
Complexity of Answering Counting Aggregate Queries over DL-Lite

Egor V. Kostylevc, Juan L. Reutterd

cUniversity of Oxford and University of Edinburgh
dPontificia Universidad Católica de Chile

Abstract

The ontology based data access model assumes that users access data by means of an ontology, which
is often described in terms of description logics. As a consequence, languages for managing ontologies
now need algorithms not only to decide standard reasoning problems, but also to answer database-
like queries. However, fundamental database aggregate queries, such as the ones using functions
COUNT and COUNT DISTINCT, have received very little attention in this context, and even defining
appropriate semantics for their answers over ontologies appears to be a non-trivial task. Our goal is
to study the problem of answering database queries with aggregation in the context of ontologies.
This paper presents an intuitive semantics for answering counting queries, followed by a comparison
with similar approaches that have been taken in different database contexts. Afterwards, it exhibits
a thorough study of the computational complexity of evaluating counting queries conforming to this
semantics.

Our results show that answering such queries over ontologies is decidable, but generally intractable.
However, our semantics promotes awareness on the information that can be obtained by querying
ontologies and raises the need to look for suitable approximations or heuristics in order to allow
efficient evaluation of this widely used class of queries.

1. Introduction

The growing popularity of ontologies as a
paradigm for representing knowledge in the Se-
mantic Web is based on the ability to describe
incomplete information in the domain of interest.

Several variations of the web ontology language
(OWL) have been formalized to manage ontolo-
gies. Most of these languages correspond to frag-
ments of first order logic, which are called descrip-
tion logics (DLs) [1]. These fragments allow to de-
fine classifications of objects and formulate com-
plex relationships for such classifications. Tradi-
tionally, literature has considered the decidability
of standard reasoning problems, such as satisfia-
bility, to be the most essential properties of any

Email addresses: egor.kostylev@cs.ox.ac.uk

(Egor V. Kostylev), jreutter@ing.puc.cl (Juan L.
Reutter)

DL. In fact, a lot of effort has been made over
last decades to maximize the expressive power of
DLs while still keeping the decidability of these
problems [1].

However, it has recently become clear that fo-
cusing on the decidability of satisfiability and re-
lated problems is not enough for practical appli-
cations of ontologies. For example, the concept of
ontology-based data access (OBDA) requires rea-
soning tasks that are much more complex. The
information system of OBDA applications con-
sists of two layers: the data layer is formed by
several data sources, whose exact structure is not
interesting or not known to the clients, and a con-
ceptual layer, where the clients can pose queries,
and that is linked to the data layer by logical map-
pings [2, 3]. Usually, data sources are relational
databases, but the conceptual layer is an ontology
formulated in a DL.

Preprint submitted to Elsevier January 7, 2015

Hence, OBDA brings new challenges to system
designers. Users should be able to pose database-
style queries over ontologies using a reasonable
amount of computational resources: the com-
plexity of query answering should not be much
higher than over usual relational databases. This
presents serious restrictions on which ontology
languages can be used in OBDA systems. In fact,
this motivates the use of description logics of the
DL-Lite family, underlying OWL 2 QL profile,
which have been designed specifically to maximize
expressive power while maintaining good query
answering properties [4]. In particular, the com-
putational complexity of answering simple queries
such as conjunctive queries (CQs) and unions of
conjunctive queries (UCQs) over these DLs is the
same as for relational databases [5, 6].

It is natural to ask what happens when one
moves beyond conjunctive queries. Recently,
some attention has been paid to the problem of
answering various standard extensions of CQs and
UCQs over ontologies. For example, [7], [8], and
[9] study path queries over ontologies, while [10],
[11], and [9] consider adding some form of nega-
tion to these simple queries. The general con-
clusion from these papers is that the complex-
ity of evaluating such queries is usually higher
than for CQs and UCQs, and even higher than
for similar problems in relational databases. In
some cases this difference in complexity is sur-
prisingly high: e.g., while answering CQs with in-
equalities is known to be efficiently computable
for relational databases, the problem is undecid-
able when such queries are posed over DL-Lite
ontologies.

Yet there is another extension of CQs that has
received little attention in the context of OBDA—
aggregate queries. These queries answer questions
such as “How many children does Ann have?” or
“What is the average salary over each department
in the Pandidakterion?” Usually, they combine
various aggregation functions, such as MIN, MAX,
SUM, AVERAGE, COUNT, and COUNT DISTINCT [12],
together with a grouping functionality, as in the
usual GROUP BY clause of SQL.

Aggregate queries are an important and heav-
ily used part of almost every relational database

query language, including SQL. Consequently,
in the context of the Semantic Web we expect
the need for answering queries with aggregates
in OBDA settings, with applications such as
SPARQL under entailment regimes [13]. But
despite their importance the study of aggregate
queries over ontologies has been lacking, save for
a few exceptions [14].

The main reason for the lack of research in
this direction is the difficulty of defining a seman-
tics for aggregate queries over ontologies. The
complication is that, unlike relational databases,
in ontologies one assumes that every knowledge
base instance is incomplete and describes a part
of the infinite number of models of the knowledge
base (i.e., the open world assumption, or OWA, is
adopted), and a query may have a different answer
on each of these models. For standard queries like
CQs and UCQs one usually looks for the certain
answers of queries, that is, the tuples that are
answers in all possible models [5]. This approach,
however, is not suitable for aggregate queries, as
the following shows.

Consider a knowledge base where Ann is a par-
ent and the ontology asserts that every parent has
at least one child. If nothing else is assumed then
for every positive integer n there exists a model
where Ann has n children. Thus, the answer to
the simple query “How many children does Ann
have?” in different models of the knowledge base
can be any number greater than or equal to 1. The
syntactic intersection of these answers (i.e., ap-
plying standard certain answers semantics) triv-
ially gives us the empty set, which is clearly not
satisfactory. As a different approach, Calvanese
et al. introduce epistemic semantics for aggregate
queries [14]. In a nutshell, the idea is to apply
the aggregation function only to known values.
For example, the epistemic answer to the query
above is 0, because we do not know anybody who
is definitely a child of Ann. But this is clearly
not the desired answer: since Ann is a parent we
know that she has at least one child. Hence, the
epistemic semantics does not always give a correct
answer to COUNT queries.

We embark on the task of defining a suitable
semantics for answering what we call counting ag-

3

gregate queries, which are queries that use COUNT

or COUNT DISTINCT functions. Motivated by the
original idea of certain answers, we seek to find
the maximal information that is common in the
answers to such a query for all the models of a
knowledge base.

As the first contribution of this paper we de-
velop the notion of aggregate certain answers that
can be explained as follows: a number n is in the
aggregate certain answers of a counting query over
a knowledge base if the result of the aggregation
function of such query is not less than n in any
possible model of the knowledge base. We show
that this is a natural and useful semantics for ag-
gregate queries that count. For instance, even if
we do not know precisely how many children Ann
has in the example above, we know that she has
at least one, and thus 1 is an aggregate certain
answer to the query.

Having established our semantics, we turn to
the study of the algorithmic properties of ag-
gregate certain answers computation for count-
ing queries. We concentrate on ontologies of
the DL-Lite family, in particular DL-Litecore and
DL-LiteR [5]. The choice of these DLs is twofold:
first, as mentioned above, these formalisms are
important in the OBDA settings; second, they are
among the simplest DLs and hence are good can-
didates to begin with.

We start our study under the assumption that
the query and the terminology (i.e., the TBox) are
fixed, and the only input is the assertions (ABox).
This corresponds to the data complexity of the
problem in Vardi’s taxonomy [15]. Somewhat sur-
prisingly, our results show that the complexity of
the problem is resilient to the choice of both DL
and counting function and is coNP-complete in all
cases. As far as we are aware, these are the first
tight complexity bounds for answering aggregate
queries in the presence of ontologies.

In order to get a further understanding of the
computational properties of the problems we then
proceed to the study of the combined complex-
ity of computing the aggregate certain answers,
that is, assuming that the query, ABox, and TBox
form the input. Here we have an evidence sup-
porting a difference for the choice of DL, albeit

not for the choice of counting function. More
precisely, we are able to show that the problem
is coNExpTime-hard for DL-LiteR and Πp

2-hard
for DL-Litecore . Unfortunately, we do not have
matching upper bounds: we show that the prob-
lem is in coN2ExpTime for DL-LiteR and in coN-
ExpTime for DL-Litecore . Note that the hardness
results are significant: they show that the com-
bined complexity of aggregate query answering
is higher than of answering standard conjunctive
queries in case of DL-Litecore , and higher than of
answering relational algebra queries over complete
databases in case of DL-LiteR.

This paper is an extended version of [16], but
it contains substantial new material, including
definitions, examples, full proofs for all theorems,
and additional statements. Furthermore, it con-
tains a revision on the upper bounds for combined
complexity of the problem of computing the ag-
gregate certain answers that were not correctly
stated in [16].

Organization We start with an overview of re-
lated work in the following section, and basic
background on DL-Lite and CQs in Section 3. We
formally define the semantics of counting aggre-
gate queries over DL-Litecore and DL-LiteR, and
state corresponding decision problems of answer-
ing of these queries in Section 4. We establish
data complexity of these problems in Section 5,
and the bounds for the combined complexity in
Section 6. We conclude in Section 7.

2. Related Work

Aggregate queries have been part of most
database query languages, such as SQL, for
decades. Their theoretical formalisation can be
found in, for example, [12]. Semantics for aggre-
gate queries have been already defined for several
database settings that feature incomplete infor-
mation. For example, an inconsistent database
instance (with respect to a set of constraints) de-
scribes a set of repairs, each of which satisfies the
constraints and can be obtained from the instance
by a minimal number of transformations. Aggre-
gate queries over inconsistent databases were ex-
plored in [17], where the range semantics was de-

4

fined. Intuitively, this semantics corresponds to
the interval between the minimal and the maxi-
mal possible answers to the query amongst all the
repairs of a given instance. The same semantics
was adopted by [18, 19] in the context of data
exchange.

However, the techniques from these papers
cannot be immediately applied to ontologies be-
cause of several specific properties. In particu-
lar, these papers consider variations of the closed
world assumption, whereas in ontologies the open
world assumption is assumed. Furthermore, data
exchange settings are based on source-to-target
dependencies and weakly acyclic target dependen-
cies. These rules out all types of recursion in on-
tological knowledge thus simplifying the study to
a great extent.

In the context of ontologies aggregate queries
were studied in [14]. In fact, in this work the
range semantics itself was claimed to be trivially
meaningless for aggregate queries over ontologies.
For instance, for almost any knowledge base we
can construct a model such that the aggregate
value of an AVERAGE query evaluates to any num-
ber. Similar examples can be given for all other
standard aggregation functions except for COUNT

and COUNT DISTINCT, which are precisely the ag-
gregates in the focus of this paper. As we will
show, the computation of the upper bound of the
range is almost trivial in these cases as well. But
the lower bound of the range, that is, the minimal
possible value described above, is completely nat-
ural and by no means trivial to compute. In fact,
the lower bound of the range semantics is strongly
related to our notion of aggregate certain answers
as follows: a number is in the aggregate certain
answers if and only if it is less than or equal to
the lower bound of the range. Thus, this work on
aggregate certain answers can be seen as an adap-
tation of the range semantics of [17] to ontologies.

The solution suggested in [14] is to give epis-
temic semantics to aggregate queries over ontolo-
gies, that is, to apply the aggregation function
only to whose values which are witnessed in the
ABox. We believe that this semantics is much
less intuitive and informative than the certain an-
swer semantics defined in this paper. Neverthe-

less, one can show that the epistemic semantics
never gives more answers than aggregate certain
answer semantics, so the first can be seen as an
under-approximation of the second.

The default language for querying in the Se-
mantic Web is SPARQL. Its very recent ver-
sion SPARQL 1.1 includes aggregation function-
alites, which are quite similar to such functional-
ities in SQL [20]. It also includes a specification
for querying under entailment regimes, in par-
ticular, OWL 2 QL, the profile which has DL-
Lite as logical foundation [13]. The specification
adopts active domain semantics even for conjunc-
tive queries, which means that the query answer-
ing process is decoupled in two steps: first fact
entailment is performed with respect to the on-
tology, and afterwards the query is answered over
the resulting set of facts. Unfortunately, fact en-
tailment in OWL 2 QL is very limited. As a result,
even conjunctive query answering in the sense of
[5] is not possible under such semantics, because
the anonymous part of the ontology is essentially
ignored. Aggregate queries are to be evaluated us-
ing the same active domain semantics, hence this
gives even less information than epistemic seman-
tics. We believe that the certain answer seman-
tics, which fully take into account the anonymous
part of the ontology, is much more powerful and
natural than the active domain semantics.

It is also worth to note that expressive DLs
extended with aggregation functions were studied
in [21]. Though, the authors did not consider any
query language but concentrated on incorporating
aggregation into the ontology language itself, by
means of special concepts with arguments from
so-called concrete domains (e.g., numbers). In
this paper we consider aggregate query answering
over less expressive DLs, which makes our settings
incomparable with the settings of [21].

After the first publication of the results of this
paper several semantics, including certain answer
semantics, were independently defined in [22].
However, no complexity bounds were established.

5

3. Preliminaries

We start the formal part of this paper with
standard notions on the two fragments of DL-Lite
and conjunctive queries.

Syntax of DL-Lite Let A0, A1, . . . be atomic
concepts and P0, P1, . . . be atomic roles. Concepts
C and roles E of DL-Lite languages are formed
by the grammar

B ::= Ai | ∃R, R ::= Pj | P−j ,
C ::= B | ¬B, E ::= R | ¬R.

Concepts B and roles R are called positive.
A TBox is a finite set of inclusions. In the

language of DL-Litecore these inclusions are of the
form B v C. In DL-LiteR the form R v E is also
allowed.

Let Ind = {a, a1, a2, . . .} be a set of individual
names. An ABox is a set of assertions of the forms
Ai(a) and Pj(a1, a2) with a, a1, a2 ∈ Ind. Without
loss of generality, in what follows we assume that
all the individual names from Ind appear in A.

A knowledge base (or KB) K = 〈T ,A〉 of a
DL-Lite language contains a TBox T of the lan-
guage and an ABox A.

Semantics of DL-Lite An interpretation I =
(DI , ·I) contains a (possibly infinite) domain of
elements DI and maps each concept C to a subset
CI of DI and each role E to a binary relation EI

over DI such that

(∃R)I = {d | ∃d′ : (d, d′) ∈ RI},
(P−j)I = {(d1, d2) | (d2, d1) ∈ P Ij },
(¬B)I = DI \BI ,
(¬R)I = (DI × DI) \ RI ,

as well as each individual name a to an element
aI ∈ DI such that aI1 6= aI2 in case of a1 6= a2.

An interpretation I is a model of a KB K =
〈T ,A〉 (written I |= K) if

- BI ⊆ CI for any inclusion B v C in T ,
- RI ⊆ EI for any inclusion R v E in T ,
- aI ∈ AIi for any assertion Ai(a) in A, and
- (aI1 , a

I
2) ∈ P Ij for any assertion Pj(a1, a2) in A.

