 1). This corresponds to condition (2) in the definition of final cut.

It follows that Fp is determined by FRp+1, ap, up, E←p and E→p , thus Afinal
x,y

can check whether the Fps are correct. Note that the number of states of Afinal
x,y

is exponential in |Cuts(Γ )|.
It is straightforward to construct from Afinal, an automaton Atr that checks

the correctness of the symbols from Transitive(Γ ).
In the case of Initial(Γ ), the construction is more involved. Again we fo-

cus in the NFA Ainitial
x,y that checks the correctness of the first component

Ip which corresponds to the initial cuts for Γ (x, y) at position p. We say
that pairs (C, p) and (C ′, p) define a backward run for Γ (x, y) over τ(w), if
there is a nonempty sequence p0, . . . , p` of positions in {0, . . . , k} and cuts
Cy0 , C

x
0 , C

y
1 , C

x
1 , . . . , C

y
` , C

x
` such that

– All the pis are distinct and pi ≤ p, for each 0 ≤ i ≤ `,
– Cy0 marks y and there is an initial cut CI of Γ such that

(CI , 0)⇒∗(Γ,w) (Cy0 , p0)⇒∗(Γ,w) (C, p)

– For each 0 ≤ i ≤ ` − 1, the pairs (Cxi , pi) and (Cyi+1, pi+1) define an
accepting run for Γ (x, y) over τ(w),

– Cx` marks x and there is an initial cut CI of Γ such that

(CI , 0)⇒∗(Γ,w) (Cx` , p`)⇒∗(Γ,w) (C ′, p)

We denote by BRp the set of pairs (C,C ′) such that the pairs (C, p) and
(C ′, p) define a backward run. Observe that we obtain an equivalent definition
of initial cut at position p if we additionally impose that all the pis are distinct
and pi 6= p, for each 0 ≤ i ≤ `. From this observation, we have that C is an
initial cut of Γ (x, y) at position p, that is, C ∈ Ip iff one of the following
conditions hold:

1. C marks x and C ∈ E←p . This corresponds to condition (1) in the definition
of initial cut.

2. there is a cut Cx, pairs (C1, C2), (C3, C4), . . . , (C2h−1, C2h) from FRp+1

and pairs (D1, D2), (D3, D4), . . . , (D2h−1, D2h) from BRp−1, for h ≥ 1 such
that (i) Cx marks x, Cx ∈ E←p and (Cx, p) ⇒∗(Γ,τ(w)) (C1, p + 1), (ii)

(D2i−1, p − 1) ⇒∗(Γ,τ(w)) (C2i, p + 1), for each 1 ≤ i ≤ h, (iii) (D2i, p −
1)⇒∗(Γ,τ(w)) (C2i+1, p+1), for each 1 ≤ i ≤ h−1, (vi) (D2h, p−1)⇒∗(Γ,τ(w))

(C, p). This corresponds to condition (2) when p0 > p.
3. there is a cut Cx, pairs (C1, C2), (C3, C4), . . . , (C2h−1, C2h) from FRp+1

and pairs (D1, D2), (D3, D4), . . . , (D2h+1, D2h+2) from BRp−1, for h ≥ 0
such that (i) Cx marks x, Cx ∈ E→p and (D1, p− 1)⇒∗(Γ,τ(w)) (Cx, p), (ii)

(D2i, p − 1) ⇒∗(Γ,τ(w)) (C2i−1, p + 1), for each 1 ≤ i ≤ h, (iii) (D2i+1, p −
1) ⇒∗(Γ,τ(w)) (C2i, p+ 1), for each 1 ≤ i ≤ h, (vi) (D2h+2, p− 1) ⇒∗(Γ,τ(w))

(C, p). This corresponds to condition (2) when p0 < p.
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From this characterization we have that the correctness of Ip depends only
on BRp−1,FRp−1, ap−1, up, ap, E←p and E→p . The only missed information is
the BRps, which can be easily computed using similar ideas as in the case of
FRp. Thus Ainitial

x,y can check the correctness of Ip using all this information.

Note again that the number of state of Ainitial is exponential in |Cuts(Γ )|.
Finally, for each P ∈ Ians(Γ ), we need to check the correctness of the

symbols in Σ(ΓP ). This is done recursively using the previous ideas.

