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1. INTRODUCTION

Relational database annotation is rapidly coming to market. The expressive power of
curated [Buneman et al. 2008] and probabilistic databases [Fuhr and Rölleke 1997;
Zimányi 1997], various forms of provenance [Cui et al. 2000; Buneman et al. 2001;
Green et al. 2007], and even bag (multiset) semantics as a way to model standard
SQL [Chaudhuri and Vardi 1993], derives from an annotation attribute with special
behaviour. Green et al. [2007] observed that in all of these cases annotations propagate
through queries as we expect if the domain of annotations has the structure of a com-
mutative semiring. Karvounarakis and Green [2012] recently surveyed work building
on this model.
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A:2 E. V. Kostylev et al.

To perform standard tasks such as query rewriting and query optimization, it must
be possible to compare queries in some appropriate manner. Every application that
supports annotations should therefore also support comparisons between queries.
However, as noted by Ioannidis and Ramakrishnan [1995] and Chaudhuri and Vardi
[1993] for the particular case of bag semantics and quite generally by Green [2011],
the introduction of annotations requires a complete rethinking of these kinds of tasks:
a pair of queries may behave differently when posed over ordinary relations or over an-
notated relations; the behaviour can be different even for different semirings. Hence
a general theory is needed to explain how queries behave over annotated relations,
and to provide query optimization and query rewriting techniques, regardless of the
semiring chosen for annotations.

In this paper, we study the problem of containment of queries, specifically for the
classes of conjunctive queries (CQs). For this purpose we formally generalize the stan-
dard notion of containment for relational databases [Chandra and Merlin 1977] so
that it subsumes previously studied containments for bag semantics [Ioannidis and
Ramakrishnan 1995; Chaudhuri and Vardi 1993] and several other semirings [Green
2011]. We study in our view the most general reasonable notion of containment, based
on a few intuitive axioms which any containment should satisfy.

The ideal would be to obtain a procedure to decide containment of CQs for an arbi-
trary annotation semiring. However, there is evidence that obtaining such a procedure
for all semirings is a truly challenging, if not impossible, task. Indeed, this would re-
quire solving containment for bag semantics, which is a long-standing open problem for
CQs [Chaudhuri and Vardi 1993; Ioannidis and Ramakrishnan 1995; Afrati et al. 2010;
Chirkova 2012], and is even undecidable for unions of CQs [Ioannidis and Ramakrish-
nan 1995] or CQs with inequalities [Jayram et al. 2006]. With these observations in
mind, we instead ask the following, narrower question: are there reasonable classes of
semirings for which we can prove that containment of CQs is decidable? In this paper
we answer this question positively, by finding several such classes. Our main results
generalize and extend previous work [Green 2011; Grahne et al. 1997] unifying how
semantic properties of query containment link to syntactic properties of different types
of homomorphisms between queries. We also show that these classes are of importance
in practice, as they contain the majority of the annotation semirings that have been
proposed.

For standard relational databases (which can be modelled by a set semantics semir-
ing consisting of just two elements true and false), query containment corresponds
precisely to the NP-complete problem of deciding whether there exists a homomor-
phism between these queries [Chandra and Merlin 1977]. Thus, the natural starting
point of our search for decidable classes is to ask for which semirings the CQ con-
tainment problem coincides with CQ containment for the usual set semantics. This
question was partially answered by Ioannidis and Ramakrishnan [1995], where for
semirings which are so called type A systems, containment was shown to be equiva-
lent to the existence of a homomorphism. We show that it is possible to describe the
class Chom of all such semirings by two simple axioms: idempotence of multiplication
and annihilation of the multiplicative identity. (The latter property informally means
that the multiplicative identity is the greatest element in the semiring.) Notably, this
class corresponds precisely to the class of type A′ systems [Ioannidis and Ramakrish-
nan 1995], for which such a characterization was left open.

Continuing our search for decidable classes, in Sec. 4 we consider those classes ob-
tained by relaxing the axioms for Chom. In Sec. 4.1 to 4.4 we show that for each of these
classes there exists a well-known natural type of homomorphism that is associated
with the class. For these classes, existence of an appropriate type of homomorphism
between two CQs is sufficient to conclude that the one CQ is contained in the other. As
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an example, consider the class of semirings that satisfy only the annihilation axiom. In
Sec. 4.2 we demonstrate that this class contains precisely all the semirings for which
the existence of an injective homomorphism is a sufficient condition for containment
of two CQs. A sufficient condition does not guarantee the decidability of the contain-
ment problem; one needs a necessary condition as well. For this purpose, we describe
the largest class for which an injective homomorphism is necessary for containment of
CQs. Thereby, we have that for all semirings in the intersection of these two classes,
the existence of an injective homomorphism is both a necessary and sufficient condi-
tion for the containment of two CQs, resulting in a class Cin of semirings for which
containment is decidable.

We establish similar results for several other classes of semirings obtained by relax-
ing the axioms that define the class Chom, and show how these classes are character-
ized by other well-known types of homomorphisms. This yields NP decision procedures
for containment of CQs for the corresponding classes of semirings. We provide match-
ing complexity lower bounds: all of these decision problems are NP-complete. We also
prove a more general result that the decision problem is NP-hard for all semirings
considered in this paper.

To axiomatize some of these classes, in Sec. 4.1 we introduce the notion of CQ-
admissible polynomials. Intuitively, a polynomial is CQ-admissible if it can be obtained
by evaluating a CQ over a database annotated with variables. In Sec. 5 we give a syn-
tactic characterization of these polynomials. This novel concept is of independent in-
terest; for instance Olteanu and Závodný [2012] implicitly use the properties of such
polynomials for effectively storing and manipulating the provenance of CQ results.

Moving beyond homomorphisms, in Sec. 6 we also find several semirings for which
containment of CQs can be solved via a small model property, by looking for a small
enough database witness for absence of containment. More precisely, we show that, if
a semiring satisfies the idempotence of addition axiom, then two CQs are contained
with respect to this semiring if and only if they are contained on all instances of size
no greater than the size of the pair of queries. Using this property, we show that in
this case the containment problem can be cast as the problem of deciding whether the
evaluation of a CQ-admissible polynomial is greater than or equal to the evaluation of
another such polynomial, for any assignment of values to the variables from the cor-
responding semiring. Thus, the decidability of such an order on polynomials implies
the decidability for containment of CQs, under any semiring that satisfies our idem-
potence axiom. This results in new decision procedures to solve containment of CQs,
for a wide range of semirings that had not been previously addressed. As an example
of how to use this machinery, we study the problem of the order on polynomials for
two well-known semirings – the tropical semiring and the max-plus algebra – and use
these results to provide novel complexity bounds to decide containment of CQs under
these semirings.

It follows from our definition of containment that two queries are equivalent if and
only if they are contained in each other. Thus, all of our upper bounds for query con-
tainment naturally translate into upper bounds for deciding the equivalence of queries.
However, lower bounds need not be the same. For instance, while the decidability prob-
lem of containment under bag semantics remains open, and is Πp

2-hard according to
Chaudhuri and Vardi [1993], the equivalence problem in this case can be solved sim-
ply by checking for an isomorphism between queries. Therefore deciding the equiva-
lence of queries under annotated relations is a different problem from the containment
problem that we study in this paper, and it is an interesting, non-trivial problem that
deserves to be studied on its own.

Most of our results were previously announced in a conference paper ([Anonymous
]). Here we include detailed proofs and several new results. We also present a number
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of alternative definitions and characterizations that are not only useful for the under-
standing of the complete picture behind the study, but are also interesting in their own
right.

In particular, the new material includes the following. Sec. 3.3 contains a more de-
tailed analysis of the properties of the class Chom of semirings. In Sec. 4.1 we show
(Prop. 4.6) how CQ-admissible polynomials can be defined only in terms of queries
without free variables, and use this property to define a novel, alternative characteri-
zation for the class Nhcov of semirings, which is based on CQ-admissible polynomials
(Lem. 4.7). In Sec. 4.4 we show how our machinery can be used to prove that contain-
ment of conjunctive queries is NP-hard under any semiring considered in this paper.
Sec. 5 now gives a detailed proof of the syntactic characterization of CQ-admissible
polynomials, and along with the proof we include the intuition behind this characteri-
zation. Finally, in Sec. 6 we describe (Prop. 6.5) a completely new technique for deciding
the order on CQ-admissible polynomials under some particular semirings, such as the
tropical semiring and the max-plus algebra. Our approach draws upon results in the
area of linear integer programming, and in particular enables us to improve the up-
per bounds for containment of CQs under these semirings, from the PSPACE bound
presented by Anonymous [], to Πp

2.
We would also like to note that some of the results in [Anonymous ] are not included

in this version. To be more precise, this paper contains only results regarding contain-
ment of conjunctive queries, while the conference version also investigates the problem
of containment of unions of conjunctive queries. As much as we would have liked to in-
clude all these results, due to the space limitations it was not possible to include them
with the same level of detail as the rest of the results of this paper. We intend to publish
these results in an extended version dedicated solely to the problem of containment of
unions of conjunctive queries. For now, we refer the reader to [Anonymous ].

2. PRELIMINARIES

Commutative semirings An algebraic structure K = 〈K,⊕,⊗, 0, 1〉 with binary op-
erations sum ⊕ and product ⊗ and constants 0 and 1 is a (commutative) semiring iff
〈K,⊕, 0〉 and 〈K,⊗, 1〉 are commutative monoids1 with identities 0 and 1 respectively,
⊗ is distributive over ⊕, and a⊗0 = 0 holds for each a ∈ K. It will be convenient for
us to consider only nontrivial semirings, i.e. semirings such that 0 6= 1. We use the
symbols

∑
and

∏
to denote sum and product of sets of semiring elements, i.e. using

operations ⊕ and ⊗.
In the paper we will discuss many examples of semirings, such as the semiring of

natural numbers, where the abstract operations ⊕ and ⊗ instantiate to the usual +
and ×; or the tropical semiring, where these operations instantiate to min and +, re-
spectively.
K-relations A schema S is a finite set of relational symbols, each of which is assigned

a non-negative arity. For a semiring K = 〈K,⊕,⊗, 0, 1〉 and a domain D of constants, a
K-instance I over a schema S assigns to each relational symbol R from S of arity m a
K-relation RI , which is a (total) function from the set of tuples Dm to K such that its
support, i.e. the set {t | t ∈ Dm, RI(t) 6= 0}, is finite.2 We call RI(t) the annotation of
the tuple t in the K-relation RI .

Queries A conjunctive query (or CQ, for short) Q over a schema S is an expression of
the form ∃v φ(u,v), where u is a list of free variables, v is a list of existential variables
and φ(u,v) is a multiset of relational atoms over S using variables u ∪ v. As usual we

1A commutative monoid is a set with an associative and commutative binary operation and an identity
element.
2Hence, in this model every tuple of appropriate arity is annotated in every relation.
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write φ(u,v) = R1(u1,v1), . . . , Rn(un,vn), where u1 ∪ . . .∪un = u and v1 ∪ . . .∪vn = v,
keeping in mind that Ri and Rj in this expression can be the same symbol even if i 6= j.
A union of conjunctive queries (UCQ) Q is a multiset of CQs over the same schema and
the same set of free variables.

Evaluations For a CQ Q = ∃v R1(u1,v1), . . . , Rn(un,vn) and a tuple t, denote by
V(Q, t) the set of all mappings f from u ∪ v to the domain D such that f(u) = t. Given
a K-instance I, the evaluation of Q on I for t is the value

QI(t) =
∑

f∈V(Q,t)

∏

1≤i≤n

RI
i (f(ui,vi)).

Similarly, the evaluation of a UCQ Q on I for t is the value

QI(t) =
∑

Q∈Q

QI(t).

Note, that from this definition it follows that if Q = ∅ then QI(t) = 0.

3. GENERAL FRAMEWORK

3.1. K-containment and �-positive semirings

As noted by Green et al. [2007], the introduction of annotations on relations requires
a complete rethinking of the notions of query optimization and query rewriting. For
the case of bag semantics, Chaudhuri and Vardi [1993] demonstrated that two queries
that are equivalent when posed over ordinary relations may not be equivalent when
evaluated on K-relations. Furthermore, for two different semirings K1 and K2, two
queries may be equivalent under K1-relations, but not equivalent under K2-relations.

Our main aim is to explore the problem of query containment over different K-
relations. First we need to formally specify what we mean by “equivalence” and “con-
tainment” of queries. The notion of equivalence is naturally formalised as follows:
given a semiring K, UCQs Q1 and Q2 over the same schema are K-equivalent (de-
noted Q1 ≡K Q2) iff for every K-instance I and tuple t it holds that QI

1(t) = QI
2(t).

However, to study containment of queries over some semiring K, we should be able to
compare elements of K not only for equality. Therefore, we assume that the semiring
K is equipped with a partial order3 �K. This allows us to define when a UCQ Q1 is
K-contained in a UCQ Q2, which we denote by Q1 ⊆K Q2:

Q1 ⊆K Q2 ⇐⇒ ∀I ∀t QI
1(t) �K QI

2(t).

Note that by this definition different partial orders may produce the same K-contain-
ment. However, for every K-containment there exists a unique minimal order among
these, i.e. the partial order �K such that there is no subrelation of �K that produces the
same K-containment. It is a reasonable assumption that �K is minimal with respect
to ⊆K, and indeed we will make this assumption for the rest of the paper.4

However, for some partial orders the above definition results in a rather spartan
notion of K-containment. For example, by considering the usual order ≤ on the semir-
ing Z of integers, one can easily verify that the empty UCQ is not Z-contained in any
non-empty UCQ.

Thus, we need to restrict the class of partially ordered semirings that we consider
for our study. In order to do so, we list four intuitive requirements that, in our view,
any definition of K-containment should satisfy, and then identify all the semirings K

3A partial order is a transitive, reflexive and antisymmetric binary relation.
4We use this fact in the proof of Prop. 3.1.
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equipped with partial orders �K for which the definition of K-containment is guaran-
teed to satisfy our requirements. These requirements are as follows:

(C1) ⊆K is a preorder, i.e. reflexive and transitive;
(C2) Q1 ≡K Q2 iff Q1 ⊆K Q2 and Q2 ⊆K Q1;
(C3) ∅ ⊆K Q holds for all Q;
(C4) if Q1 ⊆K Q2 then Q1 ∪Q3 ⊆K Q2 ∪Q3 for any Q3.

Requirements (C1) and (C2) essentially state that our notion of containment behaves
as a partial order with respect to the equality we have defined previously. Require-
ments (C3) and (C4) impose further conditions to ensure that the notion of containment
behaves in a natural way. For example, requirement (C3) rules out the example with
Z and ≤; and requirement (C4) is typically needed when considering query processing
tasks such as query rewriting.

It turns out that we can easily axiomatize the class of semirings with partial or-
ders that have K-containments satisfying (C1) – (C4). The following proposition says
that this class consists of all �-positive5 semirings, i.e. semirings K = 〈K,⊕,⊗, 0, 1〉
equipped with a partial order �K, such that

(1) 0 �K a for all a ∈ K, and
(2) a �K b ⇒ a⊕ c �K b⊕ c for all a, b, c ∈ K.

PROPOSITION 3.1. A semiring K equipped with a partial order �K is �-positive iff
the corresponding K-containment ⊆K satisfies the requirements (C1) – (C4).

PROOF. First we show that if ⊆K satisfies the requirements (C1) – (C4) then the
partial order �K satisfies 0 �K a and a �K b ⇒ a⊕ c �K b⊕ c for all a, b, and c from K.

To show that 0 �K a for all a ∈ K, consider a UCQ Q = {∃v R(v)}, and a K-instance
I such that RI(c) = a for some constant c ∈ D and RI(c′) = 0 for all c′ ∈ D, c′ 6= c. By
requirement (C3) we have that ∅ ⊆K Q. Hence, we have that

0 = ∅I() �K QI() = a.

