
Complexity of Answering Counting Aggregate

Queries over DL-Lite

Egor V. Kostylev1 and Juan L. Reutter2

1 University of Edinburgh, ekostyle@inf.ed.ac.uk
2 PUC Chile and University of Edinburgh, jreutter@ing.puc.cl

Abstract. One of the main applications of description logics is the
ontology-based data access model, which requires algorithms for query
answering over ontologies. In fact, some description logics, like those in
the DL-Lite family, are designed so that simple queries, such as conjunc-
tive queries, are efficiently computable. In this paper we study count-
ing aggregate queries over ontologies, i.e. queries which use aggregate
functions COUNT and COUNT DISTINCT. We propose an intuitive se-
mantics for certain answers for these queries, which conforms to the open
world assumption. We compare our semantics with other approaches that
have been proposed in different contexts. We establish data and com-
bined computational complexity for the problems of answering counting
aggregate queries over ontologies for several variants of DL-Lite.

1 Introduction

The growing popularity of ontologies as a paradigm for representing knowledge
in the Semantic Web is based on the ability to describe incomplete information
in the domain of interest.

Several variations of the Web Ontology Language (OWL) have been formal-
ized to manage ontologies. Most of these languages correspond to various de-
cidable fragments of first order logic, which are called description logics (DLs).
However, applications like ontology-based data access (OBDA) require algorithms
not only to decide standard reasoning problems, such as satisfiability and model
checking, but also to answer database-style queries [1, 2]. This motivates the use
of description logics of the DL-Lite family in, e.g. OWL 2 QL, which have been
designed specifically to maximize expressive power while maintaining good query
answering properties [3]. In particular, the computational complexity of answer-
ing simple queries such as conjunctive queries (CQs) and unions of conjunctive
queries (UCQs) over these DLs is the same as for relational databases [4, 5].

Some attention has recently been paid to the problem of answering various
extensions of CQs and UCQs over ontologies. For example [6] study path queries
over ontologies, while [7], [8] and [?] consider adding some form of negation
to these simple queries. The general conclusion from these papers is that the
complexity of evaluation of such queries is usually higher than for CQs and UCQs
and even higher than for similar problems in relational databases. In some cases
this difference in complexity is surprisingly high: e.g. while answering UCQs with

inequalities is known to be efficiently computable for relational databases, the
problem is undecidable when such a query is posed over DL-Lite ontologies.

Yet there is another extension of CQs that has received little attention in
the context of OBDA – aggregate queries. These queries answer questions such
as ”How many children does Ann have?” or ”What is the average salary over
each department in the Pandidakterion?” Usually, they combine various aggre-
gate functions, such as MIN, MAX, SUM, AVERAGE, COUNT and COUNT DISTINCT [9],
together with a grouping functionality, as in the usual GROUP BY clause of SQL.

Aggregate queries are an important and heavily used part of almost every
relational database query language, including SQL. In the context of the Seman-
tic Web we expect a particular need for aggregates in the OBDA settings, with
applications such as SPARQL under entailment regimes [10]. But despite their
importance, the study of aggregate queries over ontologies has been lacking, save
for a few exceptions [11].

The main reason for the lack of research in this direction is the difficulty of
defining a semantics for aggregate queries over ontologies. The complication is
that, unlike relational databases, in ontologies one assumes that every knowledge
base instance is incomplete and describes a part of the infinite number of models
of the knowledge base (i.e. the open world assumption is assumed), and a query
may have a different answer on each of these models. For standard queries like
CQs and UCQs this problem is usually overcome by computing the certain an-
swers of queries, i.e. the tuples that are answers in all possible models [4]. This
approach, however, is not suitable for aggregate queries, as the following shows.

Consider a knowledge base where Ann is a parent and the ontology asserts
that every parent has at least one child. If nothing else is assumed then for
every positive integer n there exists a model where Ann has n children. Thus,
the answer to a simple query ”How many children does Ann have?” in different
models of the knowledge base can be any number greater than or equal to 1. The
syntactic intersection of these answers (i.e. applying standard certain answers
semantics) trivially gives us the empty set, which is clearly not satisfactory. As
a different approach, [11] introduced epistemic semantics for aggregate queries.
In a nutshell, the idea is to apply the aggregation function only to known values.
For example, the epistemic answer to the query above is 0, because we do not
definitely know anybody who is a child of Ann. But this is clearly not the desired
answer: since Ann is a parent we know that she has at least one child. Hence the
epistemic semantics does not always give a correct answer to COUNT queries.

As the first contribution of this paper, in Sec. 3 we embark on the task
of defining a suitable semantics for answering what we call counting aggregate
queries, which are queries that use COUNT or COUNT DISTINCT functions. Mo-
tivated by the original idea of certain answers, we seek to find the maximal
information that is common in the answers to such a query for all the models
of a knowledge base. This gives rise to the notion of aggregate certain answers,
which can be explained as follows: a number is an aggregate certain answer to a
counting query over a knowledge base if it does not exceed the result of the query
over any model of this knowledge base. For instance, in the above example, even

if we do not know precisely how many children Ann has, we know that she has
at least one, and thus 1 is an aggregate certain answer to the query.

Of course this semantics is not well suited for aggregation primitives such
as SUM or AVERAGE. But, as we show in this paper, it is a natural and useful
semantics for aggregate queries that count.

Having established our semantics, we turn to the study of the algorithmic
properties of aggregate certain answers computation for counting queries. We
concentrate on ontologies of the DL-Lite family, in particular DL-Litecore and
DL-LiteR [4]. The choice of these DLs is twofold: first, as mentioned above,
these formalisms are important in the OBDA settings; second, they are among
the simplest DLs and hence good candidates to begin with.

As usual in the theory of DLs, in Sec. 4 we study these problems assuming
that the query and the terminology (i.e. the TBox) are fixed, and the only
input is the assertions (ABox). This corresponds to the data complexity of the
problem in Vardi’s taxonomy [12]. Somewhat surprisingly, our results show that
the complexity of aggregate certain answers problem is resilient to the choice
of both DL and counting function and is coNP-complete in all cases. In order
to get a further understanding of the computational properties of the problems,
in Sec. 5 we study their combined complexity, i.e. assume that the query, ABox
and TBox are the input. Here we do find differences: both count distinct and
count aggregate query answering are coNExpTime-complete forDL-LiteR; yet the
former problem is Πp

2 -complete and the latter is in coNExpTime for DL-Litecore .
Hereby, the small increase of expressivity from DL-Litecore to DL-LiteR makes
at least the count distinct problem exponentially more difficult. As far as we
are aware, these are the first tight complexity bounds for answering aggregate
queries in the presence of ontologies.

Related Work Although mostly unexplored in the context of ontologies, seman-
tics for aggregate queries have been already defined for other database settings
that feature incomplete information. For example, an inconsistent database in-
stance (w.r.t. a set of constraints) describes a set of repairs, each of which satisfies
the constraints and can be obtained from the instance by a minimal number of
transformations. Aggregate queries over inconsistent databases were explored in
[13], where the range semantics was defined. Intuitively, this semantics corre-
sponds to the interval between the minimal and the maximal possible answers
to the query, amongst all the repairs of a given instance. The same semantics
was adopted by [14, 15] in the context of data exchange.

However, the techniques from these papers cannot be immediately applied
to ontologies, because of several specific properties. In particular, these papers
consider variations of the closed world assumption, whereas in ontologies the
open world assumption is assumed. Furthermore, data exchange settings are
based on source-to-target dependencies and weakly acyclic target dependencies.
This rules out all types of recursion in ontological knowledge, thus simplifying
the study to a great extent.

In the context of ontologies, in [11] the range semantics itself was claimed to
be trivially meaningless for aggregate queries over ontologies. For example, for

almost any knowledge base we can construct a model such that the aggregate
value of an AVERAGE query evaluates to any number. Similar examples can be
given for all other standard aggregate functions, except for COUNT and COUNT

DISTINCT, which are precisely the aggregates that are the focus of this paper.
As we will show the computation of the upper bound of the range is almost
trivial in these cases as well. But the lower bound of the range, i.e. the minimal
possible value described above, is completely natural, and by no means trivial to
compute. In fact, the lower bound of the range semantics is strongly related to
our notion of aggregate certain answers as follows: a number is in the aggregate
certain answers if and only if it is less than or equal to the lower bound of the
range. Thus, this work on aggregate certain answers can be seen as an adaptation
of the range semantics of [13] to ontologies.

This paper is an extended version of [16]. We sketch or even omit the proofs
of lemmas in the paper, which will be included in the full version.

2 Preliminaries

Syntax of DL-Lite Let A0, A1, . . . be atomic concepts and P0, P1, . . . be atomic
roles. Concepts C and roles E of DL-Lite languages are formed by the grammar

B ::= Ai | ∃R, R ::= Pi | P
−
i , C ::= B | ¬B, E ::= R | ¬R.

A TBox is a finite set of assertions. In the language of DL-Litecore the assertions
are of the form B ⊑ C. In DL-LiteR the form R ⊑ E is also allowed. An ABox
is a set of assertions of the forms Ai(a) and Pi(a, b) where constants a, b are
from an active domain D. A knowledge base (or KB) K = 〈T ,A〉 of a DL-Lite
language contains a TBox T of the language and an ABox A.
Semantics of DL-Lite An interpretation I = (DI , ·I) contains a (possibly
infinite) domain of elements D

I such that D ⊆ D
I , and maps each concept C to

a subset CI of DI and each role R to a binary relation RI over DI such that

(P−
i)I = {(a, b) | (b, a) ∈ P I

i }, (¬B)I = D
I\BI ,

(∃R)I = {a | ∃b : (a, b) ∈ RI}, (¬R)I = D
I × D

I\RI .

An interpretation I is a model of a KB K = 〈T ,A〉 (written I |= K) if for any
assertion B ⊑ C in T it holds that BI ⊆ CI , for any R ⊑ E it holds that
RI ⊆ EI , for any Ai(a) in A it holds that a ∈ AI

i , and for any Pi(a, b) it holds
that (a, b) ∈ P I

i .
The definitions above say that D ⊆ D

I in every interpretation I, which
essentially means that for each constant a from the active domain D we have
aI = a. By this we adopt the unique name assumption (UNA) on constants,
which is conventional for DL-Lite. However, dropping this assumption does not
affect any result of this paper, and we discuss explicitly how to adopt proofs
wherever it is not straightforward.
Conjunctive queries A conjunctive query (or CQ) is an expression of the form

q(x) :- ∃y φ(x,y), (1)

where x is a tuple of free variables, y is a tuple of existential variables, and the
body φ(x,y) is a conjunction of atoms of the form Ai(u) or Pi(u1, u2), where
u, u1, u2 are variables from x ∪ y.

A CQ (1), holds for an interpretation I and a tuple t of elements from D
I

(written I |= q(t)) iff there exists an evaluation from q to D
I for t, i.e. a mapping

h : x∪y → D
I , such that h(x) = t and h(z) ∈ SI , for every atom S(z) in φ(x,y).