Then the automaton Ava
Γ is the product of all the NFAs defined above. If

we unfold the recursive definition of Ava
Γ , we have in this product, for each

2RPQ R in Γ , an NFA of the form AR, and for each intensional predicate P
in Γ an NFA of the form Asame × Ainitial × Afinal × Atr associated with the
program ΓP . Thus Ava

Γ is the product of O(|Γ |) = O(|Cuts(Γ )|) NFAs, each
with a number of states exponential in |Cuts(Γ )|. It follows that the number
of states of Ava

Γ is also exponential in |Cuts(Γ )|. 2

We can finally proceed to build the desired NFA AΓ that gives the strings
corresponding to the linearizations of a flat nUC2RPQ Γ . This NFA needs to
simulate the system T(Γ,w), from an initial cut of a Γ to a final cut in which
all variables have already been mapped. Of course, we have to check, for every
subquery ΓP (uj , vj) of Γ , whether this query is indeed satisfied when starting
in the position assigned to variable uj and finishing on the position assigned
to vj . Since we might need to check for more than one such query at any given
point, synchronizing all these checks is non-trivial. We do it by relying on the
annotations added to strings, as explained above.

Lemma 6 Given a binary flat nUC2RPQ Γ (x, y) over Σ, one can construct
a NFA AΓ over alphabet Σ(Γ ) ∪ Σ± such that AΓ accepts a string w with
valid annotations w.r.t. Γ if and only if there are pairs (C, p) and (C ′, p′)
that either define an accepting run for Γ (x, y) over w, or an accepting run for
Γ (y, x) over w. Further, the number of states of AΓ is the size of Cuts(Γ ).

Proof: The set of states of AΓ is simply Cuts(Γ ). Initial and final states of AΓ
correspond to initial and final cuts, respectively. Let w = u0a0u1 · · · ak−1uk be
a string with valid annotations w.r.t. Γ , and τ(w) = a0 · · · ak−1 its projection
to Σ±. Note that existence of a pair (C, p) and (C ′, p′) as in the lemma is
equivalent to the existence of a sequence of cuts C0, D0, C1, D1, . . . , Ck, Dk

such that C0 is an initial cut, Dk is a final cut, (Ci, i) ⇒∗(Γ,τ(w)) (Di, i), for

0 ≤ i ≤ k, and (Di, i) ⇒(Γ,τ(w)) (Ci, i + 1), for 0 ≤ i ≤ k − 1. Observe that
whether (Ci, i) ⇒∗(Γ,τ(w)) (Di, i) depends only on the symbol ui and whether

(Di, i)⇒(Γ,τ(w)) (Ci, i+ 1) only on the symbol ai. Thus AΓ can guess such a
sequence while reading w. 2
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6.4 Main Proof

We finally have all the ingredients to show the main result of this section. Now
we assume that flat nUC2RPQs are Boolean queries as in Section 5.

Theorem 5 The problem of checking whether a single atom C2RPQ is con-
tained in a flat nUC2RPQ is in Expspace.

Proof: Let γ()← E(y, y′) be the single-atom C2RPQ, where E is 2RPQ given
as NFA, and Γ the Boolean flat nUC2RPQ. We proceed as follows:

– We build a binary flat nUC2RPQ Γ̂ (x, y) from Γ by choosing for each
rule in Γ with the Ans predicate in its head, two free variables arbitrarily
(w.l.o.g. each rule have at least two variables). We build Ava

Γ̂
as in Lemma

5. The number of states of Ava
Γ̂

is exponential in |Cuts(Γ̂ )|.
– We construct a NFA Aγ that accepts all words over Σ(Γ̂ ) ∪ Σ± of the

form u0a0u1 · · · ak−1uk where the a0 · · · ak−1 ∈ L(E). Clearly the number
of states of Aγ is polynomial in γ.

– We build the NFA AΓ̂ , as in Lemma 6. The number of states of AΓ̂ is

|Cuts(Γ̂ )|.

From Lemma 6 and 3, it follows that the language of (AΓ̂ )C intersected
with the language of Ava

Γ̂
is precisely those strings w with valid annotations

such that its projection τ(w) over Σ± is not a linearization of Γ . Thus, if
we intersect this language with the one of Aγ , we have that the resulting
intersection is nonempty if and only if there is an expansion θ of γ that is not
a linearization of Γ , i.e., if γ is not contained in Γ .