We also use |= as logical implication for (sets
of) inclusions and assertions under the semantics

given above. For example, T |= A1 v A2 means
that the TBox T implies the inclusion A1 v A2.

The definitions above require that aI1 6= aI2 for
different individual names a1 and a2 in every in-
terpretation I. By this we adopt the unique name
assumption (UNA), which is conventional for DL-
Lite [5, 6]. However, dropping this assumption
does not affect any result of this paper, and after
each of our proofs we discuss how to transfer the
results if the UNA is not adopted.

Since in this paper we are interested in query
answering, in what follows we usually assume all
KBs to be satisfiable, that is, to have a model.
This is justified by the fact that, as we see be-
low, query answering over unsatisfiable knowledge
bases is trivial.

Canonical model Next we give some standard
notions which will be useful in the proofs of this
paper.

The canonical model Can(K) of a satisfiable
K = 〈T ,A〉 is an interpretation with the domain
DCan(K) of all elements daR1...Rm , where a is an
individual name, m ≥ 0, and R1, . . . , Rm are pos-
itive roles such that

- if m ≥ 1 then there is a positive concept B with
A |= B(a) and T |= B v ∃R1 butA 6|= R(a, a′),
for all a′ and R with T |= R v R1;

- T |= ∃R−i−1 v ∃Ri but T 6|= R−i−1 v Ri, for each
i, 1 < i ≤ m,

and the interpretation function defined for indi-
vidual names a, atomic concepts A, and atomic
roles P as follows:

aCan(K) = da,
ACan(K) = { ac | K |= A(a) } ∪
{ daR1...Rm | m ≥ 1, T |= ∃R−n v A },

PCan(K) = { (da1 , da2) | K |= P (a1, a2) } ∪
{(daR1...Rm−1 , daR1...Rm) | m ≥ 1, T |= Rm v P} ∪
{(daR1...Rm , daR1...Rm−1) | m ≥ 1, T |= Rm v P−}.

It is well-known that for any model I there
exists a homomorphism from Can(K) to I, that
is, a mapping f : DCan(K) → DI such that
f(aCan(K)) = aI for any a ∈ Ind, and d ∈ SCan(K)
implies f(d) ∈ SI for any element or pair of ele-
ments d and any atomic concept or role S [5, 6].

6

Conjunctive queries The main building blocks
of aggregate queries are the following most simple
queries widely studied in the literature on knowl-
edge bases. Formally, a conjunctive query (or
CQ) is an expression of the form

q(x) :- ∃y φ(x,y), (1)

where x is a tuple of free variables, y is a tuple of
existential variables, and the body φ(x,y) is a con-
junction of atoms of the form Ai(t) or Pj(t1, t2),
where t, t1, t2 are terms, that is, variables from
x∪y or individual names from Ind. If the tuple of
free variables x is empty, then the CQ is Boolean.
The number of atoms in the body of q is denoted
by |q|.

Semantics of CQs for a single interpretation is
given as follows. Let q(x) be a CQ of the form
(1), I an interpretation, and a = (a1, . . . , an) a
tuple of individual names from Ind, such that n is
the size of x. Let also aI be the extension of I
to a, that is, aI = (aI1 , . . . , a

I
n). Then a match for

q(x) and a in I is a mapping h : x∪y→ DI , such
that h(x) = aI and h′(t) ∈ SI for every unary or
binary atom S(t) in φ(x,y) with h′(t) = h(t) for
t ∈ x ∪ y and h′(t) = tI for t ∈ Ind. If such a
match exists, then we also say that the CQ holds
for I and a, and write I |= q(a).

Of course, we are interested not in a single
interpretation but in all models of a knowledge
base. To this end, the following semantics is usu-
ally adopted. A tuple a is in the certain answers
to a CQ (1) over a KB K if and only if I |= q(a)
holds for every model I of K. It is well-known
that a tuple a of individual names is a certain an-
swer to a CQ q(x) over a satisfiable K if and only
if Can(K) |= q(a).

4. Counting Queries over Ontologies

The ability to evaluate aggregate queries is a
default in every DBMS and is in the standard of
SQL. However, as mentioned in the introduction,
little attention to this type of queries has been
paid in the context of ontologies. Starting to fill
this gap in this section we formally define count-
ing aggregate queries over ontologies. We begin

with adapting the notion of aggregate conjunc-
tive queries from the database settings into our
context and define how to evaluate these queries,
first over a particular interpretation and then over
a knowledge base. Then we compare our notion
with range semantics in inconsistent databases.
We note that, although our results in the following
sections are limited to ontologies of the DL-Lite
family, our definitions in this section are general
and do not depend on the choice of description
logic.

4.1. Syntax and Semantics of Counting Queries

We begin with the syntax of aggregate queries
and their semantics with respect to a single in-
terpretation. The last is, essentially, the seman-
tics in the relational database sense, where only
a single world is considered. We generally follow
standard database theory literature on the topic,
such as [12].

Definition 1. An aggregate conjunctive query
(or ACQ) is an expression

q(x, f(z)) :- ∃y φ(x,y, z), (2)

where x is a tuple of free variables, y is a tuple of
existential variables and z is a tuple of aggregation
variables, the body φ(x,y, z) is a conjunction of
atoms of the form Ai(t) or Pj(t1, t2) with terms t,
t1, t2 from x∪y∪z∪Ind, and f(z) is an aggregation
function. Similarly to plain CQs, if x is empty,
then the ACQ is Boolean.

Amongst typical aggregation functions con-
sidered in database theory and practice we find
count Count(), count distinct Cntd(z), minimum
Min(z), maximum Max(z), average Avg(z), and
sum Sum(z). In this paper we concentrate on
the first two functions (note that count is nullary
while count distinct is unary). We call ACQs us-
ing these two functions counting ACQs in general,
while count and count distinct ACQs individually.
Note that Count() and Cntd(z) are essentially the
only standard counting functions in SQL:1999 [23]
and SPARQL 1.1 [20].

Before proceeding with the formal semantics
of counting aggregate queries, we give a couple of
simple examples.

7

Example 2. Consider a vocabulary with an
atomic concept Parent and role HasChild. The
query

q1ex(x,Count()) :- ∃y Parent(x)∧HasChild(x, y)

is a count ACQ that is intended to count the chil-
dren of each parent. The query

q2ex(Cntd(z)) :- ∃y Parent(y) ∧HasChild(y, z)

is a (Boolean) count distinct ACQ. This query
counts all different children having a parent. The
graphical representations of these queries in the
conventional for this paper way are given in Fig-
ure 1.

x

Parent

y y

Parent

zHasChild HasChild

(a) (b)

Figure 1: Example queries q1ex (a) and q2ex (b): free, ex-
istential and aggregation variables are depicted by black,
white, and big grey nodes respectively.

For the formal semantics we need the follow-
ing auxiliary notion. The core of an ACQ q of
the form (2) is the CQ q̄(x ∪ z) :- ∃y φ(x,y, z).
In other words, the core of a query has the same
body as the original ACQ but considers the aggre-
gation variables as free. Finally, it will be useful
to write N∞ for the set of natural numbers with
0 and +∞.

Definition 3. A count ACQ q(x, Count()) holds
for an interpretation I, tuple a of individual
names from Ind, and number n ∈ N∞ (writ-
ten I |= q(a, n)) iff n is the number of distinct
matches for the core q̄ and a in I.

Informally, for a tuple of individual names
a count query returns the number of possible
matches of the body to the interpretation which
send the free variables to the (interpretations of
the) individual names.

Definition 4. A count distinct ACQ q(x,
Cntd(z)) holds for an interpretation I, tuple a of
individual names, and number n ∈ N∞ (written
I |= q(a, n)) iff n is the number of distinct
a′ ∈ Ind such that I |= q̄(a, a′) for the core q̄ of q.

The intention of this type of queries is differ-
ent from count ACQs—they count the number of
different possibilities of mapping z into the inter-
pretation such that the rest of the query can be
properly matched. This difference is illustrated in
the following example.

Example 5. Coming back to Example 2, con-
sider an interpretation I which interprets all
names by themselves and satisfies

ParentI = {Ann},
HasChildI = {(Ann, Joe)}.

It is not difficult to see that I |= q1ex(Ann, 1) and
I |= q2ex(1), that is, in I Ann has one child, and
there is precisely one child with a parent. For an
interpretation J which interprets all names by
themselves, and satisfies

ParentJ = {Ann,Peter},
HasChildJ = {(Ann, Joe), (Ann,Rose),

(Peter, Joe)},

we have J |= q1ex(Ann, 2), J |= q1ex(Peter, 1), and
J |= q2ex(2).

Since we concentrate on counting aggregate
queries, we do not give formal semantics for
queries with other aggregation functions. How-
ever the intuition behind their semantics is very
similar to count distinct ACQs: a value is an ag-
gregate answer if it is the result of applying the ag-
gregation function to the multiset of all elements
witnessing the aggregation variable by matches
for the core query in the interpretation.

4.2. Certain Answers of Counting Queries over
Ontologies

A knowledge base normally describes not a
single model but an infinite number of them. This
is why one is typically interested in computing the
certain answers of queries over a KB, which are
usually defined as the intersection of the answers
to the query over all possible models of KB [5, 10].

Unfortunately, a definition based on such a
syntactical intersection is of little use for ACQs.
Indeed, this intersection is almost always empty,
as illustrated in the following example.

8

Example 6. Let Kex be a knowledge base with
the TBox consisting of the inclusion Parent v
∃HasChild, and the ABox consisting of the as-
sertion Parent(Ann). The interpretations I and
J from Example 5 are models of Kex. Also, in this
example we listed all the answers to the queries
q1ex and q2ex, so it is straightforward to check that
the intersections of the relevant sets for only these
two models of Kex are already empty (of course,
there are infinitely many other models).

This suggests to avoid using syntactic inter-
section when defining the semantics of ACQs over
ontologies. In the context of OBDA this problem
has been identified before by [14]. The proposed
solution was to concentrate only on aggregating
over epistemic knowledge, that is, over the (inter-
pretations of) individual names which are explic-
itly mentioned in the ABox. Such epistemic an-
swers usually have a non-empty intersection over
all the models for the standard aggregate queries,
including Max and Average. However, for count-
ing queries such answer may be somehow non-
satisfactory. For example, the epistemic answer to
the ACQ q1ex over Kex from Example 6 is (Ann, 0),
because we do not know any individual who is
definitely a child of Ann, even if we know for sure
about the existence of one of them.

In order to define our semantics we come back
to the original intuition behind certain answers:
these are the answers that hold in every possible
model. For the case of counting ACQs, we can-
not be certain of the precise result of the count
function. But if the result of a query is greater
than or equal to a number n in every model of a
knowledge base, then we can say with certainty
that the result of a query is always at least n.

This is why we suggest the following definition
of certain answers for counting ACQs over DLs:
it is the set of all numbers no greater than the
minimum of the values of the counting function
over all the possible models of the KB.

Definition 7. A non-negative number n ∈ N∞ is
in the aggregate certain answers Cert(q, a,K) to
a counting ACQ q and tuple a of individual names
over a KB K iff n ≤ minI|=K{k | I |= q(a, k)}.

The following example illustrates the de-
scribed intuition.

Example 8. For the KB and queries de-
fined in the previous examples we have that
Cert(q1ex,Ann,Kex) contains 0 and 1, but not 2
or any greater number. This reflects the fact that
in any model of the KB we have at least one child
of Ann (and at least 0 as well). By the same rea-
sons Cert(q2ex, a∅,Kex) consists of 0 and 1. (Here
and further in the paper a∅ is the empty tuple of
individual names).

Note that under our definition every number
that is smaller or equal than the minimum value
over all the models is an aggregate certain answer.
As mentioned above, this is in line with the idea
that certain answers are all those answers that
hold in every model: we cannot ask for the pre-
cise value of the counting function, but we can
ask whether such value is always at least n. We
focus on the decision problem of answering this
question because it resembles usual database deci-
sion problems. However, the problem of comput-
ing this minimum (and its corresponding decision
problem of asking whether n is the minimum) is
also important and needs to be studied. We com-
ment on this in the conclusion.

Similarly to the case of CQs, if a KB is unsat-
isfiable, then by this definition any number is a
certain answer to any counting query. Hence, this
case is vacuous, and we assume that all KBs are
satisfiable.

A definition such as above is non-trivial only
for counting standard aggregate queries. Indeed,
it relies on their simple property that the mini-
mum above can potentially be any number greater
than or equal to 0. For other aggregation func-
tions it is not the case: e.g., such a minimum for
Average is trivially almost always −∞.

4.3. Range Semantics of Aggregate Queries

As mentioned in the introduction, aggregate
queries have been explored in other settings which
deal with many models. In particular, here we
compare our notion with that of range semantics,
defined in the context of inconsistent databases

9

in [17] and later adopted in data exchange [18, 19].
This semantics focuses on the interval of possible
aggregation values over all models. In the context
of counting ACQs over ontologies it can be defined
as follows.

The range of answers to a counting ACQ q
and a tuple a of individual names over a KB K is
the interval [m(q, a,K),M(q, a,K)], where

m(q, a,K) = min
I|=K
{k | I |= q(a, k)},

M(q, a,K) = max
I|=K
{k | I |= q(a, k)}.

It is easy to see that the lower bound of the
range interval coincides with the maximal certain
answer according to Definition 7. Considering the
upper bound, let us come back to the examples
in the previous section. We can find a model I
of K such that I |= q1ex(Ann, n) for any number
n ≥ 1. Hence, in this case the upper bound is
+∞. Similar situation is in the case of q2ex. The
following proposition says that this is indeed not
unusual.

Proposition 9. Given a counting ACQ q, a tu-
ple a of individual names, and a satisfiable DL-
Lite KB K, the upper endpoint M(q, a,K) of the
range of answers belongs to the set {0, 1,+∞},
and can be computed in polynomial time (in the
size of q and K).

Proof. Let q(x, f(z)) :- ∃y φ(x,y, z) and K =
〈T ,A〉.

Let us start by considering situations when the
upper endpoint is 0. According to the definitions,
the only possibility for M(q, a,K) to be 0 is that
the core q̄ does not have a match sending x to
a in any model of K. Next we show that this
case is possible and can be checked in polynomial
time. Consider a fresh individual name au for
every existential or aggregate variable u ∈ y ∪ z,
and a function g mapping all individual names
to themselves, free variables x to a, and every
other variable u of q to au. Let Ag(q(a)) be an
ABox, which contains the assertion S(g(t)) for
every (unary or binary) atom S(t) in φ(x,y, z),
and K′ be a KB

〈
T ,A ∪Ag(q(a))

〉
. We claim that

q̄ does not have a match sending x to a in any
model of K if and only if K′ is not satisfiable.
Indeed, if K′ is satisfiable, then every model I of
K′ is also a model of K, and the function which
maps every term t to the interpretation of the
individual name g(t) under I is such a match.
On the other hand, if there is a model I of K
with a match h for q̄ and a in I, then it can
be extended to a model of K′ by setting aIu =
h(u) for every u ∈ y ∪ z. Such a situation is
clearly possible and checking satisfiability can be
performed in polynomial time.