A tuple t is in the certain answer to a CQ (1) over a KB K if I |= q(t) holds
for every model I of K.

3 Counting Queries over Ontologies

The ability to evaluate aggregate queries is a default in every DBMS and is in
the standard of SQL. However, as mentioned in the introduction, little attention
to this type of queries has been paid in the context of ontologies. Starting to
fill this gap, in this section we formally define counting aggregate queries over
ontologies of DL-Lite family and compare this definition with existing notions
in related areas.

3.1 Syntax and Semantics of Counting Queries

Following e.g. [9], an aggregate conjunctive query (or ACQ) is an expression

q(x, f(z)) :- ∃y φ(x,y, z), (2)

where x is a tuple of free variables, y is a tuple of existential variables and z is
a tuple of aggregation variables; the body φ(x,y, z) is a conjunction of atoms of
the form Ai(u) or Pi(u1, u2), where u, u1, u2 are variables from x ∪ y ∪ z; and
f(z) is an aggregation function. In this paper we consider two such functions:
the unary count distinct function Cntd(z) and nullary count function Count().
We call such queries counting ACQs.

Example 1. Let K = 〈T ,A〉 be a knowledge base where T consists of the as-
sertion Parent ⊑ ∃HasChild, and A consists of the assertion Parent(Ann). The
query

q1(x,Count()) :- ∃y Parent(x) ∧HasChild(x, y)

is an ACQ using the count function. Intuitively, it counts the children of each
parent. The query

q2(Cntd(y)) :- ∃x Parent(x) ∧ HasChild(x, y)

is a count distinct ACQ. This query counts all different children having a parent.

To define the semantics of counting queries over a particular model we again
follow [9]. We say that the core of an ACQ of the form (2) is the CQ q̄(x ∪
z) :- ∃y φ(x,y, z). Also, let N∞ be the set of natural numbers with 0 and +∞.

A count ACQ q(x, Count()) holds for an interpretation I, a tuple t of ele-
ments from D

I and a number n ∈ N
∞ (written I |= q(t, n)) iff n is the number

of distinct evaluations from the core q̄ to D
I for t.

A count distinct ACQ q(x, Cntd(z)) holds for an interpretation I, a tuple t

of elements from D
I and a number n ∈ N

∞ (written I |= q(t, n)) iff n is the
number of distinct elements a ∈ D

I such that I |= q̄(t, a) for the core q̄ of q.

Example 2. Coming back to Ex. 1, consider the interpretation I where ParentI =
{Ann} and HasChildI = {(Ann, Joe)}, which is clearly a model for K. Then it is
not difficult to see that I |= q1(Ann, 1) and I |= q2(1). For the model J such that
ParentJ = {Ann,Peter} and HasChildJ ={(Ann,Joe),(Ann,Rose),(Peter,Joe)},
it holds that J |= q1(Ann, 2), J |= q1(Peter, 1) and J |= q2(2).

3.2 Certain Answers of Counting Queries over Ontologies

A knowledge base normally describes not a single model, but an infinite number
of them. This is why one is typically interested in computing the certain answers
of queries over a KB, which are usually defined as the intersection of the answers
of the query over all possible models of KB [4, 7].

Unfortunately, a definition based on such a syntactical intersection is of little
use for ACQs, since it would almost always be empty. For instance, for the
query q1 from Ex. 1 and 2 we have that I |= q1(Ann, 1), and I 6|= q1(Ann, 2),
yet J 6|= q1(Ann, 1) and J |= q1(Ann, 2). This suggests avoiding using such a
syntactic intersection when defining the semantics of ACQs over ontologies.

In the context of OBDA this problem has been identified before by [11].
Their solution was to concentrate only on aggregating over epistemic knowl-
edge, i.e. over values which are explicitly mentioned in the ABox of a KB. Such
epistemic aggregate queries usually have a non-empty certain answer, based on
the intersection, for all standard aggregate queries, includingMax and Average.
However, for counting queries this answer may be somehow non-satisfactory. For
example, the epistemic answer to the ACQ q1 over K from Ex. 1 is (Ann, 0), be-
cause we do not know anybody who is definitely a child of Ann.

That is why we suggest the following definition of certain answers of counting
ACQs over DLs, which is essentially the minimum over possible values of the
counting function over all the models of a KB. In particular, our certain answer
to the query q1 over K from Ex. 1 contains (Ann, 1), which reflects the fact that
we definitely know that Ann has at least one child in any model. We deem this
definition to be in line with the open world assumption, adopted in ontologies.

Definition 1. A non-negative number n ∈ N
∞ is in the aggregate certain an-

swers Cert(q, t,K) for a counting ACQ q, tuple of elements t, and a KB K iff
n ≤ minI|=K{k | I |= q(t, k)}.

Note that a definition like above is non-trivial only for counting standard
aggregate queries. Indeed, it relies on their simple property that the minimum
above can potentially be any number greater than or equal to 0. For other
aggregation functions it is not the case: e.g. such a minimum for Average is
trivially almost always −∞.

3.3 Range Semantics of Aggregate Queries

The range semantics for aggregate queries was first proposed in [13] to study
aggregate queries over inconsistent databases, and it was later adopted in data
exchange [14, 15]. In the context of counting ACQs over ontologies it can be
defined as follows.

The range of answers for a counting ACQ q, a tuple t, and a KB K is the
interval [m(q, t,K),M(q, t,K)], where

m(q, t,K) = min
I|=K

{k | I |= q(t, k)}, M(q, t,K) = max
I|=K

{k | I |= q(t, k)}.

It is easy to see that the lower bound of the range interval coincides with the
maximal certain answer from Def. 1. Considering the upper bound, let’s come
back to Ex. 1. We can find a model I of K such that I |= q1(Ann, n) for any
number n ≥ 1, i.e. in this case the upper bound is +∞. The following proposition
says that this is not unusual.

Proposition 1. Given a counting ACQ q, a tuple of elements t, and a DL-Lite
KB K the upper endpoint M(q, t,K) of the range of answers belongs to the set
{0, 1,+∞}, and can be computed in polynomial time (in the size of q and K).

Proof. Indeed,M(q, t,K) = 0 iff 〈T ,A∪Aq〉 has no model, whereAq is an ABox
over the variables of q as constants, containing the atoms of q as assertions. Oth-
erwise, we have thatM(q, t,K) = 1 only if q uses count() and has no existentially
quantified variables. In all the remaining cases we have that M(q, t,K) = +∞,
since nothing prevents a model with an infinite number of witnesses. ⊓⊔

We may thus say that the aggregate certain answers semantics from Def. 1
is in fact an adaptation of the range semantics of [13] to ontologies.

4 Data Complexity of Counting Queries

It has been argued many times that in usual database settings the size of the
query and the TBox is much smaller than the size of the ABox (see e.g. [12] as
a more general statement and [4] in the context of DL’s). This is why in query
answering over ontologies one usually explores data complexity of problems,
i.e. only database knowledge from ABox is considered as part of the input. In
this section we do the same for aggregate certain answers. Formally, let X ∈
{core,R}, T be a TBox over DL-LiteX and q(x, f(z)) be a counting ACQ. We
are interested in the following family of problems.

DL-LiteX f -Aggregate Certain Answers (T , q)
Input: ABox A, tuple t, and number n ∈ N

∞.
Question: Is n ∈ Cert(q, t, 〈T ,A〉)?

4.1 Count Queries

We start with the lower bound for count ACQs.

Lemma 1. There exist a DL-Litecore TBox T and a count ACQ q without free
variables such that checking whether n ∈ Cert(q, t∅,K), where K = 〈T ,A〉, for
an ABox A, a number n, and the empty tuple t∅ is coNP-hard.

Proof (sketch). Let A,B and E,P be atomic concepts and roles. Let T =
{A ⊑ ∃P, ∃P− ⊑ B} and q(Count()) :- ∃y1. . . y4B(y1) ∧ E(y2, y3) ∧ P (y2, y4) ∧
P (y3, y4).

The proof is by a reduction from the complement of the NP-complete 3-
colouring problem with an undirected graph G(V , E) as input.

Let D = V ∪{r, g, b, a}. Let A contain E(u, v) and E(v, u) for each (u, v) ∈ E ,
A(v) for each v ∈ V , B(c) for each c ∈ {r, g, b}, and E(a, a), P (a, r).

It holds that 4∈Cert(q, t∅,K) iff G has no 3-colouring. ⊓⊔

This lemma continues to hold if one drops the UNA. To adopt the proof, it
suffices to state that r, g and b belong to pairwise disjoint concepts, and that a
belongs to a concept that is disjoint with a concept containing all v from V .

The proof above make use of the non-connectivity of the query. It is an
interesting open problem whether the result holds for connected queries.

Thus, the data complexity of count queries rises from P in the standard
database case at least to coNP forDL-Lite knowledge bases. The following lemma
establishes a matching upper bound for the problem.

Lemma 2. Let T be a fixed DL-LiteR TBox and q(x, Count()) be a fixed count
ACQ. Checking whether n ∈ Cert(q, t,K), where K = 〈T ,A〉, for an ABox A,
a tuple t, and a number n can be done in coNP.

Proof (sketch). Given an interpretation J and a number k, it is well known
that checking whether J |= K and J |= q(t, k) is in polynomial time (since q is
fixed). Hence, it is enough to prove that if there exists a model I of K such that
I |= q(t, n0) for a number n0 then there exists a model Ī of K of polynomial
size in the size of A such that Ī |= q(t, n̄) for some number n̄ ≤ n0.

Note that K always has a model with a domain no bigger than |D|+ |T |, so
we may assume that n0 ≤ (|D|+ |T |)|q| (which is polynomial since q is fixed).

Fix I as above. There exists a homomorphism f : Can(K) → I, where
Can(K) is the canonical model of K (see the definition in e.g. [4]). W.l.o.g. we
assume that it is surjective, i.e. f(Can(K)) = I; otherwise we can drop elements
and assertions of I which are not in the image of f , without increasing n0.

Let D
∗ be all elements of DI which are either constants from D or images

of variables by evaluations from the core of q to D
I . We can construct an inter-

pretation Î with the domain DÎ = ∪d∈DI\D∗f−1(d) ∪ D
∗ and with a surjective

homomorphism from Can(K) so that Î |= K and Î |= q(t, n̄) for some n̄ ≤ n0.

For every element d ∈ D
Î\D∗ define Nq(d) as a sub-interpretation of DÎ

induced by all elements reachable from d by an (undirected) path though roles

of length no more than |q| and without intermediate nodes from D
∗. Define

equivalence Nq(d) ∼ Nq(d
′) if there exists an isomorphism between Nq(d) and

Nq(d
′) preserving D

∗.
Note that every element of the canonical model which is not in D, has at

most |T | + 1 immediate neighbours. Hence each d ∈ D
Î\D∗ also has at most

|T | + 1 immediate neighbours in Î. Moreover, it holds that |D∗| ≤ n0|q| + |D|.
So, each Nq(d) is of polynomial size and there is only a polynomial number of

equivalence classes induced by ∼. Consider the model Ī obtained from Î by
merging all d1, d2 such that Nq(d1) ∼ Nq(d2) and the distance from D to d1 and
d2 in the canonical model modulo |q|+1 is the same. The model Ī is as required,
since such merging does not create new homomorphisms of the body of q. ⊓⊔

Note that the lower bound was shown for DL-Litecore , while the upper bound
holds for any DL-LiteR KB. Since DL-LiteR is more expressive than DL-Litecore ,
the lemmas above give us the following complexity result.