Thus to check that γ is not contained in Γ , we check that the language
of the product NFA of Aγ , Ava

Γ̂
and (AΓ̂ )C is not empty. The number of

states of Ava
Γ̂

and (AΓ̂ )C is single exponential in |Cuts(Γ̂ )|, and thus double

exponential in |Γ |. Then we can check non emptiness in Expspace using a
standard on-the-fly implementation. 2

7 Putting it all Together: Upper and Lower Bounds for
Containment of nUC2RPQs

Theorems 5 and 4 provide an immediate proof that the containment problem
for flat nUC2RPQs is in Expspace. However, we cannot use this result to show
a 2Expspace upper bound for the containment problem of two nUC2RPQs,
as unfolding a nUC2RPQ Γ may result in a flat nUC2RPQ Γ ′ that is of
double-exponential size with respect to |Γ |, and thus the number of cuts in Γ ′

might be of triple-exponential size with respect to |Γ |.
The goal of this section is to show that the containment problem for both

RQs and nUC2RPQs is 2Expspace-complete (Theorems 2 and 3). Section 7.1
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shows how to refine the constructions in the previous sections to arrive at the
desired 2Expspace algorithm, and Section 7.2 contains the matching lower
bound.

7.1 Upper Bound

Recall that the transformation from nUC2RPQs to flat nUC2RPQs creates
queries that may be of double exponential size with respect to the original
queries, but whose widths and depths are bounded exponentially and polyno-
mially, respectively (Proposition 2). The idea is then to redo the results from
the previous section but now bounding the algorithms in terms of the width
and depth of queries.

Lemma 7 Let Γ be a binary flat nUC2RPQ with depth d, height h, width w

and weight g. Then the size of Cuts(Γ ) is at most (2hg)O(wd+1).

Proof: Recall that the depth of a flat nUC2RPQ is the maximum length of
a directed path from a 2RPQ to the Ans predicate in its dependence graph,
minus 1; the height is the maximum size of rules(S) over all its intensional
predicates; the width is the maximum number of atoms in a rule body; and
the weight is the maximum size of a 2RPQ appearing in any rule.

Below we bound the number of cuts of a flat nUC2RPQ in terms of these
four variables. Let us first count the number of cuts for queries of depth 0.
Let Γ be such a query, and assume its height, width and weight is h, w and
g, respectively.

Consider first a rule ρ ∈ rules(Ans) of the form

Ans(x, y)← P1(u1, v1), . . . , Pm(um, vm),

where m ≤ w. The number of cuts for Γ of the form (ρ, Inc,Mark,States)
corresponds to the number of choices for Inc, Mark and States for this given
rule. In this case the number of subsets Inc is at most 2(2w), and likewise for
Mark. Regarding States, we have at most w different NFAs and the number
of states in each of these is bounded by g, so the total number of different
tuples is bounded by gw. Thus for each rule ρ ∈ rules(Ans), the number of
cuts associated to ρ is bounded by 22w22wgw. There are at most h rules in Γ ,
so the total number of cuts is bounded by h22w22wgw and thus by (2hg)4w.

For queries of depth 1, we can get almost the same bounds, except this
time the size of States is not bounded by g, but by the number of cuts of the
subqueries in the rules of Γ , which we know is bounded by (2hg)4w. In total

this gives h22w22w((2hg)4w)w, which is bounded by (2hg)4w+4w2

. We can
follow this idea and apply an inductive argument to show that the number of

cuts of Γ is bounded by (2hg)4w+4w2+···4wd+1

, which is (2hg)O(wd+1). 2

Having this lemma we can now state the 2Expspace algorithm for con-
tainment of nUC2RPQs (or RQs).
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1. Given nUC2RPQs Ω and Ω′, we unfold these queries to construct flat
nUC2RPQs Γ and Γ ′. By Proposition 2, we have that (i) |Γ ′| is doubly-
exponential in |Ω′|, (ii) the width of Γ ′ is single-exponential in |Ω′|, and
(iii) the depth of Γ ′ is polynomial in |Ω′|. Similarly for Γ and Ω.

2. We construct from Γ and Γ ′ the single atom C2RPQ γ̃ and the flat
nUC2RPQ Γ̃ defined in the reduction from Section 5. This is a polynomial-
time reduction, thus basically all the bounds from (1) still hold: |γ̃| is
doubly-exponential in |Ω|; |Γ̃ | is doubly-exponential in |Ω| and |Ω′| (note
that Γ̃ now depends on Ω too); the width of Γ̃ is single-exponential in |Ω′|;
the depth of Γ̃ is polynomial in |Ω′|.

3. Using Lemma 7 we obtain that the number of cuts of the binary flat
nUC2RPQ Γ̂ associated with Γ̃ is doubly-exponential in |Ω| and |Ω′|.
It follows that the number of states of the automata Aγ̃ , Ava

Γ̂
and (AΓ̂ )C

from Theorem 5 is triple-exponential in |Ω| and |Ω′|. To decide whether
Ω ⊆ Ω′, we check the intersection of these automata for emptiness, which
can be done in 2Expspace.