To show that a⊕ c �K b⊕ c for all a, b, c ∈ K such that a �K b, consider Q1 and Q2

over some schema S, such that Q1 ⊆K Q2 and for some K-instance I and tuple t it holds
that QI

1(t) = a and QI
2(t) = b. Such UCQs exist by the minimality of �K. Extend S to

a new schema S′ with a new relation R of arity equal to the size of t. If we consider Q1

and Q2 as UCQs over S′ then Q1 ⊆K Q2 still holds, since these CQs do not use R. Let
J be an extension of I on R such that RJ(t) = c and RJ(t′) = 0 for all t′ 6= t. Let also
Q3 = {Q} where Q = R(u). From requirement (C4) we have that Q1 ∪Q3 ⊆K Q2 ∪Q3.
Hence the following holds, which suffices for the proof:

a⊕ c = QJ
1 (t)⊕QJ

3 (t) �K QJ
2 (t)⊕QJ

3 (t) = b⊕ c.

It is left to show that if �K is a partial order satisfying 0 �K a and a �K b ⇒ a⊕ c �K

b⊕ c for all a, b, and c from K, then ⊆K satisfies the requirements (C1) – (C4).
Requirements (C1) and (C2) follow immediately from the fact that �K is a reflexive,

transitive and antisymmetric relation.
To prove requirement (C3), we need to show that for each Q it holds that ∅ ⊆K Q.

Consider an arbitrary UCQ Q. From the fact that 0 �K a for each a ∈ K, we have that
0 �K QI(t) for any instance I and tuple t. As noted above, for any I and t we have

5In the conference version of this paper the term “positive semiring” was used for this notion. To avoid
confusion with other usage in the literature (for instance, Green [2011] uses the definition of Eilenberg
[1974]), a refined term is used in this paper.
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∅I(t) = 0. Thus, it holds that ∅I(t) �K QI(t) for any I and t, and by definition this
means that ∅ ⊆K Q.

To prove requirement (C4), we show that for each Q1,Q2 such that Q1 ⊆K Q2, and
each Q3, it holds that Q1 ∪Q3 ⊆K Q2 ∪Q3. Assume then that for queries Q1 and Q2,
and any instance I and tuple t, we have that QI

1(t) �K QI
2(t). Then from the properties

of �K we have that QI
1(t)⊕ c �K QI

2(t) ⊕ c, for any instance I and tuple t, and for any
c ∈ K. Hence, QI

1(t)⊕QI
3(t) �K QI

2(t)⊕QI
3(t), for any such I and t. Hereby, by definition

we obtain Q1 ∪Q3 ⊆K Q2 ∪Q3.

We assume for the rest of the paper that all semirings are �-positive and denote the
class of such semirings by S�.

We focus in this work on the following decision problem:

CQ K-CONTAINMENT:

Input: CQs Q1, Q2.
Question: Is Q1 ⊆K Q2?

In particular, we are interested in classifying the semirings in S� for which different
conditions on CQs are sufficient for K-containment, and also for which semirings they
are necessary. If for a semiring K such a condition is both sufficient and necessary, and
it is possible to check the condition algorithmically, then we have a decision procedure
for K-containment.

3.2. Naturally ordered semirings and provenance polynomials

A semiring K = 〈K,⊕,⊗, 0, 1〉 is naturally ordered iff the preorder �nat
K , defined as

a �nat
K b ⇐⇒ ∃c a⊕ c = b, is a partial order. Green [2011] noted that in most seman-

tics considered so far, including set and bag semantics, the notion of containment is
based on natural orders of the semirings. In principle, this condition appears to be too
restrictive, and for this reason we have opted for the more general approach based on
�-positive semirings. It is straightforward to show that any naturally ordered semir-
ing is a �-positive semiring. However, it is also possible to show that every �-positive
semiring with a partial order �K is a naturally ordered semiring, but �K is an exten-
sion of �nat

K (i.e. �nat
K is a subrelation of �K). Thus, our approach is general enough to

include all previous work, as far as we are aware.
In [Green 2011] the problem of K-containment of CQs and UCQs was considered for

several naturally ordered semirings, including the one known as the semiring of prove-
nance polynomials, N [X ] = 〈N[X ],+,×, 0, 1〉. This is the set N[X ] of polynomials over
a set of variables X , with natural number coefficients, equipped with the usual opera-
tions + and ×. Green et al. [2007] pointed out that this semiring (without any order) is
special among all semirings since it is “most general”, i.e. possesses the universal prop-
erty: for any (unordered) semiring K = 〈K,⊕,⊗, 0, 1〉 any function ν : X → K can be
uniquely extended to a morphism Evalν : N[X ] → K, i.e. a mapping between semirings
which preserves all the operations and relations (including constants 0 and 1). Concep-
tually, this property means that any semantical behaviour of the universal semiring
is also the behaviour of any other semiring (see Green et al. [2007] for details). Green
[2011] showed that N [X ], now with its natural order, is universal for all naturally
ordered semirings. It turns out that this is also true for all (�-positive) semirings.

PROPOSITION 3.2. Given a set of variables X , N [X ] is universal for the class S� of
all (�-positive) semirings.

PROOF. From [Green 2011] we know that N [X ] is universal for all naturally ordered
semirings. Also, as mentioned just before this proposition, every (�-positive) semiring
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K is naturally ordered with the order �K extending its natural order �nat
K . From these

facts we conclude that any morphism Evalν : N[X ] → K preserves the natural order
on N [X ], i.e. P �N [X] P

′ implies that Evalν(P) �
nat
K Evalν(P

′) and, hence, Evalν(P) �K

Evalν(P
′).

Based on this property, we can formulate different universal axioms on semirings,
involving the order �K, in terms of N [X ]. Given a semiring K = 〈K,⊕,⊗, 0, 1〉 from
S�, a set X of n variables, and polynomials P1 and P2 from N[X ], we write P1 �K P2

iff for each function ν : X → K the inequality Evalν(P1) �K Evalν(P2) holds for the
morphism Evalν , i.e. the order holds for every valuation of these polynomials. Since
�K is a partial order, we can also write P1 =K P2 for P1 �K P2 ∧P2 �K P1. Polynomials
of this kind will play an important role in this paper, and we will extensively use such
polynomial notation. Sometimes we will also refer to monomials, by which we mean
products of variables (without coefficients).

3.3. Containment by homomorphisms

The study of query containment in the context of query optimization had begun for
relational databases by the 1970s [Chandra and Merlin 1977]. These databases can be
naturally modelled by B-relations, where B = 〈{false, true},∨,∧, false, true〉 is the
set semantics semiring. Here a tuple is annotated with true iff it is in the relation and
false otherwise. For B-containment the natural order �B is assumed, which is defined
as false �B true. A CQ Q1 is B-contained in a CQ Q2 iff one can find a homomor-
phism from Q2 to Q1, by the classical result of Chandra and Merlin [1977]. Given CQs
Q1 = ∃v1 φ1(u1,v1) and Q2 = ∃v2 φ2(u2,v2), a homomorphism (also known as contain-
ment mapping) from Q2 to Q1 is a function h : u2 ∪ v2 → u1 ∪ v1 such that h(u2) = u1

and for each atom R(u,v) from φ2(u2,v2), the atom R(h(u,v)) is in φ1(u1,v1). A homo-
morphism extends to atoms and sets of atoms in the usual way. We write Q2 → Q1 iff
there exists a homomorphism from Q2 to Q1.

Based on the results of Green [2011] or Ioannidis and Ramakrishnan [1995] it is not
difficult to show that the existence of a homomorphism between CQs is necessary for
their K-containment over any �-positive nontrivial semiring K. For the proof of this
fact one would use the following notion, which we exploit extensively in the rest of the
paper.

Fix a set of variables X . A canonical instance ([Green et al. 2007]) JQK of a CQ Q is
an N [X ]-instance with the same schema as Q and with the set of variables of Q as its
domain, such that for every N [X ]-relation RJQK and for every tuple u,v it holds that
RJQK(u,v) = x1 + . . .+xn, where n ≥ 0 is the number of atoms in Q of the form R(u,v),
and x1, . . . , xn are unique (over all JQK) variables from X .

While there may be infinitely many canonical instances for any given query, they are
all isomorphic up to renaming of the variables in the domain of the annotations N [X ].
This allows us to speak of the canonical instance of a query, as if it were a unique
instance. Next we give a simple example of a canonical instance.

Example 3.3. For the CQ Q1 = ∃u, v, w R(u, v), R(u,w), S(v, w), S(v, w) we have

RJQ1K(u, v) = x1, RJQ1K(u,w) = x2,
SJQ1K(v, w) = x3 + x4,

i.e. in the relation R of the canonical instance JQ1K the tuple (u, v) is annotated by
x1, the tuple (u,w) by x2, and all other tuples by 0; also, in the relation S of this
instance the tuple (v, w) is annotated by x3 + x4, and all other tuples again receive the
0 annotation.
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Having this notion, we can prove the fact that N [X ]-containment of CQs implies the
existence of a homomorphism between them.

FACT 3.4 ([GREEN 2011; IOANNIDIS AND RAMAKRISHNAN 1995] ).
For any semiring K from S�, if Q1 ⊆K Q2 then Q2 → Q1.

PROOF. By universality of the semiring N [X ] for S�, each of the semirings in S�

inherits the natural order of N [X ]. It is then enough to show that Q1 ⊆N [X] Q2 implies
Q2 → Q1 for any CQs Q1 and Q2.

Let Q1 and Q2 be CQs with free variables u such that Q1 ⊆N [X] Q2. We have,

in particular, that Q
JQ1K
1 (u) �N [X] Q

JQ1K
2 (u) for the canonical instance JQ1K. Clearly,

Q
JQ1K
1 (u) 6= 0, which implies that Q

JQ1K
2 (u) 6= 0. But this means that there exists a

mapping h in V(Q2,u) such that for every atom R(u′,v′) in Q2, the atom R(h(u′,v′)) is
in Q1. Then h is the desired homomorphism from Q2 to Q1.

The previous result shows that all semirings K in S� share with the set seman-
tics B the property that existence of a homomorphism is a necessary condition for
K-containment. Yet, as mentioned before, for the specific case of set semantics we have
that the existence of a homomorphism is also a sufficient condition for containment.
Thus, a first natural question to ask is: which semirings behave like B with respect
to containment of CQs, i.e. for which semirings K is it the case that Q2 → Q1 is suffi-
cient (and necessary) for Q1 ⊆K Q2? This question was answered partially in [Green
et al. 2007; Green 2011; Ioannidis and Ramakrishnan 1995], and Grahne et al. [1997]
showed that this correspondence holds if K is a distributive bilattice. As the main re-
sult of this section we show that it is possible to axiomatize the class of all semirings
for which K-containment of CQs coincides with the usual set semantics containment.

Definition 3.5 (Class Chom of semirings). Denote by Chom the class of semirings K
that satisfy the following axioms (using the convenient polynomial notation introduced
at the end of Sec. 3.2, i.e. assuming that all variables are universally quantified):

(1) (⊗-idempotence) x× x =K x;
(2) (1-annihilation) 1 + x =K 1.

Next we show that Chom contains exactly all semirings that behave like set seman-
tics, w.r.t. K-containment of CQs. In order to do that, we need the following character-
izations of the 1-annihilation axiom. We use these characterizations throughout the
paper.

LEMMA 3.6. Given a semiring K,

(1) if K satisfies the 1-annihilation axiom then x1 × y1 + . . .+ xn × yn �K x1 + . . .+ xn

for every non-negative integer n;
(2) if K does not satisfy 1-annihilation, then x× y 6�K x.

Note that the statement of this lemma uses the polynomial notation introduced in
the last part of Sec. 3.2, with implicit universal quantification.

PROOF. Let K = 〈K,⊕,⊗, 0, 1〉.

For Part 1, we know that 1⊕ a = 1 for all a ∈ K. Multiplying by b we conclude that
for all a, b ∈ K it holds that

b⊕(b⊗ a) = b. (1)

Since the first requirement of positivity implies 0 �K b, by the second requirement we
can conclude that b⊗ a �K b⊕(b⊗ a). Applying this inequality to (1), we obtain that
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b⊗ a �K b for all a, b ∈ K. Again, by the second requirement of positivity we have that
for every n ≥ 0 and every a1, . . . , an, b1, . . . , bn ∈ K it holds that

(b1 ⊗ a1)⊕ . . .⊕(bn ⊗ an) �K b1 ⊕ . . .⊕ bn.

It means that the desired inequality x1 × y1 + . . .+ xn × yn �K x1 + . . . + xn holds for
every integer n ≥ 0.

For Part 2, assume for the sake of contradiction that K satisfies x × y �K x,
i.e. a⊗ b �K a for all a, b ∈ K. Particularly, for all a, c ∈ K it holds that a⊕(a⊗ c) =
a⊗(1⊕ c) �K a. Take a = 1. Then 1⊕ c �K 1 for all c ∈ K. However, by positivity also
1 �K 1⊕ c. Hence 1⊕ c = 1 for all c ∈ K, which contradicts the assumption that K does
not satisfy 1-annihilation.

We are now ready to present the main result of this section.

THEOREM 3.7. The following are equivalent:

- semiring K belongs to Chom;
- Q1 ⊆K Q2 iff Q2 → Q1, for all CQs Q1 and Q2.

PROOF. By Prop. 3.4, for any (�-positive, nontrivial) semiring K and CQs Q1, Q2

it holds that if Q1 ⊆K Q2 then Q2 → Q1. Hence, we only need to show that given a
semiring K = 〈K,⊕,⊗, 0, 1〉,

(1) if K ∈ Chom and Q1, Q2 are CQs such that Q2 → Q1, then Q1 ⊆K Q2;
(2) if K /∈ Chom, then there exist CQs Q1 and Q2 such that Q2 → Q1, but Q1 6⊆K Q2.

For Part 1, assume that Q1 = ∃vR1(u1,v1), . . . , Rn(un,vn) and Q2 =
∃wS1(q1,w1), . . . , Sm(qm,wm), where u is the tuple of free variables of Q1 and q is
the tuple of free variables of Q2, each ui and qj consist of variables from u and q, re-
spectively, and each vi and wj consist of variables from v and w, respectively. We need
to show that for an arbitrary K-instance I and a tuple t the following holds:

QI
1(t) =

∑

f∈V(Q1,t)

∏

1≤i≤n

RI
i (f(ui,vi)) �K

∑

g∈V(Q2,t)

∏

1≤j≤m

SI
j (g(qj ,wj)) = QI

2(t). (2)

It is given that Q2 → Q1, i.e. there exists a homomorphism h from Q2 to Q1. Without
loss of generality, let us assume that when applying h to (the atoms of) Q2 one obtains
R1(u1,v1), . . . , Rℓ(uℓ,vℓ), or, in other words, that the first ℓ atoms of our enumeration
of Q1 are the image of h in Q1. Let us write

QI
1(t) =

∑

f∈V(Q1,t)

∏

1≤i≤ℓ

RI
i (f(ui,vi))

∏

ℓ<i≤n

RI
i (f(ui,vi)).

Let V(Q1, t) = V1 ∪ . . . ∪ Vk ∪ . . . be a (disjoint) partitioning of the set of mappings
V(Q1, t), such that f and f ′ are in the same Vk iff f(ui,vi) = f ′(ui,vi) for each 1 ≤ i ≤ ℓ.
Rearranging the equation, we obtain

QI
1(t) =

∑

k≥1

∑

f∈Vk

∏

1≤i≤ℓ

RI
i (f(ui,vi))

∏

ℓ<i≤n

RI
i (f(ui,vi)).