Theorem 1. The problem DL-LiteX Count-Aggregate Certain Answers
(T , q) is coNP-complete in data complexity for any X ∈{core,R}.

4.2 Count Distinct Queries

The coNP bounds also apply for count distinct ACQs. The lower bound is again
established by reduction from the complement of the 3-colouring problem.

Lemma 3. There exist a DL-Litecore TBox T and a count distinct ACQ q
without free variables such that checking whether n ∈ Cert(q, t∅,K), where
K = 〈T ,A〉, for an ABox A and a number n is coNP-hard.

Proof (sketch). Consider T = {∃E ⊑ ∃P} and q(Cntd(z)) :- ∃y1. . . y4 P (y1, z)∧
R(y1, y2) ∧ P (y2, y3) ∧ P (y4, y3) ∧ E(y4, y2), where E,P , R are atomic roles.

Let G(V , E) be an input graph as in the proof of Lem. 1. Let D contain the set
of elements {v, v1, v2, v3, v4, v5} for each v ∈ V , and elements a, a1, a2, a3, r, g, b.
Let A contain the assertions E(u, v) and E(v, u) for each (u, v) ∈ E ; the asser-
tions R(v, v1), P (v1, v2), P (v3, v2), E(v3, v1), R(v4, v), P (v4, v5) for each v ∈ V ;
and the assertions R(a, a1), P (a1, a2), P (a3, a2), E(a3, a1), P (a, r), P (a, g) and
P (a, b). It holds that 4∈Cert(q, t∅,K) iff G has no 3-colouring. ⊓⊔

This lemma again holds for the case when UNA is dropped, and the proof
can be adopted in the same way as the proof of Lem. 1. The matching algorithm
is also similar to the count case.

Lemma 4. Let T be a fixed DL-LiteR TBox and q(x, Cntd(z)) be a fixed count
distinct ACQ. Checking whether n ∈ Cert(q, t, 〈T ,A〉) for an ABox A, a tuple
t, and a number n can be done in coNP.

The proof goes the same lines as the proof of Lem. 2 except that we bound
n0 by |D|+ |T |, and include into D

∗ the active domain D and all homomorphic
images of the aggregation variable z to I. The following summarises the lemmas.

Theorem 2. The problem DL-LiteX Cntd-Aggregate Certain Answers
(T , q) is coNP-complete in data complexity for any X ∈{core,R}.

5 Combined Complexity of Counting Queries

As pointed out in Sec. 4 data complexity is the most used measure of algorithms
in any database settings. However, combined complexity has its own value for
understanding fundamental properties of problems. In this section we study the
combined complexity of computing aggregate certain answers. Formally, let X ∈
{core,R} and f be a counting aggregate function. Now we are interested in the
following family of problems.

DL-LiteX f -Aggregate Certain Answers
Input: KB K over DL-LiteX , f query q, tuple t, and number n ∈ N

∞.
Question: Is n ∈ Cert(q, t,K)?

5.1 Count Queries

We start again with count queries. Recall the algorithm to compute the certain
answers for count queries explained in the proof of Lem. 2. Note that, if one
takes into consideration the size of the query and the TBox, then this algorithm
naturally gives a coNExpTime upper bound; the only difference is that in this
case the number of neighbourhoods is of exponential size (w.r.t. q and T), and
thus the instance we need to guess is of exponential size. Next we show that this
bound is tight for DL-LiteR.

Lemma 5. The decision problem DL-LiteR Count-Aggregate Certain An-
swers is coNExpTime-hard.

The proof is by a reduction from the complement of the satisfiability problem
for first-order logic (FO) formulas in the Bernays-Schöfinkel class [17]. This class
contains all FO formulae of form ∃x∀yψ(x,y), with ψ a quantifier-free formula
not using function symbols or equalities. The reduction is inspired by the tech-
niques used in [18] to show coNExpTime-hardness of query answering problems
in data exchange context.

Unfortunately, the reduction above uses role inclusions in the TBox, i.e. it
is applicable only to DL-LiteR. We leave open the exact complexity of the DL-
Litecore Count-ACQ answering problem, although it is not difficult to adapt
the results of the following section to obtain a Πp

2 lower bound. We have the
summarizing theorem.

Theorem 3. (1) The problem DL-Litecore Count-Aggregate Certain An-
swers is in coNExpTime. (2) The problem DL-LiteR Count-Aggregate Cer-
tain Answers is coNExpTime-complete.

5.2 Count Distinct Queries

Just as we did for count queries, we can easily obtain a coNExpTime upper bound
for count distinct ones from the proof of Lem. 4. However, for DL-Litecore we

DL-Lite
Data complexity Combined complexity
Count Cntd Count Cntd

core coNP-c coNP-c in coNExp Π
p

2
-c

R coNP-c coNP-c coNExp-c coNExp-c

Table 1. A summary of the complexity results. Here “-c” stands for “-complete” and
coNExp – for coNExpTime.

can improve the complexity by almost one exponential. The idea is to redefine
the sub-interpretations used in the proof of Lem. 4 to have them of polynomial
size, while keeping the possibility of merging them.

Lemma 6. There exists a Πp
2 -algorithm which solves the problem DL-Litecore

Cntd-Aggregate Certain Answers.

In this case we have the matching lower bound.

Lemma 7. The problem DL-Litecore Cntd-Aggregate Certain Answers is
Πp

2 -hard.

The proof is by reduction from the Πp
2 -complete ∀∃ 3-SAT problem [19].

The remaining question is whether the algorithm for computing aggregate
certain answers over DL-LiteR knowledge bases is optimal. We settle this with
our last lemma, shown by a reduction similar to the one in the proof of Lem. 5.

Lemma 8. The decision problem DL-LiteR Cntd-Aggregate Certain An-
swers is coNExpTime-hard.

Summing up, we have our last theorem.

Theorem 4. (1) The problem DL-Litecore Cntd-Aggregate Certain An-
swers is Πp

2 -complete. (2) The problem DL-LiteR Cntd-Aggregate Certain
Answers is coNExpTime-complete.

6 Conclusion

In this paper we have defined an intuitive semantics for counting aggregate
queries over ontologies and explored the computational complexity of the cor-
responding problems. The results, summarized in Table 1, show that the prob-
lems are decidable, but intractable. Hence, heuristics and approximations for
answering ACQs are on high demand from the practical point of view, with
applications, for instance, in the definition of general aggregation in SPARQL
under entailment regimes. We consider the epistemic semantics as one of such
approximations, since it has lower data complexity but does not always pro-
vide the desired answer. Our work settles the theoretical foundations for further
discussion.

References

1. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-
based data access. Semantic Web 2(1) (2011) 43–53

2. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to ontology-based data access. In: IJCAI. (2011) 2656–2661

3. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler,
U.: Owl 2: The next step for OWL. Web Semant. 6(4) (November 2008) 309–322

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39(3) (2007) 385–429

5. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. (JAIR) 36 (2009) 1–69

6. Bienvenu, M., Ortiz, M., Simkus, M.: Answering expressive path queries over
lightweight DL knowledge bases. In Kazakov, Y., Lembo, D., Wolter, F., eds.:
Description Logics. Volume 846 of CEUR Workshop Proceedings., CEUR-WS.org
(2012)

7. Rosati, R.: The limits of querying ontologies. In Schwentick, T., Suciu, D., eds.:
ICDT. Volume 4353 of Lecture Notes in Computer Science., Springer (2007) 164–
178

8. Gutiérrez-Basulto, V., Ibáñez-Garćıa, Y.A., Kontchakov, R.: An update on query
answering with restricted forms of negation. In: Proceedings of the 6th interna-
tional conference on Web Reasoning and Rule Systems. RR’12, Berlin, Heidelberg,
Springer-Verlag (2012) 75–89

9. Cohen, S., Nutt, W., Sagiv, Y.: Deciding equivalences among conjunctive aggregate
queries. Journal of the ACM 54(2) (2007)

10. Glimm, B., Ogbuji, C., Hawke, S., Herman, I., Parsia, B., Polleres, A., Seaborne,
A.: SPARQL 1.1 entailment regimes (2013) W3C Recommendation 21 March 2013,
http://www.w3.org/TR/2013/REC-sparql11- entailment-20130321/.

11. Calvanese, D., Kharlamov, E., Nutt, W., Thorne, C.: Aggregate queries over on-
tologies. In Elmasri, R., Doerr, M., Brochhausen, M., Han, H., eds.: ONISW, ACM
(2008) 97–104

12. Vardi, M.Y.: The complexity of relational query languages (extended abstract).
In: STOC. (1982) 137–146

13. Arenas, M., Bertossi, L., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar
aggregation in inconsistent databases. Theor. Comput. Sci. 296(3) (March 2003)
405–434

14. Libkin, L.: Data exchange and incomplete information. In Vansummeren, S., ed.:
PODS, ACM (2006) 60–69

15. Afrati, F., Kolaitis, P.G.: Answering aggregate queries in data exchange. In:
Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems. PODS ’08, New York, NY, USA, ACM (2008)
129–138

16. Kostylev, E.V., Reutter, J.L.: Answering counting aggregate queries over ontologies
of the DL-Lite family. In: Proc. of the 27th AAAI Conf. on Artificial Intelligence
(AAAI). (2013)

17. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer,
Berlin (2001)

18. Arenas, M., Barceló, P., Reutter, J.L.: Query languages for data exchange: Beyond
unions of conjunctive queries. Theory Comput. Syst. 49(2) (2011) 489–564

19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

Appendix

This appendix contains full proofs for all the lemmas of the paper.

Lemma 1. There exist a DL-Litecore TBox T and a count ACQ q without free
variables such that checking whether n ∈ Cert(q, t∅,K), where K = 〈T ,A〉, for
an ABox A, a number n, and the empty tuple t∅ is coNP-hard.

Proof. Let A,B be atomic concepts and E,P be atomic roles. Fix a TBox T =
{A ⊑ ∃P, ∃P− ⊑ B} and count ACQ

q(Count()) :- ∃y1. . . y4B(y1) ∧ E(y2, y3) ∧ P (y2, y4) ∧ P (y3, y4).

Consider the complement of the NP-complete 3-colouring problem with an
undirected graph G(V , E) , where V is the set of vertices and E is the set of edges,
as input and positive output iff the graph has no 3-colouring.

Let D = V ∪ {r, g, b, a}. Let A contain assertions E(u, v) and E(v, u) for
each (u, v) ∈ E , the assertion A(v) for each v ∈ V , the assertion B(c) for each
c ∈ {r, g, b}, and assertions E(a, a), P (a, r).