7.2 Lower Bound

By combining techniques from [23,17], we can show a matching lower bound
for containment of nUC2RPQs, and conclude Theorems 3 and 2.

Theorem 6 The containment problem for nUC2RPQs is 2Expspace-hard.

Proof: The proof is based on ideas from [23]. We reduce from the following
2Expspace-complete problem: Given a deterministic Turing machine M and
a positive integer n, decide whether M accepts the empty tape using 22n

space. A configuration of M can be described by a string of length 22n. The
symbols of the string are either symbols of the alphabet or composite symbols.
A composite symbol is a pair (s, a), where s is a state of M and a is in Ms
alphabet. Intuitively, a symbol (s, a) indicates that M is in state s and is
scanning the symbol a. It is well-known that the successor relation between
configurations depends only in local constraints: we can associate with the
transition function δ two ternary relations IM , FM and a 4-ary relation BM
on symbols that characterizes the successor relation. If ā = a1 · · · am and b̄ =
b1, · · · , bm are two configurations, then b̄ is a successor of ā iff (a1, a2, b1) ∈ IM ,
(am−1, am, bm) ∈ FM and (ai−1, ai, ai+1, bi) ∈ BM , for each 1 < i < m.

We construct two nUC2RPQs Γ and Γ ′ that encode accepting computa-
tions of M . An expansion of Γ represents a sequence of configurations. The
role of Γ ′ is to detect errors that prevent this sequence from being an accept-
ing computation. Thus, accepting computations are identified with expansion
of Γ without errors, that is, such that Γ ′ cannot be mapped to it. Hence, we
shall have that M accepts the empty tape iff Γ is not contained in Γ ′. This
implies that the containment problem is 2Expspace-hard.

To detect errors, we need to compare corresponding positions in successive
configurations. To do this, we address each position with a 2n-bit address.
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Thus, each position in a configuration will be encoded by 2n rule unfoldings.
As in [23], we encode carry bits in addition to address bits, so the successor
relation becomes local. If ā = a1 · · · a2n and b̄ = b1 · · · b2n are two 2n-bit
address, then b̄ = ā + 1 iff there is a 2n-carry bit c̄ = c1 · · · c2n such that (i)
c2n = 1, (ii) ci = 1 iff ai+1 = 1, ci+1 = 1, for 1 ≤ i < 2n, and (iii) bi = 0 iff
ai = ci, for 1 ≤ i ≤ 2n.

Now we define Γ . We have extensional predicates E,$, Start,

IsAddress, IsSymbol, Zero, One, Carry0 and Carry1. For each configu-
ration symbol a, we also have an extensional predicate Qa. The intensional
predicates are Bit ,ConfAddress,ConfSymbol ,Comp and Final . The query is
Boolean, so Ans is a 0-ary predicate. We have rules

Bit(x, y)← IsAddress(x, x), Zero(x, x), Carry0(x, x), E(x, y).

Bit(x, y)← IsAddress(x, x), Zero(x, x), Carry1(x, x), E(x, y).

Bit(x, y)← IsAddress(x, x), One(x, x), Carry0(x, x), E(x, y).

Bit(x, y)← IsAddress(x, x), One(x, x), Carry1(x, x), E(x, y).

ConfAddress(x, y)← Bit+(x, y).

Above, the variable x represents an address position. We consider the four
possible values for the address bit and carry bit. The atom E(x, y) connects
adjacent positions. We also have rules

ConfSymbol(x, y)← ConfAddress(x, z), IsSymbol(z, z), Qa(z, z), E(z, y).

ConfSymbol(x, y)← ConfAddress(x, z), IsSymbol(z, z), Qa(z, z), $(z, y).

(for each symbol a)

Comp(x, y)← ConfSymbol+(x, y).

The predicate ConfSymbol describes an address, followed by a symbol a. The
atom E(z, y) connects symbols in the same configuration. The atom $(z, y)
connects symbols in successive configurations. The predicate Comp encodes
sequences of “blocks” of the form address-symbol. To encode the end of the
computation, we put in Γ rules of the form

Final(x, y)← ConfAddress(x, y), IsSymbol(y, y), Qa(y, y).

for symbols a of the form a = (s, a′), where s is an accepting state. Finally, to
encode a computation we use the following rule

Ans()← Start(x, x),Comp(x, z),Final(z, y).

The intuition is that each expansion of Γ corresponds to a potential accepting
computation of M , that is, a sequence of address-symbol blocks, ending in an
address-accepting symbol block.

