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Most query languages for graph databases rely on exploring the topological properties 
of the data by using paths. However, many applications require more complex patterns 
to be matched against the graph to obtain desired results. For this reason a version of 
the standard XML query language XPath has been adapted to work over graphs. In this 
paper we study static analysis aspects of this language, concentrating on problems such 
as containment, equivalence and satisfiability. We show that for the full language all of 
the problems are undecidable. By restricting the language we then obtain several natural 
fragments whose complexity ranges from PSpace-complete to ExpTime-complete.
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1. Introduction

In recent years we have witnessed a proliferation of ap-
plications that require functionalities not provided by the 
relational database model. A vast majority of them, such 
as social networks, biological databases, or the Semantic 
Web, have one thing in common—their underlying model 
is that of a graph. Because of this, managing and maintain-
ing graph-structured data is currently one of the most ac-
tive topics in the database community, and there are many 
big commercial vendors, such as IBM [17], Oracle [21] and 
Facebook [12], offering graph database products.

The most basic task for every data model, including 
graph databases, is query evaluation. Hence, when design-
ing a query language one is primarily concerned with strik-
ing a good balance between expressivity and efficiency: the 
language should be capable of describing a wide variety 
of relevant queries, while at the same time having a low 
complexity of query answering.

* Corresponding author.
E-mail address: dvrgoc@ing.puc.cl (D. Vrgoč).
http://dx.doi.org/10.1016/j.ipl.2016.03.006
0020-0190/© 2016 Elsevier B.V. All rights reserved.
To query graph-structured data one can, of course, use 
traditional languages and treat the model as a relational 
database. However, modern applications require to pose 
intricate navigational queries to obtain non-trivial informa-
tion about the topology of the stored data—a feature that is 
unsupported by traditional relational databases. For these 
reasons several languages for querying graphs, such as reg-
ular path queries (RPQs) [11] and conjunctive regular path 
queries (CRPQs) [8,10], have been proposed and exten-
sively studied. By now we understand very well their eval-
uation performance, static analysis and expressive power, 
as well as how their extensions with backward naviga-
tion [8], nesting [3], or rational relations [2] behave. What 
all of these languages (with the sole exception of nested 
regular expressions [3]) have in common is that they rely 
on exploring the graph topology using paths. However, as 
witnessed in, for instance, XML [26], doing navigation us-
ing paths alone is often not sufficient, as more complex 
patterns have to be matched against a graph to obtain de-
sired results. For this reason a graph-based adaptation of 
the well-studied XML language XPath has recently been 
proposed [19]. This language, called graph XPath, or GXPath
for short, enriches the usual path queries with the ability 
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Fig. 1. Example of a graph database.

to define more intricate patterns that can occur between 
two data points.

Evaluation properties of GXPath have been recently 
studied in [19,25], and for now we can conclude that it has 
a good expressivity-evaluation balance for querying graph 
data. However, very little is known about the properties of 
static analysis tasks, which are important for query opti-
misation and building efficient execution plans. Looking to 
fill this gap, we provide in this paper a detailed complexity 
analysis of these tasks for GXPath. In what follows we will 
mainly focus on query containment, which asks to deter-
mine, given two queries, if the answer set of the first one 
is always contained in the answer set of the second one. 
However, we also show how query equivalence and satisfia-
bility can be solved in a similar manner.

We start by showing that all three problems are un-
decidable for the full language of GXPath. The reason for 
undecidability is the presence of negation in node and 
path formulas, which allows to simulate powerful opera-
tions such as the complementation of binary relations. As 
expected, we show that the decidability of all three prob-
lems is restored (it is ExpTime-complete) once we disallow 
negation on path formulas. Note that this is one of the 
usual syntactic restrictions of the XPath language [13]. Fol-
lowing the design logic of XPath, our last result shows that 
the containment and equivalence of formulas without any 
form of negation is even lower (PSpace-complete).