Note that, from the construction we have that the count is at least 3 in every
model I of the KB K = 〈T ,A〉, i.e. I |= q(t∅, 3).

Next we show that 4 ∈ Cert(q, t∅,K) iff G(V , E) has no 3-colouring.

(⇐) Assume for the sake of contradiction that G has no 3-colouring, but 4 /∈
Cert(q, t∅,K). It means that there exists a model I for K such that I |= q(t∅, 3)
(we know from the observation above that the count cannot be any number less
than 3).

Since ACQs are monotone, it is safe to assume that for every vertex v ∈ V ,
there is a single pair (v, e) in P I , for some element e ∈ D

I .
Let us define the following coloring σ : V → {red, green, blue} of G: for each

vertex v ∈ V , we have that

σ(v) = red iff I |= P (v, r),
σ(v) = green iff I |= P (v, g), and
σ(v) = blue iff I |= P (v, b).

All that is left to do is to show that σ is indeed a proper 3-colouring, which
results in a contradiction.

First, we show that σ assigns a colour to each vertex in V . For the sake of
contradiction, assume the contrary. Then there must be a vertex v such that P I

does not contain any of (v, r), (v, g), or (v, b). Since we know that A(v) holds
in I, and since A ⊑ ∃P , it follows that there is an element e distinct from
r, g and b and such that P I(v, e). But then BI(e) holds since ∃P− ⊑ B. We
can then construct a fourth evaluation h from the core of q to D

I : h(y1) = e,
h(y2) = h(y3) = a, and h(y4) = r. This contradicts the fact that I |= q(t∅, 3).

Next we show that σ is indeed a correct colouring. Assume for the sake of
contradiction that this is not the case. Then there is an edge (u, v) ∈ E such that
σ(u) = σ(v). Let us assume without loss of generality that σ(u) = σ(v) = red.

From the definition of σ, it means that the pairs (u, r) and (v, r) belong to
P I . We can then construct a fourth evaluation h from the core of q to D

I :
h(y1) = r, h(y2) = u, h(y3) = v, and h(y4) = r. This contradicts to the fact that
I |= q(t∅, 3).

We obtain that σ is a 3-colouring, which is a contradiction.

(⇒) Assume that 4 ∈ Cert(q, t∅,K), and assume for the sake of contradiction
that there is a 3-colouring σ of G.

Next we construct a model I of K such that I |= q(t∅, 3), which results in a
contradiction:

- BI = {r, g, b}; AI = {v | v ∈ V};
- EI = {(a, a)} ∪ {(u, v) | (u, v) ∈ E or (v, u) ∈ E}; and
- P I = {(v, r) | v ∈ V and σ(v) = red} ∪ {(v, g) | v ∈ V and σ(v) = green} ∪
{(v, b) | v ∈ V and σ(v) = blue}.

Clearly I is indeed a model of K. We know that there are 3 evaluations from
the core of q to D

I , resulting of mapping the variable y1 to either r, or b, or
g; the variables y2, y3 to a; and the variable y4 to r. From the definition of BI

and EI , any other evaluation must send y2 and y3 to some u and v such that
EI contains (u, v), i.e. {u, v} is an edge in G. But it means that there is an
element e ∈ {r, g, b} such that both (u, e) and (v, e) are in P I , and, therefore,
that σ(u) = σ(v). This contradicts our initial assumption. ⊓⊔

Lemma 2. Let T be a fixed DL-LiteR TBox and q(x, Count()) be a fixed count
ACQ. Checking whether n ∈ Cert(q, t,K), where K = 〈T ,A〉, for an ABox A,
a tuple t, and a number n can be done in coNP.

Proof. The knowledge base K always has a model over number of elements no
bigger than |D|+ |T |. There exists at most (|D|+ |T |)|q| evaluations from the core
of q to this model. Hence, w.l.o.g. we may assume that n ≤ (|D|+ |T |)|q| (which
is polynomial since q is fixed), where |q| is the number of atoms in the body of
q, because otherwise the answer to our decision problem is trivially “no”.

Let k be a fixed constant, and consider the following simple algorithm: check
all interpretations J over number of elements |D|k, whether J |= K and J |=
q(t, n). This algorithm clearly runs in coNP, since checking whether J |= K and
J |= q(t, n) can be done in polynomial time (because q is fixed). Hence, for the
proof it is enough to prove the following statement. There exists a constant k
that depends only on q and T for which if there is a model I of K such that
I |= q(t, n0) for a number n0 < n, then there exists a model Ī of K over |D|k

elements such that Ī |= q(t, n̄) for some number n̄ ≤ n0.
The remainder of the proof is devoted to show this statement. Fix a model

I of K such that I |= q(t, n0) for a number n0 < n. There exists a homomor-
phism f : Can(K) → I, where Can(K) is the canonical model of K (see the
definition in e.g. [4]). W.l.o.g. we assume that this homomorphism is surjective,
i.e. f(Can(K)) = I; since otherwise we could drop elements and assertions of

I which are not in the image of f , without increasing n0. Essentially it means,
that f “merges” some elements of Can(K) to obtain I.

Let D
∗ be all elements of DI which are either constants from D or images

of variables by evaluations from the core of q to D
I . We can construct an inter-

pretation Î with the domain D
Î = ∪d∈DI\D∗f−1(d) ∪ D

∗ and with a surjective

homomorphism from Can(K) so that Î |= K and Î |= q(t, n̄) for some n̄ ≤ n0.
Intuitively, Î is obtained from I by “unmerging” all elements in the unonimous
part of I, which are not bounded by evaluations from the core of q.

For every element d ∈ D
Î\D∗ define the neighbourhood Nq(d) as a sub-

interpretation of DÎ induced by all elements reachable from d by an (undirected)
path though roles of length no more than |q| and without intermediate nodes
from D

∗. Define equivalence Nq(d) ∼ Nq(d
′) if there exists an isomorphism

between the neighbourhoods Nq(d) and Nq(d
′) preserving D

∗.
Note that every element of the canonical model which is not in D, has at most

|T | + 1 immediate neighbours. Hence each d ∈ D
Î\D∗ also has at most |T |+ 1

immediate neighbours in Î. Moreover, it holds that |D∗| ≤ n0|q| + |D|. So, the

size of each Nq(d) is of order |DÎ |p(|q|,|T |), where p is a fixed polynomial that
depends only on q and T . This is of polynomial size, since the query and TBox
are assumed to be fixed. Furthermore, we obtain that there is only a polynomial
number of equivalence classes induced by ∼. Hence, there exists a constant k
such that the model Ī obtained from Î by merging all d1, d2 such that

1. Nq(d1) ∼ Nq(d2), and
2. in the canonical model Can(K) the distances from D to d1 and d2 are the

same modulo |q|+ 1,

has no more than (|q|+1)|DI |k underlying elements. Moreover, since such merg-

ing does not create new evaluations from the core of q to D
Î , as required, we

have that Ī |= q(t, n̄) for the number n̄ ≤ n0. Note that the condition 2 guaran-
tees that all the cycles created by the merging are longer than any cycle in the
query. ⊓⊔

Lemma 3. There exist a DL-Litecore TBox T and a count distinct ACQ q
without free variables such that checking whether n ∈ Cert(q, t∅,K), where
K = 〈T ,A〉, for an ABox A and a number n is coNP-hard.

Proof. Consider the TBox T = {∃E ⊑ ∃P} and count distinct ACQ

q(Cntd(z)) :- ∃y1. . . y4 P (y1, z) ∧R(y1, y2) ∧ P (y2, y3) ∧ P (y4, y3) ∧ E(y4, y2),

where E,P , and R are atomic roles.
Consider the complement of the NP-complete 3-colouring problem with the

input graph G(V , E) as in the proof of Lem. 1.
Let D contain the set of elements {v, v1, v2, v3, v4, v5} for each v ∈ V , and

elements a, a1, a2, a3, r, g, b. Let A contain

- assertions E(u, v) and E(v, u) for each (u, v) ∈ E ;
- assertions R(v, v1), P (v1, v2), P (v3, v2), E(v3, v1), R(v4, v), P (v4, v5) for each
v ∈ V ; and

- assertionsR(a, a1), P (a1, a2), P (a3, a2), E(a3, a1), P (a, r), P (a, g), and P (a, b).

Similarly to the proof of Lem. 1 from the construction we have that the count
distinct is at least 3 in every model I of the KB K = 〈T ,A〉, i.e. I |= q(t∅, 3).

The proof of the fact that 4 ∈ Cert(q, t∅,K) iff G(V , E) has no 3-colouring
goes the same lines as the proof of the Lem. 1.

For the direction (⇐), we again assume for the sake of contradiction that
G has no 3-colouring, but 4 /∈ Cert(q, t∅,K), i.e. there exists a model I of K
such that I |= q(t∅, 3). From I we show how to construct a coloring for G. From
this coloring and our assumption that there is no 3-colouring, we conclude that
either there exists a vertex v such that P I(v, e) for some element e /∈ {r, g, b}, or
there exists an edge {u, v} in E , such that P I(u, e) and P I(v, e). In the first case,
there exists a evaluation h from the core of q to D

I such that h(z) = e, which
implies 4 ∈ Cert(q, t∅,K). In the second case, here exists a evaluation h from
the core of q to D

I such that h(z) = v5, which again implies 4 ∈ Cert(q, t∅,K).
However, this contradicts the assumption.

For the direction (⇒) we construct a model I of K such that I |= q(t∅, 3)
exactly as in the proof of Lem. 1. ⊓⊔

Lemma 4. Let T be a fixed DL-LiteR TBox and q(x, Cntd(z)) be a fixed count
distinct ACQ. Checking whether n ∈ Cert(q, t, 〈T ,A〉) for an ABox A, a tuple
t, and a number n can be done in coNP.

Proof. The proof goes almost the same lines as the proof of Lem. 2.
The knowledge base K always has a model over number of elements no big-

ger than |D| + |T |. There exists at most |D| + |T | images of the variable z by
evaluations from the core of q to this model. Hence, w.l.o.g. we may assume that
n ≤ |D|+ |T |, because otherwise the answer to our decision problem is trivially
“no”.

Consider again the following simple algorithm: check all interpretations J
over number of elements |D|k, where k is the constant defined below, whether
J |= K and J |= q(t, n). This algorithm clearly runs in coNP, since checking
whether J |= K and J |= q(t, n) can be done in polynomial time (because q is
fixed). Hence, again, it is enough to prove that if there exists a model I of K
such that I |= q(t, n0) for a number n0 < n then there exists a model Ī of K
over |D|k elements such that Ī |= q(t, n̄) for some number n̄ ≤ n0.

Fix a model I of K such that I |= q(t, n0) for a number n0 < n. There exists
a homomorphism f : Can(K) → I, and by the same reasons as in the proof of
Lem. 2 we assume that this homomorphism is surjective, i.e. f(Can(K)) = I.