Since ⊗ distributes over ⊕ and each mapping from every Vk maps the variables of the
first ℓ atoms of our enumeration of Q2 to the same constants, we have that

QI
1(t) =

∑

k≥1

∏

1≤i≤ℓ

RI
i (fk(ui,vi))




∑

f∈Vk

∏

ℓ<i≤n

RI
i (f(ui,vi))



 ,
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where fk is just an arbitrary representative from Vk. Since R1(u1,v1), . . . , Rℓ(uℓ,vℓ) is
the image of the atoms of Q2 by h, just as done in [Ioannidis and Ramakrishnan 1995]
from ⊗-idempotence we conclude that

QI
1(t) =

∑

k≥1

∏

1≤j≤m

SI
j (fk ◦ h(qj ,wj))




∑

f∈Vk

∏

ℓ<i≤n

RI
i (f(ui,vi))



 .

We consider only instances with finite support, so only a finite number of the outer
summands are not equal to 0. Hence, we can apply Part 1 of Lem. 3.6, so

QI
1(t) �K

∑

k≥1

∏

1≤j≤m

SI
j (fk ◦ h(qj ,wj)).

Since for all k ≥ 1 we have fk ◦ h ∈ V(Q2, t), the desired inequality (2) holds.

For Part 2, we need to show that given a semiring K /∈ Chom there exist CQs Q1 and
Q2 such that there is a homomorphism from Q2 to Q1, but Q1 6⊆K Q2. There are three
possibilities.

(a). Semiring K may fail to satisfy x × x =K x, witnessed by a ∈ K such that
a 6�K a⊗ a. Consider a schema with a unary relation R and CQs Q1 = ∃u R(u) and
Q2 = ∃u, v R(u), R(v). Clearly Q2 → Q1. However, for the K-instance I such that
RI(c) = a for some constant c and RI(c′) = 0 for all c′ 6= c it follows that QI

1() = a
and QI

2() = a⊗ a, so Q1 6⊆K Q2.
(b). Alternatively, K may fail to satisfy x × x =K x, witnessed by a ∈ K such that
a ⊗ a 6= a but a �K a ⊗ a. For the CQs Q1 and Q2 from case (a) we have that
Q1 → Q2, but since QI

2() = a⊗a 6�K a = QI
1() for the K-instance I, we conclude that

Q2 6⊆K Q1.
(c). Finally, K may fail to satisfy 1+x =K 1. Then by Part 2 of Lem. 3.6 there exist
a, b ∈ K such that a⊗ b 6�K a. In this case, consider CQs Q1 = ∃v R(v), S(v) and
Q2 = ∃v R(v) over a schema with two unary relations R and S. Clearly Q2 → Q1.
However, for the K-instance I such that RI(c) = a, SI(c) = b for some constant c
and RI(c′) = 0, SI(c′) = 0 for all c′ 6= c, we have that QI

1() = a⊗ b 6�K a = QI
2().

Hence, Q1 6⊆K Q2.

This ends the proof of the theorem.

Deciding the existence of a homomorphism between CQs is well-known to be NP-
complete [Aho et al. 1979, Thm. 7(1)]. We therefore obtain the following corollary.

COROLLARY 3.8. If K ∈ Chom then CQ K-CONTAINMENT is NP-complete.

Many semirings used for annotations are distributive lattices, and hence belong to
Chom. Besides the set semantics B, they include the semiring of positive boolean ex-
pressions PosBool[X ] described by Green et al. [2007], which is used in incomplete
databases [Imieliński and Lipski 1984], and the probabilistic semiring P [Ω] used in
event tables [Fuhr and Rölleke 1997; Zimányi 1997]. To the best of our knowledge
none of the semirings that belong to Chom but are not distributive lattices have been
proposed for use in practice, although one can easily construct an infinite number of
them. This can be done by taking any of the distributive lattices mentioned above,
equipped with a partial order that is not natural, i.e. any order that does not satisfy
the axiom a �nat

K b ⇐⇒ ∃c a⊕ c = b (but of course that still satisfies our positivity
requirements).

Also, the class Chom corresponds precisely to the class of type A′ systems introduced
by Ioannidis and Ramakrishnan [1995]. They raised the question of what the deci-
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sion procedure is for CQ containment over such systems. Our Thm. 3.7 answers this
question. However, many annotation semirings do not belong to Chom, including prove-
nance polynomials N [X ], the why-provenance semiring Why[X ] discussed by Buneman
et al. [2001], or bag semantics N [Chaudhuri and Vardi 1993]. In the next section, we
study what happens when we relax the conditions for Chom.

4. K-CONTAINMENT OF CQS

From a practical point of view, it would be useful to have a decision procedure for K-
containment of CQs for an arbitrary semiring K. However, as we have mentioned in the
introduction, there is evidence that obtaining such a procedure for all semirings not in
Chom is a truly challenging, if not impossible, task. The semiring N = 〈N0,+,×, 0, 1〉 of
natural numbers with zero, with the usual arithmetic operations and the natural order,
is used to model bag semantics [Green et al. 2007]. A universal decision procedure
for CQ K-CONTAINMENT would thus require being able to solve this problem for the
special case of bag semantics N , which is a long-standing open problem [Chaudhuri
and Vardi 1993; Ioannidis and Ramakrishnan 1995]. It is also not difficult to show that
there are infinitely many semirings K for which deciding K-containment of CQs is at
least as hard as for bag semantics, in terms of computational complexity.

With these observations in mind, we instead ask the following, narrower ques-
tion: are there any reasonable classes of semirings for which we can prove that K-
containment of CQs is decidable? We have already pointed out that this is the case for
the class Chom, since for all semirings K in Chom the problem of K-containment can be
solved by deciding the existence of a homomorphism. A natural starting point for our
search is therefore to relax the axioms of the class Chom. We thus obtain the class of
semirings that satisfy the ⊗-idempotence axiom, that we denote by Shcov; the class of
semirings that satisfy the 1-annihilation axiom, denoted by Sin; and, if we relax both
axioms, the class S� of all (�-positive) semirings.

We show that for each of these classes there exists a natural type of homomorphism
that characterizes the class, but only as a sufficient condition for K-containment of
CQs. In the search for classes similar to Chom, we then provide the largest class of
semirings for which each of these conditions is necessary for K-containment, result-
ing in analogues of Thm. 3.7 for different classes of semirings and different types of
homomorphisms.

Besides Shcov, Sin, and S� we look at one more class, that we denote by Ssur. This
class lies “between” Shcov and S�, in the sense that it can be obtained from Shcov by a
partial, instead of complete, relaxation of the ⊗-idempotence axiom. The class Ssur is
interesting in its own right, since it can be characterized by the well studied notion of
surjective homomorphism ([Chaudhuri and Vardi 1993; Ioannidis and Ramakrishnan
1995]) as yielding a sufficient condition for CQ N -containment. In the same fashion,
we identify the largest class of semirings for which this condition is also necessary.

All the axioms for necessary classes are based on the notion of CQ-admissible poly-
nomials. We first opt for a conceptual non-constructive definition, but give a syntactic
characterization in a separate subsection.

The results about the classes above are summarized in Tab. I on page 37, which can
be used as a roadmap of Sec. 4.1–4.4.

Notice that, up to this point, we have only considered solving the K-containment
problem by means of finding different types of homomorphisms between CQs. Thus, it
is natural to ask whether there exists a different approach for solving this problem. We
address this question at the end of this section, and show that there exists a large class
of semirings which possesses a small model property: if a CQ Q1 is not K-contained in
a CQ Q2, then this is witnessed by a small enough K-instance.
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4.1. Containment by homomorphic covering

We begin with the class of ⊗-idempotent semirings.

Definition 4.1 (Class Shcov of semirings). Let Shcov be the class of all semirings in
S� that satisfy the ⊗-idempotence axiom:

x× x =K x.

For these semirings, we exploit the notion of homomorphic covering: given CQs Q1

and Q2, we say that Q2 homomorphically covers Q1, and write Q2 ⇒ Q1, if for every
atom R(u) in Q1 there exists a homomorphism h from Q2 to Q1 with R(u) in the image
of h; or, more formally, if for every such atom in Q1 there is a homomorphism h from
Q2 to Q1 and an atom R(v) in Q2 such that h(v) = u.

This type of homomorphism arose in the context of query optimization as a neces-
sary condition for N -containment of CQs over bag semantics N [Chaudhuri and Vardi
1993]. It was also noted that existence of a homomorphic covering is not sufficient to
guarantee N -containment. Homomorphic coverings were also used by Green [2011] to
show that Q2 ⇒ Q1 is both necessary and sufficient for Q1 ⊆Lin[X] Q2, where Lin[X ] is
the lineage semiring [Cui et al. 2000; Buneman et al. 2001]. This semiring is used to
model propagation of comments of arbitrary nature.

In this section we establish axiomatic bounds for semirings to have homomorphic
covering as a sufficient and as a necessary condition for K-containment of CQs. We
start with the first part and show that the class Shcov captures precisely all semirings
for which Q2 ⇒ Q1 is a sufficient condition.

PROPOSITION 4.2. The following are equivalent:

- semiring K belongs to Shcov;
- Q2 ⇒ Q1 implies Q1 ⊆K Q2, for all CQs Q1, Q2.

PROOF. We need to show that given a semiring K = 〈K,⊕,⊗, 0, 1〉,

(1) if K ∈ Shcov and Q1, Q2 are CQs such that Q2 ⇒ Q1, then Q1 ⊆K Q2;
(2) if K /∈ Shcov, then there exist CQs Q1 and Q2 such that Q2 ⇒ Q1, but Q1 6⊆K Q2.

For Part 1, we assume that Q1(u) = ∃vR1(u1,v1), . . . , Rn(un,vn) and Q2(q) =
∃wS1(q1,w1), . . . , Sm(qm,wm), where u is the tuple of free variables of Q1 and q is
the tuple of free variables of Q2, each ui and qj consist of variables from u and q, re-
spectively, and each vi and wj consist of variables from v and w, respectively. We need
to show that for an arbitrary K-instance I and a tuple t, we have

QI
1(t) =

∑

f∈V(Q1,t)

∏

1≤i≤n

RI
i (f(ui,vi)) �K

∑

g∈V(Q2,t)

∏

1≤j≤m

SI
j (g(qj ,wj)) = QI

2(t). (3)

We need some extra notation. Since Q2 homomorphically covers Q1, let h1, . . . , hn

be the (not necessarily distinct) homomorphisms from Q2 to Q1 such that, for each
1 ≤ i ≤ n, the atom Ri(ui,vi) is in the image of hi. Consider the following set V1(Q2, t)
of mappings:

V1(Q2, t) = {g | g = f ◦ hi, where f ∈ V(Q1, t), 1 ≤ i ≤ n}.

It is easy to show that V1(Q2, t) ⊆ V(Q2, t) (this was also proved by Ioannidis and
Ramakrishnan [1995]). For the left part of the inequality (3) we have

QI
1(t) =

∑

f∈V(Q1,t)

∏

1≤i≤n

RI
i (f(ui,vi)) =

∑

f∈V(Q1,t)

∏

1≤i≤n

∏

1≤j≤m

SI
j (f ◦ hi(qj ,wj)). (4)
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The second of these equalities holds by ⊗-idempotence of K: indeed, for each f ∈
V(Q1, t) the product of SI

j (f ◦ hi(qj ,wj)) multiplies the same values as the correspond-

ing product of RI
i (f(ui,vi)), but with greater or equal exponents. If we define, for map-

pings g1, . . . , gn from V1(Q2, t),

Π̂(g1, . . . , gn) =
∏

1≤i≤n

∏

1≤j≤m

SI
j (gi(qj ,wj)),

then we can arrange the right part of (4) to obtain:

QI
1(t) =

∑

f∈V(Q1,t)

Π̂(f ◦ h1, . . . , f ◦ hn).

From positivity of K and the fact that the number of tuples in I with annotation greater
than 0 is finite, one can show that:

∑

f∈V(Q1,t)

Π̂(f ◦ h1, . . . , f ◦ hn) �K

∑

g1,...,gn∈V1(Q2,t)

Π̂(g1, . . . , gn). (5)

Indeed, since for each f ∈ V(Q1, t) all of f ◦ h1, . . . , f ◦ hn are in V1(Q2, t), to show that
equation (5) holds we only need to prove that on the left side no summand occurs more
times than on the right side, i.e. that for every different f, f ′ ∈ V(Q1, t) it holds that
f ◦h1, . . . , f ◦hn and f ′◦h1, . . . , f

′◦hn are not completely the same. Assume the contrary.
Since f 6= f ′, there exists a variable v in Q1 such that f(v) 6= f ′(v). Let v be among the
variables of an atom Ri(ui,vi), 1 ≤ i ≤ n, of Q1. But this atom is in the image of hi, and
thus Q2 contains an atom Sj(qj ,wj), 1 ≤ j ≤ m, such that hi(qj ,wj) = (ui,vi). Hence
f ◦ hi differs from f ′ ◦ hi, which is the desired contradiction.

Continuing with the proof, notice that the right part of equation (5) can be rear-
ranged as follows:

∑

g1,...,gn∈V1(Q2,t)

Π̂(g1, . . . , gn) =




∑

g∈V1(Q2,t)

∏

1≤j≤m

SI
j (g(qj ,wj))





n

.

Finally, we obtain equation (3) from ⊗-idempotence and positivity of K:




∑

g∈V1(Q2,t)

∏

1≤j≤m

SI
j (g(qj ,wj))





n

=
∑

g∈V1(Q2,t)

∏

1≤j≤m

SI
j (g(qj ,wj)) �K

∑

g∈V(Q2,t)

∏

1≤j≤m

SI
j (g(qj ,wj)) = QI

2(t).

This shows Part 1 of the proposition.

For Part 2 we reuse the CQs Q1 and Q2 from the cases (a) and (b) of the proof for
Part 2 of Thm. 3.7. Clearly, we have Q2 ⇒ Q1 and Q1 ⇒ Q2 but by the same reasons
Q1 6⊆K Q2 and Q2 6⊆K Q1.

Of course, a sufficient condition itself does not guarantee the decidability of the K-
containment problem; one needs such a condition to be necessary as well. Since one can
easily find semirings in Shcov for which the existence of a homomorphic covering is not
a necessary condition (for example, any semiring in Chom), our only hope is to describe
the largest class for which a homomorphic covering is necessary for K-containment
of CQs. Next we present two different characterizations of this class. The first one is
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just an axiomatization similar to the definition of previous classes of semirings, and
the second one is based on an interesting characterization of polynomials. We show
that both definitions end up being equivalent, and then proceed to show that this class
satisfies our desiderata.

Definition 4.3 (Class Nhcov of semirings). Denote by Nhcov the class of semirings K
such that for every n, k ≥ 1 it holds that

x1 × . . .× xn × y 6�K (x1 + . . .+ xn)
k

(again, assuming all variables to be universally quantified).

The above definition implies, in particular, that x× y 6�K x. By Lem. 3.6 none of the
semirings in Nhcov can then satisfy the 1-annihilation axiom. Hence Nhcov ∩Chom = ∅.
This is to be expected, since we are describing a class of semirings for which homomor-
phic covering is a necessary condition for K-containment of CQs. Nevertheless, one can
verify that many interesting semirings belong to Nhcov, such as bag semantics N . In
fact, it was already proved by Chaudhuri and Vardi [1993] that homomorphic covering
is a necessary condition for N -containment of CQs.

Next we give a different characterization for the class Nhcov. It is based on the fol-
lowing definition.

Definition 4.4. A polynomial P from N[X ] is CQ-admissible iff there exists a CQ Q,
an N [X ]-instance I each tuple of which is annotated with either a unique variable from
X or 0, and a tuple t, such that QI(t) = P.