Plan of the paper. We formally define the data model, the 
query language and the static analysis problems we study 
in Section 2. In Section 3 we show that for the full lan-
guage the problems are undecidable. In Section 4 we show 
how decidability can be restored using several syntactic re-
strictions. We conclude in Section 5.

The results on containment were previously presented, 
without proofs, in a conference paper [18]. This paper ad-
ditionally contains results on satisfiability, as well as full 
proofs of all the statements.

2. Preliminaries

Graph databases
Let � be a finite alphabet of labels. A graph database (or 

data graph) is a �-labelled graph G = 〈V , E〉, where

– V is a finite set of nodes,
– E ⊆ V × � × V is a set of labelled edges.
Table 1
Semantics of GXPath formulas over a graph database G = 〈V , E〉 (‘−’ 
stands for set-theoretic difference and ‘◦’ for composition of binary re-
lations).

���G = {v | v ∈ V }
�¬ϕ�G = V − �ϕ�G

�ϕ ∧ ψ �G = �ϕ�G ∩ �ψ �G

�φ ∨ ψ �G = �φ�G ∪ �ψ �G

�〈α〉�G = {v | ∃v ′ (v, v ′) ∈ �α�G }
�ε�G = {(v, v) | v ∈ V }

�a�G = {(v, v ′) | (v,a, v ′) ∈ E}
�a− �G = {(v ′, v) | (v,a, v ′) ∈ E}

�[ϕ]�G = {(v, v) | v ∈ �ϕ�G }
�α ∪ β�G = �α�G ∪ �β�G

�α · β�G = �α�G ◦ �β�G

�α�G = V × V − �α�G

�α∗ �G is reflexive transitive closure of �α�G

A graphical representation of an example graph data-
base is shown in Fig. 1, where nodes v1, . . . , v6 are con-
nected by edges labelled by a, b, c, d.

Query language
As in XPath, formulas of GXPath are divided into node 

formulas, returning nodes, and path formulas, returning 
pairs of nodes, which are mutually dependent on each 
other. We first define the general language and then re-
strict it to two other flavours that forbid different types of 
negation.

Definition 2.1. Node formulas ϕ, ψ and path formulas α, β of 
(navigational) GXPath are expressions satisfying the gram-
mar

ϕ,ψ := � | ¬ϕ | ϕ ∧ ψ |φ ∨ ψ | 〈α〉,
α,β := ε | a | a− | [ϕ] | α ∪ β | α · β | α | α∗,

where a ranges over labels �.

Note that besides the operators in Definition 2.1 the 
original proposal of GXPath includes data value compar-
isons [19]. In this paper we are primarily concerned with 
navigational aspects of graphs, so we did not include this 
feature of the language in our analysis.

The formal semantics of GXPath with respect to a graph 
database G = 〈V , E〉 is given in Table 1: a node formula ϕ
defines a set �ϕ�G of nodes, and a path formula α defines 
a set �α�G of pairs of nodes.

To gain some intuition of the operators allowed in the 
language, we briefly compare it with the well-known lan-
guage of regular path queries. Besides usual regular ex-
pressions underlying regular path queries, GXPath path 
formulas allow for the inverse a− , which traverses edges 
in the opposite direction, binary negation α, which com-
plements the evaluation of α, and tests [ϕ], which check 
that the condition given by a node formula ϕ is satis-
fied. Node formulas are Boolean combinations of tests 〈α〉, 
which check for existence of a path satisfying α that starts 
from this node.

Example 2.2. As an example of a GXPath formula we con-
sider the path formula a[b−∧a∗c]d. On the graph in Fig. 1
it retrieves the pair of nodes (v1, v4), because there is 
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an ad-labelled path between them such that after travers-
ing the a-edge we get to a node that has an incoming 
b-edge and an outgoing ac-labelled path. However, the pair 
(v6, v3) is not in the answer, because the intermediate 
node in the only ad-labelled path between them does not 
satisfy the condition in the brackets.