Let D
∗ be all elements of DI which are either constants from D or images

of the variable z by evaluations from the core of q to D
I . We can construct

an interpretation Î with the domain DÎ = ∪d∈DI\D∗f−1(d) ∪ D
∗ and with a

surjective homomorphism from Can(K) so that Î |= K and Î |= q(t, n̄) for some
n̄ ≤ n0. Essentially, Î is obtained from I by “unmerging” all the elements in the
unonimous part of I, which are not images of the variable z by evaluations from
the core of q.

Construct the model Ī of K from Î exactly in the same way as in the proof
of Lem. 2, by merging elements with isomorphic neighbourhoods Nq(d) and the
same distance from D modulo |q|+ 1. Since |D∗| ≤ n0 + |D|, and there are only
polynomial number of neighbourhoods of polynomial size, there exists a constant
k such that the model Ī has no more than (|q| + 1)|D|k underlying elements.
Moreover, since such merging does not create new images of the variable z by

evaluations from the core of q to D
Î , as required, we have that Ī |= q(t, n̄) for

the number n̄ ≤ n0. ⊓⊔

Lemma 5. The decision problem DL-LiteR Count-Aggregate Certain An-
swers is coNExpTime-hard.

Proof. The coNExpTime-hardness is established by a reduction from the satisfi-
ability problem for the Bernays-Schönfinkel class of Boolean FO formulas, which
is known to be NExpTime-complete (see, e.g., [17]), to the complement of the
counting problem. Formally, the Bernays-Schönfinkel class of Boolean FO for-
mulas is defined as the class of all FO formulas of the form ∃x∀yψ(x,y), where
ψ is quantifier-free and does not contain function symbols and equalities.

Let ∃x∀yψ(x,y) be such a formula in the Bernays-Schönfinkel class. Let also
x = x1, . . . , xn and y = y1, . . . , ym. For the sake of readability, we first assume
that ψ mentions a single relation symbol P , of arity r. Later we explain how
to modify the proof to work with any arbitrary relational vocabulary. Finally,
w.l.o.g. we assume that ψ is not atomic and let ψ1, . . . , ψp be an enumeration of
all the sub-formulas of ψ such that ψp = ψ.

Next we will show how to construct in polynomial time a DL-LiteR KB
K = 〈T ,A〉 and a Boolean Count-ACQ q such that 2 ∈ Cert(q, t∅,K) (where
t∅ is the empty tuple) iff ∃x∀yψ(x,y) is satisfiable, i.e. has a model. Along the
proof we will use the following property of this formula: either it is unsatisfiable,
or it has a model with at most n elements (see, e.g. [17]).

We start with the construction of the Boolean Count-ACQ

q(Count()) :- ∃s A1(s1) ∧ · · · ∧ An(sn) ∧ S(s1) ∧ TV
p
F (s2, s3) ∧ C(s3) ∧

p
∧

ℓ=1

φℓ,

where s is the tuple of all variables in the query q, including the ones appearing
below, and

- for each ℓ, 1 ≤ ℓ ≤ p such that the sub-formula ψℓ ≡ P (zh1
, . . . , zhr

) is
atomic, we have that

φℓ ≡ R0(u
ℓ
1) ∧R(u

ℓ
1, v

ℓ
1,1) ∧ γ

ℓ
1 ∧ TVR(v

ℓ
1,r, v

ℓ
1) ∧ C(v

ℓ
1) ∧

F0(u
ℓ
1) ∧ F (u

ℓ
1, w

ℓ
1,1) ∧ δ

ℓ
1 ∧ TVℓ(w

ℓ
1,m, w

ℓ
1) ∧ U(wℓ

1) ∧
R0(u

ℓ
2) ∧R(u

ℓ
2, v

ℓ
2,1) ∧ γ

ℓ
2 ∧ TVR(v

ℓ
2,r, v

ℓ
2) ∧ U(vℓ2) ∧

F0(u
ℓ
2) ∧ F (u

ℓ
2, w

ℓ
2,1) ∧ δ

ℓ
2 ∧ TVℓ(w

ℓ
2,m, w

ℓ
2) ∧ C(w

ℓ
2),

where γℓj , 1 ≤ j ≤ 2, contains

the atom R(vℓj,k, v
ℓ
j,k+1) for each k, 1 ≤ k ≤ r − 1,

the atom V (vℓj,k, t
ℓ
j,k) for each k, 1 ≤ k ≤ r,

the atom Ai(tℓj,k) for each k, 1 ≤ k ≤ r, where i, 1 ≤ i ≤ n, is the

number such that zhk
(i.e. the k’th variable of ψℓ) is xi, and

the atom V (wℓ
j,i, t

ℓ
j,k) for each k, 1 ≤ k ≤ r, where i, 1 ≤ i ≤ n, is the

number such that zhk
is yi,

and δℓj , 1 ≤ j ≤ 2, contains the atom F (wℓ
j,k, w

ℓ
j,k+1) for each k, 1 ≤ k ≤

m− 1.
- for each ℓ, 1 ≤ ℓ ≤ p, such that ψℓ = ψℓ1 ∨ ψℓ2 , we have that

φℓ ≡ TV ℓ
F (u

ℓ
1, v

ℓ
1)∧TV

ℓ1
F (uℓ1, w

ℓ
1)∧TV

ℓ2
F (uℓ1, t

ℓ
1)∧U(vℓ1)∧C(w

ℓ
1)∧C(t

ℓ
1)∧

TV ℓ
F (u

ℓ
2, v

ℓ
2) ∧ TV

ℓ1
F (uℓ2, w

ℓ
2) ∧ C(v

ℓ
2) ∧ U(wℓ

2)∧

TV ℓ
F (u

ℓ
3, v

ℓ
3) ∧ TV

ℓ2
F (uℓ3, t

ℓ
3) ∧ C(v

ℓ
3) ∧ U(tℓ3);

- for each ℓ, 1 ≤ ℓ ≤ p, such that ψℓ = ¬ψℓ1 , we have that

φℓ ≡ TV ℓ
F (u

ℓ
1, v

ℓ
1) ∧ TV

ℓ2
F (uℓ1, w

ℓ
1) ∧ U(vℓ1) ∧ U(wℓ

1)∧

TV ℓ
F (u

ℓ
2, v

ℓ
2) ∧ TV

ℓ1
F (uℓ2, w

ℓ
2) ∧ C(v

ℓ
2) ∧C(w

ℓ
2).

Next we define the KB K = 〈T ,A〉 and start with the ABox A.

1. The active domain contains the constants a1, . . . , an (corresponding to the
elements of the model of ψ). The ABox A for every i, 1 ≤ i ≤ n, contains
the assertion Ai(ai).

2. The active domain contains the constants 0 and 1 (corresponding to the
truth values false and true). The ABox A contains the assertions S(0),
S(1), C(0) and U(1).

3. The active domain contains the constant c (which starts the “computation”
of ψ). The ABox A contains the assertions STARTR(c) and STARTF (c).

4. The active domain contains the constants b, e1, . . . , en, d1, . . . , dm, f , g
q+1, . . .,

gp. These constants, along with the following assertions, force every model
of K to have one homomorphism from (the existential closure of) φℓ. The
ABox A contains the assertions:

- R0(b), R(b, e1) and R(ek, ek+1) for each i, 1 ≤ k ≤ r − 1;
- V (ek, a

i) for each k and i, 1 ≤ k ≤ r, 1 ≤ i ≤ n;
- V (ek, f) for each k, 1 ≤ k ≤ r;
- TVR(er, 0) and TVR(er, 1);
- F0(b), F (b, d1) and F (dk, dk+1) for each i, 1 ≤ k ≤ m− 1;
- V (dk, f) for each k, 1 ≤ k ≤ m;
- TV ℓ

F (dm, 0) and TV
ℓ
F (dm, 1) for each ℓ, 1 ≤ ℓ ≤ p such that ψℓ is atomic;

- TV ℓ
F (g

ℓ, 0), TV ℓ1
F (gℓ, 0), TV ℓ2

F (gℓ, 0), TV ℓ
F (g

ℓ, 1), TV ℓ1
F (gℓ, 1), TV ℓ2

F (gℓ, 1)
for each ℓ, 1 ≤ ℓ ≤ p, such that ψℓ = ψℓ1 ∨ ψℓ2 ;

- TV ℓ
F (g

ℓ, 0), TV ℓ1
F (gℓ, 0), TV ℓ

F (g
ℓ, 1) and TV ℓ1

F (gℓ, 1) for each ℓ, 1 ≤ ℓ ≤ p,
such that ψℓ = ¬ψℓ1 .

Finally, the TBox T consists of the following three parts.

1. The first part essentially assigns elements to the existential variables x:

- for each i, 1 ≤ i ≤ n, the TBox T contains the assertions ∃(V i)− ⊑ Ai

and V i ⊑ V .

2. The second part essentially assigns a truth value to every fact P (ai1 , . . . , air):

- for each i, 1 ≤ i ≤ n, the TBox T contains the assertions STARTR ⊑ R0

and STARTR ⊑ ∃Ri
1;

- for each i, j and k, 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ r − 1, the TBox T
contains the assertion ∃(Ri

k)
− ⊑ Rj

k+1;

- for each i and k, 1 ≤ i ≤ n, 1 ≤ k ≤ r, the TBox T contains the
assertions ∃(Ri

k)
− ⊑ ∃V i and Ri

k ⊑ R;

- for each i, 1 ≤ i ≤ n, the TBox T contains the assertion ∃(Ri
r)

− ⊑ ∃TVR;
- the TBox T contains the assertion ∃(TVR)− ⊑ S.

3. The third part essentially assigns a truth value to every sub-formula ψℓ of
ψ for every element assignment of variables y:

- for each i, 1 ≤ i ≤ n, the TBox T contains the assertions STARTF ⊑ F0

and STARTF ⊑ ∃F i
1 ;

- for each i, j and k, 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ m − 1, the TBox T
contains the assertion ∃(F i

k)
− ⊑ F j

k+1;

- for each i and k, 1 ≤ i ≤ n, 1 ≤ k ≤ m, the TBox T contains the
assertions ∃(F i

k)
− ⊑ ∃V i and F i

k ⊑ F ;

- for each i and ℓ, 1 ≤ i ≤ n, 1 ≤ ℓ ≤ p, the TBox T contains the assertion
∃(F i

m)− ⊑ ∃TV ℓ
F ;

- for each ℓ, 1 ≤ ℓ ≤ p, the TBox T contains the assertion ∃(TV ℓ
F)

− ⊑ S.

Having the construction of the KB K completed next we show the correctness
of the reduction. We start with the following claim.

Claim. Let I be a model for the KB K above. Then there are exactly two
evaluations from the core of the Count-ACQ q to I that map all the existential
variables s of q to the constants in the active domain of A.

Proof (of claim). Both evaluations can be constructed as follows: map the vari-
able s1 of q to either 0 or 1 (we know this is valid since A contains assertions
S(1) and S(0)). In the same fashion, map each variable si, 1 ≤ i ≤ n, of q to
the constant ai (this is again valid since A contains all the assertions Ai(ai)).
For the rest of the variables of q one can check that all of them can be mapped
to constants b, d, e, f, g (with proper indexes) that appear already in the asser-
tions of A. That no other evaluations can be constructed in this fashion can be
checked by a straightforward inspection of the construction. ⊓⊔

It follows from the above claim that the core of the query q has at least two
evaluations to each model of K, and thus that 2 ≤ m(q, t∅,K) (recall that t∅ is
the empty tuple). This property is crucial for this proof.