Essentially, a polynomial is CQ-admissible if it is possible to obtain it by a CQ on an
abstractly tagged instance ([Green et al. 2007]).

Example 4.5. The following shows that the polynomial P = x2 + xy is CQ-
admissible. Consider the N [X ]-instance I over a schema with one binary relation R, in
which RI(a, a) = x, RI(a, b) = y for some elements a, b ∈ D, and all other annotations
are set to 0. Then for the query Q = ∃u, v R(u, u), R(u, v) we have that QI() = P.

In Sec. 5 we will see that the polynomial x2 + xy + y2, for instance, is not CQ-
admissible.

We write Ncq[X ] for the set of all CQ-admissible polynomials with variables X . We
will use this notion intensively in the rest of this paper; for now, we have opted to give a
non-constructive definition, but we will give an algebraic characterization of Ncq[X ] in
Sec. 5. In this section, however, we present an interesting observation regarding CQ-
admissible polynomials. The following proposition essentially shows that the above
definition can be stated only in terms of conjunctive queries without free variables,
such as the query Q in the example above.

PROPOSITION 4.6. For every CQ-admissible polynomial P there exists a CQ Q with-
out free variables and N [X ]-instance I with only unique variables or 0 as annotations
such that QI() = P.

PROOF. This proposition is an immediate corollary of Prop. 5.1 from Sec. 5, which is
somewhat technical. That is why, for the sake of clarity we left Prop. 5.1 for a separate
section.

Using the notion of CQ-admissible polynomials, we are ready to give the alternative
characterization of class Nhcov.
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LEMMA 4.7. A semiring K belongs to Nhcov iff for every CQ-admissible polynomial
P over a set of variables X = {x1, . . . , xn} the inequality

x1 × . . .× xn �K P

implies that every variable from X occurs in P.

PROOF. Let Q be a CQ consisting of k atoms, and I be an N [X ]-instance with tuples
annotated with unique variables x1, . . . , xn (or zero), such that the mappings in the set
V(Q, t) allow us to obtain any possible combination of images of the atoms of Q to non-
zero annotated tuples of I. Then QI(t) = (x1 + . . .+ xn)

k. Therefore, this polynomial is
CQ-admissible. Moreover, every P from Ncq[X ] of degree k satisfies P �N [X] (x1 + . . .+

xn)
k. By universality of N [X ] for S�, each of the semirings in S� inherits the natural

order of N [X ], so for every polynomial P ∈ Ncq[X ] of degree k ≥ 1 we have that

P �K (x1 + . . .+ xn)
k. (6)

By the definition, K ∈ Nhcov iff for all n, k ≥ 1 it holds that

x1 × . . .× xn × y 6�K (x1 + . . .+ xn)
k.

Since the polynomial (x1 + · · ·+ xn)
k is CQ-admissible, from (6) and transitivity of �K

we conclude that K ∈ Nhcov iff for all n, k ≥ 1, set of variables X = {x1, . . . , xn}, another
variable y, and P ∈ Ncq[X ] of degree k it holds that

x1 × . . .× xn × y 6�K P. (7)

This means that K ∈ Nhcov iff (7) holds for all n ≥ 1, set of variables X = {x1, . . . , xn}
and variable y, and P ∈ Ncq[X ].

Next we will show that the second part of this statement is equivalent to the
statement of the lemma: for every polynomial P ∈ Ncq[X ] over a set of variables
X = {x1, . . . , xn}, the inequality

x1 × . . .× xn �K P (8)

implies that P uses all the variables in X .
For the “if” direction, consider a polynomial P ∈ Ncq[X ] such that (8) holds, and

assume for the sake of contradiction that P uses only x1, . . . , xℓ for some ℓ < n. Since
(8) is an universal axiom, we may assume that ℓ = n− 1. But then this contradicts (7).
Hence, every variable in X must occur in P.

The “only if” direction is immediate.

Lastly, we are now able to present a formal proof that the class Nhcov is the largest
class of semirings for which the notion of homomorphic covering is a necessary condi-
tion for K-containment of CQs.

PROPOSITION 4.8. The following are equivalent:

- semiring K belongs to Nhcov;
- Q1 ⊆K Q2 implies Q2 ⇒ Q1, for all CQs Q1, Q2.

PROOF. We need to show, that given a semiring K = 〈K,⊕,⊗, 0, 1〉,

(1) if K ∈ Nhcov and Q1, Q2 are CQs such that Q1 ⊆K Q2, then Q2 ⇒ Q1;
(2) if K /∈ Nhcov, then there are CQs Q1 and Q2 such that Q1 ⊆K Q2, but there is no

homomorphic covering from Q2 to Q1.

For Part 1, we assume that Q1(u) = ∃v R1(u1,v1), . . . , Rn(un,vn) and Q2(q) =
∃w S1(q1,w1), . . . , Sm(qm,wm), where u is the tuple of free variables of Q1 and q is

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: YYYY.



Classification of Annotation Semirings over Containment of Conjunctive Queries A:17

the tuple of free variables of Q2, each ui and qj consist of variables from u and q,
respectively, and each vi and wj consist of variables from v and w, respectively. Let
X = {x1, . . . , xn} be a set of variables. Consider a canonical N [X ]-instance JQ1K of Q1

(see the definition in Sec. 3.3). Denote P1 = Q
JQ1K
1 (u) and P2 = Q

JQ1K
2 (u). By construc-

tion of JQ1K, using the identity mapping in V(Q1,u) it is clear that x1 × . . . × xn is a
monomial in P1 and by positivity of K we have that x1 × . . .× xn �K P1.

Moreover, the polynomial P2 is CQ-admissible. This does not follow directly from the

fact that P2 = Q
JQ1K
2 (u), because the tuples in JQ1K may not be annotated by single

variables. However, extensions Q′
2 of Q2 and Q′

1 of Q1 can be constructed to show that
P2 is CQ-admissible, i.e. so that all the tuples in JQ′

1K are annotated with distinct

variables and (Q′
2)

JQ′

1K(u) = P2. In order to do this, construct the query Q′
1 by replacing

each atom of form Ri(ui,vi), 1 ≤ i ≤ n, by an atom R′
i(ui,vi, s), where s is a fresh

existentially quantified variable, and query Q′
2 by replacing Sj(qi,wi), for 1 ≤ j ≤ m,

by an atom S′
j(qi,wi, t), where t is again a fresh existentially quantified variable. One

can then verify that the evaluation of Q′
2 over JQ′

1K yields exactly the polynomial P2.
Since Q1 ⊆K Q2, for every K-instance I and tuple t we have that QI

1(t) �K QI
2(t). In

particular, this holds for every K-instance obtained from JQ1K by an evaluation X → K.
Hence P1 �K P2, and in particular, x1 × . . . × xn �K P2. Since K ∈ Nhcov, by Lem. 4.7
we have that every variable in X occurs in P2. By definition,

P2 = Q
JQ1K
2 (u) =

∑

f∈V(Q2,u)

∏

1≤j≤m

S
JQ1K
j (f(qj ,wj)).

Since JQ1K is an N [X ]-instance, for every atom Rℓ(uℓ,vℓ) from Q1 (for which

R
JQ1K
ℓ (uℓ,vℓ) = xℓ1 + . . .+ xℓk ), there exists a mapping f ∈ V(Q2,u) such that f(q) = u

and Rℓ(uℓ,vℓ) is in the image of f . Hence, from every such mapping one can construct
a homomorphism from Q2 to Q1 which has Rℓ(uℓ,vℓ) in its image. This holds for ev-
ery atom Rℓ(uℓ,vℓ) from Q1, and thus all these homomorphisms form a homomorphic
covering of Q1 by Q2.

For Part 2, we need to construct CQs Q1 and Q2 such that Q1 ⊆K Q2 but Q2 6⇒ Q1.
Let K be a semiring not in Nhcov. By Lem. 4.7 there is a CQ-admissible polynomial
P ∈ Ncq[X ] such that

x1 × . . .× xn �K P, (9)

but P does not use all the variables x1, . . . , xn. Without loss of generality, we may as-
sume that X = {x1, . . . , xn}.

By Prop. 4.6, there exists a CQ Q without free variables and an N [X ]-instance I with
only unique variables or 0 as annotations, such that QI() = P. Assume that the schema
of I has k relations R1, . . . , Rk, and let u be the tuple of all elements of the domain of
I which occur in tuples having annotations different from 0 in the N [X ]-relations of I.
Construct a schema S as follows: for every N [X ]-relation Ri of arity ni, 1 ≤ i ≤ k, in
the schema of I, add to S a relational symbol Si of arity ni + |u|.

Suppose Q = ∃vR′
1(v1), . . . , R

′
m(vm). Then let Q2 = ∃v S′

1(u,v1), . . . , S
′
m(u,vm), be a

query with free variables u, where each of S′
j , 1 ≤ j ≤ m, has the relational symbol

corresponding to the relational symbol constructed from R′
j (here we abuse notation

and look at the constants u as variables). In turn, we construct a CQ Q1 with free
variables u without existential variables in the following way: for each relation Ri and
each tuple q such that RI

i (q) ∈ X the query Q1 contains the atom Si(q,u).

Next we show that Q2 6⇒ Q1. First, note that the instance I and the canonical N [X ]-
instance JQ1K of Q1 are related in the following way: for every 1 ≤ i ≤ k and tuple q it
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holds that S
JQ1K
i (q,u) = RI

i (q), and all other annotations in I or JQ1K are 0. Moreover,
from the construction of Q1 and Q2 we have

Q
JQ1K
1 (u) = x1 × . . .× xn and Q

JQ1K
2 (u) = P. (10)

There exists a bijective correspondence between mappings f from V(Q2,u) which pro-

duce monomials in Q
JQ1K
2 (u) = P (not equal to 0) and homomorphisms from Q2 to Q1.

Since P does not use all the variables x1, . . . , xn, there exists an atom S(q,u) in Q1,
which is annotated in JQ1K by a variable x ∈ X missed in P, such that there are no
homomorphisms from Q2 to Q1 with S(q,u) in the images. This means that there is no
homomorphic covering of Q1 by Q2.

Finally, we need to show that Q1 ⊆K Q2, i.e. for each K-instance J and tuple t of size
|u|,

QJ
1 (t) �K QJ

2 (t). (11)

Let J and t be arbitrary K-instance and tuple. If QJ
1 (t) = 0 then (11) automatically

holds. So, let QJ
1 (t) 6= 0. Since Q1 does not have existential variables, the set V(Q1, t)

contains only one mapping f . Hence, QJ
1 (t) = a1 ⊗ . . .⊗ an where a1, . . . , an are the

annotations of the images by f of atoms from Q1 in such an order that for every ℓ,
1 ≤ ℓ ≤ n, if f maps an atom of Q1 to aℓ then the only mapping from Q1 to JQ1K
maps this atom to xℓ. This correspondence defines a function ν : X → K by ν(xℓ) = aℓ
for every ℓ. Moreover, by the fact that K is not trivial and (10) we have that QJ

2 (t) =
Evalν(P)⊕ a, where a is some value from K obtained by a sum of valuations of all
mappings from V(Q2, t), which give images on J not completely containing in the image
of f . Hereby, from (9) and positivity of K we conclude (11). This finishes the proof of
the proposition.

Therefore, bag semantics N is in Nhcov, but not in Shcov. However, Lin[X ] is in both,
and we have the following result for the class Chcov = Shcov ∩ Nhcov

6 of all semirings
which behave like Lin[X ] w.r.t. K-containment of CQs.

THEOREM 4.9. The following are equivalent:

- semiring K belongs to Chcov;
- Q1 ⊆K Q2 iff Q2 ⇒ Q1, for all CQs Q1 and Q2.

We also know that checking for homomorphic covering between CQs is an NP-
complete problem [Green 2011]. This gives us the following result.

COROLLARY 4.10. If K ∈ Chcov then CQ K-CONTAINMENT is NP-complete.

4.2. Containment by injective homomorphism

In this section we consider the class of semirings which satisfy the 1-annihilation ax-
iom.

Definition 4.11 (Class Sin of semirings). Denote by Sin the class of all semirings in
S� that satisfy the 1-annihilation axiom:

1 + x =K 1.

This class was considered implicitly in previous studies of containment on K-
relations [Green et al. 2007; Green 2011; Ioannidis and Ramakrishnan 1995], and has
notable applications. In the context of the Semantic Web it was shown by Buneman

6Since ⊗-idempotence defines Shcov , the exponent k may be omitted from the necessary condition of Chcov.
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and Kostylev [2010] that Sin is the class of all semirings which can be safely used as
annotation domains for RDF data while respecting the inference system of RDFS. An
extension of the SPARQL query language for querying annotated RDF data then fol-
lowed in [Zimmermann et al. 2011], entailing a need to solve optimization problems
for this class of semirings. As an example of a semiring which is in Sin, but not in Chom,
we give the tropical semiring T + = 〈N0 ∪ {∞},min,+,∞, 0〉 (with its natural order).

To study the class Sin, we introduce the notion of injective homomorphism: given
CQs Q1 = ∃v1 φ1(u1,v1) and Q2 = ∃v2 φ2(u2,v2), a homomorphism h from Q2 to Q1 is
injective (or one-to-one) if h is injective on atoms, i.e. the multiset of atoms h(φ2(u2,v2))
is contained in the multiset of atoms φ1(u1,v1). We write Q2 →֒ Q1 iff there exists
an injective homomorphism from Q2 to Q1. Similar to the case of Shcov, the following
proposition shows that the class Sin is precisely the class of semirings for which the
existence of an injective homomorphism is a sufficient condition for K-containment of
CQs.

PROPOSITION 4.12. The following are equivalent:

- semiring K belongs to Sin;
- Q2 →֒ Q1 implies Q1 ⊆K Q2, for all CQs Q1, Q2.

PROOF. We need to show that given a semiring K = 〈K,⊕,⊗, 0, 1〉,

(1) if K ∈ Sin and Q1, Q2 are CQs such that Q2 →֒ Q1, then Q1 ⊆K Q2;
(2) if K /∈ Sin, then there exist CQs Q1 and Q2 such that Q2 →֒ Q1, but Q1 6⊆K Q2.

For Part 1, we assume that Q1(u) = ∃v R1(u1,v1), . . . , Rn(un,vn) and Q2(q) =
∃w S1(q1,w1), . . . , Sm(qm,wm), where u is the tuple of free variables of Q1 and q is
the tuple of free variables of Q2, each ui and qj consist of variables from u and q, re-
spectively, and each vi and wj consist of variables from v and w, respectively. We need
to show that for an arbitrary K-instance I and a tuple t, we have

QI
1(t) =

∑

f∈V(Q1,t)

∏

1≤i≤n

RI
i (f(ui,vi)) �K

∑

g∈V(Q2,t)

∏

1≤j≤m

SI
j (g(qj ,wj)) = QI

2(t). (12)

Since Q2 →֒ Q1, let h be this injective homomorphism. Then we have that the multi-
set h(S1(q1,w1)), . . . , h(Sm(qm,wm)) is contained in the multiset of atoms of Q1. With-
out loss of generality, we assume that this multiset corresponds to the first m atoms of
Q1, i.e. for each 1 ≤ i ≤ m, we have that h(Si(qi,wi)) = Ri(ui,vi).