We also define two different fragments of GXPath , ob-
tained by restricting the use of negation in formulas. These 
fragments are inspired by well-studied fragments of XPath 
over XML trees [13].

Definition 2.3. The path-positive GXPath, denoted
GXPathpath-pos , restricts GXPath by forbidding negation of 
the form α in path formulas. The positive GXPath, denoted 
GXPathpos , further restricts the path-positive fragment by 
disallowing unary negation ¬φ in node formulas.

Note that the languages we study have close connec-
tions with (various variants of) propositional dynamic logic 
(PDL) [16]. We will use these connections in the proofs 
throughout the paper, giving precise explanations and ref-
erences in each particular case.

Static analysis problems
The problems we study in this paper are query contain-

ment, equivalence and satisfiability. These problems are at 
the core of many static analysis tasks, such as query opti-
misation. Next we formally define these problems.

A (node or path) GXPath formula e1 is contained in a 
formula e2, written e1 ⊆ e2, if and only if for each graph 
database G we have that

�e1 �G ⊆ �e2 �G .

The formulas e1 and e2 are equivalent (written e1 ≡ e2) if 
and only if �e1 �G = �e2 �G for every G . A formula e is sat-
isfiable if and only if there is a graph G such that �e�G �= ∅.

All the classes of formulas considered in this paper are 
closed under union, so the first two of these problems are 
easily inter-reducible: e1 ≡ e2 if and only if e1 and e2 con-
tain each other, and e1 ⊆ e2 if and only if e1 ∪ e2 ≡ e2. 
That is why we concentrate on containment and obtain re-
sults for equivalence as immediate corollaries. Sometimes 
satisfiability is also reducible to one of these problems; for 
example, a node formula ϕ is satisfiable if and only if the 
containment ϕ ⊆ ¬� does not hold. However, this is not 
necessarily the case for all of the languages studied in this 
paper, and moreover the reduction in the other direction 
is usually not available. Hence, we study satisfiability sep-
arately.

Formally, we consider the following decision problems, 
parameterized by a class of formulas Q.

Note that the problems for node formulas are reducible 
to the corresponding problems for path formulas; for ex-
ample, ϕ is satisfiable if and only if [ϕ] is satisfiable. Since 
our results for these two types of formulas are the same, 
in what follows we concentrate on node formulas when 
showing lower bounds and undecidability, and on path for-
mulas in case of upper bounds.
Containment (Q)
Input: Formulas e1 and e2 from Q.
Question: Is e1 contained in e2?

Satisfiability (Q)
Input: A formula e from Q.
Question: Is e satisfiable?

In the rest of the paper we perform a formal complex-
ity analysis of satisfiability and containment for the three 
classes of GXPath introduced above.

3. Tackling the full language

In this section we show that both containment and sat-
isfiability are undecidable for full GXPath. We concentrate 
on satisfiability; containment follows by the simple reduc-
tion given in the previous section.

Theorem 3.1. The problem Satisfiability (GXPath) is unde-
cidable.

Proof. The proof mainly follows the lines of the undecid-
ability proof for satisfiability in PDL with extras that is given 
in [14]. In particular, we prove undecidability by a reduc-
tion from a variant of the tiling problem, which is shown 
to be undecidable in [7] and [15]. We start by introducing 
the notation used throughout the proof.

A tiling instance T is a collection {T1, . . . , T p} of tile 
types together with two edge relations ∼h and ∼v (note 
that these relations are not necessarily symmetric). Intu-
itively, Tk ∼h T	 means that a tile of type T	 can be placed 
to the right of a tile of type Tk in a horizontal row, while 
Tk ∼v T	 means that T	 can be placed above Tk in a verti-
cal column.

A tiling of the positive plane N ×N with T , for natural 
numbers N, is a function t : N × N → T such that for all 
i, j ∈N

– t(i, j) ∼h t(i + 1, j), and
– t(i, j) ∼v t(i, j + 1).