Now we construct Γ ′ to detect errors in expansions of Γ . For each
0 ≤ i ≤ n, we have intensional predicates dist i, dist≤i, dist<i and equal i. For
each 0 < i ≤ n, we have a rule disti(x, y) ← disti−1(x, z), disti−1(z, y). We
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also have rules dist0(x, y) ← E(x, y) and dist0(x, y) ← $(x, y). Clearly, the
predicate disti(x, y) holds precisely when there is a path of length 2i from x
to y, consisting of E-labeled or $-labeled edges.

For each 0 < i ≤ n, we have two rules

dist≤i(x, y)← dist≤i−1(x, z), dist≤i−1(z, y).

dist<i(x, y)← dist<i−1(x, z), dist≤i−1(z, y).

We also have rules dist≤0(x, y) ← E(x, y), dist≤0(x, y) ← $(x, y),
dist≤0(x, x)← true and dist<0(x, x)← true. Here, dist≤i holds precisely when
there is a path of length at most 2i from x to y, and dist<i(x, y) holds precisely
when there is a path of length at most 2i − 1 from x to y (again, the paths
consist of E-labeled or $-labeled edges). Rules of the form S(x, x) ← true can
be easily simulated by Datalog rules.

Now we define the equal i predicates. For each 0 < i ≤ n, we have rules

equal i(x, y)← equal i−1(x, y), equal i−1(x′, y′), dist i−1(x, x′), dist i−1(y, y′).

equal0(x, y)← #1(x, x′),#2(y, y′), ?(x, x), ?(y, y).

(for each #1,#2 ∈ {E, $} and ? ∈ {Zero, One})

We are only interested in the behavior of equal i over expansions of Γ . If an
atom of the form S(x, x) appears in an expansion, we say that the variable x is
labeled with S. Hence, expansions of Γ are basically directed paths whose edges
are labeled by E or $, and whose variables (or nodes) are labeled with symbols
in {Start, IsAddress, IsSymbol, Zero, One, Carry0, Carry1} ∪ {Qa |
for each symbol a}. It is easy to see that in such a model, equal i(x, y) holds

precisely when the directed paths of length 2i starting at x and y have the
same variable labels, with the possible exception of the last variable.

To detect errors and “filter out” expansions of Γ , we use ideas from [23].
First, we need to verify that the first block of the expansion corresponds to
an address of length 2n followed by a symbol. We do this by putting in Γ ′ the
rules

Ans()← Start(x, x), dist<n(x, y), $(y, z).

Ans()← Start(x, x), dist<n(x, y), IsSymbol(y, y).

Ans()← Start(x, x), distn(x, y), IsAddress(y, y).

The first rule finds expansions where one of the first 2n edges is a $-labeled
edge. The second rule finds expansions where one of the first 2n variables is
a symbol variable, that is, a variable labeled with IsSymbol. The last rule
detects expansions where the (2n + 1)-th variable is an address variable, that
is, a variable labeled with IsAddress. For each ? ∈ {E, $}, we add rules

Ans()← IsSymbol(x, x), ?(x, y), dist<n(y, z), $(z, z′).

Ans()← IsSymbol(x, x), ?(x, y), dist<n(y, z), IsSymbol(z, z).

Ans()← IsSymbol(x, x), ?(x, y), distn(y, z), IsAddress(z, z).
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The first rule find expansions where one of the first 2n + 1 (except by the
first one) edges, after a symbol variable, is a $-labeled edge. The second rule
find expansions where one of the first 2n variable, after a symbol variable, is
a symbol variable. The two last rules find expansions where the (2n + 1)-th
variable, after a symbol variable, is an address variable.

So far we have ensured that we have filtered out all expansions that do
not correspond to sequences of blocks of 2n address variables followed by a
symbol variable. Now, we need to check that the address bits indeed act as
2n-bit counter. That is, the first address is 0, . . . , 0 and two adjacent addresses
are successive. For example, a possible error is that the first address is not
0, . . . , 0. Such an error can be found by the following rule

Ans()← Start(x, x), dist<n(x, y), One(y, y).

Another possible error is when the i-th carry bit is 0, but the (i+ 1)-th carry
and address bit are 1. This can be detected by the rule

Ans()← IsAddress(x, x), E(x, y), Carry0(x, x), One(y, y), Carry1(y, y).

A more interesting case is when the i-th carry and address bit are the same
but the i-th address bit in the next address is 1, instead of 0. This is detected
by the following rules

Ans()← IsAddress(x, x), Zero(x, x), Carry0(x, x), distn(x, y), E(y, z), One(z, z).

