Satisfiability of JSON Schema and Instance Validation

Juan L. Reutter, Martin Ugarte, and Domagoj Vrgoc

PUC Chile

Abstract. We study the JSON schema specification that provides a way of de-
scribing sets of JSON documents. In this paper we formalize a fragment of the
specification and show that for this fragment the satisfiability problem for JSON
schemas is PSPACE-complete. We also comment on our current line of research
in this respect, stating our immediate and long term goals.

1 Introduction

JSON (JavaScript Object Notation) is a lightweight data-interchange format, standarized
by the European association for standardizing information and communication systems
(ECMA) and the Internet Engineering Task Force (IETF) [2, 3]. The JSON definitions
are based on Javascript notation, and since its introduction it has gained immense pop-
ularity amongst web and api developers.

With the popularity of JSON it was soon noted that in many scenarios one can
benefit from a declarative way of specifying a schema for JSON documents: In the basic
API scenario this would allow developers to specify what type of JSON documents are
accepted as inputs by the API and what is the format of the output of this APIL. This
gave way to several schema specifications for JSON documents. We focus here on one
of them, called JSON schema [5].

While JSON schema is still a work in progress, there is a growing body of applica-
tions that support JSON schema definitions, and a good deal of tools and packages to
enable the validation of documents against JSON schema. We are currently at the fourth
version of the JSON schema specification [4], and we have seen how the definition is
being established as the default schema specification for JSON documents. However,
to the best of our knowledge there has been no formal study of the schema specifica-
tions, and the scientific community has not been involved in the design choices for this
language.

Our goal is to start this formal study and use it to recommend algorithms or identify
potential weaknesses of the specification to the JSON schema working group. In this
paper we establish the first formal model of (a fragment of) JSON schema, and use it
to devise an algorithm for the satisfiability problem for schemas. We also shed light on
the future milestones of our project, as well as our expected future outcomes.

1.1 JSON Documents

Let X' be an alphabet and t rue, false two symbols notin Y. The set of JSON objects
is recursively defined as follows:

—_

. true and false are JSON objects, called boolean objects.

2. A real number (e.g. 3.14, 23) is a JSON object, called a number object, or just
number.

3. Any string over X' is a JSON object, called a string object (or just string).

4. If t1,...,t, are JSON objects then t = [t1,...,t,] is a JSON object called an

array. In this case 1, . .., t,, are called the objects of t. If all of ¢; . .., t, are of the
same type T, we say that ¢ is a T array (e.g. a string array).
5. If t1,...,t, are valid JSON objects and s, ..., s, are pairwise distinct string ob-

jects, then t = {81 : t1,..., 8, : t,} is a JSON object, called a dictionary object,
or just dictionary. In this case, each s; : t; is called a key-object pair of ¢.

The following syntax is normally used to navigate through JSON documents. If ¢ is
a dictionary object, then ¢[“key”] is the set of all key-objects pairs of ¢ whose key is the
string “key”. Likewise, if ¢ is an array, then t[n], for a natural number n contains the
i-th object of ¢. In both cases, len(t) denotes the amount of key-object pairs or objects
in ¢, respectively.

1.2 JSON Schema

The idea of a JSON schema is to specify what type of objects are allowed in the docu-
ments conforming to the schema, and what are the properties and shape of these objects.
We focus on a subset of the JSON schema definition that defines strings and dictionar-
ies, according to the following syntax:

obj ::= str | dict | complex
str := ‘{type:string’ pattern?‘}’
dict ::

‘{type:dict’ prop? patPr? required? addPr? minPr? maxPr? ‘}’
‘not:[’obj‘]’ | *anyOf:[’objt 17 | *allof: ["objt]’

complex ::

Pairs type:string and type:dict indicate that the object must be a string
or a dictionary, respectively. The definition also allows for the definition of complex
objects that state that the object must belong to the complement of a given schema, to
the union of a set of schemas, or to the intersection of a set of schemas.

For string types the definition allows to state that the string must conform to a certain
regular expression over the alphabet Y. For dictionaries several options are provided,
and are defined according to the following syntax

pattern ::= ‘pattern:’ regexp
prop ::= ‘properties:{’w; : objy,...,wy, : obj, *}’
patPr ::= ‘patternProperties:{’ regexp; : obj,,...,regexp,, : obj, *}’
addPr ::= ‘additionalProperties:’ obj
required ::= ‘required: ["wy,...,w,]’
minPr ::= ‘minProperties:’ n

maxPr ::= ‘maxProperties:’ n

Here w,wy, ..., w, are strings over X, regexp, regexp, ..., regexp,, are regular ex-
pressions over X' and n is a natural number. Pairs of form “w; : obj,” and “regexp, :
obj,” inside prop and patPr state that, should the key w; or a key conforming to regexp;
be in the dictionary, then the value of that pair must conform to the schema given by
obj,. Pair “additionalProperties : obj” states that the values of all keys not
explicitly mentioned in prop or patPr need to conform to the schema of obj, minPr and
maxPr specify the number of pairs in the dictionary and “required : [wy,...,w,]”
states that there must be pairs with keys w1, . . ., wy,.