Tiling t is periodic if there exist positive numbers n and m
such that t(i, j) = t(n + i, j) = t(i, m + j) for all i, j ∈ N. 
A periodic tiling can be seen as a tiling of a torus, since 
column n + 1 and row m + 1 can be “glued” with the left-
most column and bottom row, respectively.

Let Stiling denote the set of all tiling instances that al-
low for tilings of the positive plane, and Speriod denote the 
set of all tiling instances that allow for periodic tilings. To 
prove undecidability we will use the following fact.

Fact 3.2. (See [7,15].) Sets Stiling and Speriod are recursively 
inseparable, that is, there is no recursive set S such that 
Speriod ⊆ S ⊆ Stiling.

In what follows we first construct a formula γT for 
each tiling instance T and then show that the set

� = {ϕ | ∃G such that �ϕ�G �= ∅} (1)



470 E.V. Kostylev et al. / Information Processing Letters 116 (2016) 467–474
contains the set �period = {γT | T ∈ Speriod}, and is con-
tained in �tiling = {γT | T ∈ Stiling}, which will imply, by 
Fact 3.2, that � cannot be recursive.

To define γT , fix an alphabet of edge labels � =
{R, L, U , D, s, a, e}. The intended meaning of the labels is 
as follows: R represents “right”, L “left”, U “up” and D
“down”, while sequences of the form sake code the tile 
types. Note that we could work only with labels R , U , s, 
a and e, since it is possible to use R− instead of L and U−
instead of D , but we opted for the extended alphabet to 
make the translation easier to understand.

In the reduction below we will use the following node 
formulas. First, for any path formula β let

loop(β) = 〈β ∩ ε〉 ∧ ¬〈β ∩ ε〉
(here and in the remainder of the proof we use α1 ∩ α2 as 
a shorthand for α1 ∪ α2). This formula extracts all nodes 
v from the graph that have an outgoing β-path with ev-
ery such path ending at v itself; formally, for any graph 
database G ,

�loop(β)�G =
{v ∈ G | ∃v ′ such that (v, v ′) ∈ �β�G , and

∀v ′ if (v, v ′) ∈ �β�G then v = v ′}.
Second, for every path formula β and every node formula 
ϕ let

when(β,ϕ) = ¬〈β[¬ϕ]〉.
The intended meaning of this node formula is to extract 
all nodes v from a graph such that every β-path starting 
in v ends with a node belonging to �ϕ�G ; formally, for any 
graph database G ,

�when(β,ϕ)�G =
{v ∈ G | ∀v ′ if (v, v ′) ∈ �β�G then v ′ ∈ �ϕ�G}.
Consider now a tile instance T with types {T1, . . . , T p}, 

and edge relations ∼h and ∼v . Based on this instance we 
construct a node formula γT that is a conjunction of two 
parts, γ1 and γ2.

We start with the definition of γ1. This formula does 
not depend on the tile instance, but merely guarantees the 
grid structure for any graph database satisfying γT . In par-
ticular, it enforces a “square” at any position in a database, 
both in clockwise and in anticlockwise direction. This is 
done by means of formula square that is defined as the 
conjunction of the following two formulas:

clockwise =
loop(U · D) ∧
when(U ,loop(R · L)) ∧
when(U · R,loop(D · U )) ∧
when(U · R · D,loop(L · R)) ∧
loop(U · R · D · L),

anticlockwise =
loop(R · L) ∧
when(R,loop(U · D)) ∧
when(R · U ,loop(L · R)) ∧
when(R · U · L,loop(D · U )) ∧
loop(R · U · L · D).
Intuitively, clockwise allows us to define a square start-
ing at some point in our graph, and from there going “up”, 
then “right”, then “down” and finally “left”, finishing at the 
same point where we started. It also forces the point to be 
able to complete the square whenever it has an outgoing 
“up” arrow U . Similarly, anticlockwise forces a square 
starting with “right” and completing it in the correspond-
ing way.

Now, γ1 simply states that we can make a square at any 
point:

γ1 = when(U∗,when(R∗,square)).