Ans()← IsAddress(x, x), One(x, x), Carry1(x, x), distn(x, y), E(y, z), One(z, z).

Note that corresponding address variables in successive addresses are exactly
at distance 2n + 1. All other errors can be easily detected by similar rules.

We now have to ensure that every sequence of addresses starting with
0, . . . , 0 describe a single configuration, that is, configurations change exactly
when the address is 1, . . . , 1. Thus, there are two types of error here: (1) a con-
figuration changes when the address is not 1, . . . , 1, or (2) a configuration does
not change when the address is 1, . . . , 1. Recall that changes of configuration
are detected by the symbol $. Errors of type (1) can be detected by the rule

Ans()← IsAddress(x, x), Zero(x, x), dist≤n(x, y), IsSymbol(y, y), $(y, z).

To detect errors of type (2), we need to introduce new intensional predicates
AllOnesi, for each 0 ≤ i ≤ n, such that AllOnesi(x, y) holds precisely when
there is a directed path from x to y of length 2i such that all the variables in
the path are labeled with One, with the possible exception of the last variable
y. These predicates can be defined as follows

AllOnesi(x, y)← AllOnesi−1(x, z),AllOnesi−1(z, y). (for each 0 < i ≤ n)

AllOnes0(x, y)← E(x, y), One(x, x).

Then errors of type (2) can be detected with Ans()← AllOnesn(x, y), E(y, z).
We have ensured so far that we have a sequence of configurations of length

22n

with the proper sequence of addresses. We now have to ensure that this
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sequence of configurations indeed represents a legal computation of the ma-
chine M . In order to do this, we need to introduce new intensional predicates
SameConf and NextConf . Intuitively, SameConf (x, y) holds exactly when x
and y are variables in the same configuration. Similarly, NextConf (x, y) holds
exactly when x and y are in adjacent configurations. These predicates can be
defined as follows

SameConf (x, y)← E+(x, y).

NextConf (x, y)← SameConf (x, z), $(z, z′),SameConf (z′, y).

Now we can verify that the first configuration is actually the initial configu-
ration. Suppose that ⊥ corresponds to the blank symbol and s0 to the initial

state, so the initial configuration is (s0,⊥)· ⊥22n−1. Then, we can use the
following rules

Ans()← Start(x, x), distn(x, y), Qa(y, y). (for each symbol a 6= (s0,⊥))

Ans()← Start(x, x), distn(x, y),SameConf (y, z), IsSymbol(z, z), Qa(z, z).

(for each symbol a 6=⊥)

Finally, we have to detect errors between corresponding symbols in two suc-
cessive configurations, that is, when such symbols do not obey the restrictions
imposed by the relations IM , FM and BM . For example, a violation of BM ,
that is, a tuple (a, b, c, d) 6∈ BM , can be found by rules in Γ ′ of the form

Ans()← Qa(x1, x1), E(x1, z2), distn(z2, x2),

Qb(x2, x2), E(x2, z3), distn(z3, x3), Qc(x3, x3),

distn(z, x), Qd(x, x),NextConf (z2, z), equaln(z2, z).

Here, the variables x1, x2 and x3 point to three consecutive symbols a, b and
c in the same configuration. The variable z2 points to the beginning of the
address preceding x2. Similarly, x points to the symbol d and z to the begin-
ning of the address preceding x. The atom NextConf (z2, z) guarantees that
a, b, c and d appears in successive configurations, and equaln(z2, z) guarantees
that the addresses starting at z2 and z are the same, so b and d appears in
corresponding positions. We add these rules for each (a, b, c, d) 6∈ BM . We can
easily define rules that detect violations of the relations IM and FM . Finally,
observe that the construction of Γ and Γ ′ can be carried out in polynomial
time in n and the size of M . 2

8 Restrictions and Variants of Regular Queries

In this section we analyze some variants of RQs and study them in terms of
the complexity of evaluation and containment. We begin with two different
restrictions on RQs: bounded treewidth and bounded depth. We see how the
restriction on queries of bounded treewidth results in better query evaluation
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properties, while restricting the depth of queries provide better bounds for
containment. We then study how to lift our results to show that the same
complexity bounds apply for the containment of RQs with predicates of un-
bounded arity, although this generalization does carry an impact on query
evaluation.