Let us proceed to situations when the upper
endpoint is 1. Assume that the extended KB K′
is satisfiable, and q is a count ACQ without exis-
tential variables, that is, z and y are empty. In
this case any model of K′ (which is also a model
of K) has a match for q̄ and a. On the other
hand, none of the models can have more, because
of the lack of existential variables. Hence, we have
M(q, a,K) = 1. Again, such a situation is possi-
ble and can be checked in polynomial time.

For the remaining case we show that if the ex-
tended KB K′ is satisfiable and z∪y is not empty,
then the upper endpoint is +∞. Consider a model
I of K′ (which is also a model of K), a match h
for q̄ and a in I, and a variable u, which is either
(the only variable) from z, if it exists in case of q
is count distinct, or from y otherwise. Construct
an interpretation I+∞ with the domain extend-
ing DI by an infinite number of new elements di,
i ≥ 1, and interpretation function extending ·I for
atomic concepts A and roles P as follows:

di ∈ AI+∞ iff h(u) ∈ AI ,
(di, d) ∈ P I+∞ iff (h(u), d) ∈ P I ,
(d, di) ∈ P I+∞ iff (d, h(u)) ∈ P I .

Essentially, I+∞ extends I by an infinite number
of copies of h(u). On one hand, I+∞ is a model
for both K′ and K. On the other, the mapping
h is still a match for q̄ and a in I+∞, and all the
mappings hi, i ≥ 1, such that hi(u) = di and
hi(u

′) = h(u′) for all u′ 6= u are also matches.
Moreover, these matches create new witnesses for
the aggregation variable z in case of q is count
distinct. So, we have that I+∞ |= q(a,+∞), as
required. �

10

We may thus say that the aggregate certain
answers semantics from Definition 7 is an adapta-
tion of the range semantics of [17] to ontologies.

5. Data Complexity of
Counting Queries

In this section we begin with the data com-
plexity of the problem of computing aggregate
certain answers. We concentrate our study on the
defined above variants of description logics from
the DL-Lite family and counting ACQs. For-
mally, let X ∈ {core,R}, T be a TBox over
DL-LiteX , and q(x, f(z)) be a counting ACQ. We
are interested in the following family of problems.

f-Aggregate Certain Answers (T , q)

Input: ABox A, tuple a,
and number n ∈ N∞.

Question: Does n ∈ Cert(q, a, 〈T ,A〉)?

The main result of this section is the coNP-
completeness of Aggregate Certain An-
swers for count and count distinct queries over
both DL-LiteR or DL-Litecore knowledge bases.
In particular, this implies a jump from the com-
plexity of answering standard conjunctive queries
over knowledge bases, which is in P (assuming
P 6= NP). So why is answering aggregate queries
more complex? The main reason is that one can
no longer compute aggregate certain answers by
simply posing queries over the canonical model: a
counting query may yield a given number n when
posed over the canonical model, but it is possible
to compress the canonical model by identification
of elements and obtain a model with a smaller
number of witnesses for the counting query.

We thus need a much more involved algorithm
for computing these answers. Let q(x, f(z)) be a
counting ACQ and K = 〈T ,A〉 a knowledge base.
In order to check that n /∈ Cert(q, a, 〈T ,A〉) for
a tuple a of individual names and a number n,
we need to find a counterexample in the form of
a model I0 of K such that I0 |= q(a, n0), for some
n0 < n. Hence, the idea of the proofs below is
to show the following small model property: if

such a counterexample exists, then there exists a
counterexample of polynomial size (with respect
to |A|). The coNP algorithm then consists of
guessing this small counterexample I0 and eval-
uate q over I0 in polynomial time to verify that
I0 |= q(a, n0), for some n0 < n. We also show
that the coNP bound is tight.

5.1. Count Queries

We first establish the upper bound for count
ACQs. Let us begin by introducing the required
notation.

Let I0 be a model of a KB K = 〈T ,A〉
and D∗ be a subset of the domain DI0 of I0
which includes all the interpretations aI0 of in-
dividual names a from Ind. Since I0 is a model,
there exists a homomorphism f from the canon-
ical model Can(K) to I0. Consider a mapping
f ′ : DCan(K) → (D∗ ∪ DCan(K)) defined as

f ′(d) =

{
f(d), if f(d) ∈ D∗,
d, otherwise.

(3)

Then the interleaving ID∗0 of I0 for D∗ is the im-
age of Can(K) under f ′, that is the interpretation
whose domain is the range of f ′, the interpreta-
tion of individual names coincides with the one
in I0, and where f ′(d) is in the interpretation
of an atomic concept or role S and a tuple (an
element or a pair of elements) d if and only if
d ∈ SCan(K). Clearly, ID∗0 is a model of K. Essen-
tially, the transformation from I0 to ID∗0 drops ev-
erything which is not enforced by f and preserves
I0 only on D∗, while replacing the rest with the
corresponding parts of the canonical model.

Next important notion is, essentially, the re-
striction of the interleaving ID∗0 to all the ele-
ments which are reachable from a given element
by (undirected) paths through role interpreta-
tions of bounded length and without intermedi-
ate nodes from D∗. Formally, let k be a positive
number. Then, for every element d in the domain
of ID∗0 which is not in D∗, the k-neighbourhood
Nk(d) is the set of all domain elements d′ such
that there exist d0, . . . , di, i ≤ k, with

- d0 = d, di = d′,
- dj /∈ D∗ for all j, 0 ≤ j < i, and

11

- there exists a positive role Rj (that is, an
atomic role or its inverse) such that (dj, dj+1)
is in the interpretation of Rj under ID∗0 for all
0 ≤ j < i.

Note that according to this definition the last el-
ement di can be in D∗.

Recall that the elements in the domain of ID∗0
which are not in D∗ are the elements of the canon-
ical model, so they have the form dw with w =
aR1 . . . Rm, m ≥ 1. Moreover, by the construc-
tion of the interleaving, for the k-neighbourhood
Nk(d) of an element d there exists an element dw
of the canonical model such that f ′(dw) ∈ Nk(d)
and w is a prefix of w′ for any element dw′ with
f ′(dw′) ∈ Nk(d). We call this element the root of
Nk(d). Note that f ′(dw) can be either in D∗ or dw
itself.

We define the following equivalence relation
on elements in the domain of ID∗0 which are not
in D∗: d ∼kD∗ d′ for d and d′ with roots dw and d′w′
if and only if

1. for any word w1

(a) f ′(dww1) ∈ Nk(d) iff f ′(dw′w1) ∈ Nk(d′),
(b) f ′(dww1) ∈ Nk(d) ∩ D∗ iff f ′(dw′w1) ∈
Nk(d′) ∩ D∗;

2. |w| ≡ |w′| (mod 2k + 1), that is, |w| and |w′|
are congruent modulo 2k + 1.

The first requirement essentially says that the
neighbourhoods of equivalent elements are iso-
morphic. The second one guarantees that the
“distance” between equivalent elements in the
canonical model is large enough.

Having this definitions at hand we are ready
to prove the following key lemma.

Lemma 10. Let K = 〈T ,A〉 be a DL-LiteR KB
and q(x, Count()) be a count ACQ. Then there
exists a number ` depending only on q and T such
that if there is a model I0 of K with I0 |= q(a, n0)
for a tuple a of individual names and a number
n0 ≤ (|Ind| + |T |)|q|, then there is a model I ′ of
K with domain of O(|Ind|`) elements with I ′ |=
q(a, n′) for some number n′ ≤ n0.

Proof. Let q(x, Count()) :- ∃y φ(x,y).
Let D∗ be all the elements of DI0 which are

either interpretations of individual names from
Ind or images of the variables y by matches for
the core q̄ and a in DI0 . Let I ′ be the interpre-
tation obtained from the interleaving ID∗0 of I0
for D∗ by identifying all elements d and d′ such
that d ∼|q|D∗ d′. First, note that I ′ is indeed a
model of K, because it is an image of a canoni-
cal model and satisfy all negative inclusions of T
by the construction of the equivalence ∼|q|D∗ . Fur-
thermore, note that the identification does not
create new matches for the core q̄ and a, since
we are identifying elements with the same |q|-
neighbourhood, and they are at sufficient distance
from each other.

To complete the proof we need to show that
I ′ has no more than O(|Ind|`) elements for some
`. By definition, every element of the canonical
model Can(K) different from da for a ∈ Ind, has at
most |T |+1 immediate neighbours (i.e., elements
connected by an atomic role or inverse). Hence,
by construction, each element in the interleaving
ID∗0 which is not in D∗ also has at most |T | +
1 immediate neighbours. It means that the |q|-
neighbourhood of any element cannot have more
than (|T | + 1)|q| elements. Moreover, since the

equivalence ∼|q|D∗ only needs to preserve D∗, and
the interpretations of concepts and roles in the
neighbourhood are completely defined by its root,
the number of different equivalence classes of |q|-
neighbourhoods generated by ∼|q|D∗ on ID∗ belongs

to O(|D∗||T ||q|). Since |D∗| ≤ n0|q| + |Ind|, the
number of elements in the domain of I ′ belongs
to

O((|q| · (|Ind|+ |T |)|q| + |Ind|)|T ||q|).

Since T and q are fixed, we conclude that there
exists a number ` as required. �

We are ready to state and prove the main re-
sult of this section.

Lemma 11. Let T be a fixed DL-LiteR TBox
and q(x, Count()) be a fixed count ACQ. Check-
ing whether n ∈ Cert(q, a, 〈T ,A〉), for an ABox
A, tuple of individual names a, and number n can
be done in coNP.

12

Proof. The knowledge base K = 〈T ,A〉 always
has a model with the domain of the size no greater
than |Ind|+ |T |. (Recall that we assume K to be
satisfiable.) For example, this is the case for the
model constructed the image of Can(K) under the
homomorphism h defined as

h(da) = da,
h(daR1...Rm) = dRm ,

where dRm for roles Rm in T are fresh elements.
There exist at most (|Ind|+ |T |)|q| matches for the
core of q in this model. Hence, without loss of gen-
erality, we may assume that n ≤ (|Ind| + |T |)|q|,
because otherwise the answer to our decision
problem is trivially “no”. Note that this bound
is polynomial in the size of the input, since q is
fixed.

By Lemma 10 there exists a number ` depend-
ing only on q and T (i.e., fixed in the settings
of this lemma), such that if there is a falsifying
model I0, that is a model of K with I0 |= q(a, n0)
for n0 < n, then there is a model I of K over
O(|Ind|`) elements with I |= q(a, n′) for some
number n′ ≤ n0. Hence, to verify that n is a
certain answer, we need to check whether J |= K
implies that there are at least n matches for the
core of q and a to J in all interpretations J over
O(Ind|`) elements. However, such a check is in
coNP, since a check for a particular J can be done
in polynomial time (recall, that q and T are fixed
in this lemma). �

Not that the proof of the upper complexity
bound does not depend on the UNA, so the result
also holds if we do not adopt it. Next we set the
matching lower bound.

The proof of the following lemma is by re-
duction from the complement of the 3-colouring
problem. The input for the 3-colouring problem
is an undirected graph G(V , E), where V is the
set of vertices and E is the set of edges, and the
answer is positive if and only if the graph has
a 3-colouring. This problem is known to be NP-
complete [24]. In this proof, as well as in the proof
of the following Lemma 16 which also makes use
of a reduction from the 3-colouring problem, it
will be convenient to assume that G does not have

isolated vertices. Clearly, this restriction does not
change the complexity of the problem.

Lemma 12. There exist a DL-Litecore TBox T
and a Boolean count ACQ q such that checking
whether n ∈ Cert(q, a∅, 〈T ,A〉), for an ABox A,
a number n and the empty tuple a∅, is coNP-hard.

Proof. We begin with the definition of a fixed
TBox and count query, then explain how to con-
struct an ABox on the base of an instance of the
problem, and finally show that number 4 is a cer-
tain answer if and only if the instance has no 3-
colouring.

Let Edge and HasCol be atomic roles and Col
be an atomic concept. Fix a DL-Litecore TBox

T = {∃Edge v ∃HasCol,∃HasCol− v Col},

which is intended to assign a colour to every ver-
tex. Fix also a Boolean count ACQ

qd-count(Count()) :- ∃yv, yu, yc, y′c
Edge(yv, yu) ∧HasCol(yv, yc) ∧HasCol(yu, yc)

∧ Col(y′c).

The graphical representation of this query is given
in Figure 2.

yv yu

yc y′c
Col

H
asC

ol H
as
C
ol

Edge

Figure 2: Query qd-count(Count()). It consists of two dis-
connected parts, one of triangular form, which is intended
to detect colourings having an edge assigned with the same
colour on both ends, and another being an isolated vari-
able detecting all the colours used in the colouring.

Consider now an instance G(V , E) of the com-
plement of the 3-colouring problem and construct
the ABox on its base as follows.

Let Ind = V∪{r, g, b, a}. The ABoxA contains

- assertions Edge(v, u) and Edge(u, v) for each
edge (v, u) ∈ E ,

- assertion Col(c) for each c ∈ {r, g, b},
13

- assertions Edge(a, a) and HasCol(a, r).

The part of the canonical model ofK related to
an edge in G is depicted in Figure 3 (the names of
the elements are omitted for brevity). Intuitively,
the individual names r, g and b represent colours,
and the role HasCol is intended to connect a ver-
tex in the graph with a colour. The individual
name a plays an auxiliary role: it guarantees the
count to be at least 3 in every model I of the KB
Kd-count = 〈T ,A〉, that is, I |= qd-count(a∅, 3).

v ua

Col Col
r
Col

g
Col

b
Col

H
a
sC
o
l H

a
sC
o
l

H
asC

ol

Edge

Edge

Edge

Figure 3: Part of Can(Kd-count) related to an edge
(v, u) of the graph G with some matches for the core of
qd-count(Count()) highlighted.

Indeed, there are three matches for the core
of the query to the part of the canonical model
corresponding to the ABox, each of which map-
ping yv and yu to da, yc to dr, and y′c to one of
dr, dg, and db. One of these matches, in particu-
lar, the match maping y′c to dg is highlighted by
light grey lines in the figure. Besides these three,
for each vertex v there is a match for the core of
the query to the canonical model Can(Kd-count)
which maps yv, yu and yc as above, and y′c to the
element connected to dv by HasCol−. In search
of a model with the minimal number of matches
we may identify such elements with r, g and b
(recall that we generally assume UNA in this pa-
per, that is, interpretations of individual names,
such as dr, dg, and db, cannot be identified; see
the discussion after this proof). However, if we
do it without care we may introduce new struc-
tures which agree with the triangular part of the
query, and increase the number of matches, as
highlighted by dark grey lines in the figure.