Formula γ2 is responsible for forcing the adjacent el-
ements on the grid to agree with the edge relations. It 
makes use of the following node sub-formulas, each of 
which is meant to denote the placement of a tile of a 
type Tk at some position in the grid: for any 1 ≤ k ≤ p
let αk = 〈(s · ak · e) ∩ ε〉, where ak is the concatenation of k
copies of a. On the basis of these formulas, let

α =
⎛
⎝ ∨

1≤k≤p

αk

⎞
⎠ ∧

⎛
⎝ ∧

1≤k≤p

⎛
⎝αk →

∧
	�=k

¬α	

⎞
⎠

⎞
⎠

(here and in the remainder of the proof we use ϕ → ψ as 
a shorthand for ¬ϕ ∨ ψ ). This node formula simply states 
that precisely one of the αk is true.

Next, for each tile type Tk , define βk to be the disjunc-
tion of all the α	 such that Tk ∼h T	 , that is, the disjunc-
tion of representations of the tile types that can be placed 
to the right of Tk . Similarly, define βk to be the disjunction 
of all α	 such that Tk ∼v T	 .

Now let tile be the formula denoting that a tile is 
placed correctly in the grid; that is, formally,

tile =
α ∧

( ∧
1≤k≤p

(
αk → (

when(R, βk) ∧ when(U , βk)
)))

.

Finally, let

γ2 = when(U∗,when(R∗,tile)).

Having the formula γT at hand, we proceed to show 
that, for � defined in (1), �period ⊆ � and � ⊆ �tiling, start-
ing with the second of these inclusions.

We need to show that if �γT �G �= ∅ for some graph G , 
then T can tile the positive plane N × N. Take any node 
v11 ∈ �γT �G . By γ1 the formula square is true at v11; 
hence, clockwise and loop(U · D) are true. Therefore, 
there exists a node v12 that can be reached from v11 by an 
U -labelled edge. (Note that there also exists a D-labelled 
edge from v12 to v11.) Since when(U , loop(R · L)) is also 
true at v11, there must be a node v22 with an R-labelled 
edge from v12 (and with a corresponding L-labelled edge 
in the opposite direction). Again, this time using the fact 
that when(U · R, loop(D ·U )) is true at v11, we get a node 
labelled v21, connected to v22 by a D-labelled edge (and 
with an U -labelled edge connecting the latter back with 
v22). Next, we use the fact that when(U · R · D, loop(L · R))

is true at v11 to get a node v ′
11 to the left of v21. Finally, 

since loop(U · R · D · L) is true at v11, we have v ′ = v11.
11
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Fig. 2. Squares generated from v11 and v22 by clockwise.

Fig. 3. Extension with anticlockwise from v12.

Similarly since square is true at v22 (as we can reach 
it from v11 by traversing an U - and then an R-labelled 
edge), we can find nodes v23, v33 and v32 that also form a 
square, as shown in Fig. 2 (note that we do not claim that 
the nodes vij are necessarily distinct).

Note now that since square is also true at v12, this 
node must satisfy anticlockwise. In particular, since 
following an R-labelled edge and then U -labelled one from 
v12 leads to v23 and since when(R · U , loop(L · R)) is true 
at v12, there is a node v13 with an L-labelled edge from 
v23 (this also implies that there is an R-labelled edge from 
v13 to v23). Again, since when(R ·U · L, loop(D ·U )) is true 
at v12, and v13 can be reached by R · U · L from v12, there 
is a node v ′

12 connected with v13 by a D-labelled edge 
(and in the other direction by an U -labelled one). But now, 
since v12 satisfies loop(R · U · L · D) and v ′

12 is reached 
from v12 by a path labelled R · U · L · D , we have that v ′

12 =
v12. Thus there exists a square starting at v12 and going in 
an anticlockwise direction, as illustrated in Fig. 3.