We now show that 2 ∈ Cert(q, t∅,K) iff ∃x∀yψ(x,y) is satisfiable.

(⇒) Assume that 2 ∈ Cert(q, t∅,K). Then there is a model I for K such that
there are exactly two evaluations from the core of q to I (we know that there are
at least two of them). Without loss of generality we assume that I is minimal,
in the sense that all the tuples in the interpretation of concepts and roles in I
witness a certain TBox or ABox assertions. If not, one can always remove this
extra tuples, ending up with a model with no greater number of evaluations,
since removing them can never create extra evaluations from the core of q to I.

We can deduce several properties of the model I.

- The interpretation of S in I contains only elements 0 and 1. Therefore,
these are the only constants in the ranges (i.e. second components) of inter-
pretations of TVR and TV ℓ

F , 1 ≤ ℓ ≤ p, in I. Otherwise, one can construct
additional homomorphisms by mapping the variable s1 in the atom S(s1) of
the body of q to one of the other elements.

- By similar reasons, the interpretation of each Ai, 1 ≤ i ≤ n, contains exclu-
sively the constant ai, and therefore the range of the interpretation of V i in
I does the same.

Let now M be a model over the vocabulary of ψ consisting of the elements
{a1, . . . , an}, and assume that the interpretation PM of the only relation P over
M is as follows: each r-tuple (ai1 , . . . , air) of elements in {a1, . . . , an} belongs
to PM if and only if there are elements āi1 , . . . , āir in I so that the following
assertions holds in I:

Ri1
1 (c, āi1), Ri2

2 (āi1 , āi2), . . . , Rir
r (āir−1 , āir),

V (āi1 , ai1), . . . , V (āir , air), TVR(ā
ir , 1).

We now show that all possible assignments for variables y1, . . . , ym in ψ to
variables from {a1, . . . , an} satisfy ψ, in the case when each xi is assigned the
element ai, for 1 ≤ i ≤ n. In order to do that, we prove the following claim by
induction.

Claim. A sub-formula ψℓ of ψ is satisfied by the assignment τ : x ∪ y →
{a1, . . . , an} such that τ(xi) = ai, 1 ≤ i ≤ n, and τ(yk) = aσ(k), 1 ≤ k ≤ m,
where σ is a mapping from {1, . . . ,m} to {1, . . . , n}, if and only if there are
elements âk1 , . . . , âkm in I so that the following assertions are in I:

F
σ(1)
1 (c, âk1), F

σ(2)
2 (âk1 , âk2), . . . , F σ(m)

m (âkm−1 , âkm),

V (âk1 , aσ(1)), . . . , V (âkm , aσ(m)), TV ℓ
F (â

km , 1).

Proof (of claim).

Basis. The base case is when ψℓ is an atomic formula of form P (zh1
, . . . , zhr

),
where each zhk

is one of x1, . . . , xn, y1, . . . , ym. Assume for the sake of contra-
diction that there are constants âk1 , . . . , âkm in the domain of I so that I does
contain the required assetions, yet ψℓ is not satisfied with the assignment τ (the
other direction is symmetrical). If ψℓ is not true for the assignment τ , then the
r-tuple τ(zh1

, . . . , zhr
) is not in the interpretation of P over M. By the con-

struction of M and the properties deduced from I, it must be the case that the
following facts hold in I:

Ri1
1 (c, āi1), Ri2

2 (āi1 , āi2), . . . , Rir
r (āir−1 , āir),

V (āi1 , ai1), . . . , V (āir , air), TVR(ā
ir , 0)

for some elements āi1 , . . . , āir in I, and such that for each hk, 1 ≤ k ≤ r,
we have that τ(zhk

) = ahk . From this one can easily check that there is a
homomorphism from the subquery φℓ to the aforementioned atoms, which results
in extra evaluations from the core of q to I.

Inductive step. For the inductive case, assume that ψℓ = ψℓ1∨ψℓ2 , q < ℓ ≤ p (the
case when ψℓ = ¬ψℓ1 is analogous). Moreover, assume for the sake of contradic-
tion that there are constants âk1 , . . . , âkm in I so that the I does contain the
facts in the statement of the claim, yet ψℓ is not satisfied with the assignment τ
(the other direction is symmetrical). If ψℓ is not satisfied, then neither ψℓ1 nor
ψℓ2 are satisfied. By the induction hypothesis and the construction of M, there
are constants âk1

1 , . . . , â
km

1 and âk1

2 , . . . , â
km

2 such that the facts

F
σ(1)
1 (c, âk1

1), F
σ(2)
2 (âk1

1 , â
k2

1), . . . , F σ(m)
m (â

km−1

1 , âkm

1),

V (âk1

1 , a
σ(1)), . . . , V (âkm

1 , aσ(m)), TV ℓ
F (â

km

1 , 0),

and

F
σ(1)
1 (c, âk1

2), F
σ(2)
2 (âk1

2 , â
k2

2), . . . , F σ(m)
m (â

km−1

2 , âkm

2),

V (âk1

2 , a
σ(1)), . . . , V (âkm

2 , aσ(m)), TV ℓ
F (â

km

2 , 0)

belong to I. In other words, these facts cause an extra witness for the subquery
φℓ in q. ⊓⊔

Having established the claim above, we recall that the body of the query q
contains the atoms TV p

F (s2, s3) ∧C(s3). Thus, if the sub-formula ψp which is ψ
itself by the convention, does not hold for some assignment τ , then I contains
the fact TV p

F (â, 0) for some constant â, and then at least one extra evaluation
can be constructed from the core of q to I. Thus, it must be the case that ψp is
satisfied by all possible assignments of y1, . . . , ym to a1, . . . , an. It follows that
∃x∀yψ(x,y) is satisfiable.

(⇐) Assume that ∃x∀yψ(x,y) is satisfiable. Then, as we have mentioned, there
is a model M with at most n elements, that satisfies this formula. Assume
without loss of generality that this model has exactly n elements, say a1, . . . , an,

and the satisfying assignment for ψ assigns each xi, 1 ≤ i ≤ n, to ai. We now
construct an interpretation I, which is a model of the KB K, such that there
are only two evaluations from the core of q to I. Define the model I as follows.

– The interpretation of each concept Ai, 1 ≤ i ≤ n, and S in I is as required
by the ABox A: each Ai contains ai and S contains 1 and 0.

– The interpretation of each role Ri
k, 1 ≤ i ≤ n, 1 ≤ k ≤ r, and R is as in the

A, plus extra pairs as in the canonical model in of K. It is convenient to note
that the canonical model contains a tree of R’s of height r and width n. Each
of the leaves of this tree has to be in the domain (i.e. the first component)
of the interpretation of TVR. We add the following to I. For each path from
c to some leaf āir in I of the form

R0(c), R
i1
1 (c, āi1), Ri2

2 (āi1 , āi2), . . . , Rir
r (āir−1 , āir),

such that āi1 , . . . , āir the model I contains the assertions

V i1(āi1 , ai1), . . . , V ir (āir , air).

Also, the interpretation of TVR in I contains the pair (āir , 1) if the inter-
pretation of the relation P in the model M contains the tuple (ai1 , . . . , air),
and (āir , 0) otherwise.

– The interpretation of each role F i
k, 1 ≤ i ≤ n, 1 ≤ k ≤ m, and F in I is

as in the A, plus extra pairs as in the canonical model of K. Again, it is
convenient to note that the canonical model contains a tree of F ’s of height
m and width n. Each of the leaves of this tree has to be in the domain (the
first component) of the interpretation of TV ℓ

F for all 1 ≤ ℓ ≤ p. We add the
following to I. For each path from c to some leaf âim in I, of form

F0(c), F
i1
1 (c, âi1), F i2

2 (âi1 , âi2), . . . , F im
m (âim−1 , âim),

such that âi1 , . . . , âim are different constants the model I contains the fol-
lowing assertions

V i1(âi1 , ai1), . . . , V im(âim , air).

Also, the interpretation of each TV ℓ
F in I contains the pair (âim , 1) if the

sub-formula ψℓ of ψ holds in the model M for the evaluation of y1, . . . , ym
to ai1 , . . . , aim , and (âim , 0) otherwise.

It is now a cumbersome, but straightforward task to show that there are only
two evaluations from the core of q to I. The proof of course makes use of the
fact that any other evaluation must map at least one variable of q to a constant
that does not appear in the active domain of K.

The only thing left to complete the proof is to explain how to extend the
construction above in the case when the vocabulary of ψ contains several rela-
tions P1, . . . , PN . Essentially, one needs a tree like construct as above for each
such relation. The KB can then be adapted in the expected way. Note that if the
arities of these relations are not the same then the lengths of these trees need to
be adapted accordingly. ⊓⊔

Lemma 6. There exists a Πp
2 -algorithm which solves the problem DL-Litecore

Cntd-Aggregate Certain Answers.

Proof. The combined complexity of the algorithm from the proof of Lem. 4
is exponential, since neighbourhoods Nq(d) can be of exponential size (if the
TBox is not fixed), and the number k is not a fixed constant any more. Next
we show how to redefine these neighbourhoods to have them polynomial in size
while keeping the possibility of merging them without increasing the number n̄.
Having this fact proved, we show the correctness of the following algorithm for
some constant number k′: check all interpretations J over number of elements
|D|k

′

, whether J |= K and J |= q(t, n). This algorithm clearly runs in Πp
2 , since

checking whether J |= K and J |= q(t, n) can be done in NP (because n is
bounded by |D|+ |T |, as in the proof of Lem. 4).

Note, that the construction below works only for DL-Litecore , and increas-
ing the expressivity to DL-LiteR leads to an increase in the complexity of the
problem.

For every pair of variables u, v from the body φ(x,y, z) of the input Cntd-
ACQ q let Lq(u, v) be the subset of all atoms in φ(x,y, z) which use only variables
on simple (possibly undirected) paths from u to v over roles of K.

Consider the model Î of K and the set of domain elements D∗, built on the

base of a witnessing model I, as in the proof of Lem. 4. For every d ∈ D
Î\D∗

define the ∗-neighbourhood N ∗
q (d) as a sub-interpretation of DÎ induced by all

elements d′ such that there exists u, v ∈ x ∪ y ∪ z and a homomorphism h from

Lq(u, v) to D
Î such that h(u) = d, h(v) = d′ and h(w) /∈ D

∗ for all w 6= v.

Since every element d1 ∈ D
Î\D∗ and every role (atomic, or its inversion) R

have at most one d2 such that Î |= R(d1, d2), every pair u, v induces at most one
element in every N ∗

q (d).
3 Hence the ∗-neighbourhood N ∗

q (d) is of polynomial
size, and there are only polynomial number of such ∗-neighbourhoods which are
not isomorphic by the definition in the the proof of Lem. 4). However, merging
d1 and d2 in Î such that N ∗

q (d1) ∼ N ∗
q (d2) and with the same distance from D

modulo |q|+ 1, does not create new images of z by evaluations from the core of
q, so it does not increase the number n̄.