Using these observations, next we formally
show that G(V , E) has a 3-colouring iff 4 /∈
Cert(qd-count, a∅,Kd-count) (i.e., there is at least
four matches for the core query in every model).

(⇐) Assume first that 4 does not belong to
Cert(qd-count, a∅,Kd-count). Thus there exists a
model I of Kd-count such that I |= qd-count(a∅, 3)
(we know from the observation above that the
count cannot be any number less than 3).

Since ACQs are monotone, it is safe to assume
that for every vertex v ∈ V there exists a single
element d ∈ DI such that (dv, d) in HasColI .

Let us define the following colouring σ : V →
{red, green, blue} of G: for each vertex v ∈ V , we
set

σ(v) = red iff (dv, dr) ∈ HasColI ,
σ(v) = green iff (dv, dg) ∈ HasColI , and
σ(v) = blue iff (dv, db) ∈ HasColI .

We now show that σ is indeed a proper 3-
colouring.

First, we show that σ assigns a colour to each
vertex in V . For the sake of contradiction, assume
that it does not hold. Then there must be a ver-
tex v such that HasColI does not contain any
of (dv, dr), (dv, dg), and (dv, db). Since we know
that there is u ∈ V such that (dv, du) ∈ EdgeI

(recall, that we assume that G does not have iso-
lated vertices), and since ∃Edge v ∃HasCol, it
follows that there is an element d different from
dr, dg, and db, such that (dv, d) ∈ HasColI . But
then also d ∈ ColI since ∃HasCol− v Col, and
we can construct a fourth match h for the core
of qd-count to DI : h(yu) = h(yv) = da, h(yc) = dr
and h(y′c) = d. This contradicts the fact that
I |= qd-count(a∅, 3).

Next we show that σ is indeed a correct colour-
ing. Assume for the sake of contradiction that this
is not the case. Then there is an edge (u, v) ∈ E
such that σ(v) = σ(u). Without loss of generality
let σ(v) = σ(u) = red. From the definition of σ,
it means that the pairs (dv, dr) and (du, dr) be-
long to HasColI . We can then construct a fourth
match h for the core of qd-count in DI : h(yv) = dv,
h(yu) = du, h(yc) = dr, and h(y′c) = dr, which
again contradicts the fact that I |= qd-count(a∅, 3).

We obtain that σ is a 3-colouring as required.

(⇒) Assume that there is a 3-colouring σ of
G. To make sure that 4 /∈ Cert(qd-count, a∅,K),

14

consider an interpretation I defined is as follows:

DI = {dc | c ∈ V ∪ {r, g, b, a}},
cI = dc, for c ∈ V ∪ {r, g, b, a},
ColI = {dr, dg, db};
EdgeI = {(da, da)} ∪

{(dv, du), (du, dv) | (v, u) ∈ E};
HasColI = {(dv, dr) | v ∈ V , σ(v) = red} ∪

{(dv, dg) | v ∈ V , σ(v) = green} ∪
{(dv, db) | v ∈ V , σ(v) = blue}.

A direct verification shows that I is a model of
Kd-count. Next we show that I |= qd-count(a∅, 3),
We know that there are 3 matching for the core
of qd-count in DI which map the variables yv, yu to
da; the variable yc to dr; and the variable y′c to
either dr, or db, or dg. From the definition of ColI

and HasColI , any other match must send yv and
yu to some dv and du such that EdgeI contains
(dv, du), that is, (v, u) is an edge in G. Hence, if
such a forth match exist, then there is an element
d ∈ {dr, dg, db} such that both (dv, d) and (du, d)
are in HasColI , and, therefore, σ(v) = σ(u). But
the last contradicts the fact that σ is a colouring.
Hence, I |= qd-count(a∅, 3) as required. �

Before summarising the results of this section,
we make few observations.

First, Lemma 12 continues to hold if one drops
the UNA. Indeed, to make the reduction work
for the case without the UNA it suffices to guar-
antee that any pair of individual names from
{r, g, b} cannot be interpreted by the same ele-
ment in any model of Kd-count and that a can-
not be interpreted by the same element as any
of v ∈ V . We can do this by extending the
ABox by assertions Red(r), Green(g), Blue(b),
Aux(a), and V ertex(v) for all v ∈ V , as well as
extending the TBox with negative inclusions for
disjointness of the conceptsRed, Green, andBlue
such as ¬Red v Green, and similar inclusions
¬Aux v V ertex, ¬V ertex v Aux.

Second, the proof above makes use of the non-
connectivity of the query qd-count(Count()). It is
an interesting open problem whether the result
holds for connected queries.

The lower bound was shown for DL-Litecore ,
while the upper bound holds for any DL-LiteR

KB. Since DL-LiteR is more expressive than DL-
Litecore , the lemmas above give us the following
complexity result.

Theorem 13. The problem Count-Aggregate
Certain Answers (T , q) is coNP-complete in
data complexity for DL-LiteX TBoxes T with X ∈
{core,R}.

Thus the data complexity of count query eval-
uation rises from P in the relational database case
to coNP-complete for DL-Lite knowledge bases.

5.2. Count Distinct Queries

In this section we show that the data com-
plexity of computing aggregate certain answers
for count distinct queries is the same as for count
queries—the problem is coNP-complete.

We again start with the upper bound. The
proofs of the following two lemmas are very simi-
lar to the proofs of Lemma 10 and Lemma 11, and
thus we only summarise the (very few) differences.

Lemma 14. Let K = 〈T ,A〉 be a DL-LiteR KB
and q(x, Cntd(z)) be a count distinct ACQ. Then
there exists a number ` depending only on q and
T such that if there is a model I0 of K with I0 |=
q(a, n0) for a tuple a of individual names and a
number n0 ≤ |Ind| + |T |, then there is a model
I ′ of K with domain of O(|Ind|`) elements with
I ′ |= q(a, n′) for some number n′ ≤ n0.

The difference between the proof of this lemma
and the proof of Lemma 10 is minor: in this case
we include into D∗ the interpretations of all in-
dividual names from Ind and the images of the
aggregation variable z in I0 under the matches
of the core (but not the images of the existential
variables). This leads to the required bound on
the size of the domain of I ′.

Lemma 15. Let T be a fixed DL-LiteR TBox
and q(x, Cntd(z)) be a fixed count distinct ACQ.
Checking whether n ∈ Cert(q, a, 〈T ,A〉) for an
ABox A, tuple of individual names a, and num-
ber n can be done in coNP.

15

The proof of this lemma goes along the same
lines as the proof of Lemma 11 except that we
bound n by |Ind| + |T | and use Lemma 14 in-
stead of Lemma 10. Similarly to the case of count
queries, the proof does not depend on UNA, so the
result holds if we drop it.

Next we establish the matching lower bound.
The proof of the following lemma is again by a re-
duction from the complement of the 3-colouring
problem. However, the construction is more intri-
cate and requires a separate description.

Lemma 16. There exist a DL-Litecore TBox T
and a Boolean count distinct ACQ q such that
checking whether n ∈ Cert(q, a∅, 〈T ,A〉) for an
ABox A and a number n is coNP-hard.

Proof. Just as in to the proof of Lemma 12 in
the previous section we first define a fixed TBox
and count distinct query, then explain how to con-
struct an ABox on the base of an instance of the
complement of the 3-colouring problem, and fi-
nally show that number 4 is a certain answer if
and only if the instance has no 3-colouring.

Let Edge, Aux, and HasCol be atomic roles.
Fix a DL-Litecore TBox

T = {∃Edge v ∃HasCol},

intended to assign a colour to every vertex. Fix
also a Boolean count distinct ACQ

qd-cntd(Cntd(z)) :- ∃yv, yu, yc, ya
Edge(yv, yu) ∧HasCol(yv, yc) ∧HasCol(yu, yc)

∧ Aux(ys, yu) ∧HasCol(ys, z).

The graphical representation of this query is given
in Figure 4. The triangular part plays a simi-
lar role as the triangular part in the count query
qd-count in Lemma 12.

Given an instance G(V , E) of the complement
of coNP-complete 3-colouring problem, we con-
struct the ABox on its base, as follows.

Consider the set of individual names

Ind = {v, vv, vu, vc, vs, vz | v ∈ V} ∪
{r, g, b, a, av, au, ac}.

Let A contain

yv yu

yc

ys z

H
asC

ol H
as
C
ol

Edge

Aux HasCol

Figure 4: Query qd-cntd(Cntd(z)).

- the assertions Edge(v, u) and Edge(u, v) for
each (v, u) ∈ E ;

- the assertions Aux(v, vu), HasCol(vu, vc),
HasCol(vv, vc), Edge(vv, vu), Aux(vs, v) and
HasCol(vs, vz) for each vertex v;

- the assertions Aux(a, au), HasCol(au, ac),
HasCol(av, ac), Edge(av, au), HasCol(a, r),
HasCol(a, g), and HasCol(a, b).

Figure 5 depicts the part of the canonical
model of K that is related to an edge in G. In-
tuitively, the individual names r, g and b repre-
sent colours, and the role HasCol is intended to
connect vertices in the graph with their colours.
Other individual names play auxiliary roles as fol-
lows. The individual name a guarantees the count
of the images of z to be at least 3 in every model I
of the KB Kd-cntd = 〈T ,A〉, that is, I |= q(a∅, 3)
by means of matches mapping the aggregation
variable z to one of dr, dg, and db, the variable ys
to da, and the variables in the triangular part of
the query to the interpretations of av, au and ac.
In Figure 5 one of these matches (with z mapped
to dr) is highlighted by thin light grey lines on the
left.

Besides these three, for each vertex v there is a
match from the core query to the canonical model
Can(Kd-cntd) which maps z to the anonymous el-
ement connected to dv by HasCol−, ys to dv and
the triangular part to such a part corresponding
to dv (this match is depicted by thick light grey
lines in the figure). Hence, each of these matches
maps z to a separate element, thus increasing the
aggregate value for the canonical model. In search
of a model with the minimal value we may iden-
tify such anonymous elements with dr, dg, and db.
However, if we don’t do it with care, we may intro-
duce new structures which match with the trian-
gular part of the query by interpretations of some

16

g b

a

au

av

ac

r

H
asC

ol

HasCol

HasCol

v u

vu

vv

vc

vs

vz

uu

uv

uc

us

uz

H
a
sC
o
l

vu

H
a
sC
o
l H

a
sC
o
l

A
u
x

E
dge

H
a
sC
ol

Has
Col

A
u
x

H
a
sC
o
l

A
u
x

E
dg
e H

a
sC
olHasCol

A
u
x

H
a
sC
o
l

A
u
x

E
dge

H
a
sC
ol

Has
Col

Edge

Edge

Figure 5: Part of Can(Kd-cntd) related to an edge (v, u) of
G with some matches for the core of qd-cntd highlighted.

adjacent in G vertices v, u and a colour vertex,
and the rest of the query with, for example, the
interpretations of vs and vz. In particular, in this
case the aggregation variable z is mapped to the
interpretation of uz, which increases the aggregate
value. Such a possible match is highlighted in the
figure by thin dark grey lines, assuming that the
white nodes are identified.

Using these observations, it is possible to for-
mally show that G(V , E) has no 3-colouring iff
4 ∈ Cert(q, t∅,K) (i.e., for every model there is
at least four different images of z in the domain
with corresponding matches for the rest of the
query). This proof goes the same lines as the sec-
ond part of the proof of Lemma 12, so we omit it
for brevity. �

This lemma again holds for the case when
UNA is dropped, and the proof can be adopted
in the same way as the proof of Lemma 12.

The following theorem summarises the results
of this section.

Theorem 17. The problem Cntd-Aggregate
Certain Answers (T , q) is coNP-complete in
data complexity for TBoxes T in DL-LiteX with
X ∈ {core,R}.

6. Combined Complexity of
Counting Queries

Although data complexity is arguably the
most used measure of algorithms in database set-

tings, combined complexity has its own value for
understanding fundamental properties of prob-
lems. In this section we study the combined com-
plexity of computing aggregate certain answers.
Formally, let X ∈ {core,R} and f be a counting
aggregation function. Now we are interested in
the following family of problems.

DL-LiteX f-Aggregate
Certain Answers

Input: DL-LiteX KB K, f ACQ q,
tuple a, and number n ∈ N∞.

Question: Does n ∈ Cert(q, a,K)?

6.1. Count Queries

We start again with count queries. Recall
the algorithm to compute the certain answers for
count queries explained in the proof of Lemma 11.
Note that if one takes into consideration the size
of the query and the TBox, then this algorithm
naturally gives a coN2ExpTime upper bound; the
only difference is that in this case the number
of neighbourhoods is of double exponential size
(with respect to the size of q and T), and thus
the model we need to guess is of double exponen-
tial size.

Unfortunately, for the case of DL-LiteR, we
are not able either to improve this upper bound
or to show that this bound is tight. However, we
are able to prove that the problem is coNExpTime-
hard. This lower bound is interesting in its own
right, because it coincides with the complexity of
answering similar queries in other database sce-
narios that feature incomplete information (see,
for example, [25]).

As we see later in this section, the situation
is different for the case of DL-Litecore . Again, we
cannot establish tight bounds, but can improve
the general algorithm on one exponent, to coNEx-
pTime, and show Πp

2-hardness.
We start with the coNExpTime-hardness of

Aggregate Certain Answers for count
queries and DL-LiteR ontologies. This lower
bound is established by a reduction from the com-
plement of the following version of the tiling prob-
lem, that we call here the NExp-tiling problem. Its

17

input is a quadruple (C,H,V , n), where C is a set
of colours, H,V ⊆ C × C are horizontal and ver-
tical adjacency relations on the colours, and n is
a number given in unary; the output is positive
if there exist a tiling of a 2n × 2n square which
use unitary tiles coloured from C in such a way
that each pair of horizontally adjacent tiles sat-
isfies the relation H and each pair of vertically
adjacent tiles satisfies the relation V . This prob-
lem was shown to be NExpTime-complete in [26].

Lemma 18. The decision problem DL-LiteR
Count-Aggregate Certain Answers is
coNExpTime-hard.

Proof. As mentioned above, the coNExpTime-
hardness is established by a reduction from the
complement of the NExp-tiling problem. In what
follows we first explain how to, given an instance
(C,H,V , n) of this problem, construct in polyno-
mial time a DL-LiteR knowledge base Kc-count and
Boolean count query qc-count, and then show that
|C| + 1 /∈ Cert(qc-count, a∅,Kc-count) iff the answer
for the instance is positive.

Roughly speaking, the idea of the construction
is as follows. Each model of Kc-count represents a
possible tiling of the 2n × 2n square, and has at
least p matches for the core query q̄c-count; in turn,
each violation of the adjacent tiles from H or V
increases the number of matches. In this way, the
only possibility for p+1 to be not a certain answer
is the existence of a model that represents a tiling
in which there are no violations.