8.1 RQs with Bounded Treewidth

The notion of treewidth measures the “tree-likeness” of a CQ. It is well-
known that CQs of bounded treewidth can be evaluated in polynomial time
(see e.g. [24,29]). This tractability result can be easily extended to bounded
treewidth (U)C2RPQs [5] (see also [7]). We show this good behavior also holds
for bounded treewidth RQs.

Let ρ be an extended Datalog rule S(x̄)← R1(ȳ1), . . . , Rm(ȳm). The under-
lying CQ of ρ is the Boolean CQ over the schema T1, . . . , Tm, where the arity
of Ti coincide with |ȳi|, of the form θ()← T1(ȳ1), . . . , Tm(ȳm). The treewidth of
an extended Datalog rule is the treewidth if its underlying CQ. The treewidth
of a RQ is the maximum treewidth over its rules.

Proposition 8 Let k ≥ 1. There is a Ptime algorithm that, given a RQ Ω
of treewidth at most k, a graph database G and a tuple t̄, decides whether
t̄ ∈ Ω(G).

Proof: We can directly evaluate over G, all intensional predicates in Ω distinct
from Ans and its transitive closures, in a bottom-up fashion. Since intensional
predicates are binary and rules have treewidth at most k, this can be done in
polynomial time in |Ω| and |G|. After all intensional predicates distinct from
Ans are computed, we can test whether t̄ ∈ Ω(G), also in polynomial time. 2

Note that the queries of the reduction in Theorem 7.2 are of bounded
treewidth. Thus, although evaluation is more efficient for RQs of bounded
treewidth, containment is still 2Expspace-hard in this case.

8.2 RQs with Bounded Depth

The depth of a RQ is the maximum length of a directed path from an exten-
sional predicate to the Ans predicate in its dependence graph, minus 1.

Proposition 9 Let d ≥ 1. There is an Expspace algorithm that, given RQs
Ω and Ω′ of depth at most d, decide whether Ω is contained in Ω′

Proof: We simply use the same algorithm for containment of RQs (Section
7.1). A straightforward complexity analysis shows that this algorithm becomes
Expspace when the depth is bounded by a constant. 2
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Note that evaluation is still NP-hard for RQs of bounded depth, as it is
hard for CQs, which are RQs of depth 0.

8.3 Intensional Predicates with Unbounded Arity: Generalized RQs

By definition, each intentional predicate in a RQ, distinct from Ans, has arity
2. If we drop this condition we arrive at what we call generalized RQs. More
formally, a generalized RQ over Σ is simply a nonrecursive extended Datalog
program over Σ. Note that intensional predicates in generalized RQs may be
of any arity, but the transitive closure of extended rules may only be applied
to binary predicates.

Example 6 Recall our database of persons and its relationships from Examples
1 and 2, with relations knows and helps, abbreviated k and h, respectively.
Suppose now that we are interested in cliques of indirect friends: we say that
persons p1, p2 and p3 form a potential group whenever all of them are indirect
friends to each other. We can compute potential groups using the following
regular query:

F (x, y)← k(x, y), h(x, y).

Ans(x, y, z)← F+(x, y), F+(y, x), F+(x, z), F+(z, x), F+(y, z), F+(z, y).

With generalized RQs we can do more: the following query computes all
pairs of persons that are linked via a chain of people sharing friends in potential
groups (we use G to compute potential groups):

F (x, y)← k(x, y), h(x, y).

G(x, y, z)← F+(x, y), F+(y, x), F+(x, z), F+(z, x), F+(y, z), F+(z, y).

C(u, v)← G(u, y, z), G(v, y, z).

Ans(x, y)← C+(x, y).

2

Observe first that each generalized RQ can be unfolded to produce an
equivalent RQ, which means that RQs and generalized RQs are equivalent in
expressive power. For instance, in the previous example we could have created
a rule for predicate C by unfolding each instance of predicate G (and care-
fully renaming the variables), obtaining a program with just binary relations.
Nevertheless, generalized RQs are more succinct than RQs, which may have
an impact in the complexity of evaluation and containment.

On the negative side, we show that evaluation of generalized RQs is ac-
tually harder that the case of RQs. This is a direct consequence of the fact
that generalized RQs subsume nonrecursive Datalog over graph databases, and
evaluation for the latter class is known to be Pspace-complete (see e.g. [46]).

Proposition 10 Evaluation of generalized RQs is Pspace-complete, in com-
bined complexity.
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On the positive side, we have that checking containment of generalized
RQs is not harder than the case of RQs.

Proposition 11 The containment problem for generalized RQs is
2Expspace-complete.