Unfortunately, we do not have enough space to give any meaningful examples. We
do refer the reader to [5] for examples. Next, we formally define the semantics of JSON
schema.

Semantics. Let ¢ be a json object and let S be a JSON Schema. We say that ¢ conforms
to S, denoted by t |= S if S = true orif

— S'is “allOf:[r]” and ¢ conforms to every JSON Schema in r.

— Sis “anyOf:[r]” and ¢ conforms to at least one JSON Schema in 7.

— Sis “not:[r]” and ¢ does not conform to 7.

— t is a string and every key-value pair s : r in S is either “type:string” or
“‘pattern:’ regexp” andtis in the language of regexp.

— tis a dictionary and every key-value pair s : 7 in S is either:

“type : dict”

e s = “minProperties” and len(t) is greater than or equal to r, or

e s = “maxProperties” and len(t) is less than or equal to r, or

e s = “required” and all of the strings in r are keys in .

e s = “properties”, r = {$1 : 1,..., 8y : rn} and for every key-value pair k : v
int, if k = s; for some 1 < i < n, then t conforms to r;.

e s = “patternProperties”, r = {s1 : r1,...,8, : 7} and for every key-value

pair k : v in t such that k is not a key in S[properties| or S[properties] is not
defined, if k is in the language of s;, for 1 < ¢ < n, then v conforms to 7;

e s = “additionalProperties” and for every pair k£ : v in ¢ such that (1) k is
not a key in S[properties| or S[properties] is not defined and (2) k& does not
conform to the regular expression generated by any key in .S[patternProperties]
or SpatternProperties| is not defined it must be the case that ¢ conforms to v.

2 Static Analyisis

The first question that we chose to study is satisfiability: Given a JSON schema S, does
there exist a JSON document ¢ such that ¢ = S? Our JSON schemas are not recursive,
but the complex constructs give them quite a lot of expressive power, even if they can
only define documents given by nested dictionaries and strings. Nevertheless, we can
show that satisfiability can be decided in PSPACE for our types of schemas, which is
really the least we can ask for, as the combination of ‘not:”, “anyOf:” and “pattern:”
allows us to easily code containment or equivalence of regular expressions, a problem

known to be PSPACE-hard.

Theorem 1. The satisfiability problem for JSON schemas is PSPACE-complete

Proof (Sketch). Since JSON schema definitions are not recursive, they are satisfied
by JSON documents with a bounded number of nested dictionaries, namely the max-
imum nesting of dictionaries in the JSON schema. Let then S be a schema. For the
proof we use a coding scheme similar to that of [1] to transform JSON documents into
strings, taking into account the current depth of nesting within these objects. We then
construct an automaton Ag that accepts all strings that represent encodings for JSON
documents. Because of the complex constructs, we need to use an alternating finite
automata [6], that can be complemented and intersected in polynomial time. The con-
struction is defined inductively, complementing and intersecting these automata every
time we encounter a complex object. Once the construction is done, we can show that S
is satisfiable if and only if the language defined by Ag is nonempty, a decision problem
known to be in PSPACE.

3 Current Work

We have defined here a strict subset of the features allowed in JSON schema. Two
additional features that do not take us away from defining JSON objects based solely
on string and dictionaries, are dependencies and definitions.

Dependencies are pairs of form “dependency:{w; : obj;,...,w, : obj,}”, and
their semantics is as follows: If ¢ is a dictionary object, then ¢ conforms to the depen-
dency of the form above if for every pair k : vint, if £ = w; for some 1 < ¢ < n,
it is the case that ¢ also conforms to obj,. Definitions are complex objects that allow
for recursion, they are again pairs of form “definitions:{w : obj,...,w, : obj,}"”,
but having these definitions allows one to use w; to refer to the schema obj,. But of
course, nothing prevents the schema obj, to use itself copies of w, thus allowing users
to create recursive schema definitions.

Our next immediate goal is to understand the satisfiability of JSON schemas and
validation of documents with respect to the schemas extended with these additional
constructs, and we already have preliminary results. We are also studying the problem
of validation of JSON documents against a schema (this problem is in polynomial time
for schemas presented here). By studying these problems we hope to gain enough un-
derstanding of what features are simple from a computational point of view, and which
of them have the potential to cause problems in real implementations.

References

1. M. Benedikt, W. Fan, and F. Geerts. Xpath satisfiability in the presence of dtds. Journal of
the ACM (JACM), 55(2):8, 2008.

2. T. Bray. The javascript object notation (json) data interchange format. 2014.

3. D. Crockford. The json data interchange format. Technical report, Technical report, ECMA
International, October, 2013.

4. F. Galiegue and K. Zyp. Json schema: Core definitions and terminology. Internet Engineering
Task Force (IETF), 2013.

5. json-schema.org: The home of json schema. http://json-schema.org/.

6. R. E. Ladner, R. J. Lipton, and L. J. Stockmeyer. Alternating pushdown and stack automata.
SIAM Journal on Computing, 13(1):135-155, 1984.