Let (C,H,V , n) be an instance of the NExp-
tiling problem. We start the construction with
the vocabulary. It consists of atomic roles

- Hn
0 , . . . , H1

0 , Hn
1 , . . . , H1

1 and V n
0 , . . . , V 1

0 ,
V n
1 , . . . , V 1

1 used to identify tile positions in
the square by horizontal and vertical coordi-
nates represented in binary (reverse numeration
n, . . . , 1 of bits is convenient for representation
of such binary numbers and is used consistently
throughout this proof);

- H and V subsuming the roles above;
- Bit0 and Bit1 used to identify the bit values in

the coordinates;

- Bit subsuming the roles above;
- Tile used to connect a position to a particular

colour;

and atomic concepts

- Root to start the construction;
- Zero and One for binary values;
- Colourm for each colour cm in C; and
- Colour subsuming the concepts above.

In what follows we define the set of individ-
ual names Ind, ABox A, TBox T and core query
q̄c-count simultaneously, splitting the description
in conceptual parts. The (possibly nested) sub-
queries of the core query will have form φ(y) =
∃y′ ψ(y,y′), and we assume that variables y are
‘globally’ existential for the superquery, but the
existential variables y′ are ‘local’ for each sub-
query, that is in the overall query they should be
renamed to names fresh for this subquery (recall
that the overall query is Boolean, so all the vari-
ables are existential in it).

Let the set Ind contain

- individual names 0 and 1 as the binary values
for defining the coordinates of the square,

- all the colours cm in C as individual names,

and let the ABox A contain assertions

- Zero(0) and One(1),
- Colour(cm) for each colour cm in C.

Let the core query q̄c-count contain the sub-
query

ψ′() = ∃y0, y1, yc
Zero(y0) ∧One(y1) ∧ Colour(yc).

Note that all the variables in this part of the
query are locally existential. Assuming that the
rest of the core query has a match in some model
of Kc-count, then the overall core query has at least
p matches each of which maps y0 to (the interpre-
tation of) 0; y1 to 1; and yc to one of the colours
cm. Moreover, if a model contains some other
elements in the interpretations of Zero, One or
Colour, then the number of matches is strictly

18

greater that p. Since we want to check whether
there is a model with only p matches, in what fol-
lows we consider only the models which does not
have such other elements.

Let Ind contain individual name

- r as the root of the construction,

and let the ABox A contain assertions

- Root(r),
- Colourm(cm) for each colour cm in C.

Together with the TBox T given next, the indi-
vidual name r generates a tree, each leaf of which
represents a position in the square. For all bi-
nary values i, j = 0, 1 for bits, all n > k ≥ 1,
all n ≥ ` ≥ 1, and all 1 ≤ m ≤ p the TBox T
contains the inclusions

- Root v ∃Hn
i ;

- ∃(Hk+1
i)− v ∃Hk

j ;
- ∃(H1

i)− v ∃V n
j ;

- ∃(V k+1
i)− v ∃V k

j ;
- H`

i v H and V `
i v V ;

- ∃(H`
i)
− v ∃Biti and ∃(V `

i)− v ∃Biti;
- ∃Bit−0 v Zero and ∃Bit−1 v One;
- Biti v Bit;
- ∃(V 1

i)− v ∃Tile;
- ∃Tile− v Colour.

A (part of a) model of Kc-count, satisfying the
aforementioned restrictions is given on the left of
Figure 6. It consists of a tree with r as the root
and H’s and V ’s as labels of edges. If the sub-
script of such a label is 0 then its end has an out-
going edge labelled with Bit0, which by inclusion
∃Bit−0 v Zero and our assumption leads to (the
interpretation of) 0. If the subscript is 1, then
the outgoing edge is labelled with Bit1 and leads
to 1. By this, each leaf in the tree determines a
position in the 2n×2n square, by means of binary
representations of horizontal and vertical coordi-
nates along the branch going to the leaf. Each
leaf is also connected by Tile to one of the tile
colours cm, according to our assumption (these
connections are just sketched).

We continue with the definition of q̄c-count. As
mentioned above, its idea is to capture those

rRoot

0

Zero

c1Colour1 cp Colourp

Bit0

Bit0

Bit1
B
it 0

Bi
t1

Bit0

...

B
it1

...

...
...

...

Bit1

· · · · · ·

. . .

H
n

0

H
n1

H
1 0

H
11

V
n

0

V
n1

V
1

0

V
11

T ile

T ile

1

One

r0

hn

h2

h1

vn

v2

v1

H

...

H
V

...

V

B
it

Bit

Bi
t

Bit

Bit

Bit

Bit

Bit

Bit

B
it

Bit B
it

T ile

T i
le

Figure 6: A model of Kc-count, in which, by means of the
subquery ψ′, all Bit0 lead to 0, all Bit1 lead to 1, and all
Tile lead to one of the colours cm (the ones on the left part
are not determined and just sketched). All the indexes of
roles are optional (e.g., V n1 represents also V). The right
part is auxiliary and required to guarantee that ψ′′ has at
least one match in any model.

tilings that have been placed erroneously. To
achieve this we make use of several subqueries.
For their definition it will be convenient to use
the following subquery for variable yr and tuples
of variables yh = ynh , . . . , y

1
h and yv = ynv , . . . , y

1
v :

φ(yr,yh,yv) =

H(yr, y
n
h) ∧H(ynh , y

n−1
h) ∧ · · · ∧H(y2h, y

1
h) ∧

V (y1h, y
n
v) ∧ V (ynv , y

n−1
v) ∧ · · · ∧ V (y2v , y

1
v).

The subquery φ(yr,yh,yv) matches any branch in
the tree of a model of Kc-count, that is a position
in the 2n × 2n square.

The next step is to relate all those pairs of
leaves that represent horizontally or vertically ad-
jacent positions in the square. In order to do this,
we note that the binary representations of hori-
zontally adjacent positions have the form

(wh · 0 · 1k−1)(wv),
(wh · 1 · 0k−1)(wv),

(4)

where wh is a possibly empty binary word of
length n− k − 1, n > k ≥ 1, wv is a binary word

19

of length n, and parenthesis are used to delimit
the horizontal and vertical coordinates in the rep-
resentation.

Using this property we define the subqueries
ξkh, n > k ≥ 1, which are meant to capture such
horizontally adjacent positions, for tuples of vari-
ables sh = snh, . . . , s

k+1
h and sv = snv , . . . , s

1
v:

ξkh(yh,yv,uh,uv, y0, y1) = ∃yr, sh, sv
φ(yr,yh,yv) ∧ φ(yr,uh,uv) ∧

Bit(ynh , s
n
h) ∧ · · · ∧Bit(yk+1

h , sk+1
h) ∧

Bit(ykh, y0) ∧Bit(yk−1h , y1) ∧ · · · ∧Bit(y1h, y1) ∧
Bit(unh, s

n
h) ∧ · · · ∧Bit(uk+1

h , sk+1
h) ∧

Bit(ukh, y1) ∧Bit(uk−1h , y0) ∧ · · · ∧Bit(u1h, y0) ∧
Bit(ynv , s

n
v) ∧ · · · ∧Bit(y1v , s1v) ∧

Bit(unv , s
n
v) ∧ · · · ∧Bit(u1v, s1v).

The structure of this subquery closely corresponds
to the binary representations (4) of horizontally
adjacent positions—the first n − k − 1 variables
from yh and uh by means of the Bit role represent
an arbitrary but same word wh (matched by sh),
and the rest of these variables represent 0 · 1k−1
and 1 · 0k−1 respectively (as we will see, y0 should
be mapped to 0 and y1 to 1); similarly, the vari-
ables yv and uv represent a word wv (matched by
sv), the vertical component of the positions.

The next step is to define subqueries detecting
horizontally adjacent positions in which the tiles
are not arranged according to H. We do this as
follows. For each pair (cm, c`) ∈ (C × C) \H, that
is an incorrect pair, and each n > k ≥ 1 we define
the query

χkh,(m,`)(y0, y1, y
c
m, y

c
`) = ∃yh,yv,uh,uv

ξkh(yh,yv,uh,uv, y0, y1) ∧
Tile(y1v , y

c
m) ∧ Tile(u1v, yc`).

In this subquery the variables ycm and yc` should
be mapped to the (interpretations of the) corre-
sponding colours cm and c`. Thus, each χkh,(m,`)
asks for a horizontal violation of tiles coloured cm
and c` in the horizontally adjacent positions iden-
tified by ξkh(yh,yv,uh,uv, y0, y1).

Properties, similar to (4) hold for vertically
adjacent positions. Hence, we also define sub-
queries χkv,(m,`) for each vertically incorrect pair of

colours (cm, c`) ∈ (C × C) \ V and each n > k ≥ 1
on the base of ξkv exactly in the same way as the
χkh,(m,`) are defined of the base of the ξkh.

We are now in a position to define the main
subquery of the core query q̄c-count, for the tuple
of variables yc = yc1, . . . , y

c
p:

ψ′′() = ∃y0, y1,yc∧
(cm,c`)∈(C×C)\H

∧
n>k≥1

χkh,(m,`)(y0, y1, y
c
m, y

c
`) ∧∧

(cm,c`)∈(C×C)\V

∧
n>k≥1

χkv,(m,`)(y0, y1, y
c
m, y

c
`) ∧

Zero(y0) ∧One(y1) ∧
Colour1(y

c
1) ∧ · · · ∧ Colourp(ycp).

Finally, the core of query qc-count is

q̄c-count :- ψ′() ∧ ψ′′().

Recall our convention about fresh variable names
in different subqueries—for example, all yh, yv,
uh and uv in different subqueries for incorrect
pairs are different, as well as y0 and y1 are dif-
ferent in ψ′ and ψ′′.

To complete the construction, we need to de-
fine the part of the ABox A which has a match
for ψ′′ in any model (this is needed for ψ′ to play
its role of sending ends of Biti to 0 and 1 respec-
tively and ends of Tile to colours). The set Ind
contains individual names

- r0, h
n, . . . , h1, vn, . . . , v1,

and the ABox A for each i = 0, 1, each n > k ≥ 1,
each n ≥ ` ≥ 1, and each 1 ≤ m ≤ p contains the
assertions

- H(r0, h
n), H(hk+1, hk),

- V (h1, vn), V (vk+1, vk),
- Bit(h`, i), Bit(v`, i),
- Tile(v1, cm).

The graphical representation of the part of a
model corresponding to this part of ABox is given
on the right of Figure 6. It indeed works as ex-
pected: there are exactly p matches for the overall
q̄c-count in any model, all of them mapping ψ′′ to
this part, y0 and y1 from ψ′ to (the interpretations

20

of) 0 and 1 respectively, and yc from ψ′ to one of
c1, . . . , cp.

Having the construction of the KBKc-count and
query qc-count completed, next we formally show
the correctness of the reduction. Using the intu-
ition of the construction, we need to show that
there is a solution to the instance of the NExp-
tiling problem if and only if there is a model I of
Kc-count with no matches from q̄c-count to I, except
those p.

(⇐) Assume that there is no solution of the in-
stance (C,H,V , n) of the NExp-tiling problem,
but yet, for the sake of contradiction, there is
a model I of Kc-count with only those p matches
from q̄c-count to I. Without loss of generality we
assume that I is minimal in the sense that there
is no any proper submodel of I with this property.
Note that I possesses the following properties:

1. the interpretations of relations Zero and One
contain only the interpretations of 0 and 1, re-
spectively;

2. interpretations of each Colourm contains only
the interpretation of the individual name cm,
for cm ∈ C, and the interpretation of Colour
contains all these elements, but nothing else.

Indeed, by the construction of q̄c-count, it is clear
that a violation of any of these properties immedi-
ately results in more matches for this query in I.

Consider the canonical model of Kc-count. As
noted, the part connected to the element dr in
the interpretation of Root (we know there is only
one such element because of the minimality of I)
forms a tree on interpretations of the roles H and
V , each node of which, except the root, has a
Bit-successor and each leaf has a Tile-successor.
We also know that there is a homomorphism from
the canonical model to I, and, since I is minimal,
this homomorphism is surjective. Hence, in I the
ends of Bit0 are (the interpretation of) 0, the ends
of Bit1 are 1, and the ends of Tile are among
colours. We can construct a tiling for a 2n × 2n

square as follows. The image of each branch in
the tree identifies coordinates of a position in the
square in binary, by means of the ends of the Bit-
connections. In this position the tiling has a tile of

the colour cm whose interpretation is connected by
Tile− with the homomorphic image of the leaf of
the branch (this cm is unique since I is minimal).
By the construction, it must be the case that this
is indeed a correct tiling, because any violation
would result in an additional match for one of the
subqueries χkh,(m,`) or χkv,(m,`), which would lead to
more than p matches for the core query q̄c-count in
I, contradicting the assumption.

(⇒) Assume that there is a solution to the in-
stance (C,H,V , n). Consider the model I of
Kc-count which is the image of a homomorphism
from the canonical model mapping

- all ends of Bit0 to the interpretation of 0,
- all ends of Bit1 to the interpretation of 1,
- all ends of Tile for the leaf of a branch in the

tree to the interpretation of the colour of the
tile in the position identified in binary by the
branch, and

- all other elements to themselves.

It follows from the construction of q̄c-count that
no match exists which maps the variables of this
query to some elements in this tree, that is there
are exactly p matches for q̄c-count in I. �

Having the results for count queries over more
expressive DL-LiteR, we proceed to DL-Litecore .

As said in the beginning of this section, in this
case we are able to improve the general algorithm
and establish a coNExpTime upper bound. The
proof is an adaptation of the algorithm in the
proof of Lemma 11. Recall that this proof shows
that there is always a model of double-exponential
size, with respect to all of TBox, query and ABox,
that witnesses that a certain n belongs to the ag-
gregate certain answers of a query. For the case
of DL-Litecore KBs, we are able to show that one
can always find such a model of exponential size.
This is formalised in the following lemma.

Lemma 19. There exists a fixed polynomial P
such that for every DL-Litecore KB over a
set of individual names Ind and count ACQ
q(x, Count()) if there is a model I0 of K with I0 |=
q(a, n0) for a number n0 ≤ (|Ind| + |T |)|q|, then
there is a model I ′ over O(|Ind|P (|q|)) elements with
I ′ |= q(a, n′) for some number n′ ≤ n0.

21

Proof. Let D∗ be all elements of DI0 which are ei-
ther interpretations of the individual names from
Ind or images of variables by matches for the core
of q in DI0 . Consider the interleaving ID∗0 of I0
for D∗.

The proof goes along the same lines as the
proof for Lemma 10, as we construct from ID∗0
a much smaller model by merging elements with
similar neighbourhoods. As a base for the neigh-
bourhood for an element d, we could still consider
all elements connected to d by paths of length
|q| or less. Though, from the properties of DL-
Litecore one can show that it is safe to consider
the equivalence relation which is much more gen-
eral than for DL-LiteR knowledge bases, which
ends up in an exponential increase in the number
of elements that can be merged. This is justified
by the following property.

First, note that since K is a DL-Litecore knowl-
edge base, every element d in in the domain of the
interleaving that is not in D∗ has the following
property: for any atomic role or inverse of a role
R there exists at most one element d′ with (d, d′)
in the interpretation of R.