Let V(Q1, t) = V1 ∪ . . . ∪ Vk ∪ . . . be a (disjoint) partitioning of the set of mappings
V(Q1, t), such that f and f ′ are in the same Vk iff f(ui,vi) = f ′(ui,vi) for each 1 ≤ i ≤
m. Similarly to Part 1 of the proof of Thm. 3.7 we have

QI
1(t) =

∑

f∈V(Q1,t)

∏

1≤i≤m

RI
i (f(ui,vi))

∏

m<i≤n

RI
i (f(ui,vi)) =

∑

k≥1

∑

f∈Vk

∏

1≤i≤m

RI
i (f(ui,vi))

∏

m<i≤n

RI
i (f(ui,vi)) =

∑

k≥1

∏

1≤i≤m

RI
i (fk(ui,vi))




∑

f∈Vk

∏

m<i≤n

RI
i (f(ui,vi))



 ,

where fk is just an arbitrary representative from Vk. Since for each 1 ≤ i ≤ m, we have
that h(Si(qi,wi)) = Ri(ui,vi), we can instead write
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QI
1(t) =

∑

k≥1

∏

1≤j≤m

SI
j (fk ◦ h(qj ,wj))




∑

f∈Vk

∏

m<i≤n

RI
i (f(ui,vi))



 .

Th proof now goes along the same lines as the first part of the proof of Thm. 3.7. We
only consider instances with finite support, and thus only a finite number of the outer
summands are non-zero. Hence, we can apply Part 1 of Lem. 3.6 and get

QI
1(t) �K

∑

k≥1

∏

1≤j≤m

SI
j (fk ◦ h(qj ,wj)).

Since for all k ≥ 1 we have fk ◦ h ∈ V(Q2, t), the desired inequality (12) follows from
positivity of K.

For Part 2 we just reuse the case (c) of Part 2 of the proof of Thm. 3.7.

Unfortunately, as shown in the following example, Q2 →֒ Q1 is just a sufficient, but
not always necessary condition for CQ K-containment for a semiring K from Sin\Chom.

Example 4.13. Consider the conjunctive queries

Q1 = ∃u, v, w R(u, v), R(u,w), Q2 = ∃u, v R(u, v), R(u, v).

We will see in Sec. 6 that Q1 is T +-contained in Q2. However, there is no injective
homomorphism from Q2 to Q1.

Next we exploit the connection between CQ K-containment and comparison of poly-
nomials from Ncq[X ] to define precisely the class of semirings for which an injective
homomorphism is a corresponding necessary condition.

Definition 4.14 (Class Nin of semirings). Denote by Nin the class of semirings K
for which for every polynomial P from Ncq[X ] and any set of variables x1, . . . , xn, the
inequality

x1 × . . .× xn �K P

implies that there exists a subset xi1 , . . . , xim of the variables x1, . . . , xn such that P

contains the monomial xi1 × . . .× xim .

PROPOSITION 4.15. The following are equivalent:

- semiring K belongs to Nin;
- Q1 ⊆K Q2 implies Q2 →֒ Q1, for all CQs Q1, Q2.

PROOF. We need to show, that given a semiring K = 〈K,⊕,⊗, 0, 1〉,

(1) if K ∈ Nin and Q1, Q2 are CQs such that Q1 ⊆K Q2, then Q2 →֒ Q1;
(2) if K /∈ Nin, then there are CQs Q1 and Q2 such that Q1 ⊆K Q2, but there is no

injective homomorphism from Q2 to Q1.

The proof for this proposition is very similar to the proof of Prop. 4.8.

For Part 1, we assume again that Q1(u) = ∃v R1(u1,v1), . . . , Rn(un,vn) and Q2(q) =
∃w S1(q1,w1), . . . , Sm(qm,wm), where u is the tuple of free variables of Q1 and q is
the tuple of free variables of Q2, each ui and qj consist of variables from u and q,
respectively, and each vi and wj consist of variables from v and w, respectively. Let
X = {x1, . . . , xn} be a set of variables. Consider a canonical N [X ]-instance JQ1K of Q1

(see the definition in Sec. 3.3). Denote P1 = Q
JQ1K
1 (u) and P2 = Q

JQ1K
2 (u).
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Similar to the proof of Prop. 4.8, one can conclude that P1 contains the monomial x1×
. . .× xn, P2 is CQ-admissible, and from the fact that Q1 ⊆K Q2 it must be the case that
P1 �K P2. From positivity of the semiring, we therefore have that x1 × . . .× xn �K P2.
Since K belongs to Nin, from the definition of Nin we have that P2 contains a monomial
xi1 × . . .×xih for some 1 ≤ i1 < . . . < ih ≤ n. Since JQ1K is an N [X ]-instance, there exist
a mapping f ∈ V(Q2,u), such that f(q) = u and for every syntactically distinct atom

Rℓ(uℓ,vℓ) from Q1 (for which R
JQ1K
ℓ (uℓ,vℓ) = xℓ1 + . . . + xℓk ) its preimage by f has N

elements, where N is the size of the set {ℓ1, . . . , ℓk} ∩ {i1, . . . , ih}. Since Rℓ(uℓ,vℓ) has k
duplicates in Q1 and N ≤ k we can construct an injective function from Q2 to Q1 which
maps every atom Sj(qj ,wj) of Q2 to an atom of the form Sj(f(qj ,wj)). Since f(q) = u,
this function is our desired injective homomorphism.

For Part 2 we also follow a path similar to the proof of Prop. 4.8. We construct Q1

and Q2 exactly as in that proof: the assumption that K /∈ Nin yields a polynomial P
over variables X = {x1, . . . , xn} such that x1 × · · · × xn �K P, yet P does not have a
monomial xi1×. . .×xih for any distinct variables xi1 , . . . , xih from X . From the fact that
P is CQ-admissible we construct queries Q1 and Q2 with free variables u, an instance
I and a tuple u of elements, such that Q1 ⊆K Q2, and

Q
JQ1K
1 (u) = x1 × . . .× xn and Q

JQ1K
2 (u) = P. (13)

It is then straightforward to conclude from (13) that there is no injective homomor-
phism from Q2 to Q1, since the existence of such would imply that there is a monomial
xi1 × . . .× xih in P, for some distinct variables xi1 , . . . , xih from X .

Prop. 4.12 and 4.15 give us decidability of CQ K-CONTAINMENT for all semirings K
from Cin = Sin ∩Nin.

THEOREM 4.16. The following are equivalent:

- semiring K belongs to Cin;
- Q1 ⊆K Q2 iff Q2 →֒ Q1, for all CQs Q1 and Q2.

By showing that deciding the existence of an injective homomorphism between
queries is NP-complete, we can state the same about K-containment of CQs for any
K ∈ Cin.

PROPOSITION 4.17. If K ∈ Cin then CQ K-CONTAINMENT is NP-complete.

PROOF. By Thm. 4.16, it is enough to consider the following decision problem.

CQ-INJ:

Input: CQs Q1, Q2.
Question: Does Q2 →֒ Q1 hold?

It is clear that CQ-INJ is in NP, since a homomorphism forms a certificate of mem-
bership, and can be checked in polynomial time. To show NP-hardness, we many-one
reduce CLIQUE to CQ-INJ by encoding the input graph and a clique of appropriate size
as a pair of queries. We also add dummy edges (on fresh variables), one for each edge
in the input graph that is not part of the subgraph induced by the clique vertices.7

Formally, suppose we are given an instance of CLIQUE. This consists of an input
graph G with vertices V (G) and edges E(G) (containing no self-loops or repeated

7Note that the addition of dummy edges is a technical device that will allow us to deduce a stronger
Thm. 4.28.
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edges), and a desired clique size k. Our aim is to produce an instance (QG,k
1 , QG,k

2 )

of CQ-INJ, such that QG,k
2 →֒ QG,k

1 iff G contains a k-clique.
We may assume that the vertices of G are enumerated as {w1, w2, . . . , wn}, and that

G contains m edges {e1, e
′
1}, {e2, e

′
2}, . . . , {em, e′m}, each a subset of size 2 of V (G).

If m < k(k−1)/2, then the graph does not contain enough edges to contain the desired

clique, so we output a hardcoded pair of CQs QG,k
1 and QG,k

2 such that QG,k
2 6 →֒ QG,k

1 ;

it suffices to let QG,k
1 = ∃v R(v) and QG,k

2 = ∃v S(v) over a schema with two unary
symbols R and S. If m = k(k − 1)/2 then G must be a clique, so we again output

a hardcoded pair of CQs QG,k
1 and QG,k

2 such that QG,k
2 →֒ QG,k

1 , and it suffices to let

QG,k
1 = QG,k

2 = ∃v R(v). So now assume that m > k(k−1)/2, and let M = m−k(k−1)/2.
Consider a schema with a single binary relation R.

Let QG,k
1 be the CQ with no free variables, with n distinct existential variables

w1, w2, . . . , wn, and with an atom R(wi, wj) whenever {wi, wj} is an edge of G. Note

that QG,k
1 has 2m atoms.

Also, let QG,k
2 be a CQ with no free variables, and with k + 2M distinct existential

variables v = v1, v2, . . . , vk, w′
1, w

′
2, . . . , w

′
M , w′′

1 , w
′′
2 , . . . , w

′′
M , defined as

QG,k
2 = ∃v R(v1, v2), R(v1, v3), . . . , R(v1, vk), R(v2, v1), R(v2, v3), . . . , R(vk, vk−1),

R(w′
1, w

′′
1 ), R(w′′

1 , w
′
1), R(w′

2, w
′′
2 ), R(w′′

2 , w
′
2), . . . , R(w′

M , w′′
M ), R(w′′

M , w′
M ),

which has 2M + k(k − 1) = 2m atoms.

The queries QG,k
1 and QG,k

2 can be computed using logarithmic space by considering
each edge of G separately. To complete the logspace many-one reduction, we now show

that there exists a clique with at least k vertices in G iff QG,k
2 →֒ QG,k

1 .
For the forward implication, suppose there is a clique with k vertices in G, consist-

ing of the distinct vertices wi1 , . . . , wik from G. Enumerate the edges of G that are
not in the complete subgraph induced by the clique, E(G) \ {{wij , wil} | 1 ≤ j <
l ≤ k}, as {{ec1, e

′
c1
}, {ec2, e

′
c2
}, . . . , {ecM , e′cM}}. Here {c1, c2, . . . , cM} forms a subset of

{1, 2, . . . ,m} of size M .
Define the map h as

h(vj) = wij , for each j = 1, 2, . . . , k, and

h(w′
j) = ecj ,

h(w′′
j ) = e′cj

}

for each j = 1, 2, . . . ,M .

This defines an injective homomorphism from QG,k
2 to QG,k

1 .

For the reverse implication, suppose QG,k
2 →֒ QG,k

1 . Then there is an injective homo-
morphism h : {v1, v2, . . . , vk, w′

1, w
′
2, . . . , w

′
m, w′′

1 , w
′′
2 , . . . , w

′′
m} → {w1, . . . , wn}. We have to

show that {h(vi), h(vj)} is an edge of G for every distinct pair vi and vj . Without loss
of generality, suppose 1 ≤ i < j ≤ k. By construction, R(vi, vj) and R(vj , vi) are both

atoms of QG,k
2 . Since h is a homomorphism, R(h(vi), h(vj)) and R(h(vj), h(vi)) are then

both atoms of QG,k
1 . Hence {h(vi), h(vj)} is an edge of G.

Notwithstanding this result, there are interesting semirings (including the tropical
semiring T +), which lie in Sin, but neither in Chom nor in Cin. In Sec. 6 we will see how
to obtain decidability for some semirings in Sin, but at the cost of higher complexity.

4.3. Containment by surjective homomorphism

Looking back to the bag semantics semiring N , we know that it lies in the class Nhcov

for which homomorphic covering is necessary, but it does not lie in Chcov. However,
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there does exist a well-known sufficient condition for N -containment. This condition
is the existence of a surjective homomorphism ([Chaudhuri and Vardi 1993; Ioannidis
and Ramakrishnan 1995]): given CQs Q1 = ∃v1 φ1(u1,v1) and Q2 = ∃v2 φ2(u2,v2)
a homomorphism h from Q2 to Q1 is surjective (or onto) if h is a surjection on atoms,
i.e. the multiset of atoms φ1(u1,v1) is contained in the multiset of atoms h(φ2(u2,v2)).
We write Q2 ։ Q1 iff there exists a surjective homomorphism from Q2 to Q1.

It is therefore natural to ask for which semirings Q2 ։ Q1 is sufficient for K-
containment of CQs, and for which this is necessary. Besides N , this condition is suf-
ficient for a larger class of semirings denoted type B systems [Ioannidis and Ramakr-
ishnan 1995]. From [Green 2011] it is known that Q2 ։ Q1 is equivalent to (i.e. both
necessary and sufficient for) Why[X ]- and Trio[X ]-containment of CQs, where Why[X ]
is a semiring capturing why provenance of [Buneman et al. 2001], and Trio[X ] is a
semiring for the provenance model used in the Trio project [Das Sarma et al. 2008].
However, the exact axiomatic bounds for these classes of semirings were not previously
known.

As usual, we start by axiomatizing semirings which have Q2 ։ Q1 as a sufficient
condition.

Definition 4.18 (Class Ssur of semirings). Denote by Ssur the class of semirings that
satisfy the axiom:

1. (⊗-semi-idempotence) x× y �K x× x× y.

This class can be obtained by relaxing the ⊗-idempotence axiom of Shcov, but only
partially, i.e. Shcov ⊂ Ssur. Other than the semirings already mentioned as belong-
ing to Shcov, it contains the semiring T − = 〈N0 ∪ {−∞},max,+,−∞, 0〉 known as the
max-plus (or schedule) algebra (with its natural order). As desired, the class Ssur cor-
responds to all the semirings for which the existence of a surjective homomorphism is
a sufficient condition for K-containment of CQs.

PROPOSITION 4.19. The following are equivalent:

- semiring K belongs to Ssur;
- Q2 ։ Q1 implies Q1 ⊆K Q2, for all CQs Q1, Q2.

PROOF. We need to show, that given a semiring K = 〈K,⊕,⊗, 0, 1〉,

(1) if K ∈ Ssur and Q1, Q2 are CQs such that Q2 ։ Q1, then Q1 ⊆K Q2;
(2) if K /∈ Ssur, then there exist CQs Q1 and Q2 such that Q2 ։ Q1, but Q1 6⊆K Q2.

For Part 1, we assume that Q1(u) = ∃v R1(u1,v1), . . . , Rn(un,vn) and Q2(q) =
∃w S1(q1,w1), . . . , Sm(qm,wm), where u is the tuple of free variables of Q1 and q is
the tuple of free variables of Q2, each ui and qj consist of variables from u and q, re-
spectively, and each vi and wj consist of variables from v and w, respectively. We need
to show that for an arbitrary K-instance I and a tuple t, it holds that

QI
1(t) =

∑

f∈V(Q1,t)

∏

1≤i≤n

RI
i (f(ui,vi)) �K

∑

g∈V(Q2,t)

∏

1≤j≤m

SI
j (g(qj ,wj)) = QI

2(t). (14)

There exists a surjective homomorphism h from Q2 to Q1, and a set of atoms in Q2

which h maps to R1(u1,v1), . . . , Rn(un,vn). Without loss of generality, we can assume
that this set of atoms is S1(q1,w1), . . . , Sn(qn,wn). Hence we have that

QI
1(t) =

∑

f∈V(Q1,t)

∏

1≤i≤n

SI
i (f ◦ h(qi,wi)).
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Since h is a homomorphism, from semiring positivity and ⊗-semi-idempotence we con-
clude that

QI
1(t) �K

∑

f∈V(Q1,t)

∏

1≤j≤m

SI
j (f ◦ h(qj ,wj)).

Let Vh = {f ◦h | f ∈ V(Q1, t)}. Note that the cardinality of Vh and V(Q1, t) is the same,
i.e. for every pair of functions f , f ′ in V(Q1, t), f ◦ h and f ′ ◦ h are actually different
mappings (this fact was first shown by Ioannidis and Ramakrishnan [1995]). We thus
obtain

QI
1(t) �K

∑

f∈V(Q1,t)

∏

1≤j≤m

SI
j (f ◦ h(qj ,wj)) =

∑

g∈Vh

∏

1≤j≤m

SI
j (g(qj ,wj)).