As already noted, each edge in the construction has 
a corresponding edge in the opposite direction with the 
“dual” label (e.g., D is “dual” to U and vice versa). In par-
ticular, there is an R-edge from v11 to v21, and, by γ1, we 
can also complete a clockwise square starting at v21, going 
through v22, v32 and some node v31, and finishing again 
at v21.

It is straightforward to see that this process can be con-
tinued for any number of steps, starting from the main 
diagonal and completing the squares above it in the an-
ticlockwise direction, while completing the ones below the 
diagonal in the clockwise direction. Thus we showed that 
γ1 guarantees any satisfying graph database to have a 
square grid starting from v11.

According to γ2, every node of the grid satisfies tile. 
Hence, on the one hand, there exists a unique αk that 
holds at the node. On the other hand, tile also guaran-
tees that the function t , defined as t(i, j) = Tk for each 
node vij of the grid with αk true, is a proper tiling. That 
is, the types of adjacent tiles agree with the edge relations 
∼h and ∼v .
Fig. 4. Representation of tile t(i, j) of type Tk .

Thus we have shown that if the formula γT is satisfi-
able, then T can tile the positive plane N ×N. This implies 
the inclusion � ⊆ �tiling.

To complete the proof we need to show the inclu-
sion �period ⊆ �. To this end, consider a periodical tiling 
t with a tiling instance T = {T1, . . . , T p}, which can tile a 
torus with n columns and m rows. We construct a graph 
database G = 〈V , E〉, with n ×m + p + 1 nodes, that satisfy 
γT as follows.

First let

V = {vij | 1 ≤ i ≤ n,1 ≤ j ≤ m} ∪ {u0, . . . , up}.
The following edges in E form an n × m grid with 

“glued” sides:

– an R-labelled edge between vij and v(i+1) j , and an 
L-labelled one in the opposite direction for 1 ≤ i < n
and 1 ≤ j ≤ m;

– an R-labelled edge between vnj and v1 j , and an 
L-labelled one in the opposite direction for 1 ≤ j ≤ m;

– a U -labelled edge between vij and vi( j+1) , and a 
D-labelled one in the opposite direction for 1 ≤ i ≤ n
and 1 ≤ j < m;

– a U -labelled edge between vim and vi1, and a D-label-
led one in the opposite direction for 1 ≤ i ≤ n.

To satisfy γ2, which is responsible for edge relations, 
we make use of nodes {u0, . . . , up} as follows. First, let 
u0, u1, . . . , up form an a-labelled chain, that is, formally, 
there is an a-edge between uk and uk+1 in E , for 0 ≤ k < p. 
Second, for each vij with t(i, j) = Tk the graph contains an 
s-labelled edge from vij to u0 and an e-labelled edge from 
uk to vij , as illustrated in Fig. 4.

The node v11 in the constructed graph database G sat-
isfies γT . Indeed, it satisfies γ1, because all nodes reach-
able by U - and R-labelled edges from v11 (that is, all of 
the vij ’s) clearly satisfy square by the construction. On 
the other hand, v11 satisfies γ2, because t is a periodic 
tiling. In particular, at any node vij of G precisely one αk
is true, since by construction there is only one s-labelled 
edge leaving vi, j , and only one e-labelled edge entering 
vi, j . Therefore, to satisfy αk = 〈(s · ak · e) ∩ ε〉 we must tra-
verse this unique s-edge leaving vi, j and finish with the 
e-edge entering vi, j . Moreover, since t is a tiling, any node 
with an R-labelled edge from vij satisfies βk , and the same 
for a U -labelled edge and βk .

We conclude that �period ⊆ �, which together with the 
previously proved inclusion � ⊆ �tiling and Fact 3.2 implies 
that the set of all satisfiable GXPath node formulas � is 
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not recursive, that is, the problem Satisfiability (GXPath) 
is undecidable. �

As already mentioned, a node formula ϕ in full GXPath
is satisfiable if and only if the containment ϕ ⊆ ¬� does 
not hold. Hence, Theorem 3.1 has the following immediate 
corollary.

Corollary 3.3. The problem Containment (GXPath) is unde-
cidable.