Consider now the body φ(x,y) of q, and let
d be an element in the domain of the interleav-
ing outside D∗. For ease of explanation assume
that q is Boolean (i.e., x is empty) and the |q|-
neighbourhoodN|q|(d) of d contains only elements
outside D∗. Further, assume that there is a match
h for q in N|q|(d) such that d is in the image of h,
say, d = h(y) for some y from y. By the proper-
ties of canonical models that we have mentioned
above, it must be the case that all matches for
q in N|q|(d) mapping y to d (including h) come
from automorphisms in q, that is, are such that
the subinterpretations of N|q|(d) induced by them
are exactly the same.

Using the property above, we consider the
following notion instead of the notion of k-
neighbourhood in Lemma 10. A subquery q′ of
the core q̄ of q is a CQ whose body is a conjunc-
tion of (not necessary all) atoms in the body of q̄.
Given an element d in the domain of ID∗0 which is
not in D∗, the q-neighbourhood N ∗q (d) of d is the
set of all domain elements d′ such that there exist
d0, . . . , di, i ≤ k, with

- d0 = d, di = d′,
- dj /∈ D∗ for all j, 0 ≤ j < i,
- there exists a positive role Rj (that is, an

atomic role or its inverse) such that (dj, dj+1)
is in the interpretation of Rj under ID∗0 for all
0 ≤ j < i,

- there is a match for a subquery q′ of q̄ and a in
ID∗0 that has all Rj(dj, dj+1) above in the image.

Having this definition, the rest of the proof
is the same as the proof of Lemma 10. In par-
ticular, the root of N ∗q (d) is the element dw of
the canonical model such that f ′(dw) ∈ N ∗q (d)
and w is a prefix of w′ for any element dw′ with
f ′(dw′) ∈ N ∗q (d) (recall that f ′ is the function
from the definition of the interleaving given in
(3)). Then, exactly the same as before, we define
the following equivalence relation on elements in
the domain of ID∗0 which are not in D∗: d ∼qD∗ d′
for d and d′ with roots dw and d′w′ if and only if

1. for any word w1

(a) f ′(dww1) ∈ Nk(d) iff f ′(dw′w1) ∈ Nk(d′),
(b) f ′(dww1) ∈ Nk(d) ∩ D∗ iff f ′(dw′w1) ∈
Nk(d′) ∩ D∗;

2. |w| ≡ |w′| (mod 2k + 1), that is, |w| and |w′|
are congruent modulo 2k + 1.

Once again the model obtained from ID∗0 by
identifying the elements d, d′ such that d ∼qD∗ d′
does not create new matches for the core and a in
the resulting model I0. Moreover, from the con-
struction of q-neighbourhoods the model I0 has
O(D|p(|q|)) underlying elements. This finishes the
proof of the lemma. �

Using this lemma it is now straightforward to
show our upper bound. The idea of the algorithm,
once again, is to guess such an instance I0, and
show that the number of matches for q̄ and a in
I0 corresponds to the desired number.

Lemma 20. The problem DL-Litecore Count-
Aggregate Certain Answers is in coNExp-
Time.

The coNExpTime reduction shown in
Lemma 18 uses role inclusions in the TBox,

22

that is, it is applicable only to DL-LiteR, but not
to DL-Litecore . We can show a Πp

2 lower bound
using a reduction that is very similar to that of
Lemma 24 in the following section. Thus, for
space reasons we omit the formal proof of this
result. We have the summarizing theorem.

Theorem 21.
(1) The problem DL-Litecore Count-Aggregate
Certain Answers is in coNExpTime and Πp

2-
hard.
(2) The problem DL-LiteR Count-Aggregate
Certain Answers is in coN2ExpTime and
coNExpTime-hard.

6.2. Count Distinct Queries

In Section 5 we adapt the algorithm from
Lemma 11 on count queries to an algorithm in
Lemma 15 on count distinct queries. This al-
gorithm naturally gives us a coN2ExpTime up-
per bound for the combined complexity of count
distinct query answering. Similarly to the count
queries we can neither improve this bound nor
show that it is tight. However, again, we
show coNExpTime-hardness of this problem for
DL-LiteR-ontologies. In the case of DL-Litecore

the situation is again similar to count case: we
can improve, in exactly the same way, the algo-
rithm by one exponent to coNExpTime, and show
Πp

2 hardness of the problem.
Let us begin with the general case for

DL-LiteR knowledge bases. We use a reduction
similar to the one in the proof of Lemma 18.

Lemma 22. The decision problem DL-LiteR
Cntd-Aggregate Certain Answers is
coNExpTime-hard.

Proof. As mentioned above, the coNExp-
Time-hardness is established by a reduction from
the complement of the NExp-tiling problem. In
what follows, first we explain how to, given
an instance (C,H,V , n) of this problem, con-
struct in polynomial time a DL-LiteR knowledge
base KRc-cntd and Boolean count distinct aggregate
query qRc-cntd; and then we show that p + 3 /∈
Cert(qRc-cntd, a∅,KRc-cntd) for the empty tuple a∅ of

individual names and p = |C| iff the answer to the
instance is positive.

The underlying idea of the reduction is the
same as in the proof of Lemma 18. However, this
proof is much more technical, since dealing with
count distinct instead of count queries creates a
series of technical complications.

More precisely, recall that in the proof of
Lemma 18 we built a knowledge base such that
some of its models represent different possibilities
of tiling the 2n× 2n square. The knowledge base,
and in particular the ABox, was constructed in a
way that its models contain (a) a tree identifying
tile colours in the positions in the square and (b)
a linear structure, which guarantees that every
model has at least p matches for the core query
(see Figure 6). The query consisted of several dis-
connected subqueries, which look for (a) models
which are not tilings, that is, for example, mod-
els in which some positions in the square are not
defined, or tile colours are not assigned to some
positions, and (b) incorrect tilings, that is those
that have violations of horizontally or vertically
adjacent tiles from H and V . By this, a model
representing a tiling which is correct has exactly
p matches for the core query, and otherwise all
the models have at least p+ 1 matches.

The main technical difficulty of this reduction
is that all conjuncts in the count distinct query
qRc-cntd(z) have to be connected to the single ag-
gregation variable z which accomplishes all the
tasks above.

Let (C,H,V , n) be an instance of the NExp-
tiling problem. The vocabulary of KRc-cntd
slightly extends the vocabulary of Kc-count from
Lemma 18: it contains atomic roles H`

i and V `
i

for i = 1, 2 and n ≥ ` ≥ 1; H and V ; Bit0 and
Bit1; Bit; and Tile; as well as atomic concepts
Root; Zero and One; Colourm for 1 ≤ m ≤ p;
and Colour, with the same intended meaning as
in that proof, and new atomic roles

- Aux to connect subqueries,
- HV which subsumes H and V , and
- TileBit which subsumes Tile and Bit.

The last two roles are required, because some
parts of the query need to match conceptually

23

different parts of models. We will see it in more
detail later.

In what follows we show how to construct the
TBox, query, and ABox. We do it in this partic-
ular order, because the first two have minor dif-
ferences with the construction in Lemma 18 and
can be seen as a basis for understanding the con-
struction, but the last one is more complicated.

So, we start the construction with the TBox
T . It is almost the same as the TBox in the proof
of Lemma 18. We recall the common part here
for completeness. For each i, j = 0, 1, each n >
k ≥ 1, each n ≥ ` ≥ 1, and each 1 ≤ m ≤ p the
TBox T contains the inclusions

- Root v ∃Hn
i ;

- ∃(Hk+1
i)− v ∃Hk

j ;
- ∃(H1

i)− v ∃V n
j ;

- ∃(V k+1
i)− v ∃V k

j ;
- H`

i v H and V `
i v V ;

- ∃(H`
i)
− v ∃Biti and ∃(V `

i)− v ∃Biti;
- ∃Bit−0 v Zero and ∃Bit−1 v One;
- Biti v Bit;
- ∃(V 1

i)− v ∃Tile;
- ∃Tile− v Colour.

In addition, we extend T with

- inclusions Tile v TileBit and Bit v TileBit;
- inclusions H v HV and V v HV ;
- negative inclusions stating that Colour1, . . .,
Colourm, Zero and One are pairwise disjoint;

- negative inclusions stating that Colour is dis-
joint from Zero and One.

The positive inclusions are already announced
above. The negative inclusions guarantee, that
each colour element is ‘coloured’ in only one
colour, that a tiling does not put binary numbers
instead of tiles in square positions and so on.

We continue with the query qRc-cntd(z) and do it
in the same way as in Lemma 18. In particular, we
split it into subqueries, and adopt the convention
on ‘local’ (listed after ∃ before the body of sub-
query) and ‘global’ (listed as parameters of sub-
queries) existential variables in these subqueries—
the first ones should be renamed to fresh names
when combining the subqueries.

Similar to qc-count, the query qRc-cntd consists
of two subqueries, ψ′ and ψ′′, fulfilling the same
tasks. However, it is more convenient to start the
definition with the second of them.

The base building block of the query is exactly
the same as in Lemma 18. It is the following
subquery, for variable yr and tuples of variables
yh = ynh , . . . , y

1
h and yv = ynv , . . . , y

1
v :

φ(yr,yh,yv) =

H(yr, y
n
h) ∧H(ynh , y

n−1
h) ∧ · · · ∧H(y2h, y

1
h) ∧

V (y1h, y
n
v) ∧ V (ynv , y

n−1
v) ∧ · · · ∧ V (y2v , y

1
v).

Its intention is to match any branch in the tree of
a model, that is a position in the 2n × 2n square.

The next level of queries is again very similar
to the construction in Lemma 18. The only dif-
ference in the following subqueries ξkh, n > k ≥ 1,
capturing horizontally adjacent positions on the
base of representations (4), is that yr is ‘global’.
Formally, for n > k ≥ 1 and tuples of variables
sh = snh, . . . , s

k+1
h and sv = snv , . . . , s

1
v,

ξkh(yr,yh,yv,uh,uv, y0, y1) = ∃sh, sv
φ(yr,yh,yv) ∧ φ(yr,uh,uv) ∧

Bit(ynh , s
n
h) ∧ · · · ∧Bit(yk+1

h , sk+1
h) ∧

Bit(ykh, y0) ∧Bit(yk−1h , y1) ∧ · · · ∧Bit(y1h, y1) ∧
Bit(unh, s

n
h) ∧ · · · ∧Bit(uk+1

h , sk+1
h) ∧

Bit(ukh, y1) ∧Bit(uk−1h , y0) ∧ · · · ∧Bit(u1h, y0) ∧
Bit(ynv , s

n
v) ∧ · · · ∧Bit(y1v , s1v) ∧

Bit(unv , s
n
v) ∧ · · · ∧Bit(u1v, s1v).

Similar modification is done to the subqueries
matching violations from H. In particular, for
each pair (cm, c`) ∈ (C×C)\H, that is an incorrect
pair of colours, and each n > k ≥ 1 we define the
query

χkh,(m,`)(yaux, y0, y1, y
c
m, y

c
`) = ∃yr,yh,yv,uh,uv

Aux(yaux, yr) ∧ ξkh(yr,yh,yv,uh,uv, y0, y1) ∧
Tile(y1v , y

c
m) ∧ Tile(u1v, yc`).

Note that here we use a new ‘global’ variable yaux
to join by role Aux the roots yr of all such sub-
queries, as we see below.

24

As before, we define subqueries χkv,(m,`) for

each vertically incorrect pair of colours (cm, c`) ∈
(C × C) \ V and each n > k ≥ 1 on the base of ξkv
exactly in the same way as χkh,(m,`).

We are now in a position to define the main
subquery of the core query q̄Rc-cntd(z), for the tuple
of variables yc = yc1, . . . , y

c
p:

ψ′′(yaux) = ∃y0, y1,yc∧
(cm,c`)∈(C×C)\H

∧
n>k≥1

χkh,(m,`)(yaux, y0, y1, y
c
m, y

c
`) ∧∧

(cm,c`)∈(C×C)\V

∧
n>k≥1

χkv,(m,`)(yaux, y0, y1, y
c
m, y

c
`) ∧

Zero(y0) ∧One(y1) ∧
Colour1(y

c
1) ∧ · · · ∧ Colourp(ycp).

Finally, the core of the query qRc-cntd(z) is

q̄Rc-cntd(z) :- ∃yaux ψ′(z, yaux) ∧ ψ′′(yaux),

where for tuples of variables yh = ynh , . . . , y
1
h and

yv = ynv , . . . , y
1
v ,

ψ′(z, yaux) = ∃yh,yv
H(yaux, y

n
h) ∧H(ynh , y

n−1
h) ∧ · · · ∧H(y2h, y

1
h) ∧

HV (y1h, y
n
v) ∧HV (ynv , y

n−1
v) ∧ · · · ∧HV (y2v , y

1
v) ∧

TileBit(y1v , z).

The subquery ψ′ is similar to φ, except that it
matches both of the roles H and V in the second
half (by means of the role HV subsuming both
H and V), and requires TileBit in the end. As
we see later, even if ψ′ has quite a different form
from the one in Lemma 18, it still accomplishes
the same task to guarantee that each branch is
indeed a binary representation of a position in the
square and has an assigned tile colour.

While the query and TBox are almost the
same as in the previous proof, we need to adapt
the ABox considerably.

We separate the definition into two conceptual
parts. The first part is required to guarantee that
every model has at least p + 2 witnesses of the
aggregate variable, which are (the interpretations
of) 0, 1, and the colours, and that every model
with just those witnesses must represent a tiling,

in the same way as in Lemma 18. The second
part increases the number of witnesses for z in
each tiling violating H or V . So, overall, there is
a model with only p + 2 witnesses if and only if
there is a correct tiling.

Part 1. We start this part with assertions identi-
fying binary constants and colours. Let Ind con-
tain

- individual names 0 and 1 for binary coordi-
nates,

- all the colours cm in C as individual names,

and let the ABox A contain assertions

- Zero(0) and One(1),
- Colour(cm) and Colourm(cm) for each colour
cm in C.

Next we guarantee that the interpretations of
these individual names witness the aggregate vari-
able z, so in all potential models with just p + 2
witnesses all other witnessing elements are iden-
tified with these. For example, leaves in the po-
sition tree should be indeed colours. The set Ind
contains individual names

- r0, h
n, . . . , h1, vn, . . . , v1,

- raux, h
n
aux, . . . , h

1
aux, v

n
aux, . . . , v

1
aux,

and the ABox A for each i = 0, 1, each n > k ≥ 1,
each n ≥ ` ≥ 1, and each 1 ≤ m ≤ p contains the
assertions

- H(r0, h
n), H(hk+1, hk),

- V (h1, vn), V (vk+1, vk),
- Bit(h`, i), Bit(v`, i),
- Tile(v1, cm),
- Aux(raux, r0),
- H(raux, h

n
aux), H(hk+1

aux , h
k
aux),

- V (h1aux, v
n
aux), V (vk+1

aux , v
k
aux),

- TileBit(v1aux, cm),
- TileBit(v1aux, 0), and TileBit(v1aux, 1).