However, Vh ⊆ V(Q2, t), and hence from positivity of the semiring we conclude

QI
1(t) �K

∑

g∈Vh

∏

1≤j≤m

SI
j (g(qj ,wj)) �K

∑

g∈V(Q2,t)

∏

1≤j≤m

SI
j (g(qj ,wj)) = QI

2(t),

i.e. the desired inequality (14) holds.

For Part 2 we assume that K /∈ Ssur, and need to show that there are CQs Q1 and
Q2 such that there is a surjective homomorphism from Q2 to Q1, but Q1 6⊆K Q2.

Then semiring K fails to satisfy x× y 6�K x× x× y, witnessed by some a, b ∈ K such
that a⊗ b 6�K a⊗ a⊗ b. Consider a schema with unary relations R and S and queries
Q1 = ∃v R(v), S(v) and Q2 = ∃u, v R(u), R(v), S(v). Clearly Q2 ։ Q1. However, for the
K-instance I such that RI(c) = a, SI(c) = b for some constant c and RI(c′) = SI(c′) = 0

for all c′ 6= c, we have that QI
1() 6�K QI

2(), which means that Q1 6⊆K Q2.

As we saw for the bag semantics semiring N , the existence of a surjective homomor-
phism is not necessary for N -containment, but homomorphic covering is. The same can
be said about the max-plus algebra T −, but not for other semirings, such as Why[X ] or
Trio[X ]. Hence, again we need to axiomatize the class of semirings for which Q2 ։ Q1

is necessary for K-containment of CQs. For this we exploit once more the notion of
CQ-admissible polynomials.

Definition 4.20 (Class Nsur of semirings). Denote by Nsur the class of semirings K
for which for every polynomial P from Ncq[X ] and any set of variables x1, . . . , xn, the
inequality

x1 × . . .× xn �K P

implies that there exist exponents m1, . . . ,mn ≥ 1 such that P contains the monomial
xm1

1 × . . .× xmn
n .

PROPOSITION 4.21. The following are equivalent:

- semiring K belongs to Nsur;
- Q1 ⊆K Q2 implies Q2 ։ Q1, for all CQs Q1, Q2.

PROOF. We need to show, that given a semiring K = 〈K,⊕,⊗, 0, 1〉,

(1) if K ∈ Nsur and Q1, Q2 are CQs such that Q1 ⊆K Q2, then Q2 ։ Q1;
(2) if K /∈ Nsur, then there are CQs Q1 and Q2 such that Q1 ⊆K Q2, but there is no

surjective homomorphism from Q2 to Q1.

The proof for this proposition is again very similar to the proof of Prop. 4.8 (and the
proof of Prop. 4.15).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: YYYY.



Classification of Annotation Semirings over Containment of Conjunctive Queries A:25

For Part 1, we assume again that Q1(u) = ∃v R1(u1,v1), . . . , Rn(un,vn) and Q2(q) =
∃w S1(q1,w1), . . . , Sm(qm,wm), where u is the tuple of free variables of Q1 and q is
the tuple of free variables of Q2, each ui and qj consist of variables from u and q,
respectively, and each vi and wj consist of variables from v and w, respectively. Let
X = {x1, . . . , xn} be a set of variables. Consider a canonical N [X ]-instance JQ1K of Q1

Denote P1 = Q
JQ1K
1 (u) and P2 = Q

JQ1K
2 (u).

Similar to the proof of Prop. 4.8, one can conclude that P1 contains the monomial
x1 × . . .× xn, and from the fact that Q1 ⊆K Q2 it must be the case that P1 �K P2. From
positivity of the semiring, we therefore have that x1 × . . .× xn �K P2. Since K belongs
to Nsur, from the definition of Nsur we have that P2 contains a monomial xm1

1 × . . .×xmn
n

for some m1, . . . ,mn ≥ 1.
Since JQ1K is an N [X ]-instance, there exists a mapping f ∈ V(Q2,u), such that

f(q) = u and for every syntactically distinct atom Rℓ(uℓ,vℓ) from Q1 (for which

R
JQ1K
ℓ (uℓ,vℓ) = xℓ1 + . . . + xℓk , where k is the number of occurrences of the atom

Rℓ(uℓ,vℓ) in Q1) its preimage by f has mℓ1 + . . .+mℓk elements. Since Rℓ(uℓ,vℓ) has k
duplicates in Q1 and k ≤ mℓ1 + . . . + mℓk we can construct a surjective function from
Q2 to Q1 which maps every atom Sj(qj ,wj) of Q2 to an atom of the form Sj(f(qj ,wj)).
Since f(q) = u, this function is our desired surjective homomorphism.

For Part 2 we also follow a path similar to the proof of Prop. 4.8. We construct Q1

and Q2 exactly as in that proof: the assumption that K /∈ Nsur yields a polynomial P
over variables X = {x1, . . . , xn} such that x1 × · · · × xn �K P, yet P does not have a
monomial xm1

1 × . . . × xmn
n for any exponents m1, . . . ,mn ≥ 1. From the fact that P is

CQ-admissible we construct queries Q1 and Q2 with free variables u, an instance I and
a tuple u of elements, such that Q1 ⊆K Q2, and

Q
JQ1K
1 (u) = x1 × . . .× xn and Q

JQ1K
2 (u) = P. (15)

It is then straightforward to conclude from (15) that there is no surjective homomor-
phism from Q2 to Q1, since the existence of such would imply that there is a monomial
xm1

1 × . . .× xmn
n in P, for some m1, . . . ,mn ≥ 1.

For those semirings K that do belong to Csur = Ssur ∩Nsur (like Why[X ] and Trio[X ]),
we have once again a decision procedure for K-containment of CQs. This is summarized
by the following theorem.

THEOREM 4.22. The following are equivalent:

- semiring K belongs to Csur;
- Q1 ⊆K Q2 iff Q2 ։ Q1, for all CQs Q1 and Q2.

Checking a surjective homomorphism between CQs is NP-complete [Chaudhuri and
Vardi 1993]. The complexity of CQ K-CONTAINMENT for Csur then follows.

COROLLARY 4.23. If K ∈ Csur then CQ K-CONTAINMENT is NP-complete.

Note that NP-hardness will also follow from the general result Thm. 4.28.
As mentioned in the introduction, we leave open the problem of finding decision pro-

cedures for all semirings that belong to Ssur, but not to Nsur, such as N or T −. In Sec. 6
we show that for some of these semirings, such as T −, the problem of K-containment
of CQs can be solved using a different approach, albeit with higher computational com-
plexity.

4.4. Containment by bijective homomorphism

Finally, we deal with the class obtained from Chom by relaxing both of its axioms. This
is just the class of all (�-positive) semirings S�. For this class we use again the notion
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of bijective homomorphism: Given CQs Q = ∃v1 φ1(u1,v1) and Q2 = ∃v2 φ2(u2,v2),
we say that a homomorphism h from Q2 to Q1 is bijective (or exact) if it is a bijection
on atoms, i.e. the multiset of atoms h(φ2(u2,v2)) is the same as the multiset of atoms
φ1(u1,v1). We write Q2 →֒→ Q1 if there exists a bijective homomorphism from Q2 to Q1.

Note that a bijective homomorphism is not necessarily an isomorphism, since it can
identify variables. However, a bijective homomorphism can exist between two CQs only
if they contain the same number of atoms. Also, a homomorphism is bijective iff it is
both injective and surjective. We use this fact further in this section, to characterize
a class of semirings for which a bijective homomorphism is a necessary condition for
K-containment of CQs.

From the results of Green [2011] and Prop. 3.2 we can immediately obtain that
the existence of a bijective homomorphism is sufficient for CQ K-containment for an
arbitrary �-positive nontrivial semiring K.

PROPOSITION 4.24. For any semiring K from S�, if Q2 →֒→ Q1 then Q1 ⊆K Q2.

PROOF. Indeed, as shown by Green [2011], the condition Q2 →֒→ Q1 is both sufficient
and necessary for N [X ]-containment of CQs over the provenance polynomials semiring
N [X ]. Since N [X ] is universal for S� by Prop. 3.2, we can conclude that this condition
is sufficient for K-containment of CQs for any K from S�.

From [Green 2011] we also know that existence of a bijective homomorphism is nec-
essary for B[X ]-containment of CQs, where B[X ] = 〈B[X ],+,×, 0, 1〉 is the semiring
of boolean provenance polynomials, i.e. polynomials over X with boolean coefficients
from B = {false, true}. This means that B[X ] behaves like N [X ] w.r.t. K-containment
of CQs. As we have seen in previous sections, this is not the case for all semirings. Also,
one can easily show that the existence of a bijective homomorphism is not necessary
for bag semantics N , or even for the semiring R+ of non-negative reals with the usual
operations and order.

Our next aim is to identify all semirings which behave as N [X ]. To do so we again
exploit the notion of CQ-admissible polynomials.

Definition 4.25 (Class Cbi of semirings). Denote by Cbi the class of all semirings K
for which for every polynomial P from Ncq[X ] and any set of variables x1, . . . , xn, the
inequality

x1 × . . .× xn �K P

implies that P contains the monomial x1 × . . .× xn.

THEOREM 4.26. The following are equivalent:

- semiring K belongs to Cbi;
- Q1 ⊆K Q2 iff Q2 →֒→ Q1, for all CQs Q1 and Q2.

PROOF. By Prop. 4.24, if Q2 →֒→ Q1 then Q1 ⊆K Q2 for any semiring K. Hence we
only prove the remaining direction. Looking at the condition for the classes Nsur and
Nin, we conclude that Cbi = Nin∩Nsur. From Prop. 4.15 and 4.21 we have that Nin cor-
responds to all the semirings for which the existence of an injective homomorphism is
necessary for CQ K-containment, and Nin – to all the semirings for which the existence
of a surjective homomorphism is necessary. Since as noted above, a homomorphism is
bijective iff it is both injective and surjective, we have that Cbi consists of all the semir-
ings K for which Q2 →֒→ Q1 is necessary for Q1 ⊆K Q2.

In particular, notice that both B[X ] and N [X ] belong to Cbi. Thus, this theorem can
be seen as a generalization of the results of Green [2011]. There it was also shown that
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N [X ]-containment of CQs is an NP-complete problem. We can now extend this result
to the entire class Cbi.

PROPOSITION 4.27. If K ∈ Cbi then CQ K-CONTAINMENT is NP-complete.

PROOF. The proof is essentially the same as the proof for Prop. 4.17. Note that our

construction of QG,k
1 and QG,k

2 forces the homomorphism h from QG,k
2 to QG,k

1 to be not
only injective, but bijective as well. The result then follows by Thm. 4.26.

Combining Prop. 3.4 and 4.24 with the proof of Prop. 4.17 actually leads to the follow-
ing general result for all �-positive semirings. Previously known special cases include
[Aho et al. 1979, Thm. 7(1)] and [Green 2011, Cor. 7.4], as well as results implicit in
[Chandra and Merlin 1977] and [Grahne et al. 1997].

THEOREM 4.28. CQ K-CONTAINMENT is NP-hard for any semiring K from S�.

PROOF. In the proof of Prop. 4.17 we provided a logspace reduction by constructing

CQs QG,k
1 and QG,k

2 for any input graph G and positive integer k.
The identical construction also defines a logspace many-one reduction from CLIQUE

to CQ K-CONTAINMENT. To prove this claim, we show that when G is a graph and

k a positive integer, then G contains a k-clique iff QG,k
1 ⊆K QG,k

2 . (In the case of m <

k(k − 1)/2, note that QG,k
1 6⊆K QG,k

2 for the hardcoded queries QG,k
1 and QG,k

2 , since K

is nontrivial. Moreover, if m = k(k− 1)/2 then QG,k
1 ⊆K QG,k

2 for the hardcoded queries
in this case.)

Suppose first that the input graph G contains a k-clique. Hence QG,k
2 →֒→ QG,k

1 , as in

the proof of Prop. 4.17. By Prop. 4.24 it follows that QG,k
1 ⊆K QG,k

2 .
Now recall that, by Prop. 3.4, the existence of a homomorphism between CQs is

necessary for their K-containment for any semiring K from S�. In other words, if

QG,k
1 ⊆K QG,k

2 then QG,k
2 → QG,k

1 . Hence G contains a k-clique. By the same method as

in the proof of Prop. 4.17 we then have QG,k
2 →֒→ QG,k

1 .

Thm. 4.28 applies to all the semirings that we study here. For the special case of
the semiring N , Chaudhuri and Vardi [1993, Thm. 4.9] state the stronger result of
Πp

2-hardness for N -containment of CQs.
This completes our study of K-containment of CQs for the classes of semirings ob-

tained from Chom by relaxing its axioms.

5. CQ-ADMISSIBLE POLYNOMIALS

In Sec. 2 we defined the evaluation of a CQ Q = ∃v R1(u1,v1), . . . , Rn(un,vn) on a
K-instance I for a tuple t as

QI(t) =
∑

f∈V(Q,t)

∏

1≤i≤n

RI
i (f(ui,vi)).

Thus, the evaluation of a CQ on an N [X ]-instance with unique variables from the set
X as annotations is a polynomial over X . In Def. 4.4 we called such polynomials CQ-
admissible. We heavily used this notion in the definitions of the classes Nin, Nbi, and
Nsur. The goal of this section is to give a constructive algebraic characterization of the
set Ncq[X ] of all CQ-admissible polynomials. As we mentioned in the introduction, this
notion is of independent interest: for instance, it was implicitly used in [Olteanu and
Závodný 2012].

From the definition of evaluation we immediately obtain that every CQ-admissible
polynomial must be homogeneous (i.e. all non-zero monomials have the same degree).
For this last statement, let Q be a CQ consisting of k atoms, and I be an N [X ]-instance
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with tuples annotated with variables X = {x1, . . . , xn}, such that the mappings in
the set V(Q, t) allow us to obtain any possible combination of images of the atoms
of Q to non-zero annotated tuples of I. It follows that QI(t) corresponds precisely to
the expansion of the multinomial expression (x1 + . . . + xn)

k, and therefore QI(t) =
(x1 + . . . + xn)

k. As a justifying example, consider a CQ Q = ∃u, v R(u), R(v), and
an N [X ]-instance I and two elements a and b such that RI(a) = x1 and RI(b) = x2,
with all other tuples annotated by 0. Then QI() = x2

1 + x1x2 + x2x1 + x2
2 = (x1 + x2)

2.
In fact, this property allowed us to formulate the axiom for the class Nhcov in Def. 4.3
without reference to CQ-admissible polynomials. As some negative examples, note that
polynomials such as 2x and x2 + y do not satisfy this property and are not in Ncq[X ].

The polynomials x2, 2xy and x + y satisfy the requirements above, and it is not
difficult to construct CQs which admit them. Unfortunately, these are not the only
requirements: the polynomial x2+xy+y2 satisfies them, but can be proved not to be in
Ncq[X ]. In order to present the precise characterization, we need an auxiliary notion:
for a set of variables X an ordered monomial of degree n (or o-monomial) is a string

from Xn. For an o-monomial
#–

M we denote by
#–

M[i] the variable appearing in its i-th
position.