The construction above implies that there exists a constant k′ as required in
the beginning of the proof. ⊓⊔

Lemma 7. The problem DL-Litecore Cntd-Aggregate Certain Answers is
Πp

2 -hard.

Proof. The hardness is established by a reduction from ∀∃ 3-SAT, which is the
problem of verifying, given a Boolean formula ψ in 3-CNF with variables par-
titioned into tuples x and z, whether it is true that for every truth assignment
of the variables x, there exists a truth assignment of the variables z so that
ψ is satisfied with the overall assignment. This problem is well known to be
Πp

2 -complete.

3 This is the argument which is not valid for DL-LiteR.

Let ψ be such a formula of the form ∀x∃z
∧

1≤k≤ℓ ψk, where each ψk (1 ≤ k ≤
ℓ) is a clause containing exactly three literals. We denote the variables of each ψk

from x ∪ z by y1k, y
2
k and y3k. Let also x = x1, . . . , xn and z = z1, . . . , zm. Based

on ψ, we show how to construct in polynomial time a DL-Litecore knowledge
base K = 〈T ,A〉 and a Boolean Cntd-ACQ q such that 3 ≥ m(q, t∅,K) (where
t∅ is the empty tuple), if and only if for every truth assignment of the variables
in x, there exists a truth assignment of the variables in z so that ψ is satisfied
with the overall assignment.

Let us begin by defining the query. Consider roles R, V , S1, S2, S3 and
concepts C1

k , C
2
k , C

3
k for each 1 ≤ k ≤ ℓ. The Cntd-ACQ is

q(Cntd(u)) :- ∃x1 · · · ∃xn ∃z1 · · · ∃zm ∃c1 · · · ∃cℓ ∃vx1
· · · ∃vxn

∃vz1 · · · ∃vzm ∃s φ,

where

φ = V (s, u) ∧
∧

1≤k≤ℓ

(

R(s, ck)∧S1(ck, vy1

k
)∧S2(ck, vy2

k
)∧S3(ck, vy3

k
)∧C1

k(y
1
k)∧C

2
k(y

2
k)∧C

3
k(y

3
k)

)

∧

V (x1, vx1
) ∧ · · · ∧ V (xn, vxn

) ∧ V (z1, vz1) ∧ · · · ∧ V (zm, vzm).

Next we define the knowledge base K and start with the ABox A.

1. The active domain contains the constants x̂1, . . . , x̂n, ẑ1, . . . , ẑm, ĉ1, . . . , ĉℓ,
v̂x1

, . . . , v̂xn
, v̂z1 , . . . , v̂zm , and ŝ. The ABox A contains assertions which are

copies of all atoms of the formula φ, except V (s, u), in the way that every
existential variable a (except u) of q is “frozen” into the constant â.

2. The active domain contains constants 0 and 1. The ABox A contains the
assertions V (ŝ, 0) and V (ŝ, 1).

3. The active domain contains constants x̄1, . . . , x̄n. For each 1 ≤ i ≤ n and
1 ≤ k ≤ ℓ the ABox A contains the assertion R(x̄i, ĉk). For each 1 ≤ i ≤ n
it also contains the assertion Xi(x̄i), where Xi is a new concept assigned to
the constant x̄i.

4. The active domain contains constants z̄1, . . . , z̄m. For each 1 ≤ j ≤ m the
ABox A contains the assertions V (z̄j , 0) and V (z̄j , 1).

5. For every 1 ≤ k ≤ ℓ the ABox A contains the assertions C1
k(ȳ

1
k), C

2
k(ȳ

2
k) and

C3
k(ȳ

3
k) where ȳ1k, ȳ

2
k and ȳ3k are the constants among x̄1, . . . , x̄n, z̄1, . . . , z̄m

such that y1k, y
2
k and y3k are the variables of the clause ψk in the formula ψ.

6. For each 1 ≤ k ≤ ℓ and 1 ≤ p ≤ 7 the active domain contains a constant
c̄pk. For each 1 ≤ k ≤ ℓ, let σ1, . . . , σ7 be an enumeration of all satisfying
assignments of the clause ψk, that uses variables y1k, y

2
k, y

3
k. For each such

assignment σp, 1 ≤ p ≤ 7, the ABox A contains assertions S1(c̄
p
k, σp(y

1
k)),

S2(c̄
p
k, σp(y

2
k)) and S3(c̄

p
k, σp(y

3
k)). Here we abuse notation and assume that

σp(y
i
k), 1 ≤ i ≤ 3, evaluates to either the constant 0 or the constant 1.

7. The active domain contains constants d1 and d2. The ABox A contains
assertions V (d1, d2) and R(d1, c̄

p
k) for each 1 ≤ k ≤ ℓ and 1 ≤ p ≤ 7.

Finally, the TBox T contains the assertion Xi ⊑ ∃V for each 1 ≤ i ≤ n.

Next we show that 3 ∈ Cert(q, t∅,K), where t∅ is the empty tuple, holds if
and only if for every truth assignment of the variables x, there exists a truth
assignment of the variables z so that ψ is satisfied with the overall assignment.

(⇒) Let 3 ∈ Cert(q, t∅,K), but assume for the sake of contradiction that there is
a truth assignment σx for the variables in x such that ψ is not satisfiable under
any assignment for the variables in z.

Construct the following interpretation I for K.

1. The interpretation of all roles and concepts except for V corresponds pre-
cisely to A. That is, for each role R different from V , we have that (a, b) ∈ RI

if and only if R(a, b) is an assertion in A, and likewise for all concepts C.
2. For each 1 ≤ i ≤ n, the pair (x̄i, σx(x̄i)) belongs to V I . Note that here we

abuse terminology once again, the value of each σx(x̄i) is either the constant
1 or the constant 0 in the active domain.

It is clear that I is a model of K. From the assumption that 3 ≥ m(q, t,K)
and the construction of I, it must be the case that q̄(d2) holds in I (recall,
that q̄ is the core of the Cntd-ACQ q). From this fact it is possible to derive
a contradiction as follows. Let d be a constant in I such that q̄(d), q̄(0) and
q̄(1) hold in I (we know from the construction of K that q̄(0) and q̄(1) must
already hold in all models of K). But again from the interpretation of V in I we
know that d can only be the constant d2, since the remainder of the pairs in V
have either 0 or 1 in the range (second) position. It follows that there must be
a mapping τ from the variables of φ to elements in I such that

- the mapping τ sends the variable u to the constant d2, and
- q̄(τ(u)) holds in I.

We can, however, determine more properties of τ from the construction of I and
K. In fact, it follows that each variable xi, 1 ≤ i ≤ n, is indeed mapped by τ
to the constant x̄i in I, and that vxi

is mapped to the corresponding valuation
of xi according to σx. It follows from the construction of φ that the following
assignment σz of the variables z in ψ is such that σx, σz satisfy ψ: σz assigns the
value 1 to zj iff the variable vzj in φ is mapped to 1, according to τ .

(⇐) Assume that for every truth assignment of the variables x, there exists a
truth assignment of the variables z so that each ψk is satisfied with the overall
assignment, yet assume for the sake of contradiction that there is a model I of
K such that only q̄(1) and q̄(0) hold in I (those hold by the construction of K).

From the construction of A, it is not difficult to see that, for each pair (x̄i, a)
in V I it must be the case that a is either 1 or 0 (otherwise it violates the
assumption previously mentioned, since this would give an extra witness for the
variable u). Construct the following valuation σx for the variables in x. For each
1 ≤ i ≤ n, σx(xi) = 1, if the pair (x̄i, 1) is in V

I , and σx(xi) = 0 otherwise.

From the original assumption, there must be an assignment σz of the variables
in z such that σx, σz satisfy ψ. We now show that q̄(d2) must hold in I. To that
extent, construct the following mapping τ from the variables in q to constants in
I: τ maps every variable x1, . . . , xn and z1, . . . , zm to the corresponding constants
x̄1, . . . , x̄n and z̄1, . . . , z̄m in I, and maps each vxi

(and vzj) to 1 if and only if σx
(and σz) assigns the value 1 to xi (and zj). Moreover, for each clause ψk, it maps
each variable ck to the corresponding constant c̄pk such that the p-th satisfying
assignment for ψk is the one witnessed by σx and σz . It is then clear that q̄(d2)
hold in I, which violates our original assumption. ⊓⊔

Lemma 8. The decision problem DL-LiteR Cntd-Aggregate Certain An-
swers is coNExpTime-hard.

Proof. Same to the proof of Lem. 5, this proof is by reduction from the com-
plement of the satisfiability problem for Boolean FO formulas in the Bernays-
Schönfinkel class.

Let ∃x∀yψ(x,y) be a formula in the Bernays-Schönfinkel class. Let also
x = x1, . . . , xn and y = y1, . . . , ym. For the sake of readability, we again assume
that ψ mentions a single relation symbol P of arity r and also that r ≥ m. The
adaptation to the general case can be done exactly the same way as in the proof
of Lem. 5. Finally, w.l.o.g. we assume that ψ is not atomic and let ψ1, . . . , ψp be
an enumeration of all the sub-formulas of ψ such that ψp = ψ, and ψ1, . . . , ψp0

is the set of atomic sub-formulas of ψ. It is also important to recall the following
property of the Bernays-Schönfinkel class: either a formula in it is unsatisfiable,
or it has a model with at most n elements (see, e.g. [17]).

Next we will show how to construct in polynomial time a DL-LiteR KB
K = 〈T ,A〉 and a Boolean Cntd-ACQ q(Cntd(z)) such that n+2 ∈ Cert(q, t∅,K)
(where t∅ is the empty tuple) iff ∃x∀yψ(x,y) is satisfiable, i.e. has a model.

The underlying idea of the reduction is the same that of the proof of Lem. 5.
The main difference, however, is that we are now dealing with Cntd-ACQs, and
thus we need to identify just one counting variable in the query that needs to
witness each required evaluation, whereas in Lem. 5 we had the flexibility to
allow these evaluations to match each model in different ways.

In other words, this means the following. Recall that in the proof of Lem. 5 we
built a knowledge base such that its models represented different possibilities for
instances of the vocabulary of the FO formula ∃x∀yψ(x,y). For this reduction
we will need, in our query, a single control part of the query that needs to match
different parts of these knowledge bases, to check whether these models represent
well formed evaluations for ψ or not.