This part of ABox indeed performs its task—all
subqueries of ψ′′ are mapped to (the part of the
model corresponding to) the assertions of the first
five items, all atoms of ψ′ but last mapped to
the next two, but this last atom of ψ′, that is

25

TileBit(y1v , z) has exactly p + 2 options, map-
ping z to either binary values or colours. Note
that here we use the fact that by the TBox
TileBit matches both Tile and Bit, as well as
HV matches both H and V .

Next step is to generate a tree of positions,
same as in Lemma 18. The set Ind contains

- the root individual name r,

and the ABox A contains assertion

- Root(r).

In the canonical model the Colour-leaves of
this tree are anonymous elements. However, we
want them to be identified with colours. To this
end, we enforce them to match the aggregate vari-
able z, by this guaranteeing that in a potential
model with only p + 2 witnesses they are identi-
fied with the (interpretations of) the colours (note
that they cannot be identified with 0 or 1 because
Colour is disjoint with Zero and One). In fact,
for each leaf the subquery ψ′ is already matched
by the branch in the tree ending with this leaf,
and, moreover, all the atoms of the subquery ψ′′,
except Aux, are matched by the interpretation of
the part of the ABox on hk and vk, constructed
above. So we just need to connect these two parts
by the role Aux. The ABox A contains assertion

- Aux(r, r0).

The last thing left in Part 1 is to guarantee
that Zero-ends of Bit0 are indeed (the interpeta-
tion of) 0 and One-ends of Bit1 are 1 in all the
intermediate nodes of the tree, that is that each
branch indeed represents a position in the square.
We can do it in the same way as for colours, by
enforcing them to be witnesses of z. It guaran-
tees that in a model with p + 2 witnesses these
ends are identified with appropriate binary con-
stants (note that, due to the disjointness inclu-
sions, identifications with colours and wrong con-
stants are not possible). In fact, the Bit’s starting
in the ends of V 1

i , that is, the last level of the tree,
already have such matches, almost the same as for
colours. However, for other levels we need an ex-
tra construction. The set Ind contains individual
names

- r2n, . . . , r1,

and the ABox A for each 2n > k ≥ 1 and each
2n ≥ ` ≥ 1 contains assertions

- H(rk+1, rk), H(r1, r),
- Aux(r`, r0).

These assertions indeed perform their task—the
ψ′′ subquery is matched in the same way as for
colours, the lower part of ψ′ is matched by the
branch of the tree, but the rest of ψ′, depending on
the level checked, is matched by the interpretation
of this extra ABox.

Part 2. The aim of this part of ABox is to check
that each model representing a tiling which is in-
correct, that is, violates either H or V , has an
element witnessing z, different from the interpre-
tations of colours and binary constants. The num-
ber of assertions in this part is quite large, so we
do not write all of them explicitly, but instead
describe in detail how to construct them.

Each horizontal violation (cm, c`) /∈ H in ad-
jacent square positions identified by a k-bit in
the binary representation is witnessed by the sub-
query χkh,(m,`)(yaux, y0, y1, y

c
m, y

c
`). This did not re-

quire more construction in the proof of Lemma
18, because this subquery was essentially discon-
nected from the rest of the query. However, now
it is not the case, because yaux is a common vari-
able with other such subqueries. To this end, for
each χkh,(m,`) we may construct ABox assertions
which match all other such subqueries, as well as
the subquery ψ′. So, the element witnessing z
from ψ′ increases the aggregation value if there is
a violation detected by χkh,(m,`) in the main tree of
positions. In fact, such an independent construc-
tion for each χkh,(m,`) is not necessary, and most of
assertions can be shared among them.

We start with the ABox on fresh individ-
ual names isomorphic to the body of the query
qRc-cntd(z). In particular, let Ind contain a fresh
individual name ey for each variable y (including
an individual name ez for the aggregation variable
z), and A contain the assertion R(ey, ey′) for each
binary atom R(y, y′), and the assertion A(ey) for
each unary atom A(y). Next we do several modi-
fications in it.

26

1. Replace in all the assertions the individual
names ey0 and ey1 , that is the names corre-
sponding to variables for binary values, with
0 and 1, accordingly. Also replace the indi-
vidual names eycm , corresponding to the colour
variables, with the colours cm.

2. Remove the individual name eyaux , that corre-
sponds to the common variable yaux of all the
subqueries χ and φ′, together with all asser-
tions with this name.

3. For each subquery χkh,(m,`) (or, similarly,

χkv,(m,`)), detecting horizontal (or vertical) vi-
olation, introduce a fresh individual name e in
Ind and add to A the assertions

- Aux(e, eyr), where yr is the root variable of
χkh,(m,`),

- Aux(e, ey′r), for the root variable y′r of each
χk
′

h,(m′,`′) and each χk
′

v,(m′,`′) different from

χkh,(m,`),

- H(e, eynh), where ynh is the first ‘local’ exis-
tential variable of ψ′.

This modification essentially replaces the individ-
ual name for the common variable yaux of the
query with many copies, each of which corre-
sponding to one of the χ subqueries. Each such
copy is connected to the parts of the ABox match-
ing all the subqueries of q̄Rc-cntd(z) except the χ cor-
responding to this copy. However, it is connected
by Aux to the main tree, so if there is a match of
χ in this tree, then the overall query matches as
well, that is z is witnessed by ez. This happens
when there is a violation from H or V witnessed
by this particular χ.

So overall, by this construction there is a
model of the knowledge base in which all Colour-
leaves of the tree identified with colours cm, all
Zero and One nodes identified with 0 and 1 re-
spectively, and there is no match mapping z to ez
if and only if there is a tiling of the square without
violatingH or V . The formal proof of the fact that
p+3 ∈ Cert(qRc-cntd, a∅,KRc-cntd) if and only if there
is a correct tiling for the instance (C,H,V , n) of
the NExp-tiling problem, can be done in exactly
the same way as such a proof in Lemma 18. We
omit it for brevity. �

For DL-LiteR ontologies the combined com-
plexity of count distinct problem is between coN-
ExpTime and coN2ExpTime, the same as for count
queries. Regarding DL-Litecore , the situation is
again very similar to count case. First, we have
the following lemma.

Lemma 23. The problem DL-Litecore Cntd-
Aggregate Certain Answers is in coNExp-
Time.

The proof of this lemma is exactly the same as
the proof of Lemma 20, so we omit it for brevity.

The last problem in this paper is the lower
bound for the combined complexity of the count
distinct problem for the DL-Litecore case.

We do it by reduction from ∀∃ 3-SAT, the
problem of verifying, given a formula in 3-CNF
with variables partitioned into tuples u and v,
whether it is true that for every truth assignment
of the variables u, there exists a truth assignment
of the variables v so that the formula is satisfied
with the overall assignment. This problem is well
known to be Πp

2-complete [24].
The proof of the following lemma recalls the

proof of Lemma 16, in the sense that the query
and knowledge base are carefully designed to have
possible matches of two different types, and re-
ducing the number of matches for the aggregate
variable for the first type may cause increasing
this number for the second.

Lemma 24. The problem DL-Litecore Cntd-
Aggregate Certain Answers is Πp

2-hard.

Proof. As it is said above, the proof is by reduc-
tion from ∀∃ 3-SAT. To this end, first we show
how to, given a formula ψ of the described form,
construct in polynomial time a DL-Litecore knowl-
edge base Kc-cntd = 〈T ,A〉 and a Boolean count
distinct ACQ qc-cntd, and then prove that 3 ∈
Cert(qc-cntd, a∅,Kc-cntd) (where a∅ is the empty tu-
ple), if and only if ψ is valid.

Let ψ be a formula of the form

∀u∃v
∧

1≤k≤`

ξk,

27

where each ξk (1 ≤ k ≤ `) is a clause (i.e., dis-
junction) of exactly three literals (i.e., variables
from u ∪ v or their negations). We denote the
variables of each ξk by w1

k, w
2
k and w3

k. Let also
u = u1, . . . , un and v = v1, . . . , vm. Without loss
of generality we assume that every variable ap-
pears at least in one clause.

We start the description of the construction
with the vocabulary. For every clause ξk it con-
tains an atomic role Clausek. Each clause ξk
makes use of three variables, and to indicate them
the vocabulary contains atomic concepts CV ar1k,
CV ar2k and CV ar3k. To indicate all the universally
qualified variables u it contains an atomic con-
cept UV ar. To connect the (elements represent-
ing the) variables to their values the vocabulary
contains an atomic role V al. Finally, to specify
to validating assignments of the three variables of
each clause, the vocabulary contains atomic roles
Asn1, Asn2, and Asn3.

Let us begin with defining the Boolean count
distinct ACQ as follows:

qc-cntd(Cntd(z)) :- ∃yψ,yξ,yvalu ,yvalv ,yu,yv φ,

where

- yψ corresponds to the overall ψ,
- yξ = yξ1 , . . . , yξ` correspond to the clauses ξk,
- yvalu = yvalu1

, . . . , yvalun and yvalv = yvalv1
, . . . , yvalvm

correspond to values of the variables of ψ,
- yu = yu1 , . . . , yun and yv = yv1 , . . . , yvm corre-

spond to these variables,

and φ is the following conjunction:

V al(yψ, z) ∧
∧

1≤k≤`

(
Clausek(yψ, yξk) ∧

Asn1(yξk , y
val
w1

k
)∧Asn2(yξk , y

val
w2

k
)∧Asn3(yξk , y

val
w3

k
)∧

CV ar1k(yw1
k
) ∧ CV ar2k(yw2

k
) ∧ CV ar3k(yw3

k
)

)
∧

V al(yu1 , y
val
u1

) ∧ · · · ∧ V al(yun , yvalun) ∧
V al(yv1 , y

val
v1

) ∧ · · · ∧ V al(yvm , yvalvm).

The graphical representation of this query is
given in Figure 7. The concepts CV ar and ends of
roles Asn depend on ψ, so they are just sketched.

Note that the query mentions the role V al in
two different positions, which allows to have two
different types of matches in the models of the
knowledge base, as previously mentioned.

z

yψ

yξ1 · · ·

· · ·

yξ`

yvalu1
yvalun

yvalv1 yvalvm

yu1
yun

yv1 yvm
· · · · · ·

CV ar11 CV ar21 CV ar31 · · · CV ar1` CV ar2` CV ar3`
V
a
l

Clause1 Cla
use

`

A
sn

1

A
sn

2

A
sn

3

A
sn

1

A
sn

2

A
sn

3

V
a
l

V
a
l V

a
l

V
a
l

Figure 7: Query qc-cntd(Cntd(z)). The ends of Asn1, . . .,
Asn3 starting at each yξk , are those of yvalui

and yvalvj which
correspond to the variables in ξk; and those of yui and yvj
are labelled with CV ar1k, . . ., CV ar3k which correspond to
the variables in ξk.

We continue with defining the knowledge base
Kc-cntd = 〈T ,A〉, splitting the description in two
conceptual parts. Essentially, the first part is re-
sponsible for assignment values to the variables u,
and the second one for checking whether all such
assignments lead to a validation of the existen-
tial part of ψ. In fact, only the second part will
depend on ψ.

The subset of Ind corresponding to the first
part contains

- individual names true and false, representing
the Boolean values,

- all the variables in u and v of ψ as individual
names,

- individual names aw, avalw , aξ, and aψ, playing
auxiliary roles similar to the roles of names a
in Lemma 16.

The ABox of the first part of the KB contains the
assertions

- CV ar1k(aw), . . . , CV ar3k(aw) for all clauses ξk;
- V al(aw, a

val
w);

- Asn1(aξ, a
val
w), . . . , Asn3(aξ, a

val
w);

- Clausek(aψ, aξ) for all clauses ξk;

28

- V al(aψ, true), V al(aψ, false);
- Clausek(ui, aξ) for all clauses ξk and all ui;
- UV ar(ui) for all variables ui;
- V al(vj, true), V al(vj, false) for all vj.

Having the first part of ABox defined, consider
the TBox T of Kc-cntd. It consists of the single
inclusion

UV ar v ∃V al.

The aim of this inclusion is to assign some value
(either true or false) to each variable ui as we
will see next.

The canonical model of this part of Kc-cntd is
depicted in the upper half of Figure 8. Note that
the interpretations of the individual names true
and false witness the aggregate variable already
by the ABox. The justifying matches for q̄c-cntd
map yψ to aψ, all yξk to aξ, all yvalui

and yvalvj
to

avalw , and, finally, yui and yvj to aw. The one for
true is highlighted in the figure by thin light grey
lines. Hence, 2 ∈ Cert(qc-cntd, a∅,Kc-cntd). Besides
these two, for each variable ui there is a match
for q̄c-cntd in the canonical model which maps the
aggregate variable z to the anonymous element
connected to (the interpretation of) ui by V al−,
yψ to ui and all other variables in the same way
as the two matches above. Such a match for u1 is
highlighted by thick light grey lines in the figure.
In search of a model with the minimal number of
witnesses for z, one needs to identify these anony-
mous elements with the iterpretations of true and
false. However, such identifications may lead to
matches for the second part of the ABox which
we describe next.

Given a clause ξk with variables w1
k, w

2
k, and

w3
k, let σ1

k, . . . , σ
7
k be all the assignments of these

variables which satisfy ξk. The subset of Ind cor-
responding to the second part of the ABox A con-
tains

- all satisfying assignments σpk, 1 ≤ p ≤ 7, of all
clauses ξk as individual names,

- auxiliary individual names bψ and bz.

The second part of ABox contains the assertions

- CV ar1k(w
1
k), . . . , CV ar

3
k(w

3
k) for all clauses ξk

with variables w1
k, . . . , w

3
k;

aψ

aξ
avalw

aw

CV ar1,2,31,...,`

u1
un v1 vm

· · · · · ·

true false

CV ar1,2,31 · · · CV ar1,2,3`

V al
Asn1,2,3

C
la
us
e 1,

...
,`

V
al

V al

C
la
u
se

1
,.
..
,`

C
lau
se

1
,...,`

V a
l

V alV
a
l V

al

V
al

V
al

σ1
1

σ7
1

...

σ1
`

σ7
`

...

bz

· · ·

A
sn

1

A
sn

2

As
n3

A
sn

1

A
sn

2

Asn
3

Cla
use`Clause1

Clause`

V
a
l

bψ

A
sn

1

Asn
2

Asn3

Clause1

A
sn
1 As

n2

Asn
3

Figure 8: Canonical model of Kc-cntd. The ends of Asn1,
. . ., Asn3 starting at each σpk, are the Boolean values of the
variables in ξk under σpk as assignment; and those of ui and
vj are labelled with CV ar1k, . . ., CV ar3k which correspond
to the variables in ξk.

- Asn1(σ
p
k, σ

p
k(w

1
k)), . . . , Asn3(σ

p
k, σ

p
k(w

3
k)) for all

satisfying assignments σpk of all clauses ξk (here
σpk(w

i
k) as the first argument is an individual

name, but σpk(w
i
k) is one of the individual names

true or false which is the value of σpk as assign-
ment on wik);

- Clausek(bψ, σ
p
k) for all satisfying assignments

σpk of all clauses ξk;
- V al(bψ, bz).