PROPOSITION 5.1. A non-zero polynomial P is in Ncq[X ] iff it can be represented in
a form

#–

P =
∑

1≤ℓ≤m

#–

Mℓ, such that

1.
#–

Mℓ, 1 ≤ ℓ ≤ m, are pairwise distinct o-monomials over X of the same degree n (here

concatenation in
#–

Mℓ as a string is interpreted as product in P), and

2. if for an o-monomial
#–

M of degree n, and for each i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n,

the representation
#–

P contains o-monomials (each of degree n)
#–

M1, . . . ,
#–

M2k+1, k ≥ 0, such
that

-
#–

M1[i] =
#–

M[i],
#–

M2k+1[j] =
#–

M[j], and

-
#–

M2ℓ−1[j] =
#–

M2ℓ[j],
#–

M2ℓ[i] =
#–

M2ℓ+1[i] for all 1 ≤ ℓ ≤ k,

then
#–

M is contained in
#–

P .

Before the formal proof of this proposition we give a short explanation why the
requirements above do not hold for the polynomial x2 + xy + y2. Consider the only

representation
#–

P = xx + xy + yy of this polynomial. The first requirement clearly
holds. However, the second requirement does not. Indeed, there exists the o-monomial
#–

M = yx, which is not in
#–

P , but for every i and j the representation
#–

P contains required

o-monomials: for i = j = 1 we have k = 0 and
#–

M1 = yy; for i = 1 and j = 2 we have
k = 1,

#–

M1 = yy,
#–

M2 = xy, and
#–

M3 = xx; the cases i = j = 2 and i = 2, j = 1 are
just symmetrical to the cases above. Hence, the polynomial x2 + xy + y2 is indeed not
CQ-admissible.

PROOF. To prove the “if” direction, it is enough to construct a CQ Q = φ(v) without
free variables over some schema S, and an N [X ]-instance I with tuples annotated
with unique variables from X such that QI() = P. Since P is CQ-admissible, fix a

representation
#–

P which satisfies requirements 1 and 2, and denote by n the degree of
P.

In our construction the schema and the CQ depend only on the degree n, but not on
the exact form of P (the last one is used in the construction of the instance). Particu-
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larly, the schema S consists of a single relation R of arity n(n−1)+1. The first attribute
of this relation plays no other role in the proof than to allow the existence of two tuples
with exactly the same constants in the other n(n − 1) attributes. So for every tuple
this attribute contains a unique id value and it will not be mentioned further in the
proof. The other n(n − 1) attributes correspond intuitively to all pairs (i, j) such that
1 ≤ i ≤ n, 1 ≤ j ≤ n, and i 6= j, ordered first by the i-th coordinate and then by the j-th
coordinate. (Notice that there are exactly n(n − 1) of these pairs). Let t be a tuple of
constants in D of arity n(n− 1)+ 1. We will abuse notation, and speak of the projection
of t with respect to a pair (i, j), denoted by π(i,j)t, to refer to the element of t in the
position corresponding to the pair (i, j), according to the order given in the intuitive
interpretation of R. For example, π(1,2)t corresponds to the first element of t (since we
require i 6= j the first element in our order of pairs is (1, 2)) and π(n,n−2)t corresponds
to the next to last element of t.

The CQ Q contains n atoms R(v1), . . . , R(vn), where for each 1 ≤ m ≤ n the tuple vm

contains variables v
(i,j)
m , for 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, arranged in the same order as

in the intuitive interpretation of R. All variables in the atoms of Q are distinct, except
for the following rule: for each 1 ≤ i ≤ n and 1 ≤ j ≤ n such that i 6= j we have

v
(i,j)
i = v

(j,i)
j . (16)

Finally, we create the instance I on the base of the representation
#–

P as follows. Let
{tx | x ∈ X} be a set of tuples of constants in D all of size n such that the constants in

these tuples obey the following rule: if
#–

M is an o-monomial in
#–

P then for each 1 ≤ i ≤ n
and 1 ≤ j ≤ n such that i 6= j it holds that

π(i,j)t #–

M[i] = π(j,i)t #–

M[j]; (17)

and all the values which are not forced to be equal by this rule, are different. Then,
create I by setting RI(tx) = x for each x ∈ X , and annotating all other tuples with 0.

Next we prove that QI() = P. It is enough to show that an o-monomial
#–

M of degree n

is in
#–

P iff there exists a mapping f in V(Q) such that

f(vi) = t #–

M[i] for every 1 ≤ i ≤ n. (18)

For the “only if” direction of this statement, we will show that the mapping f defined
by (18) belongs to V(Q). Since all the repeated variables in Q are defined by (16), we
only need to check that for each 1 ≤ i ≤ n and 1 ≤ j ≤ n such that i 6= j it holds that

f(v
(i,j)
i ) = f(v

(j,i)
j ). This is true by the construction (17), since we have:

f(v
(i,j)
i ) = π(i,j)t #–

M[i] = π(j,i)t #–

M[j] = f(v
(j,i)
j ).

For the “if” direction of the statement consider a mapping f ∈ V(Q) conforming

to (18). We need to show that for the monomial
#–

M and for every i, j the conditions of
requirement 2 hold. Consider such a pair (i, j). If i = j then we can take k = 0 and
#–

M1 =
#–

M for which the conditions trivially hold. Let now i 6= j. From (16) we have that

f(v
(i,j)
i ) = f(v

(j,i)
j ) which implies that

π(i,j)tM[i] = π(j,i)tM[j]. (19)

By the construction, constants in I may coincide if they belong to the same position in
some tuple tx (i.e. they are the same constant), or if they were enforced by (17). Thus,

if (19) holds then there must exist o-monomials
#–

M1, . . . ,
#–

M2k+1, k ≥ 0, in
#–

P , such that
#–

M1[i] =
#–

M[i],
#–

M2k+1[j] =
#–

M[j] and for each 1 ≤ ℓ ≤ k the equalities
#–

M2ℓ−1[j] =
#–

M2ℓ[j]
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and
#–

M2ℓ[i] =
#–

M2ℓ+1[i] hold. Since
#–

P satisfies requirement 2 and our choice of i, j was

arbitrary, we can conclude that
#–

M is in
#–

P .

For the “only if” direction of the proposition, consider a CQ Q =
∃v R1(u1,v1), . . . , Rn(un,vn), where u is the tuple of free variables of Q, an N [X ]-
instance I, each tuple of which is annotated either with a unique variable from X , or
0, and a tuple t of size |u|, all over some schema S. We need to show that the polynomial
P = QI(t) satisfies requirements 1 and 2.

Without loss of generality we assume that all variables from X are used as annota-
tions in I, and for each x ∈ X denote by tx and Rx the tuple and the relation such that
RI

x(tx) = x. From the form of Q we have that

P =
∑

f∈V(Q,t)

∏

1≤i≤n

RI
i (f(ui,vi)).

Obviously we are only interested in those mappings from V(Q, t) such that the corre-
sponding product in the sum above is non-zero. We can view all these non-zero products
as o-monomials, ordered by the conventional order on atoms in the CQ Q. Thus, P can
be represented in a form

#–

P =
∑

1≤ℓ≤m

#–

Mℓ,

where each
#–

Mℓ, 1 ≤ ℓ ≤ m, is an o-monomial for which there exists a mapping fℓ in
V(Q, t) such that for each 1 ≤ i ≤ n it holds that

Ri(fℓ(ui,vi)) = R #–

Mℓ[i]
(t #–

Mℓ[i]
). (20)

Next we check the requirements 1 and 2 of the definition of CQ-admissible polynomial
for this representation.

For requirement 1, note that the degree of each
#–

Mℓ is equal to the number of atoms in
Q which means that all of them have the degree n. Also, all of them are different, since
distinct mappings from V(Q, t) cannot give equal o-monomials. Hence requirement 1

holds for
#–

P .
For requirement 2, consider an o-monomial

#–

M of degree n such that the precondition
of this requirement holds, i.e. for each 1 ≤ i ≤ n and 1 ≤ j ≤ n there exist o-monomials
#–

M1, . . . ,
#–

M2k+1, k ≥ 0, in
#–

P , such that
#–

M1[i] =
#–

M[i],
#–

M2k+1[j] =
#–

M[j], and for each 1 ≤ ℓ ≤

k it holds that
#–

M2ℓ−1[j] =
#–

M2ℓ[j] and
#–

M2ℓ[i] =
#–

M2ℓ+1[i].

We need to prove that
#–

M is also contained in
#–

P . According to (20), we need to show
that there exists a mapping f in V(Q, t) such that for each 1 ≤ i ≤ n it holds that

Ri(f(ui,vi)) = R #–

M[i](t #–

M[i]).

Note that by the precondition of requirement 2, for all 1 ≤ i ≤ n we have that Ri =
R #–

M[i]. Hence, it is enough to prove that the multimapping f , defined as f(ui,vi) = t #–

M[i],

1 ≤ i ≤ n, is a mapping such that f(u) = t.
Let us first show that f is indeed a mapping. Denote πmt̂ the constant in the m-th

position of the tuple t̂. Since for every i we have that Ri = R #–

M[i], the size of the tuple of

variables ui,vi is the same as the size of the tuple of constants t #–

M[i]. So, f maps every

variable from u,v to a nonempty set of constants from D. Hence, it is enough to show
that for each 1 ≤ i ≤ n, 1 ≤ j ≤ n, and for each pair of positions m, m′ such that the
variable in the m-th position of the tuple ui,vi and the variable in the m′-th position
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of the tuple uj ,vj coincide, we have that

πmt #–

M[i] = πm′t #–

M[j]. (21)

On the one hand, from the precondition of the requirement 2, the fact that the
#–

M1,

corresponding to the pair (i, j), is in
#–

P , and equation (20) we know that there exists
a mapping f1 in V(Q, t) such that f1(ui,vi) = t #–

M1[i]
= t #–

M[i]. In particular, we have

that πmt #–

M[i] = πmt #–

M1[i]
. On the other hand, since by our assumption the m-th variable

of ui,vi and the m′-th variable of uj ,vj coincide and f1 is a function, we have that
πmt #–

M1[i]
= πm′t #–

M1[j]
. Continuing such reasoning, we have the chain

πmt #–

M[i] = πmt #–

M1[i]
= πm′t #–

M1[j]
= πm′t #–

M2[j]
= πmt #–

M2[i]
= . . .

= πmt #–

M2k+1[i]
= πm′t #–

M2k+1[j]
= πm′t #–

M[j],

which justifies equation (21).
To complete the proof of the proposition we need to show that f(u) = t. Let u be a

free variable from u, and i be the number of an atom in Q such that u appears in the

tuple ui. Consider the o-monomial
#–

M1 corresponding to the pair (i, i). We know that
there exists a mapping f1 in V(Q, t) such that f1(ui,vi) = t #–

M1[i]
= t #–

M[i] = f(ui,vi).

In particular, this means that f1(u) = f(u). By the definition of V(Q, t) we have that
f1(u) = t. The free choice of u in u implies the required f(u) = t (i.e. f ∈ V(Q, t)).

As promised in Sec. 4.1, we obtain Prop. 4.6, which states that for every CQ-
admissible polynomial P there exists a CQ Q without free variables and N [X ]-instance
I with only unique variables or 0 as annotations such that QI() = P, as an immediate
corollary of the proposition above.

With this characterization of CQ-admissible polynomials in hand, it is straightfor-
ward to design an NP procedure which checks whether a polynomial is in Ncq[X ]. We
leave the question of the exact complexity of this problem open.

6. CONTAINMENT VIA SMALL MODELS

Up to now we have studied how to decide K-containment of CQs by analyzing their
structure, resulting in several classes of semirings K for which the existence of a
homomorphism of a corresponding type between the CQs is equivalent to their K-
containment. It is natural to ask whether the problem of decidability of CQ K-
CONTAINMENT can be solved by different techniques for some semirings which are
not in any of these classes. Indeed, several other approaches have appeared in the lit-
erature. Green [2011] suggested a PSPACE algorithm for checking N [X ]-containment
of UCQs over provenance polynomials N [X ], based on the fact that if a UCQ Q1 is
not N [X ]-contained in a UCQ Q2, then there exists a witnessing N [X ]-instance, with
its size bounded by the size of Q1 and Q2. Another approach is to cast the problem of
decidability of K-containment as the problem of checking the corresponding order �K

on polynomials, as done by Ioannidis and Ramakrishnan [1995] to show undecidability
of UCQ N -CONTAINMENT for bag semantics, or by Green [2011] to design algorithms
for containment of CQs over different types of provenance.

The main result of this section is that by combining these ideas one can obtain new
decidability results for K-containment of CQs over different semirings K. Particularly,
we concentrate on the ⊕-idempotent semirings, i.e. the semirings where x =K x + x
holds. We denote by S1

� the class of all such semirings. This is quite a large class: for
example, since by the simple reduction

1 + x =K 1 =⇒ (1 + x)y =K y =⇒ y + xy =K y =⇒ y + y =K y
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for any K ∈ Sin, we can obtain that 1-annihilation implies ⊕-idempotence, we have
that S1

� contains the whole class Sin, and, hence, the classes Chom and Cin. Also, S1
�

has non-empty intersections with other classes we have considered so far – Chcov, Csur,
and Cbi.

The goal of this section is to introduce a small model property for semirings in S1
�. In

order to do so, we will reduce the problem of containment of CQs over such semirings
to the problem of checking the order on polynomials. We will then show how to check
such an order for several individual semirings. In contrast to the rest of this paper,
we leave a comprehensive description of semirings for which this approach works for
future research. Let us start by describing the intuition behind our approach.

It is straightforward to show that for any semiring K from S1
� and two CQs Q1, Q2

with the same set of free variables u it holds that

Q1 ⊆K Q2 =⇒ Q
JQ1K
1 (u) �K Q

JQ1K
2 (u), (22)

i.e. the inequality Q
JQ1K
1 (u) �K Q

JQ1K
2 (u) is a necessary condition for K-containment of

CQs. Here Q
JQ1K
1 (u) and Q

JQ1K
2 (u) are again polynomials from N [X ], and this inequality

is the polynomial notation (defined in Sec. 3.2) for the statement that for any values

a1, . . . , an from K, it holds that the valuation of the polynomial Q
JQ1K
1 (u) over a1, . . . , an

is less or equal (according to the partial order �K) than the valuation of Q
JQ1K
2 (u) over

the same values a1, . . . , an.
Unfortunately, it is not that difficult to construct an example where the other direc-

tion of (22) does not hold for a semiring K from S1
�, i.e. the inequality Q

JQ1K
1 (u) �K

Q
JQ1K
2 (u) is not a sufficient condition for K-containment of CQs Q1 and Q2. As the main

result of this section we show that it is possible to extend the idea above and obtain a
condition based on comparison of polynomials, which is both necessary and sufficient
for K-containment for any semiring K from S1

�. Particularly, this condition consists of
comparing not only the evaluations of Q1 and Q2 over the canonical instance JQ1K, but
over all instances obtained from JQ1K by identifying some variables from its domain
u ∪ v1. In the following theorem we use the set of such instances as a way of describ-
ing all possibilities of assigning the variables of Q1 to the elements of the domain of a
K-instance I by a mapping from Q1 to I. However, we start with a bit of new notation
and a lemma.

Recall that for a CQ Q = ∃v R1(u1,v1), . . . , Rn(un,vn) and a tuple t we have denoted
by V(Q, t) the set of all mappings f from u ∪ v to the domain of I such that f(u) = t.
For every such a mapping f ∈ V(Q, t) we also denote by If a K-instance over the same
domain defined for every relation R and tuple s by

RIf (s) =

{

RI(s), if there exists i, 1 ≤ i ≤ n, such that Ri(f(ui,vi)) = R(s),
0, otherwise.

Essentially, the instance If is the restriction of I on the image of the mapping f .

LEMMA 6.1. Let K = 〈K,⊕,⊗, 0, 1〉 be a semiring from S1
�, Q be a CQ, I be a K-

instance, and t be a tuple. Then

(1) for every CQ Q1 with the same number of free variables as Q it holds that
∑

f∈V(Q,t)

Q
If
1 (t) �K QI

1(t);
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(2) it holds that
∑

f∈V(Q,t)

QIf (t) = QI(t).