The control is coded into the ABox A, which description we now begin.
Let the active domain contains the constants

d, cR, cF , c1, . . . , cp, cp+1, b0, . . . , bp, s−r+2
R , . . . , s0R,

s−r+2, . . . , s0F , . . . , s
r−n
F , eR, eF , 0, 1,

the constants e1ℓ , e
2
ℓ for each number ℓ, 1 ≤ ℓ ≤ p, such that ψℓ is either atomic

or of the form ¬ψℓ1 , and the constants e1ℓ , e
2
ℓ , e

3
ℓ , e

4
ℓ for each number ℓ, 1 ≤ ℓ ≤ p,

such that ψℓ is of the form ψℓ1 ∨ ψℓ2 .
Consider concepts CNTR and START , and roles A1, A2, A3, B1, B2, B3, B4,

D1, . . . , Dp0
, and C. Let the ABox A contains the following assertions:

– CNTR(cR), CNTR(cF), CNTR(d), and CNTR(c1), . . . , CNTR(cp+1);
– C(cR, eR), C(cF , eF) and C(cp+1, ep+1);
– C(cℓ, e

1
ℓ) and C(cℓ, e

2
ℓ), for each 1 ≤ ℓ ≤ p such that ψℓ is either atomic or

of the form ¬ψℓ1 ;
– C(cℓ, e

1
ℓ), C(cℓ, e

2
ℓ), C(cℓ, e

3
ℓ), and C(cℓ, e

4
ℓ) , for each p0 < ℓ ≤ p such that

ψℓ is of the form ψℓ = ψℓ1 ∨ ψℓ2 .

The intuition for the role C will be clear when we describe our query, but it
is part of the control for the query. Let the ABox A also contains assertions

– A1(cR, d), A2(cR, d), A1(cF , d), A2(cF , d) and A1(cp+1, d), A2(cp+1, d);
– A1(cℓ, d) and A2(cℓ, d) for each 1 ≤ ℓ ≤ p0 (i.e. such that ψℓ is atomic);
– A1(cℓ, cℓ1) and A2(cℓ, d) for each p0 < ℓ ≤ p such that ψℓ = ¬ψℓ1 ;
– A1(cℓ, cℓ1) and A2(cℓ, cℓ2) for each p0 < ℓ ≤ p such that ψℓ = ψℓ1 ∨ ψℓ2 ;
– A3(c, d) for each c ∈ {cR, cF , c1, . . . , cp};
– A3(cp+1, cp+1).

Here the constant d will play the role of a dummy constant. In other words,
it will indicate when certain parts of q are to be activated. The ABox A also
contains the assertions

– B1(eR, d), B2(eR, d), B3(eR, d), and B4(eR, d);
– B1(eF , d), B2(eF , d), B3(eF , d), and B4(eF , d);
– B1(ep+1, d), B2(ep+1, d), B3(ep+1, d), and B4(ep+1, d);
– B1(c

1
ℓ , 1), B2(c

1
ℓ , 0), B3(c

1
ℓ , d), B4(c

1
ℓ , d), and

B1(c
2
ℓ , 0), B2(c

2
ℓ , 1), B3(c

2
ℓ , d), B4(c

2
ℓ , d) for each 1 ≤ ℓ ≤ p0 (i.e. such that ψℓ

is atomic);
– B2(c

1
ℓ , 1), B3(c

1
ℓ , 1), B1(c

1
ℓ , d), B4(c

1
ℓ , d), and

B2(c
2
ℓ , 0), B3(c

2
ℓ , 0), B1(c

2
ℓ , d), B4(c

2
ℓ , d) for each p0 < ℓ ≤ p such that ψℓ =

¬ψℓ1 ;
– B1(c

1
ℓ , d), B2(c

1
ℓ , 1), B3(c

1
ℓ , 0), B4(c

1
ℓ , 0),

B1(c
2
ℓ , d), B2(c

2
ℓ , 0), B3(c

2
ℓ , 1), B4(c

2
ℓ , 0),

B1(c
3
ℓ , d), B2(c

3
ℓ , 0), B3(c

3
ℓ , 0), B4(c

3
ℓ , 1), and

B1(c
4
ℓ , d), B2(c

4
ℓ , 0), B3(c

4
ℓ , 0), B4(c

4
ℓ , 0), for each p0 < ℓ ≤ p such that ψℓ =

ψℓ1 ∨ ψℓ2 .

At this point it is useful to describe the intuition behind the control of the
query. Elements that belong to CNTR determine which part of the query in
Lem. 5 are they going to simulate. Our query shall contain an atom of the form
CNTR(c). When the variable c is mapped to cR or cF , the query simulates
the part that assigns elements and truth values to the relations and atomic
subformulas of ψ. When c is mapped to some cℓ, 1 ≤ ℓ ≤ p, it checks instead

that the assignment for the i-th subformula is consistent. Finally, when mapping
c to cp+1 we check the satisfiability of the formula. The dummy constant d can
be replaced in different parts of the query when the control does not need this
query. This is regulated with the help of the roles Ai, Bi, Ci and Di.

Next, the ABox A contains the following assertions

– D1(c, d), . . . , Dp0
(c, d) for each e ∈ {cR, cF , cpat+1, . . . , cp+1};

– Dj(cℓ, d) and Dℓ(cℓ, cR), for each 1 ≤ ℓ ≤ p0 (i.e. such that ψℓ is atomic)
and for each j 6= ℓ.

Next we need to add to A some assertions that help create dummy witnesses
for our evaluations. These are comprised by the following assertions, where R0,
R, TV and V are fresh roles:

– R0(b0, d), R(b0, b1), R(b1, b2), . . . , R(bp−1, bp);
– V (bi, a) for each a ∈ {a1, . . . , an, 0, 1} and 1 ≤ i ≤ p;
– TV (bp, a) for each a ∈ {a1, . . . , an, 0, 1}, plus TV (bp,⊥).

Here ⊥ is another fresh constant. The query q is constructed below in such
a way that there is an evaluation assigning this constant if and only if ψ is
satisfiable.

Finally, we add to A the following necessary assertions so that each model
correctly represents instances for the vocabulary of ψ (here we use roles similar
to the A in the proof of Lem. 5):

– STARTR(s
0
R) and STARTF (s

r−n
F);

– R(s−r+2
R , s−r+3

R), . . . , R(s−1
R , s0R) and R(s

−r+2
F , s−r+3

F), . . . , R(s−1
F , s0F);

– R(s0F , s
1
F), . . . , R(s

r−n−1
F , sr−n

F);
– R0(s

i
R, cR) for each −r + 2 ≤ i ≤ 0 and F0(s

i
F , cF) for each −r + 2 ≤ i ≤ 0;

– F0(s
0
F , c) for each c ∈ {c1, . . . , cp}.

The remaining assertions in A are similar to the proof of Lem. 5, where Ai

is a fresh concept for each 1 ≤ i ≤ n and S and Z also fresh concepts:

– Ai(ai) for each 1 ≤ i ≤ n;
– S(0), S(1), and Z(0).

The TBox T is similar to that of the proof of Lem. 5, and divided into three
parts.

1. The first part essentially assigns elements to the existential variables x. The
TBox T contains inclusions
- ∃(V i)− ⊑ Ai and V i ⊑ V for each i, 1 ≤ i ≤ n,
- TV ⊑ V .

2. The second part essentially assigns a truth value to every fact P (ai1 , . . . , air).
The TBox T contains inclusions
- STARTR ⊑ ∃Ri

1 for each i, 1 ≤ i ≤ n;

- ∃Ri
k

−
⊑ Rj

k+1 for each i, j and k, 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ r − 1;

- ∃Ri
k

−
⊑ ∃V i and Ri

k ⊑ R for each i and k, 1 ≤ i ≤ n, 1 ≤ k ≤ r;

- ∃Ri
r

−
⊑ ∃TVR for each i, 1 ≤ i ≤ n;

- ∃TV −
R ⊑ S.

3. The third part essentially assigns a truth value to every sub-formula ψℓ of
ψ for every assignment of variables y. Note that we also use role R in this
part. The TBox T contains inclusions
- STARTF ⊑ ∃F i

1 for each i, 1 ≤ i ≤ n;

- ∃F i
k

−
⊑ F j

k+1 for each i, j and k, 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ m− 1;

- ∃F i
k

−
⊑ ∃V i and F i

k ⊑ R for each i and k, 1 ≤ i ≤ n, 1 ≤ k ≤ m;

- ∃F i
m

−
⊑ ∃TV ℓ

F for each i and ℓ, 1 ≤ i ≤ n, 1 ≤ ℓ ≤ p;

- ∃TV ℓ
F

−
⊑ S for each ℓ, 1 ≤ ℓ ≤ p.

We now turn to define the Boolean count distinct ACQ q(Cntd(z)). Consider
the following parametrized conjunctions

γR[v, w1, . . . , wr, w] = R0(u0, v) ∧R(u0, u1) ∧R(u1, u2) ∧ · · · ∧R(ur−1, ur) ∧

V (u1, w1) ∧ · · · ∧ V (ur, wr) ∧ TV (ur, w),

and, for each 1 ≤ ℓ ≤ p,

γFℓ [v, w1, . . . , wm, w] = R0(u0, v) ∧R(u0, u1) ∧R(u1, u2) ∧ · · · ∧R(um−1, um) ∧

V (u1, w1) ∧ · · · ∧ V (um, wm) ∧ TV ℓ(um, w).

In the following definition of q, we shall consider various instantiations of these
conjunctions, and we always assume that all the variables ui are instantiated
each time by different, fresh variables.

As the first example of such instantiations, consider variables α1, . . . , αℓ. For
each atomic sub-formula ψℓ = P (z1, . . . , zr),over variables z1, . . . , zr from x∪y,
we define

φℓ = γR[αℓ, τ(z)1, . . . , τ(z)r, w1]

where τ is a mapping that maps each xi to variable si and each yj to variable
tj .

The ACQ q(Cntd(z)) is defined as

∃s CNTR(c) ∧ γR[c, v1, . . . , vr, z] ∧ ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4,

where s is the tuple of all variables in q except z, and

ξ1 = A1(s1) ∧ A2(s2) ∧ . . . ∧An(sn) ∧

D1(c, α1) ∧ . . . ∧Dp0
(c, cp0

) ∧

φ1 ∧ . . . ∧ φp0 ∧

γFℓ [c, t1, . . . , tm, w2] ∧ C(c, e) ∧B1(e, w1) ∧B2(e, w2)

(this conjunction ensures that the truth values of all p0 atomic sub-formulas are
consistent);

ξ2 = γFℓ1 [c
′, t1, . . . , tm, w3] ∧A1(c, c

′) ∧B3(e, w3)

(this conjunction ensures the correct assignment of all sub-formulas ψℓ of form
¬ψℓ1);

ξ3 = γFℓ2 [c
′′, t1, . . . , tm, w4] ∧A2(c, c

′′) ∧B4(e, w4)

(this conjunction assigns truth values of sub-formulas ψℓ = ψℓ1 ∨ ψℓ2);

ξ4 = γFp [c′′′, t1, . . . , tm, w5] ∧ Z(w5) ∧ A3(c, c
′′′)

(and this conjunction verifies that all truths assignments do not satisfy ψ).
One can now show, by combining the techniques of the proofs of Lem. 5

and 7, that n+2 ∈ Cert(q, t∅,K) iff ∃x∀yψ(x,y) is satisfiable, i.e. has a model.
⊓⊔