The second part of A is depicted in the lower
half of Figure 8. Note that it substantially de-
pends on ψ, so some pieces are just sketched,
but described in the caption. This part serves
the following aim. As said above, in search of
a model with the minimal number of witnesses
of the aggregation variable z one needs to iden-
tify the anonymous elements corresponding to ui
with either true or false; however, such identi-
fication may lead to a match for the query with
bz witnessing the aggregation variable z, by this
increasing the aggregation value. Such a possible
match is highlighted in the figure by thin dark
grey lines. Next we will see, that a possibility
to find an identification which does not lead to a

29

Data complexity Combined complexity
Count Cntd Count Cntd

DL-Litecore coNP-complete coNP-complete Πp
2-hard and in coNExp Πp

2-hard and in coNExp
DL-LiteR coNP-complete coNP-complete coNExp-hard and in coN2Exp coNExp-hard and in coN2Exp

Table 1: A summary of the complexity results.

match is equivalent to invalidation of ψ.
Formally, we need to show that 3 ∈

Cert(qc-cntd, a∅,Kc-cntd) (i.e., that every model of
Kc-cntd, which connects each ui to either true or
false by V al, has a match with bz witnessing z)
holds for the empty tuple a∅ if and only if ψ is
valid.

(⇐) Let for every truth assignment of the vari-
ables u there exist a truth assignment of the vari-
ables v so that each ξk is satisfied with the over-
all assignment, yet assume for the sake of con-
tradiction that there is a model I of Kc-cntd such
that true and false are the only witnesses for the
varibale z in the matches from q̄ to I.

From the construction of Kc-cntd, for each pair
(dui , d) in V alI , where dui is the interpretation of
ui, it must be the case that d is either true or
false (otherwise it violates the observation pre-
viously mentioned, since this would give an extra
witness for the variable z). Without loss of gener-
ality let each ui have only one such d, since drop-
ping extra V al-connections would not make I to
be not a model. Construct the following valuation
σu for the variables u: for each ui, let

σu(ui) =

{
true, if (dui , dtrue) ∈ V alI , and
false, otherwise,

where dtrue is the interpretation of true. From
the original assumption, there must be an assign-
ment σv of the variables in v such that σu ∪ σv
satisfies φ. We show that q̄c-cntd(bz) must hold in
I. To that extent, construct the following map-
ping h from the variables of q to elements in I: h
maps the variables yui and yvj to the interpreta-
tions of ui and vj respectively, as well as each of
yvalui

and yvalvj
to dtrue if σu ∪ σv assigns the value

true to the corresponding variable ui or vj, or to
the interpretation of false otherwise. Moreover,
for each clause ξk, it maps each variable yξk to

the interpretation of the individual name σpk such
that the p-th satisfying assignment for ξk is the
one witnessed by σu ∪ σv. Finally, it maps yψ to
the interpretation of bψ and z to the interpreta-
tion of bz. It is a matter of technicality to check
that h is a match for q̄c-cntd in I, that is the inter-
pretation of bz is the third image of z in I. This
violates our original assumption.

(⇒) Let 3 ∈ Cert(qc-cntd, a∅,Kc-cntd), but assume
for the sake of contradiction that there is a truth
assignment σu for the variables u such that φ is
not satisfiable under any assignment for the vari-
ables v.

Construct the following model I for K.

- The interpretation of any individual name a is
an element da.

- The interpretation of all atomic roles and con-
cepts except for V al corresponds precisely to
the ABox A. That is, for each atomic role R
different from V al, we have that (da, db) ∈ RI
if and only if R(a, b) is an assertion in A, and
likewise for all the atomic concepts.

- For each ui, the pair (dui , dσu(ui)) belongs to
V alI . Here we assume that ui is an individual
name in the first argument, but a variable in
the second; also, σu(ui) valuates to one of the
individual names true or false.

It is a technicality to check that I is indeed
a model of Kc-cntd. From the assumption that
3 ∈ Cert(qc-cntd, a∅,Kc-cntd) and the construction
of I, it must be the case that q̄c-cntd(bz) holds in
I. It follows that there must be a match h for
qc-cntd in I such that the mapping h sends the
variable z to the interpretation of bz. We can,
however, determine more properties of h from the
construction of I and Kc-cntd. In fact, it follows
that each variable yui , is indeed mapped by h to
(the interpretation of) ui in I, and that yvalui

is

30

mapped to the corresponding valuation of ui ac-
cording to σu. It follows from the construction
of φ that the following assignment σv of the vari-
ables v is such that σu∪σv satisfies φ: σv assigns
the value true to vj if the variable yvj is mapped
to (the interpretation of) true, according to h,
and the value false otherwise. This contradicts
the original assumption and completes the proof
of the lemma. �

Summing up, we have our last theorem.

Theorem 25.
(1) The problem DL-Litecore Cntd-Aggregate
Certain Answers is in coNExpTime and Πp

2-
hard.
(2) The problem DL-LiteR Cntd-Aggregate
Certain Answers is in coN2ExpTime and
coNExpTime-hard.

7. Conclusion

In this paper we have defined an intuitive se-
mantics for counting aggregate queries over on-
tologies and explored the computational complex-
ity of the corresponding problems. The results,
summarized in Table 1, show that the problems
are decidable, but intractable. Hence, heuristics
and approximations for answering ACQs are on
high demand from the practical point of view,
with applications, for instance, in the definition
of general aggregation in SPARQL under entail-
ment regimes. We consider epistemic and active
domain semantics as such approximations, since
they have lower data complexities but do not al-
ways provide the desired answer. Our work pro-
vides the theoretical foundations for further dis-
cussion.

There are several directions for future work.
First, it is important to close the gaps in the
combine complexities. Second, in Section 4 we
mentioned the following natural problem closely
related to the problems studied in this paper: for
a query, knowledge base, and a tuple of individ-
ual names, how to compute the minimum value
of the counting aggregation function over all the
models of the knowledge base? The correspond-
ing decision problem is whether a given number n

is such a minimum? In fact, we can easily derive
a DP-upper bound for the data complexity of this
problem from the results of this paper: first one
needs to check whether n belongs to the aggregate
certain answers, and then check that n+ 1 is not.
However, it remains to see whether the problem is
indeed DP-hard. Similar situation is for combine
complexity problems. Finally, in this paper the
count distinct function has exactly one argument,
as it is done in SQL and SPARQL. It is interest-
ing to study the generalisation of this function to
arbitrary number of aggregation variables.

References

[1] Baader, F., Calvanese, D., McGuinness, D.L., Nardi,
D., Patel-Schneider, P.F., eds.: The Description
Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press, New York,
NY, USA (2003)

[2] Calvanese, D., Giacomo, G.D., Lembo, D., Lenz-
erini, M., Poggi, A., Rodriguez-Muro, M., Rosati,
R., Ruzzi, M., Savo, D.F.: The MASTRO system
for ontology-based data access. Semantic Web 2(1)
(2011) 43–53

[3] Kontchakov, R., Lutz, C., Toman, D., Wolter, F.,
Zakharyaschev, M.: The combined approach to
ontology-based data access. In: IJCAI. (2011) 2656–
2661

[4] Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B.,
Patel-Schneider, P., Sattler, U.: OWL 2: The next
step for OWL. Web Semant. 6(4) (November 2008)
309–322

[5] Calvanese, D., De Giacomo, G., Lembo, D., Lenz-
erini, M., Rosati, R.: Tractable reasoning and effi-
cient query answering in description logics: The DL-
Lite family. J. of Automated Reasoning 39(3) (2007)
385–429

[6] Artale, A., Calvanese, D., Kontchakov, R., Za-
kharyaschev, M.: The DL-Lite family and relations.
J. Artif. Intell. Res. (JAIR) 36 (2009) 1–69

[7] Bienvenu, M., Ortiz, M., Simkus, M.: Answering ex-
pressive path queries over lightweight DL knowledge
bases. In Kazakov, Y., Lembo, D., Wolter, F., eds.:
Description Logics. Volume 846 of CEUR Workshop
Proceedings., CEUR-WS.org (2012)

[8] Bienvenu, M., Ortiz, M., Simkus, M.: Conjunctive
regular path queries in lightweight description logics.
In Rossi, F., ed.: IJCAI, IJCAI/AAAI (2013)

[9] Kostylev, E.V., Reutter, J.L., Vrgoč, D.: XPath for
DL ontologies. In: AAAI. (2015)

[10] Rosati, R.: The limits of querying ontologies. In
Schwentick, T., Suciu, D., eds.: ICDT. Volume 4353

31

of Lecture Notes in Computer Science., Springer
(2007) 164–178

[11] Gutiérrez-Basulto, V., Ibáñez-Garćıa, Y.A.,
Kontchakov, R., Kostylev, E.V.: Conjunctive
queries with negation over DL-Lite: A closer look.
In: Proceedings of the 7th international conference
on Web Reasoning and Rule Systems. RR’13 (2013)

[12] Cohen, S., Nutt, W., Sagiv, Y.: Deciding equiva-
lences among conjunctive aggregate queries. Journal
of the ACM 54(2) (2007)

[13] : SPARQL 1.1 entailment regimes (2013)
W3C Recommendation 21 March 2013,
http://www.w3.org/TR/ sparql11-entailment/.

[14] Calvanese, D., Kharlamov, E., Nutt, W., Thorne, C.:
Aggregate queries over ontologies. In Elmasri, R.,
Doerr, M., Brochhausen, M., Han, H., eds.: ONISW,
ACM (2008) 97–104

[15] Vardi, M.Y.: The complexity of relational query lan-
guages (extended abstract). In: STOC. (1982) 137–
146

[16] Kostylev, E.V., Reutter, J.L.: Answering counting
aggregate queries over ontologies of the DL-Lite fam-
ily. In: Proc. of the 27th AAAI Conf. on Artificial
Intelligence (AAAI). (2013)

[17] Arenas, M., Bertossi, L., Chomicki, J., He, X.,
Raghavan, V., Spinrad, J.: Scalar aggregation in
inconsistent databases. Theor. Comput. Sci. 296(3)
(March 2003) 405–434

[18] Libkin, L.: Data exchange and incomplete informa-
tion. In Vansummeren, S., ed.: PODS, ACM (2006)
60–69

[19] Afrati, F., Kolaitis, P.G.: Answering aggre-
gate queries in data exchange. In: Proceed-
ings of the twenty-seventh ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database sys-
tems. PODS ’08, New York, NY, USA, ACM (2008)
129–138

[20] W3C SPARQL Working Group: SPARQL
1.1 Query language. W3C Recommen-
dation (21 March 2013) Available at
http://www.w3.org/TR/sparql11-query/.

[21] Baader, F., Sattler, U.: Description logics with ag-
gregates and concrete domains. Information Systems
28(8) (2003) 979 – 1004

[22] Kostov, B., Kremen, P.: Count aggregation in se-
mantic queries. In Liebig, T., Fokoue, A., eds.:
SSWS@ISWC. Volume 1046 of CEUR Workshop Pro-
ceedings., CEUR-WS.org (2013) 1–16

[23] Ramakrishnan, R., Gehrke, J., Gehrke, J.: Database
management systems. Volume 3. McGraw-Hill New
York (2003)

[24] Garey, M.R., Johnson, D.S.: Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman (1979)

[25] Arenas, M., Barceló, P., Reutter, J.L.: Query lan-
guages for data exchange: Beyond unions of conjunc-

tive queries. Theory Comput. Syst. 49(2) (2011) 489–
564

[26] Johnson, D.S.: A catalog of complexity classes. In:
Handbook of theoretical computer science (vol. A),
MIT Press (1991) 67–161

32

Response to the reviewers

We want to thank both reviewers first for their careful reading and all suggestions for the
paper. This time we put a lot of energy into proofreading. We have corrected the typos and
addressed the grammatical suggestions of the reviewers, and we believe that the language is
now up to the standard.

Specific responses to Reviewer 1.
We will first comment on the main points raised by this reviewer, and then proceed with

the minor issues.

• Regarding the definitions of count and count distinct functions. The observation that
these two functions are particular cases of a general counting function is absolutely
correct. However, our choice of these specific functions is motivated by practice: both
SQL and SPARQL allow only for a general Count function (as in the query COUNT(*)
in SQL) and a Count distinct function over values of just one argument (as in COUNT
(DISTINCT name)). Note that though syntactically SQL allows for an arbitrary num-
ber of attributes of the COUNT function, but it has the same meaning as COUNT(*)
(as long as there are no nulls in the database). Hence, we studied these particular
functions in the paper in order to make a strong case of the practical background of
our work.

From a theoretical point of view, of course, nothing prevents us from studying the
general function. However, after considerable thought it is still not clear for us how to
extend any of the upper bounds to account for all the intermediate cases. This would
require the notion of neighbourhoods for arbitrary sets of elements, and it is not clear
at all how these should be defined and used. We have mentioned the study of this
generalisation in the conclusion as part of the future work.

• Regarding the definition of Count and Ctnd as the maximum number that is an aggre-
gate certain answer of a query, we have added a discussion in the paper explaining why
we think that our definition is more natural. The main point in question is being able
to answer the query “Is the answer to this ACQ at least n?”, since it is in line with
OWA. Another argument is similarity with range semantics in inconsistent databases.
In the conclusion we added a paragraph explaining why we can not just switch back
and forth between two definitions (the complexity for the problem under the definitions
suggested by the reviewer is probably higher than in our case).

• Regarding the partial complexity results, we wanted to make sure in the paper that
the problems do not seem to be solvable by any other technique developed in the DL
community. We have spent a considerable amount of time thinking about these results,
unfortunately still without being able to close the complexity gaps. We still believe
that our results are worthy of publication, as the proofs introduce new techniques for
the toolbox of the community.

1

Original Response to Reviewers

• We have gone through the entire paper making our notation and terminology standard
for DL community. We also formally described how our proofs can be adapted for
non-UNA cases.

• We extended the related work section with the discussion on the paper suggested by
the reviewer. We also made the section self-contained. The only references to literature
left in the introduction are important for the exposition.

We have addressed all of the technical comments/errors pointed by the reviewer. Below
we comment on those that require discussion not in the paper.

• We added the correct reference for SPARQL 1.1 and a remark that non-distinguished
variables in SPARQL queries are those that are not mentioned in the SELECT or
CONSTRUCT clause.

• The problem with some of the figures is that we consider appropriate to highlight three
matches, so we used three tones of grey. The tones are darker now, and we believe it
should be distinguishable in any decent quality printing. However, if the reviewer can
suggest a better way for highlighting, we will be happy to follow the suggestion.

• In the beginning of the proof of Lemma 22 we explained in more detail what was the
intention of the query in the proof of Lemma 18. In particular, the TBox guarantees
that the leaf of the branch corresponding to each position in the square is in the domain
of the role Tile, but the query is needed to have only the colours in the range of Tile.

2