Proof: Using the same argument as in the case of nUC2RPQs, we have that
Proposition 2 still applies when we start with a generalized RQ Γ . Then the
proposition follows from results in Section 7.1. 2

We conclude by defining a family of queries that are more succinct than
RQs, but that preserves the complexity upper bounds for evaluation and con-
tainment. For k ≥ 1, a k-generalized RQ over Σ is a nonrecursive extended
Datalog program over Σ, where all intensional predicates, except possibly for
Ans, have arity at most k. Note that RQs are contained in the class of 2-
generalized RQs. The following proposition is immediate.

Proposition 12 Let k ≥ 1 be an integer.

– The evaluation problem for k-generalized RQs is NP-complete in combined
complexity.

– The containment problem for k-generalized RQs is 2Expspace-complete.

8.4 Beyond Graph Databases

We can push generalized RQs further to define an analog query language that
can be defined over any possible relational schema and not necessarily over
schemas with binary relations (graph databases). As our last result, we study
nonrecursive extended datalog programs over any possible relational schema.
This language is, in a sense, the most general version of RQs that one could
think of: both extensional and intentional predicates may have arbitrary arity.

First, observe that the complexity of evaluation does not change: it is
Pspace-complete in general and NP-complete if the arity of the intentional
predicates is bounded. Interestingly, we show that containment of general-
ized RQs over relational databases also does not change, that is, it is still
2Expspace-complete.

Proposition 13 The containment problem for generalized RQs over a rela-
tional schema is 2Expspace-complete.

Proof: We reduce containment from the relational case to the graph case.
Given two generalized RQs Ω1 and Ω2 over a relational schema, we construct
in polynomial time generalized RQs Ω′1 and Ω′2 over a binary schema such
that Ω1 is contained in Ω2 iff Ω′1 is contained in Ω′2. Then the result follows
from Proposition 11.

We use an idea from [19] used to reduce containment of Datalog in UCQs
from the relational to the graph case. Ω′1 is obtained from Ω1 as follows:
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– Ω′1 initially contains all rules of Ω1.
– For each extensional predicate R of arity n > 2 appearing in Ω1, we

define an intensional predicate IR and n fresh binary extensional predi-
cates R1, . . . , Rn, which represent the components of R. Then we replace
in Ω′1 each occurrence of R by IR and add the rule IR(x1, . . . , xn) ←
R1(y, x1), . . . , Rn(y, xn), where y is a fresh variable that represents the
tuple (x1, . . . , xn).

– For each unary extensional predicate R appearing in Ω1, we define an
intensional predicate IR and a fresh binary extensional predicate Ru. Then
we replace in Ω′1 each occurrence of R by IR and add the rule IR(x) ←
Ru(x, x).

Similarly, we define Ω′2 from Ω2. Using the same reasoning as in [19], it
follows that Ω1 is contained in Ω2 iff Ω′1 is contained in Ω′2. 2

9 Conclusions

The results in this paper show that regular queries achieve a good balance
between expressiveness and complexity: they are sufficiently expressive to sub-
sume UC2RPQs and UCN2RPQs, and they are not harder to evaluate than
UCN2RPQs. While checking containment of regular queries is harder than
checking containment of UC2RPQs, it is still elementary. Moreover, all gen-
eralizations of regular queries known to date worsen the complexity of the
containment problem to non-elementary or even undecidable. Thus we be-
lieve that regular queries constitute a well-behaved class that deserves further
investigation.

We also show that containment of RQs of bounded depth has the same com-
plexity of checking containment of C2RPQs, and that in general the blowup
depends mostly on the width and depth of queries. This is a much more prac-
tical bound, since the typical examples of recursive queries used in industry
can generally be expressed as programs with low width and depth.

An interesting research direction is to study the containment problem of
a Datalog program in a regular query. Decidability of this problem follows
from [26,27], nevertheless the precise complexity is open. Although it is not
clear how to extend the techniques presented in this paper to containment of
Datalog in regular queries, we conjecture that this problem is elementary.

Another open problem is containment of RQs under the presence of descrip-
tion logic constraints. This problem has been studied for several graph query
languages, and for most of them the complexity is higher in the constraint
case (see e.g. [9,20,10]). Following this direction, it would also be interesting
to understand whether the techniques introduced in this paper can be use to
study the containment problem for Guarded Regular Queries [11], a language
that shares a number of similarities with Regular Queries.
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11. M. Bienvenu, M. Ortiz, and M. Šimkus. Navigational queries based on frontier-guarded

datalog: Preliminary results. In Alberto Mendelzon International Workshop on Foun-
dations of Data Management, page 162, 2015.
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