As a final remark we note that in our proof the alpha-
bet � of labels does not depend on the input. Hence, the 
undecidability results hold even for formulas over a fixed 
alphabet.

4. Restoring decidability

From the point of view of containment negation is of 
the most problematic features in query languages, and in
GXPath this is not an exception. In this section we show 
how the decidability of containment is restored when we 
limit the negation used in formulas. We concentrate on 
GXPathpath-pos and GXPathpos, the two fragments of GX-
Path outlined in Section 2. We begin with GXPathpath-pos, 
which forbids negation over path formulas.

Proposition 4.1. The problem Satisfiability (GXPathpath-pos) 
is ExpTime-complete.

Proof. Since GXPathpath-pos is the same as PDL without 
variables, we can use the ExpTime decision procedure 
for satisfiability of PDL formulas, developed in [16, Theo-
rem 8.4], to solve satisfiability of GXPathpath-pos node for-
mulas. The same bound holds for path formulas, because 
α is satisfiable if and only if 〈α〉 is satisfiable.

The lower bound follows from a straightforward adap-
tation of the known ExpTime-completeness results on sat-
isfiability of PDL versions close to XPath. For instance, 
both [1, Section 4.4] and [16, Theorem 8.4] provide a 
reduction from the acceptance problem for deterministic 
Turing machines that decide a language in ExpTime to a 
version of PDL satisfiability. In order to adapt these tech-
niques to our setting we need to show how to carry out 
the reduction using a finite alphabet. This can be done 
by encoding the symbols of the unrestricted alphabet as 
binary strings (of unbounded length): e.g., a 4-character al-
phabet can be encoded as a set of strings 00, 01, 10 and 
11. For a detailed description of this technique see the Ex-

pSpace-hardness proof in [5]. �
The next theorem shows that the same complexity 

bounds hold for the containment problem as well.

Theorem 4.2. The problem Containment (GXPathpath-pos) is
ExpTime-complete.

Proof. Since GXPathpath-pos allows for unary negation, the
ExpTime-hardness follows from Proposition 4.1. Thus in the 
rest of the proof we concentrate on the upper bound on 
the complexity. To this end, we show that the problem of 
containment for GXPathpath-pos path formulas can be poly-
nomially reduced to satisfiability of GXPathpath-pos node 
formulas. The idea of the reduction is similar to the one 
used in [24], where it is shown that these two problems 
are inter-reducible for XPath queries on trees.

Let α and β be GXPathpath-pos path formulas and let �
be the alphabet of all symbols occurring in α and β plus 
one additional symbol b. Let now �′ = � × {0, 1}, that is, 
�′ contains two copies of each label decorated with either 
0 or 1. Let α′ and β ′ be formulas obtained from α and β , 
respectively, by replacing each occurrence of a label a in 
� by (a, 0) ∪ (a, 1). Finally, let out be the path formula ⋃

a∈�(a, 1). We show that α is contained in β if and only 
if the formula

ϕ := 〈α′[out]〉 ∧ ¬〈β ′[out]〉

is not satisfiable. (To reduce notational clutter, we write 
[γ ] instead of [〈γ 〉] for a path formula γ when checking 
that a node has an outgoing γ -path.)

Assume first that α � β . Then, in particular, there is a 
graph database G with nodes v and v ′ such that (v, v ′) ∈
�α�G but (v, v ′) /∈ �β�G . Furthermore, one can always find 
such a graph G that only uses labels from �: indeed, only 
the labels that appear in α and β are relevant, and all the 
other ones can be replaced by b. Let G ′ be a �′-labelled 
graph database obtained from G by replacing each label a
by (a, 0) and adding a loop at v ′ labelled (b, 1). Since v ′
is the only node in G ′ with an outgoing edge whose label 
has 1 as the second component, we get that v ∈ �ϕ�G ′

, as 
required.