PROOF. For Part 1, note that since each K-instance If is a restriction of I, every
product in the sum of the left hand side is also in the sum of the right hand side.
However, K is ⊕-idempotent, so the multiplicities of these products are not important.
Hence we have the required inequality from positivity of K.

For Part 2 it is left to show that
∑

f∈V(Q,t)Q
If (t) �K QI(t). But this holds since

every product in the right hand side corresponds to some mapping f from V(Q, t), and
hence this product is equal to a product in QIf (t). Again, by positivity we obtain the
desired inequality.

Now we are ready to state the theorem.

THEOREM 6.2. Let K = 〈K,⊕,⊗, 0, 1〉 be a semiring from S1
� and Q1, Q2 be two CQs.

Then Q1 ⊆K Q2 iff Q
Jπ(Q1)K
1 (s) �K Q

Jπ(Q1)K
2 (s) holds for every function π : u ∪ v → u ∪ v

and every tuple s of variables from u ∪ v.

PROOF. Let Q1 = ∃v φ(u,v).

We begin with the “only if” direction. Let Q1 ⊆K Q2 and, for the sake of contra-
diction, π : u ∪ v → u ∪ v be a function and s be a tuple of variables from u ∪ v such
that

Q
Jπ(Q1)K
1 (s) 6�K Q

Jπ(Q1)K
2 (s).

This inequality makes sense, since the variables of the tuple s are among the elements

of the domain of Jπ(Q1)K, and the expressions Q
Jπ(Q1)K
1 (s), Q

Jπ(Q1)K
2 (s) are polynomials

from N [X ]. By the polynomial notation this inequality means that there exists an
assignment τ : X → K such that the value of the first polynomial for τ is not less than
the value of the second one. We can write it as

τ(Q
Jπ(Q1)K
1 (s)) 6�K τ(Q

Jπ(Q1)K
2 (s)).

Consider now the K-instance τ(Jπ(Q1)K) obtained from Jπ(Q1)K by substituting the ab-
stract annotations of tuples for the corresponding values from τ . For the CQs Q1 and Q2

we have that Q
τ(Jπ(Q1)K)
1 (s) = τ(Q

Jπ(Q1)K
1 (s)) and Q

τ(Jπ(Q1)K)
2 (s) = τ(Q

Jπ(Q1)K
2 (s)). Hence,

it holds that

Q
τ(Jπ(Q1)K)
1 (s) 6�K Q

τ(Jπ(Q1)K)
2 (s).

However, this contradicts the fact that Q1 ⊆K Q2, since we have a witnessing K-
instance τ(Jπ(Q1)K) for which the containment does not hold.

Next we show the “if” direction. Assume that for every function π : u ∪ v → u ∪ v
and every tuple s of variables from u ∪ v it holds that

Q
Jπ(Q1)K
1 (s) �K Q

Jπ(Q1)K
2 (s).

We need to show that for an arbitrary K-instance I and tuple t it holds that

QI
1(t) �K QI

2(t).

From Lem. 6.1 we have that
∑

f∈V(Q1,t)

Q
If
1 (t) = QI

1(t) and
∑

f∈V(Q1,t)

Q
If
2 (t) �K QI

2(t).
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Thus, it is left to show that
∑

f∈V(Q1,t)

Q
If
1 (t) �K

∑

f∈V(Q1,t)

Q
If
2 (t).

The sums on both sides here are over the same set of mappings. From positivity of the
semiring K, it is therefore sufficient to prove that for every f ∈ V(Q1, t) it holds that

Q
If
1 (t) �K Q

If
2 (t). (23)

We will show this by contradiction. Let f be a mapping from V(Q1, t) such that

Q
If
1 (t) 6�K Q

If
2 (t). Let also τ : X → K be an assignment such that for its extension to

0 by τ(0) = 0 it holds that τ(Jf(Q1)K) = If (such an assignment exists since If is the
image of f ).

Without loss of generality we can assume that the domain D of the K-instance If
contains exactly |u ∪ v| elements: indeed, the supports {t | t ∈ Dm, RIf (t)) 6= 0} of
all relations R cannot contain more than |u ∪ v| elements by the definition of If , so
we can safely remove some of the others, if there are more of them; if there are fewer
elements, then we can introduce new artificial ones with a 0 annotation for each tuple
containing them.

Consider now an arbitrary bijection h : D → u ∪ v (which exists by the assumption
above) and the function π = h ◦ f , which maps u∪ v to itself. For this function we have
that

τ(Q
Jπ(Q1)K
1 (π(u))) = Q

If
1 (t) and τ(Q

Jπ(Q1)K
2 (π(u))) = Q

If
2 (t).

By the initial assumption we have that

τ(Q
Jπ(Q1)K
1 (π(u))) = Q

If
1 (t) 6�K Q

If
2 (t) = τ(Q

Jπ(Q1)K
2 (π(u))).

However, this contradicts the fact that for the function π and the tuple of variables
π(u) it holds that

Q
Jπ(Q1)K
1 (π(u)) �K Q

Jπ(Q1)K
2 (π(u)).

Hence, the inequality (23) holds and the proof of the theorem is completed.

This theorem shows that for K ∈ S1
� the CQ K-CONTAINMENT problem can be re-

duced to a small number of problems of checking the order �K between CQ-admissible
polynomials.

COROLLARY 6.3. If K ∈ S1
� and it is decidable to check whether P1 �K P2 for any

pair of polynomials P1,P2 from Ncq[X ], then CQ K-CONTAINMENT is decidable.

We do not investigate the decidability of P1 �K P2 for the entire class S1
�, but do so

for some of its most important members that do not have any corresponding type of
homomorphism, considered above – the tropical semiring T + and the max-plus alge-
bra T −. For these particular semirings, we will show that containment of CQs can be
decided in the second level of the polynomial hierarchy. To do so we need the following
technical lemma.

LEMMA 6.4. Let K be a semiring from S1
�, M1, . . .Mn be monomials over a set of

variables X , and P be a polynomial from N [X ]. Then M1 + . . . +Mn �K P iff Mi �K P

holds for each 1 ≤ i ≤ n.
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PROOF. The “only if” direction is straightforward, since Mi �K M1 + . . . + Mn for
each 1 ≤ i ≤ n. The “if” direction follows from the chain

M1 + . . .+Mn �K P+ . . .+ P
︸ ︷︷ ︸

n times

=K P,

which holds by positivity and ⊕-idempotence of K.

PROPOSITION 6.5. CQ T +- and T −-CONTAINMENT are in Πp
2.

PROOF. We concentrate on the case of max-plus algebra T −. For the case of the
tropical semiring the proof differs only in instantiations of semiring operations and
order.

Consider arbitrary conjunctive queries Q1(u) = ∃v R1(u1,v1), . . . , Rn(un,vn) and
Q2(q) = ∃w S1(q1,w1), . . . , Sm(qm,wm), where u is the tuple of free variables of Q1

and q is the tuple of free variables of Q2, each ui and qj consist of variables from u and
q, respectively, and each vi and wj consist of variables from v and w, respectively. By
Thm. 6.2 it suffices to develop an algorithm which decides whether for every function
π : u ∪ v → u ∪ v and every tuple s of variables from u ∪ v it holds that

Q
π(JQ1K)
1 (s) �T − Q

π(JQ1K)
2 (s). (24)

By the definition of evaluations, this inequality can be explicitly written as
∑

f∈V(Q1,s)

∏

1≤i≤n

R
π(JQ1K)
i (f(ui,vi)) �T −

∑

h∈V(Q2,s)

∏

1≤j≤m

S
π(JQ1K)
j (h(qj ,wj)).

The expressions on both sides are polynomials from N [X ], where X is some set of
variables. Without loss of generality we may assume that X = x1, . . . , xn. Hence, by
Lem. 6.4, this inequality is equivalent to the statement

∀f ∈ V(Q1, s)




∏

1≤i≤n

R
π(JQ1K)
i (f(ui,vi)) �T −

∑

h∈V(Q2,s)

∏

1≤j≤m

S
π(JQ1K)
j (h(qj ,wj))



 ,

which is polynomial notation for the following formula over the domain of the semiring
T − (recall that its natural order coincides with the usual order ≤ on integers):

∀f ∈ V(Q1, s)



∀x1, . . . , xn

∑

1≤i≤n

R
π(JQ1K)
i (f(ui,vi)) ≤ max

h∈V(Q2,s)

∑

1≤j≤m

S
π(JQ1K)
j (h(qj ,wj))



 .

Consider now the inequality within the parentheses. If a sum on the right hand side
contains a variable which does not appear in the left hand side, then this sum does not
influence the truth of the formula, since we can instantiate this variable to −∞. So we
can ignore this sum, and can assume that the left hand side contains all the variables
from x1, . . . , xn which occur in the right hand side. If, in turn, one of these variables
is equal to −∞, then the formula clearly holds. Otherwise, the expression within the
parentheses holds if and only if the following linear integer programming system Γ
does not have a solution over N0:

x1, . . . , xn ≥ 0,
∑

1≤i≤n R
π(JQ1K)
i (f(ui,vi)) >

∑

1≤j≤m S
π(JQ1K)
j (h(qj ,wj)), h ∈ V(Q2, s).

Since V(Q2, s) can have an exponential number of mappings h, the system Γ can con-
tain an exponential number of inequalities. However, the dimension (i.e. the number n
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of variables) of this system is just polynomial in the size of the CQ Q1. From [Kannan
and Monma 1978; Lenstra 1983] it is known that there is a fixed polynomial p such
that, if a system such as Γ has a solution, then it must have a solution where each xi

is assigned a value at most O(2p(n)), where p(n) is a valuation of p for n.8 This means
that such a solution has a polynomial binary representation.

These observations justify the following algorithm which checks that (24) does not
hold:

(1) guess
- a function π : u ∪ v → u ∪ v,
- a tuple s of variables from u ∪ v,
- a mapping f in V(Q1, s),
- a set of annotation values a1, . . . , aℓ from {−∞, 0, . . . , 2p(n)};

(2) call an oracle which guesses a mapping h in V(Q2, s);
(3) check that

∑

1≤i≤n

R
π(JQ1K)
i (f(ui,vi)) ≤

∑

1≤j≤m

S
π(JQ1K)
j (h(qj ,wj))

does not hold for the values a1, . . . , aℓ of variables x1, . . . , xℓ.

All the guesses of this algorithm are of polynomial size in the size of the input CQs
Q1 and Q2. Also, the check in step (3) can be done in polynomial time. Hence the
algorithm demonstrates that the problem is in Σp

2. Therefore checking whether (24)
holds for every function π : u ∪ v → u ∪ v and every tuple s of variables from u ∪ v, is
in Πp

2.

This proposition along with Thm. 4.28 leaves a gap between upper and lower bounds
for complexity of CQ T +- and T −-CONTAINMENT. We leave the exact complexity of
these problems open.

To conclude this section we illustrate how to use Prop. 6.5 by a further extension of
Ex. 4.13.

Example 6.13 (Continued). For the identity mapping Id on the variables u ∪ v of
the CQ Q1 we have that

Q
Id(JQ1K)
1 () = x2

1 + 2x1x2 + x2
2, and Q

Id(JQ11K)
2 () = x2

1 + x2
2.

It is straightforward to see that

x2
1 + 2x1x2 + x2

2 =T + x2
1 + x2

2.

The same can be shown for all other mappings π : u ∪ v → u ∪ v. By Thm. 6.2 we have
that Q1 ⊆T + Q2.

7. CONCLUSION

We have studied containment of CQs over relations with annotations of different types.
We have established several interesting classes of semirings for which this problem is
decidable by means of different syntactic criteria, developed by modifying and extend-
ing the well-known notion of homomorphism between CQs. Our work extends and
systematizes previous results on the subject and should have practical implications,

8Actually, the bound is O(|a|p(n)), where a is the coefficient in the system with the largest absolute value.

We can use the simpler O(2p(n)) bound because all the coefficients in our program are bounded by n.
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Table I. Summary of semiring classes. The column “class” refers to the class of semirings for which the corre-
sponding homomorphism type from the column “homomorphism type” is a sufficient and necessary condition for
containment of CQs. “Sufficient class” column refers to the class of semirings for which the homomorphism type
is sufficient for containment, and the “axioms of sufficient class” column defines this class. Similarly, “necessary
class” refers to the class of semirings for which the homomorphism type is a necessary condition for containment,
but for clarity references to the corresponding “definition of necessary class” are given instead of the axioms.

K-containment of CQs

class homomorphism type
sufficient

class

axioms of

sufficient class

necessary

class

definition of

necessary class
Sec.

Chom Q2 → Q1 (usual) Chom
⊗-idempotence

1-annihilation
S� — 3.3

Chcov Q2 ⇒ Q1 (hom. cov.) Shcov ⊗-idempotence Nhcov Def. 4.3 4.1

Cin Q2 →֒ Q1 (injective) Sin 1-annihilation Nin Def. 4.14 4.2

Csur Q2 ։ Q1 (surjective) Ssur ⊗-semi-idempotence Nsur Def. 4.20 4.3

Cbi Q2 →֒→ Q1 (bijective) S� — Cbi Def. 4.25 4.4

since most semirings used for annotations in the literature fall into one of these well-
behaved classes. Tab. I provides a summary of the results on these classes. For semir-
ings that do not fall into these classes, we have extended the range of available machin-
ery for query optimization problems, by providing generalized or improved necessary
and sufficient conditions. For some of these semirings we also suggest new decision
procedures based on a small model property.

Many problems remain open. First, it would be natural to extend this research to
study containment of more powerful queries than CQs. Set and bag containment for
several classes of such more powerful queries have been considered in the literature,
for instance unions of conjunctive queries [Ioannidis and Ramakrishnan 1995], queries
with inequalities [Klug 1988; Jayram et al. 2006], aggregate queries [Cohen et al. 2007;
2003], and recursive Datalog programs [Shmueli 1987]. Some results for the case of
unions are already presented in the conference paper [Anonymous ]. The semantics of
aggregate queries with provenance is given by Amsterdamer et al. [2011].

The second immediate direction is to study another fundamental optimization prob-
lem – equivalence of queries of different types over annotated relations. It is interesting
to note that, for the case of equivalence, it is possible to extend the class of considered
semirings by relaxing some axioms of �-positive semirings without loss of a meaning-
ful semantics. Indeed, Green et al. [2011] considers the equivalence of CQs and UCQs
over integers Z. In contrast, as discussed in Sec. 3.1, Z-containment is vacuous.

Third, we would like to continue studying the small model property approach, either
proving or disproving that such methods can work for semirings with non-idempotent
addition.

Finally, it would also be interesting to study CQ-admissible polynomials on their
own, and in particular how to decide containment over them. We believe that this
study may have consequences for solving some of the fundamental open problems in
the area of query optimization.
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OLTEANU, D. AND ZÁVODNÝ, J. 2012. Factorised representations of query results: Size bounds and read-
ability. In ICDT 2012: Proceedings of the 15th International Conference on Database Theory. ACM, New
York, NY, USA.

SHMUELI, O. 1987. Decidability and expressiveness aspects of logic queries. In Proceedings of the sixth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems. PODS 1987: Proceedings of
the sixth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. ACM, New
York, NY, USA, 237–249.

ZIMÁNYI, E. 1997. Query evaluation in probabilistic relational databases. Theoretical Computer Sci-
ence 171, 1–2, 179–219.

ZIMMERMANN, A., LOPES, N., POLLERES, A., AND STRACCIA, U. 2011. A general framework for represent-
ing, reasoning and querying with annotated Semantic Web data. Web Semantics: Science, Services and
Agents on the World Wide Web 11, 72–95.

ANONYMOUS. Details omitted due to double-blind reviewing.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: YYYY.