For the other direction, assume that ϕ is satisfiable. 
Then there is a graph database G ′ over �′ and a node v
such that v ∈ �ϕ�G ′

. Let G be a graph obtained from G ′ by 
replacing, for any a in �, every edge labelled (a, 0) or (a, 1)

by an edge labelled a On the one hand, since v ∈ �ϕ�G ′
, 

there is some v ′ in G ′ such that (v, v ′) ∈ �α′[out]�G ′
. 

Hence (v, v ′) ∈ �α�G . On the other hand, by the same rea-
son the node v ′ must have an outgoing edge with second 
component equal to 1. Hence, if we had that (v, v ′) ∈ �β�G , 
then we would also get that (v, v ′) ∈ �β ′[out]�G ′

, which 
contradicts the fact that v ∈ �ϕ�G ′

. Thus α � β , as re-
quired. (Note that it could still be the case that v ∈ �〈α〉�G

and v ∈ �〈β〉�G , but we are interested in binary contain-
ment.)

We have thus shown that containment of GXPathpath-pos

path formulas is polynomially reducible to (un)satisfiabil-
ity of node formulas in the same language. Application of 
this reduction to the result of Proposition 4.1 completes 
the proof of the theorem. �

The final fragment we consider is GXPathpos, which for-
bids all types of negation from GXPath. This fragment has 
in fact been considered in the literature under the name of 
nested regular expressions [3,4], and the complexity of con-
tainment for this language has been recently established 
in [22].
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Table 2
Summary of the complexity results (‘-c’ stands for ‘complete’ and ‘und.’ 
for ‘undecidable’).

GXPathpos GXPathpath-pos GXPath

Satisfiability O (1) ExpTime-c und.
Containment PSpace-c [22] ExpTime-c und.
Equivalence PSpace-c ExpTime-c und.

Fact 4.3. (See [22].) The problem Containment (GXPathpos)
is PSpace-complete.

The last problem left to consider is satisfiability for 
GXPathpos. But this problem is trivial: since GXPathpos al-
lows for no negation, any formula is satisfiable (a witness-
ing graph can be constructed by induction on the structure 
of the formula).

Proposition 4.4. The problem Satisfiability (GXPathpos) is 
decidable in constant time.

5. Conclusions

In this paper we have studied static analysis aspects 
of the graph query language GXPath. In particular we 
have tackled the containment, equivalence and satisfia-
bility problems for this language and its fragments. The 
results are summarised in Table 2. We have shown that 
for the full language we get undecidability of all three 
problems, mainly due to the presence of the powerful 
negation operator that applies to binary relations. An in-
teresting consequence of this result is that satisfiability 
of PDL queries with negation is undecidable, even if they 
do not use propositional variables. This follows from the 
close connection between GXPath and PDL and strengthens 
the results of [14] in a non-trivial way. Although the full 
language is undecidable, we have shown that we can re-
store decidability when limiting negation in a natural way. 
Such restrictions result in a hierarchy of fragments that 
have the potential to be useful in designing practical graph 
query languages. Within these fragments GXPathpath-pos

is the most expressive language that remains decidable. 
Note, however, that there may well be other fragments 
of GXPath that subsume GXPathpath-pos and remain decid-
able.

Lastly, we would like to briefly discuss how our results 
compare to containment and satisfiability results for XPath 
over trees. Note that the two problems are inter-reducible 
when node negation is allowed [24] and that satisfiability 
of the positive fragment is again trivial, so we will concen-
trate on containment. First, to the best of our knowledge, 
the decidability status of GXPath containment over trees 
with both node and path negation is still unresolved; how-
ever, a non-elementary lower bound was shown in [24]. 
Second, for the path-positive fragment the containment 
over trees is the same as over graphs (the upper bound fol-
lows from [9] and the lower bound from [6]). Finally, for 
the positive fragment the precise complexity of contain-
ment over trees is again not known, as it is usually studied 
in the presence of sibling axes or for unidirectional frag-
ments of XPath. However, the problem is PSpace-hard [23], 
and in ExpTime [9,20].
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